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Summary

Archaeal communities in arable soils are dominated
by Nitrososphaeria, a class within Thaumarchaeota
comprising all known ammonia-oxidizing archaea
(AOA). AOA are key players in the nitrogen cycle and
defining their niche specialization can help predicting
effects of environmental change on these communi-
ties. However, hierarchical effects of environmental
filters on AOA and the delineation of niche prefer-
ences of nitrososphaerial lineages remain poorly
understood. We used phylogenetic information at
fine scale and machine learning approaches to iden-
tify climatic, edaphic and geomorphological drivers
of Nitrososphaeria and other archaea along a
3000 km European gradient. Only limited insights into
the ecology of the low-abundant archaeal classes
could be inferred, but our analyses underlined the
multifactorial nature of niche differentiation within
Nitrososphaeria. Mean annual temperature, C:N ratio
and pH were the best predictors of their diversity,
evenness and distribution. Thresholds in the predic-
tions could be defined for C:N ratio and cation
exchange capacity. Furthermore, multiple, indepen-
dent and recent specializations to soil pH were
detected in the Nitrososphaeria phylogeny. The coex-
istence of widespread ecophysiological differences
between closely related soil Nitrososphaeria high-
lights that their ecology is best studied at fine phylo-
genetic scale.

Introduction

Archaea are pivotal for the functioning of all major
biomes, as they play a critical role in both carbon (C) and
nitrogen (N) cycles (Falkowski et al., 2008; Offre
et al., 2013). In terrestrial ecosystems, archaeal commu-
nities tend to be phylogenetically clustered and are com-
monly dominated by Thaumarchaeota (Auguet et al.,
2010; Bates et al., 2011; Tripathi et al., 2015). This phy-
lum harbours the globally important ammonia-oxidizing
archaea (AOA), restricted to the class Nitrososphaeria
(Alves et al., 2018). All AOA characterized so far use the
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ammonia monooxygenase enzyme (encoded by
amoABC genes) to catalyze the first step of nitrification,
the oxidation of ammonia to hydroxylamine (Vajrala
et al., 2013). Globally, nitrification contributes to the circu-
lation of N (Kuypers et al., 2018), but locally this process
causes N losses, directly through nitrate leaching and
production of the greenhouse gas nitrous oxide and indi-
rectly by fuelling denitrification leading to gaseous N
losses as dinitrogen gas or nitrous oxide. Altogether, this
corresponds to an average loss of 50% of the N added to
arable soils (Lassaletta et al., 2014). Thus, nitrification
affects N use efficiency in cropping systems, causes
eutrophication of watersheds and contributes to global
warming. In arable soils, AOA are typically abundant and
important contributors to nitrification (Leininger et al.,
2006; Prosser and Nicol, 2008; Schauss et al., 2009;
Wessén et al., 2011) and, therefore, there is great inter-
est in understanding their ecology and evolution (see
Gubry-Rangin et al., 2018 for a recent review).
Soil pH has previously been proposed as the main

driver of thaumarchaeotal and AOA diversity (Bru
et al., 2011; Hu et al., 2013; Tripathi et al., 2015) and evo-
lution at relatively broad phylogenetic scales (Nicol
et al., 2008; Gubry-Rangin et al., 2011, 2015). However,
this view has recently been challenged by Alves et al.,
who suggested more recent adaptations to low pH from
cosmopolitan clades (Alves et al., 2018). In addition to soil
pH, experimental work using isolates has linked niche dif-
ferentiation in AOA to differences in ammonia affinity/
tolerance and organic C preferences (Prosser and
Nicol, 2012; Lehtovirta-Morley et al., 2016; Hink
et al., 2017). Yet, the relative importance of other environ-
mental factors, including C:N ratio (Bates et al., 2011),
moisture (Placella and Firestone, 2013; Thion and
Prosser, 2014), temperature (Tourna et al., 2008; Gubry-
Rangin et al., 2017) and soil organic carbon content (Oton
et al., 2016), for niche differentiation across AOA lineages
remains poorly understood since there are few reports on
hierarchical effects of environmental filters in the delinea-
tion of ecological preferences in Thaumarchaeota or, more
specifically, AOA (Aigle et al., 2020). Defining niche spe-
cialization is important for understanding and predicting
effects of environmental change on AOA diversity and
composition, with implications for soil functioning.
The aim of this study was to identify ecological niches

among Nitrososphaeria (putative AOA) at a fine phyloge-
netic scale by taking advantage of the congruence
between 16S rRNA and amoA phylogenies (Oton
et al., 2016; Alves et al., 2018). We further aimed at iden-
tifying the best environmental (climatic, edaphic and geo-
morphological) predictors of the overall archaeal diversity
and determining the factors governing their community
assembly processes in soil. To this end, we sampled ara-
ble soils along a 3000 km European gradient, spanning

