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Abstract
Impacts of climate change can differ from one region to another. We combine the house-
hold-level panel data with weather and climate data to examine the heterogeneity of the 
impacts of climate change on crop yields across different crops and agro-ecologies in Ethi-
opia. Our results show that climate change will induce an increase in coffee and teff yields 
by 31% and 8.3%, respectively, at high altitudes by the years 2041–2060 compared to 
1988–2018, under a medium emissions scenario. Conversely, it will reduce coffee yield by 
3% at low altitudes, and barley, maize, and wheat yield by 22.7%, 48%, and 10%, respec-
tively, at high altitudes. These findings suggest that tailoring agricultural development pro-
grams and climate adaptation strategies to address location and crop-specific sensitivity 
to climate change may help to build resilience and improve the livelihood of smallholder 
farmers.

Keywords Climate change · Crop yields · Production risk · Climate resilience

1 Introduction

Climate change is likely to have different impacts on agriculture in different agro-ecolog-
ical locations. Differences in altitudes can characterize differences in climatic factors, in 
particular temperature and precipitation, and their rate of change. As argued by Kolstad 
and Moore (2019), the effects of climatic changes can vary as a function of initial climatic 
conditions in a given location. For instance, the influences of climatic change, especially an 
increase in temperature, can differ in cooler (high altitude) areas compared to warmer (low 
altitude) areas (see, e.g., Läderach et al. 2017; Moat et al. 2017; Ovalle-Rivera et al. 2015; 
Rahn et al. 2018).

Ethiopia has been experiencing the consequences of climatic changes including high 
temperature and more frequent droughts and floods (Danyo et al. 2017; World Bank 2021). 
Recurrent droughts and flooding have caused a significant damage to the Ethiopian agri-
culture in particular and the overall economy in general (see, e.g., Danyo et  al. 2017). 
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Difference in altitudes, land areas, and topography resulted in the diverse local climate 
within the country ranging from equatorial rainforest with high rainfall and humidity in the 
south and southwest to desert-like conditions in the north-east, east, and south-east low-
lands (World Bank 2021). Moreover, the changes in the trends of temperature and pre-
cipitation in the country vary significantly across the main agro-ecological zones, namely 
Kolla (areas below 1,500  m altitude), Woinadega (1,500–2,300  m), and Dega (above 
2,300 m), in different regions (Esayas et al. 2018; Taye et al. 2019). For example, a sig-
nificant decreasing trend (up to − 100 mm) in seasonal rainfall is observed in the north-
ern and central-eastern parts of Ethiopia, while there was a significant increasing trend 
(up to + 60 mm) around north-eastern and south-western parts of Ethiopia (Gebrechorkos 
et al. 2019). In addition, regions in Southern and Eastern parts of Ethiopia are often hit by 
severe droughts while regions in Western parts of Ethiopia suffer from flooding (World 
Bank 2021). Consequently, the differentiated analysis of the impacts of climatic changes on 
crop production and livelihoods may help identify the effective adaptation options to build 
climate-resilient and sustainable agriculture in various agro-ecologies.

In this regard, we aim to examine the heterogeneity of the impacts of climate change on 
crop yields at farm level across different altitudes in Ethiopia. Specifically, we investigate 
whether the effects of (i) changes in temperature and precipitation and (ii) farmers’ adop-
tion of irrigation technology on the mean yields of crops and its variability differ between 
low and high altitudes. We combine a household-level panel data on farm characteristics 
and agricultural production with weather and climate data. Using the estimated coefficients 
of weather variables, historical and future climate data, we further evaluate the impacts of 
future climatic changes on crop yields across altitudes.

Our analysis makes two main contributions to existing literature. Firstly, it provides 
the disaggregated analysis by establishing a clear distinction about the impacts of climate 
change between low and high altitudes. Currently, existing literature considers nationally or 
regionally aggregated impacts of climate change on crop yields and their variability (see, 
e.g., Burke and Emerick 2016; Chen et al. 2016; McCarl et al. 2008; Poudel and Kotani 
2013; Zhang et  al. 2017). However, global evidence shows that the impacts of climate 
change on agriculture are specific to crops and locations even within a country (see, e.g., 
Jones and Thornton 2003; Moat et al. 2017; Rahn et al. 2018; Ray et al. 2019). This implies 
that aggregated analyses of impacts of climate change may not provide a clear picture of 
the impacts as it masks variations among different altitudes within a country. Secondly, 
our study provides a comprehensive analysis of the impacts of climate change on the six 
main crops in Ethiopia using the new and updated scenarios for future emissions. Majority 
of existing studies in low-income countries commonly considered the impact of climate 
change on mean yields for a single crop, or analyze farm revenues using a cross-sectional 
approach. We estimate the effects of climate change on the dominant cash-crop, coffee, and 
the major cereals, namely teff, wheat, maize, barley, and sorghum, by 2041–2060 compared 
to 1988–2018 period. Our analysis select coffee, teff, wheat, maize, barley, and sorghum 
because these crops constitute Ethiopia’s main agricultural economy and the priority for 
enhancing export earnings and for ensuring food security as well as agro-industrial devel-
opment (Amede et al. 2017; Danyo et al. 2017; FDRE 2011). Our evaluation of the impacts 
of climate change employs the new future emission scenarios of the Coupled Model Inter-
comparison Projects 6 (CMIP6) considered for the new IPCC’s Sixth Assessment Report 
(AR6) (see Hausfather 2019; Meinshausen et al. 2020).

Our empirical results indicate differences in the impacts of climate change across crops 
and across attitudes in Ethiopia. Specifically, we find that coffee yield decreases by 3% at 
low altitudes while it increases by 31% at high altitudes due to climate change by period 
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2041–2060, under a medium emissions scenario, compared to 1988–2018. Similarly, teff 
yield increases by 8.3% at high altitudes, over 2041–2060. Conversely, our results show 
that barley, maize, and wheat yields decrease by 22.7%, 48%, and 10% at high altitudes, 
respectively, towards 2041–2060. Furthermore, temperature reduces the coffee, maize, and 
sorghum production risk at low altitudes while it increases the risk at high altitudes. Our 
findings imply that location-specific and crop-specific policies of climate change adapta-
tion can be vital to increase agricultural productivity of smallholder farmers in Ethiopia. 
The remainder of the paper is organized as follows. Section 2 presents the description of 
data and empirical methods employed in the paper. While Section 3 provides the empirical 
results, Section 4 highlights the discussion of the results and policy implications. Finally, 
Section 5 provides the concluding remarks.

