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Abstract
Habitat management improves biological control by increasing the abundance and fitness of natural enemies through the 
provision of floral resources along field edges or between crops. Among the natural enemies reliant on flower resources, 
green lacewings often stand out due to their abundance, predation capacity and polyphagy. We evaluated the impact of tai-
lored flower strips on the enhancement of natural enemies, especially green lacewings, in three organic cabbage (Brassica 
oleracea) farms in Southern Sweden. Insects were sampled from the flower strips, and cabbage pests and predators were 
visually recorded in the crop. In a laboratory assay, the pollen feeding preferences of Chrysoperla carnea (Stephens, 1836) 
were evaluated in a dual-choice test. The pollen consumed by the Chrysopidae was extracted from laboratory and field 
specimens, then quantified and identified. Flower strips were found to attract predators and parasitoids, whose abundance 
increased as flowers bloomed. Cabbage plants next to the flower strips showed lower pest infestation as compared to cabbage 
plant control, although no significant differences were observed in the number of predators. Chrysopidae used flower strips 
as feeding, reproduction and shelter sites and mainly consumed pollen from Phacelia tanacetifolia Benth. Under laboratory 
conditions, C. carnea showed a preference for P. tanacetifolia and Coriandrum sativum L. pollen over Borago officinalis L. 
and Fagopyrum esculentum Moench. We show that tailored flower strips could be an efficient tool for enhancing beneficial 
arthropods and should be considered in integrated pest management for cabbage crops.

Keywords Ecological infrastructure · Conservation biological control · Pollen · Chrysoperla carnea · Predators · 
Parasitoids

Key messages

• Flower strips attract predators and parasitoids.
• Cabbage plants next to flower strips showed lower pest 

infestation levels.
• Chrysoperla carnea sensu Henry, Chrysoperla lucasina 

and Chrysopa commata were found in the tailored flower 
strips in Southern Sweden.

• Field collected Chrysopidae mainly consumed pollen 
from the flower strips introduced.

• Chrysopidae show a preference for feeding on Phacelia 
tanacetifolia and Coriandrum sativum pollen grains.
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Introduction

Increasing agricultural intensification has had a nega-
tive impact on the wider environment, which has led to 
landscape simplification, agrochemical spillover in soil 
and water, as well as an increasing loss of biodiversity 
(Conway 2000; Tilman et al. 2002). Farmers have been 
experiencing major losses of essential ecosystem services, 
such as pollination, water and fertility regeneration, nutri-
ent recycling and biological pest control (Steffen et al. 
2015). A shift towards a more ecosystem-based approach 
to agriculture has been proposed (Tittonell 2014). This 
approach includes habitat management in order to restore 
functional agrobiodiversity in the agricultural landscape. 
This involves the introduction of non-crop vegetation with 
the aim of providing beneficial arthropods with shelter, 
overwintering sites, alternative prey and food resources 
(Landis et al. 2000; Gurr et al. 2017). Over the last dec-
ades, the use of flower strips in cultivated fields in order to 
enhance plant diversity has attracted growing interest from 
researchers, farmers and practitioners (Haaland and Gyllin 
2011; Penvern et al. 2019; Aparicio et al. 2021). Annual 
and perennial flower strips have been shown to increase 
beneficial arthropod diversity and biological pest control 
(Fiedler et al. 2008; Tschumi et al. 2016; Cahenzli et al. 
2019; Albrecht et al. 2020). However, as several factors 
may influence the success of this strategy, system-specific 
evaluations need to be carried out prior to implementa-
tion (Tscharntke et al. 2016). Parameters such as time of 
flowering, synchronization with natural enemies and pest 
occurrence, nectar and pollen production and competition 
with the main crop for resources should be carefully inves-
tigated before this strategy is implemented. Furthermore, 
flower strips should not attract or host arthropods poten-
tially harmful to the main crop or favour intraguild preda-
tion among beneficial arthropods (Tscharntke et al. 2016).

Brassica, an important arable crop in Europe, is 
attacked by a wide range of herbivores, including insects, 
nematodes, slugs and birds (Alford et al. 2003). Insects 
are regarded as the main source of yield losses in Swedish 
vegetable production, for example, the flies Delia radi-
cum (L.) and Delia floralis (Fallen) are important pests in 
cabbage and cauliflower (Nilsson et al. 2016). The most 
economically important Brassica vegetables in Sweden are 
cauliflower (421 ha; 7359 ton), white cabbage (338 ha; 
16362 ton) and broccoli (335 ha; 2941 ton) (SCB 2018). 
Several key Brassica insect pests such as Plutella xylos-
tella L., Pieris rapae L. and D. radicum cause substantial 
economic damage to Brassica crops in Sweden, although 
in the southern and central part of the country, other insect 
pests (Pieris brassicae L., Pieris napi L., Mamestra bras-
sicae L., Autographa gamma L., Lacanobia oleracea L., 

Agrotis spp. or Evergestis forficalis L.) are frequently 
responsible for minor damages (Andersson et al. 2013). 
Furthermore, key Brassica insect pests, such as Psylli-
odes chrysocephala (L.), Ceutorhynchus obstrictus (Mar-
sham) and Meligethes aeneus (Fabricius), have developed 
resistance to certain widely used pesticides, thus making 
their control increasingly difficult (Heimbach and Müller 
2013). One alternative to the use of pesticides is to cre-
ate a more favourable environment for locally occurring 
natural enemies that have the potential to control key pests 
(Balmer et al. 2014; Nilsson et al. 2016). For instance, 
Fagopyrum esculentum Moench sown as a single spe-
cies or flower mixture along cabbage borders was found 
to improve natural lepidopteran pest control, with higher 
parasitism rates observed on P. xylostella and P. rapae, 
as well as increased predation on M. brassicae. However, 
these positive effects were not consistent throughout the 
studies reported (Lee and Heimpel 2005; Pfiffner et al. 
2009; Winkler et al. 2009).

