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Abstract 

Background: Most North American temperate forests are plantation or regrowth forests, which are actively man‑
aged. These forests are in different stages of their growth cycles and their ability to sequester atmospheric carbon is 
affected by extreme weather events. In this study, the impact of heat and drought events on carbon sequestration in 
an age‑sequence (80, 45, and 17 years as of 2019) of eastern white pine (Pinus strobus L.) forests in southern Ontario, 
Canada was examined using eddy covariance flux measurements from 2003 to 2019.

Results: Over the 17‑year study period, the mean annual values of net ecosystem productivity (NEP) were 180 ± 96, 
538 ± 177 and 64 ± 165 g C  m–2  yr–1 in the 80‑, 45‑ and 17‑year‑old stands, respectively, with the highest annual 
carbon sequestration rate observed in the 45‑year‑old stand. We found that air temperature (Ta) was the dominant 
control on NEP in all three different‑aged stands and drought, which was a limiting factor for both gross ecosystem 
productivity (GEP) and ecosystems respiration (RE), had a smaller impact on NEP. However, the simultaneous occur‑
rence of heat and drought events during the early growing seasons or over the consecutive years had a significant 
negative impact on annual NEP in all three forests. We observed a similar trend of NEP decline in all three stands over 
three consecutive years that experienced extreme weather events, with 2016 being a hot and dry, 2017 being a dry, 
and 2018 being a hot year. The youngest stand became a net source of carbon for all three of these years and the 
oldest stand became a small source of carbon for the first time in 2018 since observations started in 2003. However, in 
2019, all three stands reverted to annual net carbon sinks.

Conclusions: Our study results indicate that the timing, frequency and concurrent or consecutive occurrence of 
extreme weather events may have significant implications for carbon sequestration in temperate conifer forests in 
Eastern North America. This study is one of few globally available to provide long‑term observational data on carbon 
exchanges in different‑aged temperate plantation forests. It highlights interannual variability in carbon fluxes and 
enhances our understanding of the responses of these forest ecosystems to extreme weather events. Study results 
will help in developing climate resilient and sustainable forestry practices to offset atmospheric greenhouse gas emis‑
sions and improving simulation of carbon exchange processes in terrestrial ecosystem models.
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Background
North American forests are a critical component of 
the global carbon cycle because they offset a large por-
tion of global fossil fuel carbon dioxide  (CO2) emissions 
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(Houghton et  al. 1999; Pan et  al. 2011; Williams et  al. 
2012). The temperate forests in Eastern North America 
are dominated by different-aged stands that have been 
either planted or have naturally regrown since the last 
major harvests in the nineteenth and twentieth century 
(OMNRF 1986). Many of these forests have been actively 
managed to enhance their growth and timber produc-
tion (Gilliam 2016). However, variations in environmen-
tal conditions may have a profound impact on the growth 
and carbon uptake of these managed forests. While the 
warming-induced extended growing season and  CO2 
fertilization effects are expected to increase carbon 
assimilation (Randerson et al. 1999; Nemani et al. 2003; 
Schwartz et  al. 2006), extreme events such as heat and 
drought may negatively affect net carbon uptake of these 
forests by limiting photosynthesis and/or increasing soil 
respiration and litter decomposition, or even altering the 
forest structure (Krishnan et al. 2006; Allard et al. 2008; 
Holst et al. 2008; Schwalm et al. 2012; von Buttlar et al. 
2018; Xu et al. 2020; Beamesderfer et al. 2020).

Past observations and future climate predictions sug-
gest an increasing frequency and severity of extreme 
events, such as heat and drought, in mid-latitude regions 
(Meehl et al. 2007; IPCC 2014, 2018). Some studies sug-
gest that the occurrence of heat and drought events may 
be shifted into both the spring and autumn shoulder sea-
sons or they may occur simultaneously (Monson et  al. 
2005; Piao et al. 2008; Hanson and Weltzin 2000; Schwarz 
et al. 2004; Sippel et al. 2016). The change of severity and 
timing of climate events may have a profound impact on 
the carbon cycle in temperate forests (Zscheischle et al. 
2014; van Gorsel et al. 2016; Hogg et al. 2017; Wu et al. 
2017; Fernández-Martínez et  al. 2020). For example, in 
Europe, a severe summer heatwave and drought caused 
forest ecosystems to lose large amount of carbon in the 
summer of 2003 (Ciais et  al. 2005; Bréda et  al. 2006; 
Granier et  al. 2007). The heatwave of 2018 affected a 
large part of Europe and caused lower forest productivity 
than that in 2003 (Buras et al. 2020). In North America, 
a severe summer drought in 2012, that coincided with 
warm spring temperatures, significantly impacted car-
bon exchanges in the region (Wolf et al. 2016). Although 
increased carbon uptake due to warmer spring tem-
peratures in 2012 helped in compensating the reduction 
in carbon sequestration due to summer drought, rapid 
depletion of soil water content also enhanced summer 
heating through land  surface–atmosphere feedbacks 
(Wolf et al. 2016; Pan and Schimel 2016).

The sensitivity of carbon sequestration to climate con-
straints and extreme events may vary with stand age 
because of changes in structural and physiological char-
acteristics, such as leaf area, woody biomass allocation, 
tree hydraulic conductance and non-structural carbon 

pools (Niinemets 2010; Peichl et  al. 2010a). Mature for-
ests with larger rooting systems have access to deeper 
water stores, which results in less severe impacts on 
their carbon uptake and water stress due to heat and/
or drought events as compared to younger stands. The 
canopies of mature stands are often exposed to more 
sunlight due to their structure—increased tree height and 
size as compared to younger stands, resulting in higher 
temperatures and atmospheric humidity deficit within 
the canopy, which may enhance evaporative demand, 
leading to stomatal closure and a reduction in photosyn-
thetic rates (Niinemets 2010). These responses indicate 
considerable complexities associated with the response 
of different-aged forests to environmental constraints 
and climatic extreme events. In the literature, many 
studies have focused on carbon exchanges in different-
aged or rotations (the period between planting and har-
vest) of temperate forests (Peichl et al. 2010a; Law et al. 
2003; Clark et al. 2004; Humphreys et al. 2006; Krishnan 
et  al. 2009; Amiro et  al. 2010; Goulden et  al. 2011; Bal-
docchi 2019; Xu et  al. 2020). However, there is a need 
for studies that can improve our understanding of how 
different-aged managed forests respond to multiple envi-
ronmental drivers, such as concurrent heat and drought 
events (Williams et al. 2013; Ruehr et al. 2012; Allen et al. 
2010; Reichstein et al. 2013; Frank et al. 2015).