from northern Sweden to southern Spain (Garland
et al., 2021). Such continental surveys focusing on
archaea are rare (Jiao, Xu, et al., 2019a) and represent a
significant opportunity to gain insight into their ecology by
capturing broad environmental gradients. By only includ-
ing arable fields under cereal cultivation and conventional
tillage (Garland et al., 2021), management effects were
minimized. For the AOA, machine learning in terms of
random forest modelling (Breiman, 2001) was used to
predict the environmental drivers of Nitrososphaeria
diversity and AOA abundances. The extent of niche dif-
ferentiation in Nitrososphaeria was assessed by examin-
ing how multifactorial changes in environmental
conditions were reflected in the phylogeny, using multi-
variate regression trees (De’ath, 2002), as opposed to
previous studies that have assessed the importance of
each variable individually (e.g. Gubry-Rangin et al., 2011;
Oton et al., 2016; Alves et al., 2018). We hypothesized
that the combination of multiple environmental gradients
with fine-scale phylogenetic analyses would reveal if eco-
logical preferences were conserved within lineages of
Nitrososphaeria. Accordingly, analyses were conducted
on amplicon sequence variants (ASVs), instead of opera-
tional taxonomic units (OTUs) that may group similar spe-
cies into a single OTU (Callahan et al., 2017). Random
forest modelling was also used to determine the environ-
mental drivers of α-diversity of other archaeal classes to
gain insight into the ecology of archaea in arable soils. By
considering the spatial distance (i.e. dispersal limitation)
and edaphic factors (i.e. environmental filtering), we could
also evaluate the relative importance of stochastic versus
deterministic processes in the assembly of the overall
archaeal communities since this is crucial to predict how
current and future environmental change will affect the
structure of these communities and ultimately the ecosys-
tem functions they support (Dini-Andreote et al., 2015).

Results

Archaeal taxa, diversity and community structure

Thaumarchaeota dominated the archaeal communities in
arable soils across Europe, both in terms of the relative
abundance of ASVs and reads, followed by the phylum
Euryarchaeota and Woesearchaeota within the DPANN sup-
erphylum (Diapherotrites, Parvarchaeota, Aenigmarchaeota,
Nanoarchaeota, Nanohaloarchaea; Castelle et al., 2015)
(Fig. 1). The 19 ASVs with a frequency > 1% represented
approximately 70% of the reads and, consequently, the
archaeal communities were uneven (J = 0.61 � 0.08) and
displayed low phylogenetic diversity (PD = 5.09 � 1.51). At
the class level, Nitrososphaeria alone represented more
than 90% of the reads. We obtained 322 and
25 nitrososphaerial ASVs and OTUs at a similarity cut-off
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of 97%, respectively. Most of the diversity was found
within the order Nitrososphaerales (322 ASVs or approxi-
mately 91% of putative AO ASVs and approximately 98%
of the reads), whereas Nitrosopumilales and Nitro-
sotaleales represented a minor fraction of the nitroso-
sphaerial communities (approximately 1% and 8% of
ASVs; < 1% and < 2% of the reads, respectively). Ther-
moplasmata and Woesearchaeia were diverse, respec-
tively representing approximately 27% and 25% of the
ASVs, but also relatively rare (< 3% of the reads).

The combination of PCA and PERMANOVA showed
that the overall archaeal communities were structured fol-
lowing a spatial gradient of pH and temperature along
PC1, with a shift from alkaline pH and warm tempera-
tures to acidic soils and colder climate (Fig. 2A). This is
reflected by the increasing dissimilarity between commu-
nities with increasing spatial distance between sampling
sites (Fig. 2B). Besides mean annual temperature (MAT)
and pH (R2 = 0.11 and 0.10, respectively), soil C:N ratio
(R2 = 0.07) and soil moisture (R2 = 0.06) were also
important contributors to β-diversity (p < 0.001;
Table S1). Climatic, edaphic and spatial factors collec-
tively explained 36% of the variation in the archaeal com-
munity composition and all three groups of factors were
significant (p < 0.01; Fig. 2C). When partitioning the vari-
ation, spatial distance (i.e. dispersal limitation) explained
nearly as much variation in community composition as
the edaphic factors (i.e. environmental filtering; approxi-
mately 10%), whereas the climatic component defined
solely by MAT explained only 1%.

Environmental predictors of diversity of the individual
archaeal classes and abundance of AOA

Random forest-based variable selection analyses rev-
ealed that different environmental variables (Table 1)
contributed to the PD and evenness of the taxa-specific

archaeal communities, although MAT was important for
diversity of nearly all taxonomic groups (Figs. 3A and B,
S1 and S2). Across the archaeal domain, edaphic factors
were more important for PD than for evenness. For the
methanogens, PD and evenness of Methanobacteria and
Methanomicrobia displayed the same relationship to cal-
cium, elevation, soil organic carbon (SOC) and, to a
lesser degree, MAT. All three categories of environmental
factors significantly influenced the PD of Woesearchaeia,
while soil texture and MAT were major predictors of the
diversity and evenness of Thermoplasmata.