Green lacewings, mainly at the larval stage, prey on soft-
bodied insects such as aphids, thrips, mites, moths and lepi-
dopteran eggs (Principi and Canard 1984). In this context, 
cabbage pests such as P. brassicae, P. xylostella, M. brassi-
cae and B. brassicae have been reported as green lacewings 
preys (Klingen et al. 1996; Reddy et al. 2004; Huang and 
Enkegaard 2010; Ahmad-Ur-Rahman et al. 2016). Con-
versely, most adults show palyno-glycophagous behaviour, 
with a diet based on pollen, nectar and honeydew (Stelzl 
1991, 1992; Canard 2001; Villenave et al. 2006; Villa et al. 
2017). Furthermore, green lacewings are one of the most 
studied groups of natural enemies given their important role 
in crop protection, as well as their presence in field crops 
(Villenave et al. 2005; Pappas et al. 2011). The Chrysoperla 
carnea-group, which includes some of the most abundant 
green lacewing species in agroecosystems, is comprised of 
at least 21 sibling species which are extremely similar in 
morphology (Price et al. 2015). Three or four species of 
the Chrysoperla carnea-group may even coexist on a single 
tree (Henry et al. 2013; Alcalá Herrera et al. 2019a). Stud-
ies of green lacewings rarely provide a breakdown of the 
Chrysoperla carnea-group into their species assemblages 
(e.g. Bertrand et al. 2019; Villa et al. 2019), which would 
give us an essential insight into the ecological differences 
between the different species. Chrysoperla carnea species 
are opportunistic feeders which are attracted to large patches 
of flowering plants (>20  m2) (Villenave et al. 2006; Alcalá 
Herrera et al. 2020).

While Villenave et al. (2006) have suggested that bor-
dering vegetation constitutes a reservoir habitat and resting 
place for most Chrysopidae, mixed results have been found 
about the effect of cover crops and on increased lacewing 
activity during the cropping season (Smith et al. 1996; Bone 
et al. 2009). Conversely, other studies have observed that 
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flowering plants in apple, citrus and olive orchards, as well 
as sown flower strips adjacent to cotton and cabbage crops, 
increased lacewing populations and recruitment into crop 
fields (Fye and Carranza 1972; Burleigh et al. 1973; Ridg-
way and Murphy 1984; Wyss 1995; Silva et al. 2010; Porcel 
et al. 2017). The following factors need to be taken into 
account when managing habitats to increase and maintain 
naturally occurring Chrysopidae populations (Ridgway and 
Murphy 1984): availability and suitability of plant species 
containing flowers with an ultraviolet pattern, open corollas 
for accessible pollen, and well-exposed nectaries (Villenave 
et al. 2005; Nave 2016; Van Rijn and Wackers 2016; Hatt 
et al. 2019); the presence of preimaginal-stage eggs and lar-
vae indicating the suitability of the habitat as a reproduction 
site (Bianchi et al. 2013); improved nesting sites for a better 
colonization and healthier predator and parasitoid movement 
between these habitats adjacent to crop (Nicholls et al. 2001; 
Wilkinson and Landis 2005); knowledge of local popula-
tion dynamics of both Chrysopidae and target pest species 
(Ridgway and Murphy 1984; Landis et al. 2000).

Thus, the overall goal of this study was to determine 
whether selected flowering plant species arranged in strips 
can be used to attract and support predators and parasitoids, 
with particular emphasis on green lacewings. In addition, we 
estimated the suitability of flower strips to enhance biologi-
cal pest control of the lepidopterans: M. brassicae, P. xylos-
tella, P. brassicae, P. rapae and the aphid Brevicoryne bras-
sicae L. by green lacewings in organic Brassica oleracea 
crops. We hypothesized that adult green lacewings would 
be attracted to and use flower resources such as pollen and 
nectar and use suitable oviposition sites in adjacent cabbage 
crops, where their larvae would prey on the most important 

cabbage pests. The specific objectives of this study were: (i) 
to evaluate the impact of flower strips on pest and predator 
abundances in Brassica crops, (ii) to identify the arthropod 
community, especially green lacewings, associated with 
plant species present in the flower strips, (iii) to identify 
and quantify the pollen consumed by green lacewing adults 
collected from the flower strips and (iv) to determinate their 
pollen feeding preferences in a laboratory assay.