2  Materials and methods

2.1  Data and descriptive statistics

This paper uses the data from the three main sources to estimate the effect of climate 
change on crop yield and its variability. First, we utilize the Ethiopia’s Socioeconomic Sur-
vey (ESS) data, obtained from the World Bank, for information about household charac-
teristics and agricultural activities. The ESS is a part of the Living Standards Measure-
ment Study–Integrated Survey on Agriculture (LSMS-ISA) of the World Bank collected 
by the Central Statistical Agency of Ethiopia in 2011/2012, 2013/2014, and 2015/2016. 
It is a nationally representative data for rural households in the country (see Figure A1 in 
Appendix A). The survey employs the two-stage clustered sampling technique where the 
first stage involves the selection of the enumeration areas (EAs) and the second stage com-
prises the random selection of the sample households from the sample EAs. It covers 3,776 
rural households in the first round, with the sample size increasing to 5,262 in the second 
and third rounds.

Based on the responses of farmers to the questions in ESS survey, we calculate our vari-
ables about land area under cultivation, farm input use, farm management practices, and 
crop yields. We compute crop yields in kilograms (kg) per hectare (ha) by using the farm 
area measured by GPS, or rope and compass, and the farmer-reported harvest in kilograms. 
Farmer’s self-reported farm area in hectares is used whenever the area measured by GPS 
or rope and compass is missing. We consider the number of weeks and days worked by 
both men and women when calculating the total number of days family and hired labor 
worked during the crop planting and management activities. In our analysis, we have also 
included dummy variables indicating whether farmers adopted irrigation, improved seeds 
and soil erosion prevention systems, and obtained extension services. From the ESS data, 
we also compute the total kilograms of chemical fertilizer farmers applied on 1 ha of their 
land under barley, maize, sorghum, and wheat production. For coffee farmers, we create a 
dummy variable indicating whether they used manure or compost as fertilizers since the 
coffee production in Ethiopia is entirely organic, meaning farmers do not use any chemical 
fertilizer or pesticides. Education of the household head is indicated by the dummy vari-
able constructed for whether they are literate.

Second, we obtain the data about weather and climate variables, the main variables of 
interest in our analysis, from the USA Climate Prediction Center, the Copernicus Climate 
Change Service, and the Climate Research Unit of the University of East Anglia. We use 
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the average yearly precipitation data for the crop-growing season obtained from the USA 
Climate Prediction Center. This data was extracted by the ESS survey core team using each 
household’s geographical location represented by latitudinal and altitudinal coordinates. In 
addition, we extract ERA5 anomalies of precipitation and temperature from the Copernicus 
Climate Change Service for crop-growing season in years 2011, 2013, and 2015 by using 
the geographical coordinates of farmers’ location.1 Temperature and precipitation anoma-
lies are the deviations from their average for the 1981–2010 period. To evaluate the impacts 
of future climate change on crop yields, we utilize the historical climate data for the past 
30 years (1988–2018) provided by Climatic Research Unit of the University of East Anglia 
and CMIP6 future climate data of the IPSL-CM6A-LR for the 2021–2040 and 2041–2060 
periods.2 The future climate data we used represent four scenarios of the CMIP6, namely 
low (SSP1-2.6), middle of the road (SSP2-4.5), medium–high (SSP3-7.0), and high (SSP5-
8.5) (see Figure A2 in Appendix A for the emissions trends under these scenarios).

As indicated by the descriptive statistics in Table 1, there is a statistically significant 
difference in weather variables as well as the mean yields of coffee, barley, maize, teff, 
and sorghum crops between low and high altitudes. Yields are more likely higher in high 
altitudes than in low altitudes except for coffee (see Table 1). Coffee yields are higher at 
low altitudes as compared to high altitudes. In addition, the adoption of irrigation technol-
ogy is generally low, and it slightly varies across places except for wheat. Moreover, high 
altitude areas receive a higher amount of precipitation and a lower amount of temperature 
as compared to low altitude areas, except the precipitation for the case of coffee producers. 
These differences in agro-ecological and climatic conditions can explain the differences in 
crop yields across different altitudes. However, determining whether climate change affects 
crop production differently in different locations poses an interesting empirical question 
into which our analysis attempts to provide an insight.

2.2  Empirical framework

We use the stochastic production function, specified in Eq. (1), where climatic and weather 
variables affect crop yields as well as the production risk, i.e., the variability of crop yields, 
in line with the framework initially developed by Just and Pope (1978). Our analysis con-
siders a farmer who chooses farm inputs, given the exogenous climatic factors and fixed 
soil type and quality.

where Yit is the i farmer’s per hectare yield of a crop during the production year t ; F(.) 
and G(.) represent the mean and variance (risk) component of the production function, 
respectively. Xit and Zit represent farm inputs and farm management practices, and Wit is 
the weather conditions, such as precipitation and temperature during the production year, 
at location of i farmer at time t . The variable Iit broadly represents the state of technol-
ogy a farmer uses on their farm, and includes irrigation and machinery. The variance of a 

(1)Yit = F
(
Xit,Wit, Iit;�

)
+ G

(
Zit,Wit, Iit;�

)
uit

1 ERA5 refers to the “fifth ReAnalysis” of the global climate. The data is provided by the European Centre 
for Medium-Range Weather Forecasts (https:// cds. clima te. coper nicus. eu/ cdsapp# !/ datas et/ ecv- for- clima te- 
change).
2 IPSL-CM6A-LR is the latest version of the Institut Pierre Simon Laplace climate model. Both historical 
and future climate data are generated from the WorldClim (https:// www. world clim. org/ data/ index. html).
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heteroskedastic error term, G(.)uit , is �2

u
G(.)2 , where G(.)2 assumed to take an exponential 

form e�Zit with �2

u
= 1 to ensure positive variance (Isik and Devadoss 2006; Picazo-Tadeo 

and Wall 2011). In Just and Pope (J-P) production function framework, there is no prior 
restriction about the effect of inputs on production risk. Hence, a given input may increase 
risk if GZ > 0 or it may decrease risk if GZ < 0.3 The term uit is the stochastic disturbance 
term with mean zero and variance one, as indicated above, and � and � in Eq. (1) are the 
parameters of the model. As a common practice in the J-P literature (see, e.g., Carew 
2017; Carew et al. 2009; Chen et al. 2004; Isik and Devadoss 2006; McCarl et al. 2008; 

Table 1  Difference in crops yield and weather variables between low and high altitudes

Mean Mean Difference

Group(G)1 Group(G)2 Group(G)3 G1 vs. G2 G1(2) vs. G3

Coffee
  Yield (kg/ha) 6512.31 3317.51 3194.80***
  Temperature (°C) 19.69 18.36 1.33***
  Precipitation (mm) 621.22 620.20 1.02
  Irrigation (%) 0.08 0.03 0.05***