The main objectives of this study were to (i) exam-
ine the impacts of heat and drought events on carbon 
exchanges in an age-sequence (80, 45, and 17  years as 
of 2019) of eastern white pine forests in Eastern North 
America using eddy covariance flux measurements from 
2003 to 2019 and (ii) determine how these different-aged 
plantation forests may respond to the concurrent or con-
secutive occurrence of these extreme weather events. The 
unique, long-term (17 years) data set provided an oppor-
tunity to explore the impacts of extreme events occurring 
over nearly two decades in these stands. We hypoth-
esized that (i) the net ecosystem productivity (NEP) of 
young stands will be more sensitive to heat and drought 
stress as compared to older stands, (ii) drought stress will 
have a more significant impact on NEP when it occurs 
concurrently with heat stress, and (iii) the consecutive 
occurrences of heat and/or drought events over multiple 
years will cause higher reduction in NEP in the younger 
stands.

Methods
Site descriptions
The study sites consist of three eastern white pine for-
ests (Pinus strobus L.) planted in 1939, 1974 and  2002 
as monoculture stands north of Lake Erie in southern 
Ontario, Canada. These stands were 80, 45 and 17 years 
old as of 2019 and are located within 20 km of each other 
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at approximately the same latitude (Table 1). In Eastern 
North America, white pine is an important native for-
est species because it is adapted to nutrient poor, well-
drained sandy soils and dry environmental conditions. It 
can grow up to 40 m height and has a lifespan of 380 to 
425  years (Thompson et  al. 2006). In the pre-European 
settlement landscape of Eastern North America, old-
growth white pine stands covered 50% of the area in the 
Great Lakes—St. Lawrence Forest region and 30% of the 
southern boreal forest region (Quinby 1993). During 
recent decades, white pine has been planted on degraded 
or disturbed (fire or clearing) lands as the first woody 
species to eventually facilitate in the establishment of 
native deciduous forest species through succession 
(Parker et al. 2001; Arain and Restrepo-Coupe 2005).

Our forest sites are part of the Turkey Point Obser-
vatory and have been associated with the Global Water 
Futures (GWF) program, former Fluxnet-Canada/Cana-
dian Carbon Program, AmeriFlux and global Fluxnet 
networks, where they are also known as CA-TP1 (Arain 
2018a), CA-TP3 (Arain 2018b) and CA-TP4 (Arain 
2018c) sites, respectively. They have also been referred 
to as TP02, TP74, and TP39 in some studies based 
on the year forests were planted. The 80-year-old and 
45-year-old forests were planted with white pine seed-
lings on cleared oak-savanna lands, while the 17-year-
old forest was planted on a former agricultural land that 
was left as fallow for several years prior to plantation. 
Tree species at the 80-year-old site include 82% white 
pine, 11% balsam fir (Abies balsamifera L. Mill) and 7% 
native Carolinian species—oak (Quercus velutina L., Q. 
alba L.), red maple (Acer rubrum L.), wild black cherry 

(Prunus serotina Ehrh.), and white birch (Betula papyrif-
era). The understory at this site consists of young white 
pines ranging from 0.5 to 6 m tall, black oak, balsam fir, 
and black cherry. Ground vegetation includes bracken 
fern (Pteridium aquilinum), moss (Polytrichum spp.), 
blackberry (Rubus spp.), poison ivy (Rhus radicans), 
and Canada mayflower (Maianthenum canadense). In 
1983, thinning was performed at the 80-year-old site; in 
which 104.76  m3   ha–1 wood volume was removed from 
38.6 ha area (Ontario Ministry of Natural Resources and 
Forestry records). In the winter of  2012, thinning was 
again conducted in the 80-year-old site during which one 
third of the trees were commercially harvested, reducing 
the stand density from 413 trees  ha–1 to 321 ± 111 trees 
 ha–1 while also reducing the basal area by 13%. Species 
composition at the 45-year-old stand is 94% white pine, 
mixed with 5% jack pine (Pinus banksiana) and 1% oak. 
Ground vegetation at the 45-year-old site is dominated 
by the bryophyte species. The 17-year-old site consists 
entirely of white pine species. Due to high tree-canopy 
shading at this site, the understory is limited to very few 
bryophytes and grasses.

The topography at all three sites is predominantly flat 
with occasional (0.5–3.0%) undulating slopes. The soils 
are composed of ~ 98% sand and are classified in the 
Canadian System of Soil Classification as lacustrine-
derived Brunisolic grey–brown luvisols (Presant and 
Acton 1984). The soils are well-drained and have a low 
water holding capacity (Table  1; McLaren et  al. 2008; 
Khalid 2016). The water table depth at the 80- and 
45-year-old sites is approximately 4–5 m in the winter–
spring and about 6–7  m in the summer–autumn. The 

Table 1 Site characteristics of the 80‑year‑old, 45‑year‑old and 17‑year‑old forests of the Turkey Point Observatory

Biometric data were measured in 2012, except numbers in brackets which indicate pre-thinning (2011) data

Soil data are from Khalid 2016

Site 80-year-old 45-year-old 17-year-old

Stand age (start/end) 64/80 29/45 1/17

Tower location 42.7102
− 80.3574

42.7074
− 80.3485

42.6617
− 80.5599

Elevation (m) 184 184 265

Plantation year 1939 1974 2002

Average canopy height (m) 23.4 (22.9) 16.2 6.85

Tree density (trees  ha–1) 321 (413) 1583 1567

Leaf area index, LAI  (m2  m–2) 5.3 (8.5) 6.6 6.4

Mean diameter at 1.3 m height, DBH (cm) 38.99 (37.2) 17.90 15.76

Stand basal area  (m2  ha–1) 36.0 (40.9) 40.0 31.8

Above ground biomass (t C  ha–1) 129.62 (143.8) 86.68 44.67

Soil texture Fine sand Fine sand Fine sand

Proportion of sand (%) 98 85 93

Bulk density (g  cm−3) 1.357 1.376 1.443
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17-year-old site is in proximity to Big Creek, where sur-
face water level in the creek is more than 5–6  m below 
the elevation of the adjacent forest. Further site details 
are given in Table  1 and in Arain and Restrepo-Coupé 
(2005), Arain (2018a, 2018b2018c), Peichl and Arain 
(2006), Peichl et  al. (2010a) and Beamesderfer et  al. 
(2020). The climate in the region is warm humid conti-
nental with a 30-year (1980–2010) mean annual tempera-
ture of 8.0 °C and mean annual precipitation of 1036 mm, 
with approximately 13% falls as snow, based on data 
records from the Environment and Climate Change Can-
ada weather station at Delhi, Ontario, about 19 to 22 km 
north-northwest of our sites.