Material and methods

Experimental design

The field experiment was conducted between May and Sep-
tember 2017. Three commercial farms were selected in the 
county of Scania in the south of Sweden (Figure S1), which 
is dominated by arable crops and meadows. The most com-
mon crops are rye, barley, oats, wheat, sugar beet, potatoes 
and cabbage vegetables. All three farms were organically 
certified under EU regulations by KRAV Sweden. Each farm 
had an area planted with cabbage (B. oleracea), with three 
to seven varieties per farm (Table S1). In each farm, stand-
ardized 1.80 m wide and between 20 to 180 m long (farm 
1: 180 m; farm 2: 45-60 m; and farm 3: 20 m) flower strips 
(rows) were established between May and June 2017 (Fig-
ure 1 and S1) at a distance of 1.5 to 2 m from the crop. The 
number of rows varied between two and five (Figure 1 and 
S1). Distances between rows ranged from 3 to 9 m, accord-
ing to the grower planting diagram (Figure 1 and S1).

In the three farms, the cabbage plants were sown in two 
treatments: (i) adjacent to flower strips (flower strip blocks) 

Fig. 1  Experimental design in each farm. 1C–5C are the control blocks, and 1T–15T are the flower strip blocks. The location of each farm in 
Scania, plant species distribution within the flower strips and seed rate per plant species are given in Figure S1
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and (ii) with no adjacent flower strips (control blocks) (Fig-
ure 1 and S1). A diagonal line of eighteen cabbage plants, 
randomly selected and marked the first time, was regarded 
as a block. The number of blocks per farm depended on the 
cabbage crop surface available by the grower and to maxi-
mize differences between treatments. In farm 1, there were 
20 blocks (5 control blocks and 15 flower strip blocks), 9 
blocks in farm 2 (2 control blocks and 7 flower strip blocks) 
and 6 blocks in farm 3 (3 control blocks and 3 flower strip 
blocks) (Figure 1 and S1). Blocks were sampled repeatedly 
on six to eight occasions in each farm at least once a week 
from June to September. The minimum distance between 
blocks and treatments was five and 25 m, respectively. The 
minimum distance between control blocks and rows was 17 
m (Figure 1 and S1).

The flower strips were comprised of six different plant 
species: Borago officinalis L., Coriandrum sativum L., F. 
esculentum, Foeniculum vulgare Mill., Helianthus annuus 
L. and Phacelia tanacetifolia Benth. (Figure S1). These spe-
cies were chosen on the basis of the following two criteria: 
(i) floral resources had demonstrated positive effects on the 
survival, reproduction, development and population dynam-
ics of lacewings (Villenave et al. 2005, 2006; Robinson et al. 
2008; Van Rijn 2012; Gonzalez et al. 2016; Tschumi et al. 
2016; Villa et al. 2016) and (ii) the locally adapted ecotype 
plant species are present throughout Sweden and around the 
world.

The seeds of the plant species produced under organic 
conditions were supplied by a company specializing in 
locally adapted ecotypes (Lindbloms Frö, Sweden). Plants 
were sown using a hand seeder in single species rows (Fig-
ure S1). Each flower strip was established coinciding with 
the planting schedules of the adjacent cabbage row. The 
presence of other flowering species in the crops was scarce, 
and weeds in flower strips were manually managed. Flower 
strips were irrigated at the same time as the cabbage crops. 
No pesticide treatments, mowing or fertilization was con-
ducted in the flower strips.

Flower bloom was estimated as the percentage of open 
flowers (scale 0–100%) for each plant species in each row 
and farm at least once a week from June to September, with 
a total of between six and nine times per farm. In general, the 
flower bloom was 27.72 ± 3.99 % (mean ± SE).

Pest and predator presence in cabbage crops

All leaves and the stem of the cabbage plants in flower strip 
and control blocks were closely inspected to count and 
record the presence and abundance of the lepidopterans M. 
brassicae, P. xylostella, P. brassicae, P. rapae and the aphid 
species B. brassicae L., as well as the predators Chrysopi-
dae, Coccinellidae and Syrphidae.

Arthropod collection in flower strips

Arthropod collection began on the 15th of July, approxi-
mately seven weeks after sowing the flower strips, once the 
flowers started to bloom, and came to an end on the 1st 
of September. Suction samples were taken from the flower 
strips on a weekly basis using a Stihl® SH 85C aspirator 
(Stihl AG & Co, Waiblingen, Germany). For each sample, 
the aspirator was moved across the flower strip for 40 sec-
onds covering all plant species. The sampling points within 
the flower strip were selected randomly, with a minimum 
distance of four metres between samples. The number of 
samples per farm ranged from eight to 30 on each sampling 
occasion. Suction samples were transported under cold con-
ditions and stored in a freezer at -20 °C until identification.

The arthropods collected were counted and identified 
to family and genus level where possible using standard 
taxonomic keys (Goulet et al. 1993; Barrientos 2004). We 
pooled the individuals collected into two groups: predators 
(Chrysopidae, Coccinellidae, Cantharidae, Anthocoridae, 
Deraeocoris sp. and Nabidae) and parasitoids (Ceraphro-
nidae, Megaspilidae, Aphelinidae, Encyrtidae, Eulophidae, 
Mymaridae, Pteromalidae, Torymidae, Cynipidae, Figitidae, 
Braconidae, Ichneumonidae, Platygastridae, Diapriidae and 
Proctutropidae).