Barley
  Yield (kg/ha) 1330.75 1737.22  − 406.47***
  Temperature (°C) 18.64 16.31 2.33***
  Precipitation (mm) 589.49 658.09  − 68.60***
  Irrigation (%) 0.01 0.004 0.006**

Maize
  Yield (kg/ha) 2773.37 3082.32 2745.23  − 308.95*** 337.09
  Temperature (°C) 21.06 18.48 16.87 2.58*** 1.61***
  Precipitation (mm) 568.26 657.37 727.13  − 89.11***  − 69.76***
  Irrigation (%) 0.06 0.02 0.005 0.04*** 0.015**

Teff
  Yield (kg/ha) 674.76 977.90 1089.98  − 303.14***  − 112.08**
  Temperature (°C) 19.67 18.05 16.31 1.62*** 1.74***
  Precipitation (mm) 578.47 665.57 784.70  − 87.10***  − 119.13***
  Irrigation (%) 0.02 0.01 0.01 0.01*** 0.0

Sorghum
  Yield (kg/ha) 1795.60 1956.84  − 161.24*
  Temperature (°C) 21.16 19.19 1.97***
  Precipitation (mm) 478.54 510.99  − 32.45***
  Irrigation (%) 0.09 0.02 0.07***

Wheat
  Yield (kg/ha) 1516.86 1632.16  − 115.30
  Temperature (°C) 17.89 16.51 1.38***
  Precipitation (mm) 572.91 701.12  − 128.21***
  Irrigation (%) 0.01 0.007 0.003

3 G
Z
 is the first-order derivative of variance function with respect to a given input.
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Picazo-Tadeo and Wall 2011; Poudel and Kotani 2013), we use the Cob-Douglas specifica-
tion with the linear and quadratic forms of weather variables in the mean model but only 
the linear terms in the variance model.

In line with Eq. (1), we specify the panel data regression model, indicated in Eq. (2), 
where the effect of weather variables on a crop yield is represented by two parameters, 
namely the coefficients of the linear ( Wit ) and nonlinear ( Wit

2 ) terms of the logarithm of 
temperature and precipitation during the crop-growing season in year t at household i 
location. These are included to capture linear and extreme trends in weather and climate. 
We also control for the effect of conventional farm inputs on crop yields. Xit in Eq.  (2) 
represents the vector of control variables, namely the natural logarithms of fertilizer used, 
family and hired labor, dummy variables representing farmer’s use of improved seed, and 
extension services and mechanisms for soil erosion prevention. Moreover, we examine the 
effect of farmer climate adaptation, especially when coping with droughts or low rains 
through using the irrigation practice. For this purpose, Iit , representing whether a farmer 
uses irrigation or not, is included in our model. The terms �j and �t stand for zonal and year 
fixed effects, respectively. The final term ( �it ) is the heteroskedastic standard error and has 
an expected value equal to zero.

We estimate the model in Eq. (2) by using the feasible generalized least squares (FGLS) 
procedure, given a heteroskedastic error term. FGLS is preferred since, as pointed out by 
Picazo-Tadeo and Wall (2011), the estimates from maximum likelihood fail to converge 
due to the inclusion of quadratic forms of weather variables in our model. Specifically, 
we first estimate Eq. (2) and obtain the predicted value of residuals. Second, the squared 
residuals, represented by Eq. (3), regressed on variables that can influence production risk.

In addition to Xit control variables in Eq. (2), Zit in Eq. (3) includes age and education of 
a household head to represent farmer’s experience and farm management knowledge that 
can influence the crop production risk. The error term ( ejt ) has the expected value equal to 
zero. The regression of the model in Eq. (3) gives us estimates for the parameters ( 

∼
� ) and 

the predicted value of the variance function ( ̃G ). We obtain Eq. (4) by transforming Eq. (2) 
using the predicted value of G̃ as weight. Equation (4) includes the weighted versions of 
the variables included in Eq. (3) and the weighted error term ( �jt ) having the mean value of 
zero. Finally, the estimation of Eq. (4) provides the consistent estimates of the parameters 
of our interest, i.e., effects of climatic variables and irrigation,  

∼

�m and 
∼

�m , and 
∼

�m , respec-
tively, on the mean crop yields. Given the clustered sampling design of the ESS data used 
in this paper, we cluster standard errors at the level of enumeration area (EA) so that, as 
argued by Abadie et al. (2017), the estimated results can be generalized to farmers living in 
the clusters not included in the sample.

Our specification allows us to obtain the plausibly causal estimates of the impacts of 
climatic variables on crop yields. This is because we exploit the random year-to-year 
exogenous variation in precipitation as well as temperature. The inclusion of a time-
invariant zonal fixed effect and the year fixed effect in our regression model controls 

(2)logYit = �mWit + �mWit
2 + �mIit + �mXit + �j + �t + �it

(3)log(
∼
�
2

it
) = �vWit + �vIit + �vZit + �t + �t + ejt

(4)logYjt = �mWit + �mWit

2

+ �mIjt + �mXjt + �t + � jt + �jt
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for unobserved regional heterogeneity in terms of soil quality and farming tradition and 
for any exogenous shock including technological change across time, respectively. In 
addition, the coefficient on the higher-order term in Eq. (4) uses both within-unit time 
series variation and cross-sectional variation across units and this ensures the plausible 
estimates of the impacts of climate change that incorporate long-run adaptation (Auff-
hammer 2018).

We also test for the potential endogeneity of the decision to adopt irrigation technol-
ogy. Table B1 in the Appendix B shows that there is no statistically significant correlation 
between irrigation adoption and household characteristics; however, there is a statistically 
significant correlation with household location indicators. Since the access to irrigation 
in Ethiopia is very much limited and the proportion of irrigated agricultural land remains 
below 1% (Manyazewal and Shiferaw 2019), only those households closer to water sources 
or dams are likely to irrigate their farms. Hence, the estimate of irrigation coefficient in 
our mean and variance model of crop yields can be confounded by location-specific but 
time-invariant factors such as distance to water body. To control for this, we employ fixed 
effect estimation procedure in each of the three-stage regressions of FGLS by using the 
least square dummy variable method.