Flux and meteorological measurements
Half-hourly fluxes of momentum, energy, water vapor, 
and carbon dioxide  (CO2)  (Fc) were measured from 
2003 to 2019 at the 80-year-old site using a closed-path 
eddy covariance (EC) system. A single roving open-
path EC system was used from 2003 to 2007 at the two 
other sites, before it was replaced by closed-path EC 
systems installed at the 45- and 17-year-old sites in Jan-
uary and May 2008, respectively. Each EC setup follows 
detailed protocols developed by the Fluxnet-Canada 
Research Network (FCRN). The closed-path EC sys-
tems consisted of a sonic anemometer (model CSAT3, 
Campbell Scientific Inc. (CSI)), an infrared gas analyzer 
(IRGA, model LI-7000, LI-COR Inc.), a climate control 
box with a heated sampling tube  (4 m) and a desktop 
PC housed in a trailer/hut (Arain and Restrepo-Coupé 
2005). The open-path EC system consisted of a sonic 
anemometer (model CSAT3, CSI), an IRGA (model 
LI-7500, LI-COR Inc.), a temperature/relative humid-
ity sensor (model HMP45C, CSI) and a data logger 
(model CR5000, CSI) to control system operations and 
store flux data. The open-path system was rotated on 
biweekly to monthly time intervals among three young 
forest sites from 2003 to 2007. However, one of these 
stands (planted in 1989) was decommissioned in 2008. 
Therefore, only 4  months of data per year was availa-
ble at the 45- and 17-year-old sites from 2003 to 2007, 
introducing relatively  larger level of  uncertainties 
and errors in the gap-filled flux data. EC sensors were 
installed at 28  m height on a scaffolding tower at the 
80-year-old site, which was increased to 34  m in May 
2016. EC sensors were installed at 16 m height on top 
of a triangular tower at the 45-year-old site, which was 
replaced with a scaffolding tower, where sensors moved 
to 20 m height in January 2008 due to increases in tree 
heights. At the 17-year-old site, flux measurements 
were initially made at about 2 m height using a triangu-
lar tower, which was replaced with a scaffolding tower 
in July 2014. At this site, the height of EC sensors was 

gradually increased to maintain approximately 2 m dis-
tance above the tree tops as the stand grew. In all three 
EC systems, air was sampled at 20 Hz and IRGAs were 
calibrated on bi-weekly to monthly intervals.

CO2 storage in the air column below the EC sensors at 
the 80-year-old site was calculated using  CO2 concentra-
tions measured from the IRGAs at the top (28 or 34 m) 
and mid-canopy (14  m) heights (model LI-820/Li-800, 
LI-COR Inc.). Similarly, storage fluxes at the 45-year-old 
site were calculated using  CO2 concentrations measured 
by the EC IRGA at the top of the tower (16 or 20 m) and 
an IRGA (model LI-800, LI-COR Inc.) that sampled air 
from mid-canopy level (8  m). Storage fluxes were not 
calculated for the younger site. Half-hourly NEP (–NEE; 
net ecosystem  CO2 exchange) was calculated by add-
ing  Fc and the rate of  CO2 storage change in the air col-
umn below the EC sensors. In the open-path EC system, 
half-hourly fluxes were derived using 10  min averages 
that were corrected for the effects of air density fluctua-
tions (WPL correction; Webb et  al. 1980). Our closed- 
and open-path EC systems were compared for about 
1  week with a roving closed-path EC system operated 
by FCRN researchers during a site inter-comparison 
campaign in 2005. This comparison showed a small dif-
ference between our closed-path EC system and FCRN 
closed-path EC system  (Fc_CPEC = 0.918  Fc_FCRN + 0.11; 
R2 = 0.98). The difference was relatively large between our 
closed-path and open-path EC systems  (Fc_OPEC = 0.77 
 Fc_CPEC−0.6; R2 = 0.86). Closed-path EC at our 80-year-
old site was  cross  calibrated with AmeriFlux EC  sys-
tem from 8 to 19 July 2019 indicating 3% difference in 
turbulent fluxes from both EC systems.  Fluxes were 
not adjusted to reconcile the relatively small difference 
(< 10%) between our open- and closed-path EC systems.

Meteorological variables were measured at the EC sam-
pling heights at all three sites and included: air tempera-
ture (Ta) and relative humidity (model HMP45C, CSI; at 
28/34, 14 and 2 m heights at the 80-year-old site), wind 
speed and direction (model 05103-10, R.M. Young Co.), 
downward and upward photosynthetically active radia-
tion (PAR↓ and PAR↑, model LI-200S, LI-COR Inc.). 
Soil moisture (model CS-615/616, CSI) was measured at 
two locations at 5, 10, 20, 50 and 100  cm depths at the 
80-year-old site, and at 5, 10, 20, and 50 cm depths at the 
45- and 17-year-old sites. Precipitation was measured 
above the tree height using an all-season, heated, tipping-
bucket rain gauge (model 52202, R.M. Young Co.) at the 
80-year-old site from 2003 to 2007. Since 2007, precipi-
tation was measured using an accumulation rain gauge 
(model T200B, Geonor Inc.), a tipping-bucket rain gauge 
(model TE525, Texas Inst.) in an open area near the 80- 
and 45-year-old sites, and a heated all-season tipping 
bucket rain gauge (model 52202, R.M. Young Co.) at the 
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17-year-old site. Precipitation measurements were cross-
checked using data collected at the Environment and Cli-
mate Change Canada weather station at Delhi, Ontario. 
All meteorological and soil data were averaged to half-
hour intervals.

Data processing and gap-filling
Meteorological and  CO2 flux data were quality controlled 
following FCRN protocols, described in detail in Bro-
deur (2014). Data quality was cross checked by Ameri-
Flux using protocols developed for the Fluxnet2015 
data release, when submitting these data to AmeriFlux 
archives. Gaps in meteorological variables caused by 
instrument malfunction, power failure, and instrument 
calibrations and data quality control (1, 4 and 9% at the 
80-, 45- and 17-year-old sites, respectively) were filled 
using estimates from linear regressions with the cor-
responding data from other sites or from the Environ-
ment and Climate Change  Canada weather station at 
Delhi, Ontario (Environment and Climate Change Can-
ada  2020). Remaining erroneous flux data points were 
removed following Papale et  al. (2006). For each half-
hourly flux measurement, a ‘flux footprint’ was calculated 
using a three-dimensional Lagrangian footprint model 
to retain fluxes within 80% of cumulative flux thresh-
old (Kljun et al. 2003). To remove erroneous flux values 
during low turbulence periods, a friction velocity (u*) 
threshold of 0.5 was applied to both daytime and night-
time data, in accordance with previous studies at our 
sites (e.g., Arain and Restrepo-Coupé 2005; Peichl et  al. 
2010a). Overall, closed-path EC flux data capture was 87, 
90 and 83% at the 80-, 45-, and 17-year-old sites, respec-
tively. However, after footprint and u∗ threshold filtering, 
the total portion of NEP data retained was 52, 47 and 
17% at the respective sites. These fluxes were well dis-
tributed among all seasons over the year, especially while 
using close-path EC systems. Relatively lower retention 
of flux data at the 17-year old site was because of limited 
fetch ranging from northwest to southeast direction and 
subsequent application of footprint threshold to exclude 
data when wind was blowing from these directions. Bro-
deur (2014) has analyzed and further discussed the sen-
sitivity of annual carbon exchanges at our sites due to 
different lengths of data gaps caused by footprint and 
u∗ thresholds.