The Chrysopidae larvae were determined under a ster-
eomicroscope to genus level based on larval cephalic chae-
totaxy (Monserrat 2016). Chrysopidae adults were sexed and 
identified to species level as described by Plant (2013) and 
Aspöck et al. (1980). Apart from Chrysoperla lucasina (Lac-
roix, 1912), cryptic species of the Chrysoperla carnea-group 
were identified to species level, according to the method 
described by Henry et al. (2002) and Chapman et al. (2006), 
by measuring the basal dilation of the metatarsal claw and 
the genital lip and chin of the male abdomen, and the values 
were compared to those reported by Henry et al. (2002).

Pollen‑foraging preference assay

A laboratory assay was performed in August 2017 to assess 
the pollen-foraging preferences of the common green lace-
wing, Chrysoperla carnea (Stephens, 1836), for the different 
plant species used in the field experiment. A colony was 
established for the trial, with lacewing individuals provided 
by Sautter & Stepper GmbH (Ammerbuch-Altingen, Ger-
many). Chrysoperla carnea adults were fed with a mix of 
organic multi-flower honey (Ekologisk honung, COOP, Swe-
den) and pollen (Bipollen, Life, Sweden) (1:1 v/v) and kept 
in a plastic cage (31 × 21 × 12 cm) which was placed in a 
climatic chamber under controlled conditions at 25 ± 2 °C, 
50–60% humidity and 16:8 hours L:D photoperiod. Larvae 
were fed ad libitum with Ephestia kuehniella Zeller eggs 
(Biotop, Livron-sur-Drôme, France) until pupation. Newly 
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emerged adults were sexed and starved for 24 h. A female 
and a male C. carnea were placed inside a plastic cage (18 
× 18 × 10 cm) with a couple of fresh well-developed flowers 
with the stems in a 25 ml water cup with all possible plant 
species pairs combinations. Flowers were obtained from 
fresh plant material collected daily from the flower strips 
and kept in water. Adults were allowed to feed on the flowers 
for 24 h. They were then immediately frozen at -20 °C for 
gut content analysis. Six replicates of all pairs combinations 
were run, with a total of 72 C. carnea adults assayed (36 
females and 36 males).

To analyse pollen consumption, the acetolysis technique 
was used for protein, lipid and insect tissue digestion, which 
facilitated accurate pollen identification (Jones 2014). This 
methodology has been previously used to study gut con-
tent in Chrysopidae adults (Medeiros et al. 2010; Andrade 
et al. 2017; Resende et al. 2017; Villa et al. 2019). Prior 
to acetolysis, wings, legs and antennae were removed from 
defrosted adults at room temperature to reduce residues 
following acetolysis. Each specimen was placed in a 2 ml 
microcentrifuge tube filled with 96% ethanol, where it was 
vortex-washed three times to remove external pollen on the 
cuticle. It was subsequently transferred to another microcen-
trifuge tube with 0.5 ml of glacial acetic acid to eliminate 
any residual water from the sample and was then crushed 
with a micropestle. Then, 0.5 ml of an acetolysis mixture 
of glacial acetic acid and sulphuric acid (9:1) was added 
and heated at 100 °C in a dry heater for 8 min. Afterwards, 
0.5 ml of glacial acetic acid was added to stop the acetolysis 
process and centrifuged for 10 min at 10000 rpm, and the 
supernatant was discarded. The remaining reagents were 
removed by washing each sample three times with 1 ml of 
distilled water and then centrifuged for 3 min at 10000 rpm. 
The supernatant was discarded and the sample was placed 
in a fume hood at 70 °C for 12 h to evaporate the remaining 
distilled water.

For microscope slide preparation, 10  µl of 99% 
glycerine:distilled water (1:1) were added to the microcen-
trifuge tube, mixed with the sample, placed on the slides 
and protected by a glass coverslip sealed with nail varnish.

For pollen examination, three traverses were carried 
out across the coverslip at the centre of each slide under a 
microscope at 400X for pollen grain counting and 1000X 
for identification. Pollen grains were identified based on 
their morphological polar and equatorial axes, shape, aper-
ture and exine ornamentation traits (Punt and Clarke 1980; 
Valdés et al. 1987; Faegri and Iversen 1989). The results 
obtained were compared with the surrounding vegetation 
present in the farm, the reference pollen collection from 
fresh flowers obtained from the flower strips and slides of 
Chrysopidae adults feeding on a single plant species. As 
pollen grain size varies enormously between plant species 
(Punt and Clarke 1980), we measured pollen consumption in 

two different ways: as the number of pollen grains and as the 
volume of these pollen grains, as described by Buchmann 
and O’Rourke (1991).

Once the Chrysopidae adults collected in the field were 
identified to species level, their gut contents were examined 
following the methodology described above.

Statistical analysis

We analysed the data using R version 3.6.3 (R Develop-
ment Core Team 2017) and R Studio version 1.1.456 (RStu-
dio Team 2016), with packages glmmTMB, (Brooks et al. 
2017), Matrix (Bates and Maechler 2019), lme4 (Bates et al. 
2014) and vegan (Oksanen et al. 2018). For each model, 
residuals were examined for model validation using pack-
age DHARMa (Hartig 2018). We checked fixed factors for 
significance using Wald test from the car package (Fox and 
Weisberg 2019) and multiple comparisons between levels 
of the fixed factor were tested using Tukey’s test with the 
packages lsmeans and emmeans (Lenth 2016, 2020).