To find out whether the climatic variables have heterogeneous impacts on crop yields 
across altitudes, we categorize households in the sample into three or two groups based 
on the three traditional agro-ecological zones in Ethiopia, namely Kolla, Woinadega, and 
Dega. We estimate a separate regression model for each of the subgroups for each of the 
six crops for two main reasons. There are significant variations in agro-environmental con-
ditions, including temperature and precipitation, among the three altitudinal categories 
(see, e.g., Esayas et  al. 2018; Taye et  al. 2019). The distribution of the crops also var-
ies across three agro-ecologies where areas below 1500 m grow sorghum and rarely teff, 
areas between 1500 and 2300 grow wheat, maize, and teff, and areas above 2300 grow 
mainly barley and to some extent wheat (Hurni 1998). In the literature, regional differences 
were controlled in the regression by including the dummy variables for the administrative 
regions (e.g. Chen et al. 2016; McCarl et al. 2008; Poudel and Kotani 2013; Zhang et al. 
2017). However, there can be a difference in climate among places in each administrative 
region since there can be various agro-ecological situations within a region. Therefore, our 
estimation of separate model for each agro-ecology in addition to controlling for admin-
istrative counties (zones in the Ethiopian context) helps us to investigate heterogeneity of 
climatic impacts among different agro-ecological zones. By estimating Eqs.  (3) and (4) 
separately for each group, we determine whether the coefficients of climatic variables and 
adoption of irrigation have different signs across low and high altitudes.

As the robustness check to validate the reliability and sensitivity of empirical results, we 
estimate the model by using (1) the whole sample by including the interaction of altitude 
with rainfall and temperature instead of splitting the sample into altitudinal categories and 
(2) translog functional form instead of Cobb–Douglas specification.

Finally, we use the estimated coefficients of the model in Eq.  (4) to evaluate impacts 
of future climate change on crop yields. For this purpose, we have taken the average cli-
mate data for the past 30 years (1988–2018) as a baseline to compute the impact of future 
climate change over the period 2041–2060. The data for future climate data is generated 
from CMIP6 climate model for the updated emission scenarios, namely SSP1-2.6, SSP2-
4.5, and SSP5-8.5, and the new scenario SSP3-7.0. Assuming other variables in our regres-
sion models being constant, we compute the projected changes in crop yields ( Ωt ) due to 
the future climate change, by following the procedure described in Chen et al. (2016) as 
indicated by Eq. (5).
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In our specification of the crop yield as a function of linear and quadratic forms of cli-
matic variables, Eq. (5) become:

3  Empirical results

This section presents the main empirical results while the discussion and policy implica-
tions are provided in Section  4. The regression results indicate the heterogeneity of the 
impacts of temperature on the mean and variance of crop yields at low and high altitudes. It 
is also interesting to note that mean yields are mainly affected by temperature in most cases 

(5)Ωt = E
[
Ŷ||Climate2041−2060

]
− E

[
Ŷ||Climate1988−2018

]

(6)Ωt = β̂1
[
W2041−2060 −W1988−2018

]
+ β̂2

[
W2

2041−2060 −W2
1988−2018

]

Table 2  Regression results for coffee and barley yields

Notes: The dependent variable in columns (1) and (3) and (5) and (7) is the log of coffee and barley yields, 
respectively, whereas it is the log of respective squared residual in columns (2) and (4) and (6) and (8). 
In the regression models, we control for zone and year fixed effects, farm inputs, farmer age, and educa-
tion (see Table  C1 in Appendix C). Standard errors are clustered at EA level and given in parentheses. 
***p < 0.01, **p < 0.05, *p < 0.1

Variables Coffee Barley

Low altitudes High altitudes Low altitudes High altitudes

(1) (2) (3) (4) (5) (6) (7) (8)

Mean Variance Mean Variance Mean Variance Mean Variance

Temperature  − 74.8***  − 0.42** 87.9* 1.1***  − 7.67 0.16*** 43.69*** 0.21**
(24.20) (0.20) (49.96) (0.15) (16.82) (0.02) (15.55) (0.09)

Temperature 
squared

12.40***  − 14.4* 1.39  − 7.73***

(4.10) (8.55) (2.91) (2.74)
Temperature 

anomaly
1.66  − 0.03 2.25* 0.68*** 0.18 0.05*** 0.76 0.07

(1.42) (0.18) (1.35) (0.09) (0.35) (0.01) (0.60) (0.07)
Precipitation  − 40.64 0.74*** 4.57 0.28*** 10.06 0.05***  − 4.51  − 0.02

(37.35) (0.17) (30.90) (0.07) (6.53) (0.01) (3.67) (0.03)
Precipitation 

squared
3.48  − 0.37  − 0.79 0.35

(3.04) (2.43) (0.52) (0.31)
Precipitation 

anomaly
1.46*** 0.63*** 0.51* 0.17*** 0.03 0.04*** 0.07  − 0.02**

(0.48) (0.07) (0.26) (0.02) (0.11) (0.00) (0.10) (0.01)
Irrigation 2.04*** 0.88*** 0.53 0.23***  − 0.17  − 0.07***  − 0.24  − 0.04***

(0.33) (0.07) (0.49) (0.03) (0.29) (0.01) (0.32) (0.01)
R-squared 0.52 0.98 0.43 0.98 0.23 0.99 0.27 0.97
Observations 508 508 581 581 1,011 1,011 1,289 1,289
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whereas the variance of yields has statistically significant relationships with temperature, 
precipitation, and irrigation. Tables 2, 3, 4, 5 present the estimated coefficients of weather 
variables where the full results including the coefficients of all control variables are pro-
vided in Tables  C1-C4, respectively in the Appendix C. We then provide the estimated 
impacts of future climate change on crop yields by period 2041–2060 in Table 6, where 
the impacts for the near-term period 2021–2040 presented in Table E1 in the Appendix E.

3.1  Effects of weather variables on crop yields

3.1.1  Coffee yield

As indicated in columns 1–4 of Table 2, weather variables affect coffee production differ-
ently across different altitudes. At low altitudes, temperature has a U-shaped relationship 
with the mean yield of coffee, whereas its effect is an inverted U-shaped at high altitudes. 
This nonlinear effect of temperature on mean yield of coffee at low and high altitudes is 
statistically significant at the 1% and 10% levels, respectively. In addition, the variability 
of coffee yield decreases with the increase in yearly temperature at low altitudes whereas it 
increases at high altitudes. Moreover, temperature anomaly has a positive and statistically 
significant effect on the mean yield of coffee at high altitudes. Unlike temperature, we do 
not find heterogeneity in the impacts of precipitation on the variability of coffee yields 

Table 3  Regression results for maize yield model

Notes: The dependent variable in columns (1), (3), and (5) is log of maize yield, whereas it is log of squared 
residual in (2), (4), and (6). In the regression models, we control for zone and year fixed effects, farm 
inputs, farmer age, and education (see Table C2 in Appendix C). Standard errors are clustered at EA level 
and given in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1

Variables Low altitudes Middle altitudes High altitudes

(1) (2) (3) (4) (7) (6)