Daytime RE and gaps in nighttime RE were filled 
using  modelled RE values derived as a function of soil 
temperature (Ts) at 5 cm depth and volumetric water 
content in the 0–30 cm soil layer (θ, estimated utlizing 
measurements made at 5, 10 and 20  cm depths) using 
Ordinary Least Squares (OLS) non-linear regression 
model applied to half-hourly nighttime NEE data (rep-
resenting RE) as described in Beamesderfer et al. (2020). 

Half-hourly GEP values were estimated by adding meas-
ured NEP to modelled daytime RE. Missing GEP values 
were modelled using a rectangular hyperbolic function 
that was fitted to bin-averaged, half-hourly GEP and 
PAR data (Beamesderfer et  al. 2020). Missing nighttime 
and daytime NEP values were filled using the difference 
between modelled RE and GEP values. In our study, 
positive NEP values indicate carbon uptake and negative 
values indicate carbon loss to the atmosphere. Further 
details are given in Peichl et al. (2010a), Brodeur (2014), 
Skubel et al. (2015) and Chan et al. (2018).

Data analysis
Relative Extractable Water (REW) in the root zone 
(0–30  cm) was used as a quantitative indicator for dry 
conditions to assess drought impacts (Black 1979). REW 
expresses the amount of soil water available for plant-
use as a proportion of the maximum possible extractable 
water for the sites. REW was calculated as

where θwp is the soil volumetric water content at plant 
wilting point (0.01  m3 m−3) and θfc is the soil water con-
tent at field capacity (0.20  m3  m−3), as estimated by 
McLaren et  al. (2008). A dry period was characterized 
when daily REW was ≤ 0.4 and a drought year was cat-
egorized when REW was ≤ 0.4 for more than 2  months 
(62 days) each year. Several studies in literature have used 
a REW threshold of 0.4 to define water stress or drought 
conditions in forest ecosystems (Bréda et  al. 1995; 
Granier et al. 2007; Davi et al. 2006; Maseyk et al. 2008). 
The “hot days” were defined as days when daily maxi-
mum temperature  (Tmax) ≥ 27.5 °C, which is the 90th per-
centile of daily Tmax over the 30-year reference period 
(1971–2000) in the region prior to the start of our study 
(Environment and Climate Change Canada weather sta-
tion at Delhi, Ontario). The “hot years” were categorized 
as the years that had 30 or more hot days in a given year. 
While quantitative and climatic sensitivity analysis was 
conducted and reported using daily values, annual char-
acterization of hot and dry years was only used for dis-
cussion purposes. Considering the climatic seasonality in 
the region, the seasons were defined by calendar months 
with spring consisting of April and May, summer consist-
ing of June, July, August, and September, autumn consist-
ing of October and November, and winter consisting of 
December, January, February and March.

The impacts of extreme weather events may poten-
tially be masked by the inter-annual and seasonal 
weather variations, and differences in forest growth 
among our  different-age sites. Therefore, time series 

(1)REW =

θ − θwp

θfc − θwp
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of carbon fluxes (GEP, RE and NEP) and the environ-
mental variables (Ta and REW) were detrended and 
normalized over the study period, following Xu et  al. 
(2020). The slope of linear relationships between daily 
carbon flux and environmental variables indicated the 
sensitivity of carbon fluxes to climate anomalies, dem-
onstrating the direct effect of climate constraints on 
the carbon balance (Schwalm et al. 2010; Wu and Chen 
2013). In the monthly data, negative correlation with Ta 
anomalies indicated heat stress, while positive correla-
tion with REW anomalies indicated drought stress. The 
daily anomalies were pooled together over bi-weekly 
periods to calculate the sensitivity indices (Xu et  al. 
2020). At the daily level, the slopes of REW and carbon 
flux anomalies were multiplied by − 1. Therefore, nega-
tive values of both Ta and REW sensitivity indicate that 
heat and drought stress significantly decreased carbon 
fluxes. The age effect on sensitivity to heat and drought 
stresses were evaluated by comparing the sensitivity 
indices of three sites.

A residual analysis was also conducted using daily 
GEP, RE, and NEP from the closed-path EC systems at 
each site. The correction of Ta models’ residuals of GEP, 
RE, and NEP with REW was tested for all the data, as 
well as for hot days  (Tmax ≥ 27.5 °C). All the calculations 
and analysis were conducted in MATLAB software 
(The Mathworks Inc.).

Results
Climate
The climate over the study period (2003 to 2019) was 
characterized by cold winters and hot and humid sum-
mers (Fig.  1). This region experienced record or  near-
record summer heat  events in 2005, 2010, 2012, 2016 
and 2018 (Shein 2006; Phillips 2006, 2011, 2013, 2017, 
2019). Observed absolute maximum Ta (half-hourly val-
ues) at our sites ranged from 34.48 °C in 2012 to 28.70 °C 
in 2004, with a mean ± standard deviation value of 
31.50 ± 1.36  °C from 2003 to 2019. The mean summer 
(June through September) Ta were 21.3, 20.7, 20.9, 20.9 
and 21.0 °C in 2005, 2010, 2012, 2016 and 2018, respec-
tively, which were higher than the 17-year mean summer 
Ta of 19.9 °C.

High soil water content, as illustrated by REW, was 
generally observed in late winter and early spring, with 
peak REW values occurring in March–April due to 
snowmelt and/or spring rainfall events (Fig.  1). A rapid 
decline in REW often occured in May, coinciding with an 
increase in photosynthetic activity and evapotranspira-
tion. Overall, the seasonal dynamics of REW were con-
sistent among the three sites, with the 45-year-old stand 
generally having the lowest REW values in the summer.