To investigate the effect of farm and flower bloom on 
the number of predators and parasitoids collected in flower 
strips, suction sampling data were analysed using general-
ized linear mixed models (GLMMs). In each model, flower 
strips (row number) and sampling date were established as 
random effects to account for repeated measures on the same 
row at different times and population dynamics variation, 
respectively. Models were corrected for overdispersion by 
using a negative binomial (NB) distribution or by adding 
a quasi-Poisson structure (Table S3). We used non-metric 
multidimensional scaling (NMDS) based on the Bray–Cur-
tis distance to graphically represent the level of association 
between the different predator and parasitoid groups and 
the farm and flower bloom for each plant species. For each 
NMDS, stress was checked using the goodness plot and the 
Shepard stress test. A permutational multivariate analysis of 
variance (PERMANOVA) using Bray–Curtis distance and 
999 permutations was performed to test whether predator 
and parasitoid communities differed between farms and were 
affected by flower bloom of the different plant species.

The visual sampling data revealed a low number of pests 
and predators in cabbage plants. Thus, and to account for 
zero inflation, we used hurdle generalized linear mixed mod-
els (hurdle GLMMs) with a negative binomial (NB) error 
distribution for parasitoids and Poisson for predators, to 
investigate the effect of floral attractiveness, farm and treat-
ment (control blocks and flower strip blocks) on the number 
of pests and predators. In each model, block number was set 
as random effect to correct for repeated measures over time.

To analyse pollen-foraging preferences, the number and 
volume of pollen grains from the dual-choice assay were 
analysed using GLMMs with a NB distribution and linear 
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mixed effect models (LMMs), respectively. A GLMM and 
a LMM were run for each pair of plants. Models included 
plant species and lacewing gender as fixed factors and speci-
men as random effect due to the paired data recorded on the 
same combination of plant species. Furthermore, separate 
NB GLMM and LMM were used for the whole dataset to 
establish the differences between genders in number and vol-
ume of pollen grains consumed. In each of these models, 
gender was included as fixed factor and specimen and plant 
species were set as random effects.

To analyse the pollen identified in the gut of the Chrys-
opidae collected by suction sampling from the field experi-
ment, we used a GLMM with a NB distribution for number 
of pollen grains and a LMM for the volume of pollen grains. 
The models included gender, plant species (B. officinalis, 
C. sativum, F. esculentum and/or P. tanacetifolia), Chrys-
opidae species (Chrysopa commata data were excluded due 
to the low number of adults collected) and flower bloom of 
each plant species in the specific row where the Chrysopi-
dae adults were collected as fixed effects. The interaction 
term between plant species and flower bloom was included 
to explore the effect of bloom at different times on pollen 

utilization by lacewings. Both models included farm as ran-
dom effect.

Results

Impact of flower strips on pests and predators 
in cabbage crops

The number of pests and predators recorded by visual 
inspection in cabbage plants throughout the season was, 
respectively, 5.68 ± 1.15 (mean ± SE) and 0.23 ± 0.04 indi-
viduals per block (Fig. 2 and Table S2). The abundance of 
cabbage pests remained low during almost the whole sam-
pling period, with a sharp increase observed at the end of 
August (Fig. 2b). Of the five pest species found in this study, 
P. brassicae and P. rapae were the most abundant (Fig. 2b 
and Table S2). We observed a drastic reduction in pest abun-
dance in flower strip blocks (4.06 ± 0.89) compared with 
control blocks (9.32 ± 3.11) (Hurdle model, χ2 = 9.6, d.f. 
= 1, P < 0.01) (Fig 3 and Table S3), farm (Hurdle model, 
χ2 = 15.1, d.f. = 2, P < 0.001) and flower bloom variables 
(Hurdle model, χ2 = 6.4, d.f. = 1, P = 0.012) (Table S3). 

Fig. 2  Number of a preda-
tors and b pests (mean ± SE) 
recorded on each sampling date 
by visual inspection of the cab-
bage plant blocks. The heatmap 
shows the bloom percentage for 
each plant species in the flower 
strips
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Predators showed two peaks of abundance in the middle of 
July and at the beginning of August (Fig. 2a). The most com-
mon predatory taxa found were Coccinellidae, Syrphidae 
and Chrysopidae (Table S2). The abundance of predators 

in the crop was not influenced by any of the three variables 
tested (Hurdle model, P > 0.050; Table S3 and Fig. 3).

Arthropod collection in flower strips

A total of 38,081 arthropods were collected from the flower 
strips. Diptera were the most abundant, accounting for 
50.2% of the total, followed by Thysanoptera (13.81%) and 
Coleoptera (5.42%) (Table S4).