Mean Variance Mean Variance Mean Variance

Temperature  − 2.70  − 0.25*** 17.03 0.18*** 111.56*** 0.63***
(11.60) (0.01) (17.56) (0.02) (38.55) (0.17)

Temperature squared 0.28  − 2.82  − 19.36***
(1.88) (3.02) (6.98)

Temperature anomaly  − 0.27  − 0.08*** 0.08 0.01  − 1.00  − 0.25
(0.22) (0.01) (0.32) (0.01) (1.49) (0.21)

Precipitation  − 1.13  − 0.01***  − 3.81  − 0.00  − 26.64* 0.03
(3.17) (0.00) (5.93) (0.01) (14.50) (0.06)

Precipitation squared 0.09 0.31 2.11*
(0.25) (0.47) (1.19)

Precipitation anomaly  − 0.16  − 0.06*** 0.14* 0.04*** 0.30** 0.08***
(0.10) (0.00) (0.08) (0.00) (0.13) (0.01)

Irrigation  − 0.42***  − 0.10*** 0.08 0.02*** 1.48*** 0.40***
(0.11) (0.00) (0.10) (0.00) (0.31) (0.04)

R-squared 0.32 1.00 0.31 0.99 0.35 0.93
Observations 2,187 2,190 3,001 3,002 348 348
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among low and high altitudes. The initial increase in precipitation significantly increases 
the variance of coffee yield at both low and middle altitude areas. Similarly, precipitation 
anomaly is found to have a positive and statistically significant effect on the mean coffee 
yield at both low and high altitudes. That means the increase in precipitation as compared 
to its long-term average increases the mean coffee yield. Our results also indicate that 
farmers’ adoption of irrigation practices increases the mean yield of coffee at low altitudes 
whereas its effect is statistically insignificant at high altitudes. In addition, irrigation adop-
tion increases the variability of coffee yield at both low and high altitudes. The discussion 
of our results in relation to the existing literature about the impacts of climate change on 
coffee crop production is given in Sub-Sect. 3.2.

3.1.2  Barley yield

Columns 5–8 of Table 2 present the estimated coefficients of weather variables in the bar-
ley yield model. Similar to coffee, we find a statistically significant inverted U-shaped 
relationship of temperature on the mean yield of barley at high altitudes, but its impacts 
are statistically insignificant at low altitudes. Initially, temperature increases barley yield 
but after certain threshold, the effect becomes negative. We find a positive relationship 
between the variability of barley yield and temperature at both low and high altitudes. The 
initial rise in precipitation also increases the variability of barley yield at low altitudes, but 

Table 4  Regression results for teff yield model

Notes: The dependent variable in columns (1), (3), and (5) is log of teff yield, whereas in (2), (4), and (6) is 
log of the squared residual. In the regression models, we control for zone and year fixed effects, farm inputs, 
farmer age, and education (see Table  C3 in Appendix C). Standard errors are clustered at EA level and 
given in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1

Variables Low altitudes Middle altitudes High altitudes

(1) (2) (3) (4) (5) (6)

Mean Variance Mean Variance Mean Variance

Temperature 0.24 0.42***  − 13.50 0.16***  − 29.55***  − 0.27***
(20.99) (0.04) (17.09) (0.02) (8.80) (0.03)

Temperature squared 0.21 2.39 5.09***
(3.60) (2.98) (1.57)

Temperature anomaly 0.31 0.11***  − 1.01**  − 0.27***  − 0.96*  − 0.22***
(0.28) (0.02) (0.42) (0.02) (0.56) (0.07)

Precipitation 4.02 0.15*** 10.05* 0.11***  − 5.18  − 0.13***
(3.22) (0.02) (5.62) (0.02) (4.78) (0.01)

Precipitation squared  − 0.27  − 0.77* 0.38
(0.26) (0.44) (0.38)

Precipitation anomaly  − 0.02  − 0.01* 0.11 0.05*** 0.00 0.01***
(0.08) (0.00) (0.09) (0.01) (0.08) (0.00)

Irrigation 0.81*** 0.25*** 0.39** 0.12*** 0.16 0.03***
(0.09) (0.01) (0.19) (0.01) (0.22) (0.01)

R-squared 0.32 0.99 0.37 0.98 0.32 0.98
Observations 919 921 2,348 2,348 598 598
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its impact is statistically insignificant at high altitudes. On the other hand, the effect of pre-
cipitation anomaly on the variability of barley yield is positive at low altitudes whereas its 
effect is negative at high altitudes. Moreover, irrigation is found to be risk-reducing for the 
production of barley at low and high altitudes. This is reflected by the negative and statisti-
cally significant coefficient of irrigation in the model of barley yield variance. However, 
the effects of irrigation on the mean yield of barley are statistically insignificant.

3.1.3  Maize yield

As with coffee and barley, we find a heterogeneity in the impact of weather variables on the 
mean and variability of maize yield across altitudes. As shown in Table 3, temperature has 
a statistically significant and inverted U-shaped relationship with the mean yield of maize 
at high altitudes whereas its effect is statistically insignificant at low and middle altitudes. 
This suggests that maize yield increases with temperature up to a certain threshold beyond 
which the effect becomes negative. In addition, the variability of maize yield increases as 

Table 5  Regression results for sorghum and wheat yields

Notes: The dependent variable in columns (1) and (3) and (5) and (7) is respectively the log of sorghum and 
wheat yields, whereas in columns (2) and (4) and (6) and (8) is respectively the log of squared residuals. 
In the regression models, we control for zone and year fixed effects, farm inputs, farmer age, and educa-
tion (see Table  C4 in Appendix C). Standard errors are clustered at EA level and given in parentheses. 
***p < 0.01, **p < 0.05, *p < 0.1

Variables Sorghum Wheat

Low altitudes High altitudes Low altitudes High altitudes

(1) (2) (3) (4) (5) (6) (7) (8)

Mean Variance Mean Variance Mean Variance Mean Variance

Temperature  − 0.03  − 0.22***  − 26.88 0.25***  − 24.38 0.18*** 35.56* 0.05
(19.35) (0.03) (18.89) (0.02) (22.25) (0.03) (20.57) (0.04)

Temperature 
squared

 − 0.09 4.70 4.26  − 6.15*

(3.13) (3.23) (3.76) (3.55)
Temperature 

anomaly
0.13 0.09***  − 0.18  − 0.01  − 0.66  − 0.17***  − 0.21 0.01

(0.32) (0.02) (0.47) (0.01) (0.40) (0.01) (0.67) (0.03)
Precipitation 11.23** 0.14*** 5.83 0.04*** 0.58 0.17*** 2.04 0.06***