The sites experienced dry conditions in 2005, 2007, 
2010, 2012, 2016 and 2017, where monthly mean REW 
values dropped below 0.40 in the late summer. Therefore, 

Fig. 1 Monthly values of a photosynthetically active radiation (PAR) and vapor pressure deficit (VPD), b mean air temperature (Ta) and total 
precipitation (PPT), and c soil Relative Extractable Water (REW) in the 0–30 cm soil layer at each site. Dry years are shaded as yellow (2007, 2017), hot 
year is shaded as orange (2018), and concurrent hot and dry years are shaded as red (2005, 2010, 2012 and 2016)
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2007 and 2017 were characterized as years that experi-
enced drought events, 2018 experienced heat events and 
2005, 2010, 2012, and 2016 experienced concurrent heat 
and drought events. Year 2018 had the second warm-
est summer temperatures which were followed by high 
precipitation in the late growing season and onwards 
(Fig. 1b).

Age-related dynamics of carbon fluxes
The seasonal course of NEP at all three forest sites is 
shown in Fig. 2. In the 80-year-old stand, the lowest NEP 
values were observed in the growing seasons of 2005, 
2012 and 2018, when the forest experienced concurrent 
heat and drought stresses. These stress events turned the 
forest into a small carbon source on annual basis. In con-
trast, 2015, which experienced a mild drought in the early 
and late growing season, but a large precipitation event 
(> 150 mm, Fig. 1c) in June, was the most productive year 
of the study period, with no usual mid-summer decline in 
NEP (Fig. 2). In the 45-year-old stand, 2005 (hot and dry), 
2008 (cold, low VPD) and 2007 (dry) had much smaller 
summer NEP values compared to other years. The 
17-year-old stand experienced a large decrease in NEP 
after May–June in 2005 and 2016 (hot and dry), 2017 
(dry) and 2018 (hot) that caused the stand to become 
a source of carbon. In general, years with concurrent 
drought and heat events had lower cummulative NEP 
values at all sites as explained in the following section.

In the 80-year-old stand, annual NEP showed a con-
sistent decline from 2006 to 2018, recording the lowest 
NEP in 2018 when the forest became a net carbon source 
(− 9 g C  m−2  yr–1). In the 45-year-old stand, annual NEP 
values showed a consistent increase from 2008 to 2015, 
with the highest NEP of 831 g C  m–2  yr–1 in 2015, which 
was a wet year, followed by 807 g C  m–2  yr–1 in 2019. The 
17-year-old stand showed a mixed pattern of annual NEP 
values during the initial few years, where the site was a 
source of carbon in two out of the four years. The stand 
became a consistent carbon sink (NEP > 0) after 5  years 
of its plantation until 2015. After this, the stand became 
a source of carbon from 2006 to 2018, with the low-
est NEP value of −  319 g C  m–2   yr–1 observed in 2018. 
It was remarkable to observe a very similar trend of NEP 
decline in all three stands over three consecutive years 
experiencing extreme events: 2016 (hot and dry), 2017 
(dry), and 2018 (hot) (Fig. 3c).

Overall, the mean annual NEP ± standard deviation 
over the 17-year study period was 180 ± 96, 538 ± 168 
and 64 ± 165  g C  m–2   yr–1 in the 80-, 45- and 17-year-
old forests, respectively (Table  2). Carbon sequestration 
rates and forest productivity were highest in the 45-year-
old stand (Figs. 2 and 3). Changes in NEP across all stand 
ages showed that the 45-year-old and 17-year-old forests 

had large inter-annual variations in annual NEP, while the 
80-year-old forest had smaller and less variable NEP.

In terms of GEP, we observed a gradual increase in 
annual GEP in the 80- and 45-year-old stands and a 
more pronounced increase in the 17-year-old stand, 
where it increased from 494  g C  m–2   yr–1 in 2003 to 
1998 g C  m–2   yr–1 in 2019 (Fig. 3, Table 2). After 2010 
(hot and dry), all three stands showed a very similar 
trend in increasing annual GEP (Fig.  3). However, in 

Fig. 2 Cumulative annual net ecosystem productivity (NEP) at the 
a 80‑year‑old, b 45‑year‑old, and c 17‑year‑old forests. Dry years 
are shown as yellow (2007, 2017), hot year as burgundy (2018), and 
concurrent hot and dry years as red (2005, 2010, 2012 and 2016) 
shades of coloured lines
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2019, annual GEP of the 17-year stand exceeded the 
two older stands. A substantial increase in RE was 
observed in the 80-year-old stand from 2016 to 2018, 
with the highest RE (1670  g C  m−2   yr–1) observed 
in 2018 (hot), when the stand became a small car-
bon source. The annual RE in the 45-year-old stand 
increased from 2007 to 2010 and then leveled-off from 
2011 to 2018, while annual RE in the 17-year-old stand 
consistently increased from 2007 to 2019 (Fig. 3).

Sensitivity of carbon flux anomalies to and heat 
and drought stresses
At all three sites, the anomalies of mean monthly air 
temperature (Ta) were positively and significantly cor-
related with GEP and RE anomalies in spring and 
autumn (Fig.  4a, c, e and g), while no correlation was 
found with NEP anomalies during these seasons, except 
in the 45-year-old forest in spring (Fig. 4i and k). In the 
summer, GEP anomalies were negatively correlated 

Fig. 3 Annual total a gross ecosystem productivity (GEP), b ecosystem respiration (RE), and c net ecosystem productivity (NEP) in the 80‑, 45‑, and 
17‑year‑old forests. Dry years are shaded as yellow (2007, 2017), hot year is shaded as orange (2018), and concurrent hot and dry years are shaded as 
red (2005, 2010, 2012 and 2016)
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with Ta anomalies in the 17-year-old and 45-year-old 
stands, indicating less carbon uptake during warm peri-
ods (Fig.  4b, f ), while positive correlations were found 
between RE and Ta anomalies in the 80-year-old and 
45-year-old stands, suggesting higher carbon loss with 
increasing temperatures. The NEP anomalies were sig-
nificantly, but negatively, correlated with Ta anomalies 
in summer with R2 of 0.31, 0.32 and 0.47 for the 80-, 45- 
and 17-year-old stands, respectively, indicating less net 
carbon uptake under heat stress (Fig. 4j). The impact of 
REW anomalies on GEP, RE, and NEP anomalies was not 
as strong as the impact of Ta anomalies (Fig.  5). How-
ever, NEP anomalies were slightly negatively correlated 
with REW anomalies in most of the months and stands 
(Fig.  5l). Positive correlations, which indicated drought 
stress, were only observed in June and July in the 45-year-
old stand, and in June in the 17-year-old stand (Fig. 5l).