In terms of functional groups, parasitoids represented 
17% of the total arthropods collected, with 6,349 individu-
als, with the families Pteromalidae (4.8%), Braconidae 
(3.61%) and Eulophidae (3.51%) being the most abundant. 
Predators, accounting for 2.59% of the total, belonged to the 
groups Orius sp. (0.95%), Syrphidae (0.64%), Anthocoris 
sp. (0.46%), Neuroptera (0.33%); Coccinellidae (0.12%), 
Deraeocoris sp. (0.05%), Cantharidae (0.03%) and Nabidae 
(0.01%) (Table S4). The number of predators and parasi-
toids gradually increased over the sampling period from the 
beginning of July to the highest peak of abundance at the end 
of August (Fig. 4a, b). The abundance of both these natural 
enemies also rose significantly with increasing percentages 
of flower bloom in the flower strips (predators GLMM, χ2 
= 3.9, d.f. = 1, P = 0.047; parasitoids GLMM, χ2 = 14.2, 

Fig. 3  Number of predators and pests (mean ± SE) recorded in 
blocks situated in the vicinity of flower strips and in the control 
blocks through visual inspection of cabbage plants. Different letters 
indicate statistically significant differences between treatments (Wald 
test, P < 0.05)

Fig. 4  Number of a predators 
and b parasitoids (mean ± SE) 
on each sampling date collected 
by suction sampling from the 
flower strips. The heatmap 
shows the percent bloom of 
each plant species in the flower 
strips
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d.f. = 1, P < 0.001) (Fig 5 and Table S3). Predatory insect 
community analysis showed significant differences between 
farms (PERMANOVA, R2 = 0.546, Pseudo-F = 16.2, d.f. = 
2, P < 0.001), but no flower bloom effect (PERMANOVA, 
R2 = 0.040, Pseudo-F = 2.5, d.f. = 2, P = 0.076) on com-
munity composition (Fig. 6a and Table S5). Cantharidae 
was associated with P. tanacetifolia bloom, while Coc-
cinellidae, Orius sp., Anthocoris spp. and Deraeocoris spp. 
were associated with B. officinalis, F. esculentum, C. sati-
vum and H. annus bloom (Fig 6a and Table S5). The para-
sitoid community was significantly affected by both farm 
(PERMANOVA, R2 = 0.494, Pseudo-F = 17.1, d.f. = 2,  
P < 0.001) and flower bloom (PERMANOVA, R2 = 0.102, 
Pseudo-F = 7.1, d.f. = 2, P < 0.01) (Fig 6b and Table S5). 
Encyrtidae were associated with C. sativum and H. annus 
bloom, while Megaspillidae and Torymidae were associated 
with B. officinalis and F. esculentum bloom. The other para-
sitoid families were associated with P. tanacetifolia bloom 
(Fig 6b).

Pollen consumption by Chrysopidae

Chrysoperla carnea individuals tested in the dual-choice 
laboratory assay consumed significantly more pollen from 
the paired plant species P. tanacetifolia and C. sativum 
as compared to F. esculentum and B. officinalis, with no 
differences observed between either paired plant species 
(Fig. 7a and Table S3). The overall number of pollen grains 

consumed was significantly higher for females as compared 
to male specimens (Fig. 7c and Table S3). The volume of 
pollen consumed by lacewings yielded the same results for 
plant species and gender as for the number of pollen grains 
(Fig 7b and d and Table S3).

A total of 54 adults (35 females and 19 males) and 59 
larvae from the Chrysopidae family were captured in the 
flower strips. 48.2% (19 females and 7 males) were identi-
fied as Chrysoperla carnea (Stephens, 1836) sensu Henry, 
42.6% (14 females and 9 males) as C. lucasina and 9.3% (2 
females and 3 males) as Chrysopa commata Kis & Újhelyi, 
1965. 71.2% (42 individuals) of the 59 larvae collected were 
identified at genus level as Chrysoperla sp. Steinmann, 1964 
and 28.8% (17 individuals) as Chrysopa sp. Leach 1815.

We counted a total of 112,319 pollen grains from the 54 
Chrysopidae adult guts, six of which contained no pollen. 
Despite feeding on all plant species present in the flower 
strips, the most consumed pollen was P. tanacetifolia in 
terms of quantity and total volume, as well as in the sam-
pling period (Fig. 8a, Fig. 9 and Table S3). A small per-
centage (5.61%) of the pollen consumed corresponded to 
other plant taxa such as the families Asteraceae (1.24%), 
Brassicaceae (3.32%), Cariophyllaceae (0.59%), Pinaceae 
(0.001%), Poaceae (0.18%), Polygonaceae (0.03%) and 
Rosaceae (0.19%). No statistical differences were detected 
between Chrysopidae species (Fig 8b and Table S3). In addi-
tion, Chrysopidae females were observed to consume more 
pollen than males (Fig 8c and Table S3).