(4.48) (0.01) (7.54) (0.01) (4.54) (0.00) (3.38) (0.01)
Precipitation 

squared
 − 0.86**  − 0.46  − 0.00  − 0.14

(0.36) (0.61) (0.34) (0.26)
Precipitation 

anomaly
 − 0.02  − 0.01*** 0.02 0.03*** 0.08 0.05*** 0.08 0.02***

(0.11) (0.01) (0.12) (0.00) (0.13) (0.00) (0.10) (0.00)
Irrigation 0.48** 0.10*** 0.15 0.03*** 0.10 0.03*** 0.68 0.15***

(0.21) (0.00) (0.24) (0.00) (0.22) (0.00) (0.47) (0.01)
R-squared 0.28 0.98 0.32 0.99 0.32 0.99 0.21 0.97
Observations 2,471 2,478 2,010 2,010 1,394 1,394 1,123 1,123
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temperature increases at middle and high altitudes, but it decreases at low altitudes. Unlike 
temperature, precipitation has a U-shaped relationship with the mean yield of maize at high 
altitudes. The mean yield of maize initially declines as precipitation increases, but it starts 
increasing after a certain threshold. However, precipitation anomaly has a positive rela-
tionship with the mean maize yield at middle and high altitudes. The variability of maize 
yield increases as precipitation increases at middle and high altitudes but is reduced at low 
altitudes.

Furthermore, there is a difference in the impact of irrigation use on maize yield vari-
ability across altitudes. Irrigation decreases risks at low altitude, but it increases the risk 
at middle and high altitudes. On the other hand, we have obtained unexpected, but het-
erogeneous results about the impact of irrigation on the mean yield of maize. Irrigation is 
found to have a negative effect on the mean yield of maize at low altitude whereas its effect 
is positive at high altitude. The negative effect of irrigation on maize yield at low altitude 
contradicts with our expectation since the low altitude areas receive low levels of precipita-
tion; irrigation is expected to increase yields. This may be due to the low adoption of irri-
gation practices among maize farmers in our sample.

3.1.4  Teff yield

Table 4 shows the estimated coefficients of weather variables in the teff yield model. Tem-
perature has a U-shaped relationship with the mean yield of teff at high altitudes whereas 
its effects become statistically insignificant for the case of low and middle altitudes. The 
initial increase in temperature increases teff yield at the higher altitudes, but the effect 
becomes reversed after a certain threshold of temperature. That means that as temperature 
increases due to climate change, high altitude areas become suitable for teff production in 
the short term. In addition, temperature leads to increased teff production risk at low and 
middle altitudes whereas it decreases the production risk at low altitudes.

Table 6  Estimation of models for full sample by including interactions of altitude with climate variables

The dependent variable in columns (1)–(6) is log of respective crops. The interactions between temperature 
and rainfall with altitude capture the heterogeneous impacts of respective climatic variables across different 
altitudes. In the regression models, we control for zone and year fixed effects, farm inputs, farmer age, and 
education (see Table E1 in Appendix E). Robust standard errors in parentheses. ***p < 0.01, **p < 0.05, 
*p < 0.1

Variables Coffee Barley Maize Teff Sorghum Wheat
(1) (2) (3) (4) (5) (6)

Temperature  − 0.82  − 1.51**  − 0.08  − 0.57  − 1.01  − 2.17***
(2.11) (0.76) (0.56) (0.56) (0.69) (0.75)

Temperature*altitude 1.72* 0.76*** 0.14 0.33* 0.65* 0.94***
(0.93) (0.28) (0.28) (0.20) (0.34) (0.26)

Precipitation 2.59** 0.67* 0.14 0.51** 0.73*** 1.29***
(1.13) (0.36) (0.25) (0.20) (0.28) (0.33)

Precipitation*altitude  − 0.74*  − 0.30**  − 0.06  − 0.12  − 0.30*  − 0.36***
(0.43) (0.13) (0.12) (0.09) (0.16) (0.11)

R-squared 0.40 0.25 0.28 0.32 0.25 0.26
Observations 1,089 2,300 5,536 3,865 4,481 2,517

12   Page 12 of 21 Climatic Change (2022) 170: 12



1 3

Furthermore, precipitation has a statistically significant positive impact on the mean 
yield of teff at middle altitudes. Furthermore, an increase in precipitation increases the 
variance of teff yield at low and middle altitudes, whereas its effect on yield variability 
becomes negative for areas at high altitudes. Moreover, we find a positive relationship 
between irrigation and the mean yield of teff at low and middle altitudes, yet its effect is 
statistically insignificant at high altitudes. This suggests that farmers’ adaptations to cli-
mate change by using irrigation can help to increase teff yield at low altitudes. Irrigation is 
also found to raise the variance of teff yield at all altitude levels.

3.1.5  Sorghum yield

In columns 1–4 of Table 5, we present the impacts of weather variables on the mean yield 
of sorghum and its variability. Temperature has a heterogeneous effect on the variance of 
sorghum yield at between low and middle altitudes. The positive changes in temperature 
induce the increase in the variability of sorghum yield at high altitudes whereas its impacts 
are negative at low altitudes. This result is statistically significant at the 1% level. On the 
other hand, precipitation has an inverted U-shaped relationship with the mean of sorghum 
yield at low altitudes whereas its effect is statistically insignificant at high altitudes. This 
result is also statistically significant at the 5% level. If precipitation decreases beyond cer-
tain levels due to climate change, at low altitudes, sorghum yield will also decrease. More-
over, precipitation has a positive relationship with the variance of sorghum yields at both 
low and high altitudes. This is in line with results of Chen et al. (2004) who find a positive 
impact of precipitation on the variance of sorghum yield but it contrasts with the findings 
of McCarl et al. (2008) who report a negative effect. However, precipitation anomaly has a 
heterogeneous impact on the variability of sorghum yield. The variability of sorghum yield 
decreases at low altitude, but it rises at high altitudes when precipitation increases above 
the 1981–2010 average.

Another interesting result is how irrigation leads to an increase in the mean yield of 
sorghum at low altitudes, yet the result is statistically insignificant at high altitudes. Low-
land areas receive less precipitation as compared to the places at high altitudes. Hence, the 
reduction of precipitation due to climate change can be damaging. In this regard, farmers’ 
adaptation through irrigation to cope up with climate change-induced reduction in precipi-
tation helps to increase the crop yields. This would suggest that the use of irrigation is cru-
cial to building resilience and increase sorghum yields at low altitude areas. In addition, 
irrigation also increases the variability of the sorghum yield at both low and high altitudes.