The sensitivities of daily GEP, RE, and NEP anomalies 
to Ta and REW anomalies at all three stands are shown 
in Fig. 6. Here, negative sensitivity values represent heat 
(dNEP/dTa < 0) and drought (dNEP/dREW < 0) stress. In 
early summer (June), all three stands showed decreases 
in GEP with Ta anomalies (dGEP/dTa < 0), while RE 
increased with Ta anomalies (dRE/dTa > 0) (Fig.  6c). 
Therefore, the sensitivity of NEP to Ta anomalies was 
negative in the summer at all three stands (Fig. 6e). The 

average summer NEP sensitivity to Ta anomalies was 
approximately 0.21, 0.36, 0.23 g C  m−2  day−1 °C−1, for the 
80-, 45- and 17-year-old stands, respectively, suggesting a 
strong heat stress impact in the summer. The sensitivity 
of NEP to Ta anomalies was the largest at the 45-year-old 
stand and smallest at the 80-year-old stand (Fig. 6d, h, l).

The drought stress (REW) showed a persistent positive 
effect on both GEP and RE in the two younger stands in 
the spring. In the summer, dry conditions had a similar 
negative effect on GEP and RE in the 80-year-old stand 
(dGEP/dREW < 0, Fig.  6b); therefore, NEP was not sen-
sitive to REW anomalies. The 45-year-old stand showed 
a strong drought stress impact on NEP, which was 
mostly driven by the decreases in GEP (dGEP/dREW < 0, 
Fig.  6d). The sensitivity of GEP anomalies to REW 
anomalies gradually increased from negative to positive 
values during the summer in the 17-year-old stand and 
the drought stress had less of an impact on RE anoma-
lies than GEP anomalies. As a result, the REW anomalies 
had a small negative effect on NEP anomalies in the early 
summer (−dNEP/dREW < 0, Fig.  6f ), but the effect was 
reduced in the late summer in the youngest stand.

Residuals of GEP, RE, and NEP, in their Ta-model, 
were not significantly correlated with REW at all three 
sites (gray dots in Fig. 7). However, when data from only 
hot days  (Tmax ≥ 27.5  °C) were analyzed, the residuals 

Table 2 Annual values of gross ecosystem productivity (GEP), ecosystem respiration (RE) and net ecosystem productivity (NEP) in the 
80‑year‑old, 45‑year‑old, and 17‑year‑old forest sites from 2003–2019

NA—Carbon fluxes were not reported at the 17-year-old site in 2014 due to missing data caused by an IRGA malfunction that affected flux data quality

Units for all carbon fluxes are g C  m−2  yr−1. Annual mean air temperature, Ta (°C) and annual total precipitation, PPT (mm  yr−1) are also given

Year 80-year-old 45-year-old 17-year-old Ta PPT

GEP RE NEP GEP RE NEP GEP RE NEP

2003 1344 1194 155 1340 695 666 494 515 − 17 8.17 913

2004 1244 1129 123 1098 788 318 695 558 145 8.54 955

2005 1239 1163 87 1129 785 346 429 557 − 126 9.11 863

2006 1372 1181 199 1258 750 511 611 569 34 9.82 1478

2007 1298 1180 123 1111 755 366 706 566 160 9.23 712

2008 1545 1342 212 1456 1189 279 976 784 191 8.58 1021

2009 1443 1212 239 1488 1078 418 1137 1034 105 8.39 995

2010 1567 1415 160 1746 1247 509 1412 1241 173 9.54 896

2011 1430 1128 322 1574 1136 452 1462 1252 216 9.56 1293

2012 1452 1385 77 1685 1203 496 1473 1297 183 11.16 1001

2013 1501 1282 228 1691 1091 615 1571 1394 180 9.09 1266

2014 1601 1345 263 1698 939 771 NA NA NA 8.08 1188

2015 1701 1328 395 1869 1048 831 1950 1823 128 9.48 811

2016 1617 1491 141 1648 1070 589 1753 1841 − 91 10.03 778

2017 1709 1525 208 1641 1039 620 1805 2014 − 218 9.92 986

2018 1641 1670 − 9 1591 1123 549 1569 1877 − 319 9.42 922

2019 1543 1415 138 1695 916 807 2008 1998 6 8.96 911

Mean 1485 1317 180 1513 979 538 1253 1208 64 9.24 999
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of GEP were negatively correlated with REW in the 80- 
and 45-year-old stands (Fig.  7a, b). Residuals of RE and 
NEP were negatively correlated with REW at the 80- and 
45-year-old stands, respectively (Fig. 7d, h).

Discussion
Age-related dynamic of carbon fluxes
Among all three different age forests, maximum net car-
bon uptake occurred in the 45-year-old stand, while the 
80-year-old and 17-year-old stands were moderate to 
small carbon sinks (Table 2; Fig. 3). The 17-year-old stand 
became a consistent net carbon sink after the fifth year 
of its establishment (Chan et al. 2018). Clark et al. (2004) 
also showed similar results in their study in a chronose-
quence of slash pine plantations in Florida, USA. Achiev-
ing early carbon sink status in our young plantation forest 
was in contrast to naturally regenerating stands that may 
take many years to become a net carbon sink after har-
vest or natural disturbance because of the decomposition 
of large amounts of soil organic matter present at these 

sites (Kowalski et al. 2003; Humphreys et al. 2006; Amiro 
et al. 2010; Baldocchi 2019).

Overall, the 80-year-old stand showed smaller inter-
annual variability in NEP as compared to younger 
stands, specifically until 2012. A selective thinning con-
ducted in the 80-year stand in 2012 caused a substantial 
reduction in canopy cover (33%) and basal area (13%). 
In addition, this stand experienced hot and dry condi-
tions in the summer causing a substantial decrease in 
net carbon uptake in 2012, with an annual NEP value of 
77 g C  m−2  yr−1, compared to the mean annual NEP of 
180 ± 96 g C  m−2  yr−1 over the study period. Decreases 
in NEP were largely due to increases in RE, while there 
was a small reduction in GEP when compared to the 
mean annual GEP over the study period. A number of 
factors may have caused the increase in RE in 2012, 
including warmer temperatures, more organic matter 
on the ground, decomposition of fine roots after thin-
ning and disturbance of soil organic matter due to the 
machine-harvesting process, although care was taken 

Fig. 4 Correlations between monthly air temperature (Ta) anomalies and a–c monthly gross ecosystem productivity (GEP), e–g ecosystem 
respiration (RE), and i–k net ecosystem productivity (NEP) anomalies in spring (AM), summer (JJAS) and autumn (ON) in the 80‑, 45‑, and 17‑year‑old 
stands. Significant linear regressions at p < 0.01 are shown as solid lines. Significant linear regressions at 0.01 < p < 0.05 are shown as dash lines. The 
slope of the linear relationship between daily Ta anomalies and daily GEP (d), RE (h), and NEP (l) in each month are shown when the regression was 
significant at p < 0.05
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during harvest to avoid major soil disturbance. At the 
80-year site, Skubel et al. (2015) found a slight increase 
in transpiration in remaining trees, despite 2012 being 
a warm and dry year. Past studies have reported that 
thinning results in greater availability of soil water to 
remaining trees, leading to higher transpiration and 
hence photosynthesis (Bréda et  al. 1995; Reid et  al. 
2006; Chen et  al. 2020a). This may have been the case 
in our 80-year-old stand. However, the relatively small 
decline in GEP, despite the removal of 1/3 of trees at 
our site in 2012, might also be explained by the increase 
in photosynthetic activity of the understory, which 
was exposed to more sunlight after harvesting due to 
a reduction in overstory canopy. Similar observations 
have been made by other studies, where thinning did 
not cause a large decline in productivity due to com-
pensatory carbon uptake by the understory vegetation 
(Campbell et al. 2009). Hence, we suggest that the lower 
NEP observed in 2012 was due to the combined effects 
of thinning, and heat and drought stress.