Discussion

The use of tailored flower strips as a conservation biological 
control strategy has been gaining traction in recent years, 
both as a research topic and in practical application terms 
(Gurr et al. 2017). This type of habitat manipulation strat-
egy benefits from a cropping system-specific design and 
laboratory research, and requires multiple-year field testing 
showing pest control to achieve its full potential, to prevent 
failure and to improve adoption. In this study, we show that 
the implementation of tailored flower strips increases bio-
diversity and enhances natural enemy populations in cab-
bage crops. Through visual inspection, we demonstrated 
that flower strips in their vicinity have a positive impact on 
pest reduction in cabbage plants as compared to those in 
control blocks although, due to space constraints, we were 
forced to limit the amount of control blocks in each farm. 
Arguably, with a higher replication differences between 
treatments would have been more marked; however, we 
cannot discard a reduction in the pest pressure variability 
covered by our control plots that could have affected the 
results obtained. Furthermore, we cannot totally discard a 
certain interference of the flower strips on control blocks 

Fig. 5  Predicted GLMM values (±95% CI) for the relationship 
between mean percentage of flower bloom in the flower strips and 
a predators (χ2 = 3.9, d.f. = 1, P = 0.047) and b parasitoids (χ2 = 
14.2, d.f. = 1, P <  0.001) per suction sample, and c predators (χ2 
= 17.9, d.f. = 2, P < 0.001) and d parasitoids (χ2 = 4.8, d.f. = 2, P 
= 0.092) per sample in the different farms. Different letters indicate 
statistically significant differences between farms (Tukey’s test, P < 
0.05)
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due to the high mobility of the natural enemies attracted 
to the flower strips, such as lacewings, and the distances 
established in our experimental design. Our findings are in 
line with other studies of biocontrol with regard to P. xylos-
tella, P. rapae and M. brassicae in the presence of flowering 
plants (Zhao et al. 1992; Lee and Heimpel 2005; Pfiffner 
et al. 2009; Winkler et al. 2009). For instance, B. officinalis, 
C. sativum, F. vulgare and P. tanacetifolia have previously 
been reported to be effective attractants of natural enemies 
such as Coccinellidae, Syrphidae, Chrysopidae and certain 
parasitoids (Colley and Luna 2000; Morris and Li 2000; 
Verkerk 2001; Boller et al. 2004; Sievwright et al. 2006; 
Alcalá Herrera et al. 2019b). Surprisingly, the large pres-
ence of predators and parasitoids on the flower strips did not 
increase their populations on adjacent cabbage plants. Cab-
bage pest populations were low in the study area at the time 
of the study according to the growers and our own observa-
tions. This may explain why predators preferred to remain 
in the flower strips, where more resources were available. 
Furthermore, we recorded other generalist predators in the 
flower strips, such as Araneae, Anthocoridae, Carabidae and 
Dermaptera (Cahenzli et al. 2019) which may contribute to 

the reduction in pest populations in the vicinity of the flower 
strips, although these generalist predators were not recorded 
on the cabbage plants in our study.

It has been well established that an increase in landscape 
heterogeneity in terms of composition and configuration 
promotes natural enemies on agricultural land (Fahrig et al. 
2011; Martin et al. 2019; Serée et al. 2020). We found that 
farm location had a major impact on predatory communities. 
For instance, the higher density of surrounding trees in farm 
2 may have improved the abundance of predators collected 
compared to farms 1 and 3. Previous studies have reported 
that predators such as Chrysopidae, Coccinellidae and Syr-
phidae are attracted to flowering plants (Bertolaccini et al. 
2011; Hatt et al. 2017), which is consistent with the preda-
tor community that we identified from suction samples. We 
show that parasitoid abundance was closely correlated with 
flower bloom, indicating a high attraction to plant resources 
in the cropping system of a large number of families within 
this group. This finding corroborates a simulation model 
developed by Bianchi and Wäckers (2008), which suggests 
that parasitoid aggregation in flower strips is due to feeding 
on floral nectar. Furthermore, Irvin et al. (2006) have shown 

Fig. 6  Non-metric multidimen-
sional scaling (NMDS) biplot 
representing the community 
composition of a predators 
(stress = 0.156) and b parasi-
toids (stress = 0.143) collected 
by suction sampling from the 
flower strips. Coloured dots 
indicate different farms, and 
black dots indicate the posi-
tion of predator and parasitoid 
groups in the multivariate 
space. Plant species in relation 
to the predators and parasitoids 
are represented by orchid-
coloured arrows. Farms differed 
in relation to both predator and 
parasitoid communities (PER-
MANOVA, Pseudo-F = 16.2, 
P < 0.001; Pseudo-F = 17.1, 
P < 0.001; respectively). The 
parasitoid community composi-
tion was affected by the bloom 
rate of the plant species in the 
flower strips (PERMANOVA, 
Pseudo-F = 7.1, P < 0.01)
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Fig. 7  a Number and b volume  (mm3) of pollen grains (mean ± black 
SE) consumed by all C. carnea tested in each dual-choice combina-
tion. c Number and d volume of pollen grains consumed by gender 
(mean ± black SE) for the whole trial. The red dots and error bars 
(mean ± SE) in a and b represent pollen consumption by females and 

the blue dots and error bars (mean ± SE) represent pollen consump-
tion by males for each combination. Significant differences in num-
ber and volume of pollen grains consumed between paired plants and 
between genders are indicated with an asterisk (GLMM, Wald test, P 
< 0.05)

Fig. 8  Number (left axes) and volume  (mm3) (right axes) of pollen 
grains (mean ± SE) consumed by the Chrysopidae collected from the 
flower strips by a plant species, b Chrysopidae species and c gender. 
Solid bars represent the number of pollen grains and hollow bars rep-

resent the volume of pollen grains. Significant differences are indi-
cated by upper-case letters for the number of pollen grains and lower-
case letters for the volume of pollen grains (GLMM, Turkey’s tests, P 
< 0.05)
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that the longevity of parasitoids fed on F. esculentum flowers 
was enhanced as compared to those fed on P. tanacetifo-
lia. While predator abundance also correlated with flower 
bloom, predatory insect community composition was unaf-
fected by the presence of flowers.