3.1.6  Wheat yield

Our results also indicate the heterogeneity in the impacts of temperature on the mean yield 
of wheat between low and high altitudes in Ethiopia. Columns 5–8 in Table 5 present the 
estimates of the effects of weather variables on wheat yield and its variability. Our results 
indicate that temperature has an inverted U-shaped effect on mean wheat yield at high 
altitudes where its effect is statistically insignificant at low altitudes. The mean yield of 
wheat initially increases with higher temperatures at high altitudes, then it decreases after a 
certain threshold. Furthermore, precipitation, precipitation anomaly, and irrigation have a 
positive relationship with the variance of wheat yield at low and high altitudes.
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3.2  Robustness check: estimations of full sample model and translog functional 
form

To check the robustness of our results, we consider two alternative approaches for our 
empirical analysis. First, we undertake the regression analysis for the whole sample by 
including the interaction of altitude with rainfall and temperature instead of splitting the 
sample into low, middle, and high altitude sub-samples (Table 6). Second, we re-estimate 
our model using translog functional form instead of Cobb–Douglas specification reported 
in our original analysis (Tables 7). Our results about the positive effect of increasing tem-
perature on coffee and teff yields at high altitudes are robust to considering the whole 
sample instead of separate estimation for low and high altitudinal locations. As shown in 
Table 6, the coefficient of interaction terms between temperature and altitude is positive 
and statistically significant. This finding is consistent with that presented in Table 2 and 
it implies that coffee and teff yield may increase, at least in the short run, as temperature 
increases due to climate change at high altitudes. Furthermore, the coefficients for barley 
and wheat are also consistent with the results obtained by estimating the model separately 
for low and high altitudes. The full results for whole sample model estimation including 
the interaction of altitude with temperature and precipitation for both mean and variance of 
crop yields are presented in Table E1 in the Supplementary Material.

In addition, the coefficient estimates for the impacts of temperature on coffee yield both 
at low and high altitude and barley, maize, and teff yields at high altitude carry on when 
we use translog functional form instead of the Cobb–Douglas form (see Table 7). These 
results show nonlinear and heterogeneous effects of temperature and precipitation on the 
crop yields. Specifically, temperature has a U-shaped relationship with coffee yield at low 
altitude, whereas the effects are inverted U-shaped at high altitudes. Similarly, temperature 
has an inverted U-shaped relationship with barley, maize, and teff yields at high altitudes. 
The full results for translog functional specification that included the estimation results for 
variance model are presented in Table E2 in the Supplementary Material.

3.3  Impacts of future climate change on crop yields

Using the estimated coefficients of temperature and precipitation given in Tables 2–5 and 
updated CMIP6 future emissions scenarios, we evaluate the impacts of future climate 
change on crop yields in Ethiopia. Table 8 shows the results for the projected impacts of 
climate change on the crop yields under low emission (SSP1-2.6), medium (SSP2-4.5), as 
well as medium–high (SSP3-7.0) and high (SSP5-8.5) emission scenarios. Table D1 in the 
Appendix D presents the medium-term impacts of climate change on crop yields for the 
period 2021–2040.

Under a medium emissions scenario (SSP2-4.5), results indicate that coffee yield 
decreases by about 3% at low altitude whereas there is a 31% increase at high altitudes 
due to climate change over 2041–2060 relative to 1988–2018 (see Table  8). Under the 
medium–high (SSP3-7.0) and high (SSP5-8.5) emission scenarios, the negative impact of 
climate change on coffee yield at low altitudes become lower, whereas its positive effects 
become higher at high altitudes as compared to the “middle of the road” (SSP2-4.5) sce-
nario (see Table 8). The positive impact of climate change on coffee yield at high altitudes 
is due to the increasing temperature. Results from the recent studies also report heteroge-
neous of impacts across different agro-ecologies and more sensitivity of crop revenues to 
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temperature than rainfall (see e.g. Hossain et al. 2019). Compared to a medium emissions 
(SSP2-4.5) scenario, the positive impact of climate change on teff yield at high altitudes 
become higher under the medium–high (SSP3-7.0) and high (SSP5-8.5) emission scenar-
ios and lower under a low emission (SSP1-2.6) scenario (see Table 8). We also find that 
climate change, reflected by changes in precipitation, induces an increase in sorghum yield.

On the other hand, our results show that barley, maize, and wheat yield decreases 
by 22.7%, 48%, and 10% at high altitudes under SSP2-4.5 scenario, respectively, over 
2041–2060 relative to 1988–2018. The negative impacts are driven by changes in tempera-
ture and precipitation becomes lower under a low emission scenario (SSP1-2.6) whereas it 
is higher under high emission scenarios, namely SSP3-7.0 and SSP5-8.5 (see Table 8). Our 
results are consistent with the findings of Arora et al. (2020) who reported 44% and 58% 
decline in maize and wheat yields due to climate change in the USA, but it contradicts with 
the finding of Jones and Thornton (2003) who predicted the benefit from climate change 
for wheat production at Ethiopian central highland areas. In addition, the negative effect 
of climate change on the mean yield of maize is partly consistent with the findings of Ray 
et al. (2019) for the case of maize yields in Togo. They report that maize yields experi-
ence a decrease in Southern districts in Togo whereas it increases in the Northern dis-
tricts because of climate change; however, it is not clear if there are differences in altitudes 
between the two areas.

4  Discussion and policy implication

Our results illustrate that the heterogeneity in the impacts of climate change on coffee 
yield is mainly derived by the effect of temperature. An increase in temperature has an 
inverted U-shaped relationship with the mean yield of coffee at high altitudes, whereas 
its effect exhibits a U-shaped relationship at low altitudes (see Table  2). This nonlinear 
effect of temperature is consistent with the findings of previous literature such as Magrach 
and Ghazoul (2015) and Venancio et al. (2020) that the net photosynthesis process in cof-
fee plants starts decreasing when temperatures go above 24 °C where it approaches zero 
when it becomes above 34 °C which hinders the development and ripening of cherries and 
reduces coffee plant growth. Moreover, under a medium emissions scenario, the results 

Table 8  Future climate change impacts on crop yields by 2041–2060

Notes: The numbers in columns (1)–(8) are percentages. The SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 
represent low, medium, medium–high, and high emissions scenarios, respectively

Crops Low altitudes High altitudes

(1) (2) (3) (4) (5) (6) (7) (8)

SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

Coffee  − 4  − 2.89  − 1.8  − 0.31 24.58 31.03 31.7 33.26
Barley  − 15.49  − 22.71  − 26.6  − 29.96
Maize  − 59.76  − 66.98  − 78.52  − 85.92
Sorghum 16.63 0.78 8.24 14.39
Teff 4.45 8.29 8.93 10.26
Wheat  − 6.62  − 9.95  − 12.95  − 13.65
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show that the coffee yield will increase by 31% at high altitudes, but it will decline by 3% 
low altitudes due to increase in temperature as a result of climate change over the period 
2041–2060 relative to 1988–2018 (see Table 8). Our finding of positive impact of climate 
change on coffee yield is consistent with the prediction of previous studies in Brazil, Ethio-
pia, Nicaragua, Tanzania, and Uganda that climate change may create favorable conditions 
for coffee crop production at high altitudes (e.g., Camargo 2010; Läderach et  al. 2017; 
Moat et al. 2017; Ovalle-Rivera et al. 2015; Rahn et al. 2018; Tavares et al. 2018). Several 
reasons are cited in the literature for the positive impact of temperature on coffee yield at 
high altitude areas. The elevated carbon concentration increases coffee yield at high alti-
tudes (DaMatta et al. 2019; Rahn et al. 2018). In addition, the positive influence of climate 
change on coffee production results from increases in coffee-growing niches and pollina-
tion services (Pham et al. 2019).

Similarly, the results show that teff yield increases by 8.3% at high altitudes due to 
climate change by 2041–2060 compared to 1988–2018 under a medium emissions sce-
nario. Considering the yearly variation, we find that precipitation and temperature have 
an inverted U-shaped relationship with the mean yield teff at middle and high altitudes, 
respectively. This result is partially inconsistent with the findings of existing literature 
about the prediction of decreasing teff production due climate change impacts on teff pro-
duction in Ethiopia (Evangelista et  al. 2013; Woldeyohannes et  al. 2020), implying the 
need to consider disaggregated analysis across different agro-ecologies instead of aggregat-
ing the impacts of climate change for a whole teff producing areas in the country..

However, we find the negative impacts of climate change on barley, maize, and 
wheat yields at high altitudes. Specifically, the yields of barley, maize, and wheat crops 
will decline by 3%, 22.7%, 48%, and 10% at high altitudes, respectively, over the period 
2041–2060 relative to 1988–2018. Short-run variation in temperature has the inverted 
U-shaped relationship between the mean yield of barley, maize, and wheat at high alti-
tudes. Our finding of inverted U-shaped effect of temperature on barley yield at high alti-
tudes contradicts with the finding of Isik and Devadoss (2006) who report U-shaped rela-
tionship between mean yield of barley and temperature. On the other hand, our result about 
the effect of temperature variations on maize yield is consistent with the finding of previ-
ous literature about the impacts of climatic variables on maize production is Sub-Saharan 
Africa (Adisa et al. 2018; Cairns et al. 2013; Ray et al. 2019). The positive side of the non-
linear effect of temperature on the mean yield of wheat in highland areas is partly consist-
ent with the findings of Poudel and Kotani (2013) who reported a positive relationship of 
temperature on the mean yield of wheat in Nepal. However, the negative sign of the coef-
ficient of quadratic term indicates that yield starts to decrease after a certain threshold of 
the temperature. This result is consistent with the findings of Carew (2017) who reported 
the negative effect of temperature exceeding 34° on the mean yield of wheat crop yield 
in Canada. In addition, precipitation has a U-shaped relationship with the mean yield of 
maize at high altitudes whereas its relationship with the mean yield of sorghum becomes 
inverted U-shaped at low altitudes. This result is consistent with the findings of Ray et al. 
(2019) who report an increase in sorghum yield due to recent climate change in Sub-Saha-
ran African countries.

The general implication of our findings is that climate policies need to be informed by 
the location and crop-specific scenarios about the impacts of climate change besides those 
aggregated at national or regional levels. Therefore, identification of the locations that are 
becoming suitable and/or unsuitable for a specific crop is crucial to provide policy input 
regarding the comparative advantages for alternative crops and land uses (see, e.g., Arora 
et al. 2020). Furthermore, the suitability of crops to a given agro-ecology may change over 
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time due to the changing climate. Therefore, it is necessary to keep updating the climate 
analyses and providing timely suggestions for policymakers to enhance agricultural pro-
ductivity. There is also a need to provide the effective incentives to promote crop produc-
tion in their respective climate-induced suitability areas. In this regard, agricultural policy 
programs, such as cluster farming, would better map crop suitability by considering future 
climate change and develop agro-ecological clusters instead of those based on traditional 
crop-growing geography. For instance, building coffee and teff clusters or commercializa-
tion centers at high altitudes can enhance climate resilience as these areas will become suit-
able for the two crops. Clustering farms can help not only to reduce the existing land frag-
mentation, but also to exploit synergies among climate adaptation practices and enhance 
farmers’ food security (Cholo et al. 2019; Komarek et al. 2019).

5  Concluding remarks

This paper show that climate change may create favorable conditions for certain crops at 
high altitudes, whereas it harms the production of other crops. These heterogeneities in the 
impacts of climate change on crop yields across different altitudes suggest a need to design 
policy strategies to incorporate crop- and location-specific potential risks and opportuni-
ties pertaining to climate change in Ethiopia. Specifically, there is a need to devise climate 
adaptation strategies that suits different contexts and agro-ecological settings. Furthermore, 
it is necessary to provide evidence-based guidance and support for farmers to switch to 
crops suitable for their respective agro-ecological settings. This requires designing the spe-
cialized training for extension workers and rural development experts about the climate 
sensitivity of each crop at different micro-climate conditions and agro-ecologies in Ethio-
pia. Moreover, the government investment on irrigation dams should prioritize the areas 
vulnerable to droughts but also have high potential for crop yield enhancement. These 
strategies can help to build climate resilience, enhance crop productivity, and improve the 
livelihood of smallholder farmers in the face of climate change.

Finally, it is worth highlighting the main limitations of this paper which can serve as 
the basis for future research. First, the empirical analysis presented in this paper does not 
consider other factors that can interplay with climatic factors in determining crop growth 
and yields. Particularly, the crop evapotranspiration and atmospheric water demand, i.e., 
the level of vapor pressure deficit (VPD), can determine the effect of temperature and pre-
cipitation on crop farming process.4 In this regard, future studies may consider incorporat-
ing VPD into the analysis of climatic impacts on crop yields. Second, this paper does not 
incorporate the disparities in the impacts of climate change among different social groups. 
Therefore, future research is required to analyze the heterogeneity in climate change 
impacts across different social groups, such as gender, age, or income groups, within a sim-
ilar agro-ecological setting. This can provide more detailed and useful insights into policy 
instruments to address variations in climate sensitivity among different groups and design 
effective strategies to achieve sustainable development goals.
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