Sensitivity of carbon fluxes to heat stress
Our sensitivity analysis for heat stress indicated that all 
three different-aged stands responded to temperature 
anomalies differently over the course of the year. In the 
spring and autumn, most of the metabolic processes 
were limited by energy when the air and soil tempera-
tures were relatively low. Therefore, positive tempera-
ture anomalies generally increase photosynthesis and 
ecosystem respiration. Since GEP and RE responded to 
temperature in a similar way, overall higher tempera-
tures did not have a significant impact on the NEP. In 
the summer, GEP was likely constrained directly by 
thermal damage to the photosynthetic system and indi-
rectly due to reduced stomatal conductance and leaf 
water potential under heat stress (Rennenberg et  al. 
2006; Williams et al. 2014; Ruehr et al. 2016; Baldocchi 
2019). Potentially, RE can also be limited by high tem-
perature as a result of carbon starvation (autotrophic 
respiration) or reduction in soil and litter respiration 
due to their sensitivity to temperature and water avail-
ability (heterotrophic respiration) (McDowell et  al. 

Fig. 5 Correlations between monthly relative extractable water (REW) anomalies and monthly gross ecosystem productivity (GEP) (a–c), ecosystem 
respiration (RE) (e–g), and net ecosystem productivity (NEP) (i–k) anomalies in spring (AM), summer (JJAS) and autumn (ON) in the 80‑, 45‑, and 
17‑year‑old stands. Significant linear regressions at p < 0.01 are shown as solid lines. Significant linear regressions at 0.01 < p < 0.05 are shown as 
dashed lines. The slope of the linear relationship between daily REW anomalies and daily GEP (d), RE (h) and NEP (l) in each month are shown when 
the regression was significant at p < 0.05
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2008). However, the range of temperature during heat 
events did not surpass the optimal temperature of 
respiration at our sites; therefore, RE increased with 
increasing temperature in our study (Duffy et al. 2021). 
Consequently, NEP (which is the difference of GEP and 

RE) was strongly, but negatively correlated with Ta in 
all three stands (Fig. 5h). Because of these contrasting 
responses of GEP and RE, summer temperature was 
the most important determinant of annual NEP at our 
forest sites.  Our results agree with von Buttlar et  al. 
(2018), who found that heat without dryness increased 

Fig. 6 Daily sensitivities of carbon fluxes to air temperature (Ta) and dryness represented by relative extractable water (REW) anomalies. Curves 
show the mean sensitivity in the 15 day moving windows. Data were detrended and normalized to remove forest growth and long‑term climate 
variability impacts. When the flux vs climate variable correlation for 15 day moving averages was significant (p < 0.05), the slope of the regression 
showed the effect of climate constraints on the carbon fluxes (following Schwalm et al. 2010; Wu and Chen 2013)
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RE but did not have much impact on GEP leading to 
overall reduction in NEP.

Sensitivity of carbon fluxes to drought stress
Our sensitivity analysis for drought stress indicated that 
the effects of drought (as indicated by low REW val-
ues) were highly dependent on the water demand of the 

stand during different seasons. During spring, soil water 
content, and hence REW, was relatively high following 
snowmelt. Autumn was also relatively wet because of 
lower atmospheric water demand, reduced transpiration, 
and larger rainfall events. Overall, drought did not have 
a strong impact on carbon fluxes in spring and autumn 
in these different-age forests. However, dry spring 

Fig. 7 Correlations between daily gross ecosystem productivity (GEP), ecosystem respiration (RE), and net ecosystem productivity (NEP) residuals 
of REW using data from all days with no precipitation (gray dots) and using data from only hot days (red dots) with no precipitation. Hot days were 
defined as those when daily maximum air temperature,  Tmax ≥ 27.5 °C. Significant linear regressions at p < 0.01 are shown as solid lines
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conditions led to higher GEP and NEP in the 80-year-old 
and 45-year-old stands (Fig.  5a, i). It may be caused by 
stimulated growth due to warm temperature in dry years 
(concurrent events), where photosynthesis would have 
benefited due to less cloudy conditions and higher PAR 
in early spring (Suseela and Dukes 2013). Our stands are 
evergreen forests and are able to start photosynthesizing 
immediately in spring once conditions are right, unlike 
deciduous trees that require leaf-out and development to 
occur first.

In summer, both GEP and RE were suppressed by 
drought stress in the 80-year-old stand. A multi-site 
inter-annual analysis (Doughty et al. 2015) and a warm-
ing and precipitation-controlled experiment (Suseela 
and Dukes 2013), illustrated that drought can reduce 
autotrophic respiration, which is a major component of 
RE at our sites (Peichl et al. 2010b). However, some other 
studies have shown that drought could also impact allo-
cation of carbon to various pools, where more carbon 
may be allocated to roots to access water from deeper 
soil, reducing the impacts of drought on photosynthetic 
uptake and avoiding post-drought carbon starvation or 
mortality (Peng et  al. 2011; Doughty et  al. 2015). Our 
results support these studies  and  suggested that sum-
mer droughts reduced GEP and RE in a similar way, while 
NEP was not significantly impacted by drought stress 
alone. von Buttlar et al. (2018) reported similar findings 
for drought stress in the absence of heat in their synthesis 
study. However, the sensitivity of our  forests to dryness 
decreased for droughts occurring in late summer, which 
is a common phenomenon in the region (Hanson and 
Weltzin 2000). It indicates long-term adaptation of trees 
to drought stress.

Sensitivity of carbon fluxes to concurrent heat and drought 
stresses
Our study illustrated strong impact of concurrent heat 
and drought stresses on forest carbon cycle. We found 
that while our different-aged forests were sensitive to 
temperature variation, their sensitivity to dryness was 
highly dependent on the timing of the drought and tem-
perature stress as shown in the past experimental (Duan 
et al. 2016), synthesis (von Buttlar et al. 2018) and mod-
eling (Zscheischler et  al. 2014) studies, suggesting that 
forests undergo a greater degree of stress and NEP reduc-
tion  under concurrent heat and drought events than 
under individual heat and drought events.