For the Nitrososphaeria, elevation, cation exchange
capacity (CEC), C:N ratio and moisture had strong effects
on the diversity, whereas evenness was driven by multi-
ple climatic, edaphic and geomorphological (i.e. eleva-
tion) variables. Here, diversity and pH exhibited a
u-shaped relationship, with an increase associated with
pH below 7 and above 7.5. More acidic soils were associ-
ated with an increase in both PD and evenness in Group
1.1c, i.e. a defined lineage within the Thaumarchaeota
that likely does not oxidize ammonia (Weber
et al., 2015). The abundance of AOA, measured as the
copy number of the archaeal amoA gene (Fig. S3A), was
positively influenced by elevation, total N and total P, but
tended to decrease with increasing silt content and bulk
density (Figs. 3C and S3B).

Ecological preferences of nitrososphaerial taxa

Spatial distance explained a larger proportion of the vari-
ation in the structure of the nitrososphaerial communities
than edaphic factors (14.6% and 11.2%, respectively),
whereas MAT explained 1.4% (Fig. S4). The abundance
of archaeal amoA genes, being a biotic factor predicting
functionality, explained only 0.8% to the variation.

The sequential effect of several environmental filters
was determined using multivariate regression trees

Fig. 1. Relative abundances of high-rank archaeal taxa in the rarefied dataset of 16S rRNA gene sequences across the transect represented by
151 soil samples. Abundances are shown in terms of ASVs (left panel) and reads (right panel).
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(MRT), which delineate clusters of samples where the
variation in environmental conditions is minimized. Each
of the eight clusters (labelled A–H) contained 10–31 soil
samples (Fig. 4), with the exception of the four samples
from northern Sweden that formed a separate cluster
(cluster A in Fig. 4). Eight variables, among edaphic (bulk
density, calcium, CEC, C:N ratio, pH, SOC and total C)
and climatic (MAT) factors, were selected in the regres-
sion analyses, with MAT also reflecting spatial distance.
The MRT identified two to four levels of environmental fil-
tering, with MAT being the most important driver. The
importance of geographic distance was evidenced by the
origin of the samples present in each cluster, with a clear
North–South gradient. Several variables contributed
equally to the split between clusters A and B (CEC, C:N

ratio, MAT, SOC and total C) and clusters G and H (cal-
cium and SOC), indicating that soil C content also plays
a role in defining ecological preferences. It should be
noted that this eight-cluster partition does not imply
within-cluster homogeneity for the rest of the measured
variables (Table S2).

Balances, which depict relative changes in ASV abun-
dance between two neighbouring clades relative to each
other, were calculated for all inner nodes of the phyloge-
netic tree in each MRT cluster. They revealed extensive
niche differentiation throughout the phylogeny (Fig. 4).
Within the less abundant orders Nitrosopumilales and
Nitrosotaleales, balances at both deep (depicting ancient
evolutionary events conserved in the phylogeny) and
shallow (depicting more recent adaptations) nodes in the

A

CB

Fig. 2. Factors driving the variation in archaeal community composition and structure across the European gradient.
A. Principal component analysis (PCA) showing differences in archaeal communities between all samples and the associated changes in pH and
MAT, identified as the two best explanatory variables (PERMANOVA, p < 0.001).
B. Distance-decay relationship between geographic distance and community similarity. The red line indicates the ordinary least squares linear
regression (p < 0.001).
C. Variation partitioning analysis (VPA) between climatic, edaphic and spatial components. All fractions were significant (p < 0.01) and the varia-
tion explained is indicated (%).
Both PCA and VPA were performed on the philr-transformed data.
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phylogenetic tree (indicated in green) were only signifi-
cant in the northernmost samples (Fig. 4 clusters A and
B). Within the dominating order Nitrososphaerales, the
depth of the phylogenetic signals differed depending on
the combinations of environmental factors. All clusters
displayed significant shallow nodes, whereas clusters A,
B, C, F and H also exhibited significant deeper nodes. Of
particular interest was the presence of multiple shallow
nodes associated with more acidic soils in clusters A
(pH range: 5.4–5.9), B (5.8–6.9) and E (6.1–7.0) (Fig. 4;
Table S2).