The Chrysopidae species assemblage in flower strips 
was composed of three species, C. carnea sensu Henry, C. 
lucasina and C. commata. This is the first record in Sweden 
of C. commata and C. lucasina to the best of our knowl-
edge. Both Chrysoperla carnea sensu Henry and C. luca-
sina, which have a palyno-glycophagous diet, are frequently 
found in crops associated with herbaceous vegetation sub-
strates (Canard 2001). In our study, Chrysopidae appeared 
to use the pollen resources provided by the flower strips, 
as evidenced by the ingested pollen, which belonged to the 
plant species sown in the flower strips. Furthermore, the 
number of pollen grains was correlated with the bloom-
ing period of their flowers. These results are in line with 
the findings of Bertrand et al. (2019), who observed that 
the majority of pollen consumed by C. carnea came from 
non-agricultural adjacent plants, even in crop-dominated 
landscapes, shifting from woody plant species in spring to 
herbaceous plants in the summer. In contrast, Villa et al. 
(2019) found an opposite trend, with C. carnea feeding 
mainly from olive pollen, rather than non-agricultural plants 
during the whole year. Chrysoperla carnea and C. lucasina 
are known to be opportunistic feeders that consume pollen 
according to flowering plant availability by blooming period 

and abundance (Villenave et al. 2006; Alcalá Herrera et al. 
2020). This apparent lack of specificity in feeding habits 
may underlie the contrasting results obtained in gut analy-
sis of lacewings collected from different crops and adjacent 
vegetation. Chrysoperla carnea sensu Henry is considered 
a more polyphagous feeder than C. lucasina. Chrysoperla 
lucasina may prefer field crops and herbaceous plants, 
while C. carnea sensu Henry feeds on pollen from trees 
and herbaceous plants (Villenave et al. 2005). However, we 
found that C. carnea sensu Henry and C. lucasina collected 
in the field fed mainly on P. tanacetifolia pollen with no 
differences observed between either Chrysopidae species. 
Furthermore, under laboratory conditions, we determined 
that C. carnea prefers to consume pollen from P. tanaceti-
folia and C. sativum, with no differences being observed 
between either plant species. The tailored flower strips also 
attracted C. commata, another Chrysopidae species. Despite 
being predators, gut content analysis of C. commata adults 
also revealed pollen consumption, which is explained by 
the omnivorous feeding behaviour of Chrysopa spp. (Stelzl 
1991, 1992; Canard 2001). We also observed that Chrysopi-
dae females consumed a larger number of pollen grains as 
compared to males. This finding, which has been reported 
by other authors, is explained by the additional nutrients 
required by females for reproduction (Villenave et al. 2005; 
Alcalá Herrera et al. 2020). Flower strips were also found 
to be used as reproduction and shelter sites by Chrysopa 
sp. and Chrysoperla spp., as evidenced by the larval stages 

Fig. 9  a Number and b volume 
of pollen grains  (mm3) (mean ± 
SE) consumed by the Chrysopi-
dae collected from the flower 
strips in each sampling date. 
The heatmap represents the 
bloom percentage for each plant 
species in the flower strips



680 Journal of Pest Science (2022) 95:669–683

1 3

identified from the suction samples. This is in line with pre-
vious studies which have reported preimaginal-stage larvae 
and/or eggs on non-agricultural grass plants and flower-
ing plants (McEwen and Ruiz 1994; Alcalá Herrera et al. 
2019b).

Conclusion

Our study shows the capacity of tailored flower strips to 
attract and support natural enemies, particularly green lace-
wings, in the cabbage agroecosystem. Chrysoperla carnea 
sensu Henry and C. lucasina were the most frequently col-
lected Chrysopidae species in the flower strips. The identifi-
cation of P. tanacetifolia, B. officinalis, F. esculentum and C. 
sativum pollen in the guts of Chrysopidae demonstrates that 
green lacewings feed from the plant species selected. Fur-
thermore, our laboratory assay, which confirmed the feeding 
behaviour observed in the field, showed that P. tanaceti-
folia and C. sativum pollens were preferred by C. carnea 
sensu Henry and C. lucasina with no significant differences 
observed between either species. Finally, the presence of 
Chrysopidae larvae on flower strips proves that green lace-
wings adults use these sites for reproduction and shelter. 
Thus, in order to enhance conservation biological control 
in cabbage crops, we recommend using P. tanacetifolia, C. 
sativum and F. esculentum in flower strips to attract and 
support natural enemy populations, specifically those of 
Chrysopidae. However, further research is required to link 
pest reduction with natural enemy presence and explore 
the optimal flower strip designs in relation to crop surface. 
Long-term field studies are required to establish the full 
potential of our tailored flower strips on biological control 
services in cabbage and their interaction with local land-
scape configuration.
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