Our analysis further showed that the residuals of tem-
perature-modeled carbon fluxes were not correlated with 
REW at all the sites. However, when the residuals analy-
sis was conducted using data for hot days  (Tmax > 27.5° 
C) only, REW became a significant driver of GEP and 
RE. This result supported the findings of Williams et al. 

(2014) who found that water stress impacts on forest car-
bon fluxes start above a certain temperature threshold. It 
is likely that, when the temperature is relatively low, pho-
tosynthesis, respiration, and transpiration are limited by 
temperature. Consequently, a decrease in soil water may 
not have a significant impact on carbon fluxes. However, 
when the temperature is high and the soil water storage 
cannot provide enough water to maintain higher rates of 
transpiration, decreases in canopy conductance may lead 
to a decline in GEP, and hence NEP (Duarte et al. 2016). 
Our results confirmed the interaction between heat and 
drought events and validated the hypothesis that drought 
stress has a much more significant impact on NEP when 
it occurs concurrently with heat stress (Sippel et  al. 
2016; von Buttlar et al. 2018).

Our results showed that forest response to heat and 
drought stress differs among different stand ages. In 
our three age-sequence sites, the middle aged forest 
(45  years) was more sensitive to both heat and drought 
stress than the younger and older forests. Young forests 
such as our 17-year-old stand have shallower roots than 
older stands (Peichl and Arain 2006; Peichl et al. 2010a; 
Chan et al. 2018) and they predominantly rely on water 
content in the upper soil layers. Therefore, depletion of 
water from upper soil layers during high heat periods 
may potentially have a greater adverse impact on their 
carbon fluxes. However, younger forest has smaller bio-
mass and photosynthetic capacity (GEP), resulting in rel-
atively lower water demand during the growing season. 
Therefore, net ecosystem productivity of younger forests 
is not much adversely impacted, and they are less sensi-
tive to heat and drought extremes as compared to middle 
aged stands. Older forests, such as our 80-year-old stand, 
with a well-established and deeper root system, are bet-
ter buffered from seasonal droughts (Wu et al. 2017). Our 
80-year-old stand conserved water when soil water avail-
ability was low, causing a negative feedback through the 
trade-off between carbon assimilation and transpiration 
under drier conditions. This partly explains why the NEP 
in the 80-year-old stand was not limited by REW (Fig. 5l) 
and was less sensitive to abnormally high temperatures in 
summer (Fig. 4j, l). Our findings agree with other studies 
(e.g., Irvine et al. 2002; Yang et al. 2010; Gao et al. 2017; 
Chen et  al. 2020b; Duffy et  al. 2021) and further imply 
that mature forests are more resilient to drought stresses. 
It is also likely that long-term forest management activi-
ties, such as selective thinning, may have increased the 
forest’s resilience to drought by reducing stand density 
(Giuggiola et  al. 2013) or by introducing more drought 
resistant secondary deciduous species (Arthur and Dech 
2016). Our results imply that the more frequent climate 
extremes in the future may have a profound impact on 
forest carbon sink in managed temperate forests, as the 
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most productive middle aged forest are the most sensi-
tive to heat and drought stresses.

Response of carbon fluxes to consecutive multiple-year 
extreme events
Our sites experienced simultaneous heat and drought 
events in 2016, followed by severe drought in 2017 and 
a summer heatwave in 2018. Consequently, all three for-
ests had a significant and consistent decrease in annual 
NEP from 2016 to 2018, where by as of 2018, NEP had 
declined by 447, 283 and 404 g C  m−2 at the 80-, 45-, and 
17-year-old forest, respectively, as compared to annual 
NEP recorded in 2015. The youngest stand became a net 
source of carbon for all three of these years and the oldest 
stand became a small source of carbon for the first time 
in 2018, since observations started in 2003. All three sites 
showed a very similar pattern of this NEP decline over 
this three-year  period (Fig.  3c). This indicates that our 
hypothesis suggesting that the NEP of younger stands 
will be much more impacted by consecutive occurrence 
of extreme events was not validated. While the decline in 
NEP at the two younger stands was caused by decreases 
in GEP and simultaneous increases in RE, the decline 
in NEP at the 80-year-old stand was primarily caused 
by the increase in annual RE from 2016 to 2018. There-
fore, although the GEP in the oldest stand was resilient 
to the consecutive extreme events, RE kept on increasing, 
likely  due to larger stand biomass and soil organic pool 
compared to younger stands, causing reduction in NEP.

Conclusions
This study explored the response of carbon fluxes to 
heat and drought stresses in three different-aged tem-
perate conifer forests from 2003 to 2019. Our results 
illustrated that when heat and drought events occurred 
either simultaneously during the early growing season 
or concurrently over multiple years, they had a signifi-
cant negative impact on annual NEP in all three forests. 
When all data were considered, Ta was the dominant 
control of carbon fluxes at all three sites; however, when 
the analysis was conducted using data for hot days only 
 (Tmax > 27.5  °C), REW became a significant driver of 
GEP and RE. Our results also showed that declines in 
NEP of the younger stands was similar to that of the 
older stand in years with consecutive occurrence of 
extreme events (2016–2018), although the underlying 
drivers of that trend varied. While the decline in NEP 
at the two younger stands was caused by decreases in 
GEP and simultaneous increases in RE, the decline in 
NEP at the 80-year-old stand was primarily caused by 
the increase in annual RE, due to a larger stand biomass 
and soil organic carbon pool compared to younger 
stands  and small change in GEP. Plantation forests in 

Eastern North America are managed with the vision 
to enhance their growth, resilience to stresses, and to 
maximize their carbon sequestration potential (Meehl 
et  al. 2007; Sippel et  al. 2016). As heat and drought 
events are likely to be more frequent in the area, due 
to the predicted warmer climate  in the future (IPCC 
2014; 2018; Niinemets 2010; Xu et al. 2020; Chen et al. 
2020a; Fernández-Martínez et al. 2020), their combined 
effects especially over multiple years, may have seri-
ous implications for net carbon sequestration in tem-
perate conifer forests of Eastern North America. The 
impact of concurrent and consecutive extreme events 
should be considered while developing forest manage-
ment practices for climate resiliency and sustainability 
with the aim of climate change mitigation by way of 
greenhouse gas reduction. Well managed and sustain-
able forests will have better capabilities to cope with 
the risks and impacts caused by extreme events.  Our 
results and long-term flux, meteorological and biom-
etric data in three different-aged forests will also help 
in improving carbon exchange processes in terrestrial 
ecosystem models.
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