Discussion

The congruence between the phylogeny of
Nitrososphaeria and their ecological preferences was rel-
atively limited, suggesting the existence of a considerable
ecotypical intra-diversity within this class (Alves
et al., 2018) due to high diversification rates (Gubry-
Rangin et al., 2015). These observations corroborate
work conducted on marine systems, where genomic and
physiological data indicate that closely related AOA iso-
lates could differ in a range of traits, including motility, pH
preferences and substrate utilization (Qin et al., 2014;
Bayer et al., 2016). Extensive niche specialization due to
differences in affinity for ammonia (Lehtovirta-Morley
et al., 2016; Hink et al., 2017; Jung et al., 2021) and for
different organic C compounds in mixotrophic/
heterotrophic growth have been discussed (Prosser and
Nicol, 2012). However, organic acids have been shown
to be used to detoxify the hydrogen peroxide produced
during ammonia oxidation in several AOA isolates rather
than used as an energy source (Kim et al., 2016) and the
question of whether there are AOA able to grow

heterotrophically remains open. Observed differences in
the balances between lineages at fine phylogenetic scale
also reflect a low level of intra-genomic heterogeneity in
the 16S rRNA gene (Sun et al., 2013), and highlight the
relevance of using ASVs to study the environmental
determinants of soil Nitrososphaeria (i.e. more than
10 times as many nitrososphaerial ASVs than OTUs
were detected).

By using MRT, we could evaluate the hierarchical
effects of environmental filters in the delineation of eco-
logical preferences of nitrososphaerial lineages, whereas
the random forest modelling allowed us to go beyond lin-
ear correlations when exploring drivers of archaeal diver-
sity. Across our broad geographical and environmental
gradients, MAT was the most prominent variable in the
MRT analysis, as indicated by the major grouping
between clusters A–B, C–E and F–H, and ranked among
the best predictors of evenness. Temperature affects
composition and nitrification activity of AOA communities
(Tourna et al., 2008; Alves et al., 2013; Gubry-Rangin
et al., 2017), but since MAT and latitude correlated
(Spearman’s r = 0.9, p < 0.001), MAT likely also reflects
the importance of spatial distance. Results of the varia-
tion partitioning analysis, where spatial distance
explained approximately 15% of the variation in the struc-
ture of the nitrososphaerial communities and MAT only
approximately 1%, further support this interpretation. Soil
pH was another significant predictor of phylogenetic
diversity and evenness of Nitrososphaeria across the
European gradient. This agrees with the dominant idea
that soil pH drives diversification of terrestrial
Thaumarchaeota at broad phylogenetic scales (Nicol
et al., 2008; Gubry-Rangin et al., 2011, 2015; Oton
et al., 2016). However, we detected multiple balance
shifts in the shallow nodes in the phylogenies
corresponding to low-pH MRT clusters (i.e. A, B and E),
which suggest that closely related nitrososphaerial taxa
display distinct preferences with regards to soil pH. This
would imply multiple independent and recent specializa-
tions to acidic pH in Nitrososphaeria, which aligns with
the conclusions of a study based on analyses of the
amoA gene (Alves et al., 2018). The limited genomic
information available on Nitrososphaerales prevents us
from using the congruence between 16S rRNA and
amoA phylogenies (Oton et al., 2016; Alves et al., 2018)
to match the clades observed in this study for identifying
amoA-based low-pH AOA lineages (within clades NS-α,
-β, -γ and -ζ in Alves et al., 2018). Nevertheless, since
pH controls the equilibrium between ammonia and
ammonium in soils, these adaptations could reflect differ-
ences in substrate affinity (Lehtovirta-Morley et al., 2016;
Hink et al., 2017), possibly through distinct molecular
adaptations of the ammonia monooxygenase (Macqueen
and Gubry-Rangin, 2016). Different N-related variables

Table 1. Environmental variables used in this study.

Category Variable Range

Climatic Mean annual temperature
(MAT; �C)

3.7–19.5

Geomorphological Elevation (m) 7.8–1022.0
Edaphic Bulk density (g cm�3) 0.7–1.7

C:N ratio 7.8–63.9
C:P ratio 7.3–1042.9
Calcium (cmol kg�1) 0.2–36.1
Cation exchange capacity

(CEC; cmol kg�1)
5.6–49.6

Clay (%) 8.6–54.9
Magnesium (cmol kg�1) 0.3–5.6
Moisture (%) 0.03–0.35
N:P ratio 0.1–19.1
pH 5.4–8.3
Silt (%) 12.4–63.1
SOC (g kg�1) 3.2–36.1
Total C (g kg�1) 6.6–90.2
Total N (g kg�1) 0.5–4.8
Total P (g kg�1) 0.1–1.7
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such as CEC and C:N ratio were important predictors of
the diversity and/or evenness of Nitrososphaeria; and for
the abundance of archaeal amoA genes, it was total

N. MAT (or distance) and elevation were thus the only
variables linking α-diversity and predicted function
(archaeal amoA genes). The abundance of archaeal

B

A

Fig. 3. Legend on next page.
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amoA genes was also a poor predictor of
nitrososphaerial β-diversity, suggesting a weak link
between diversity of this class and the genetic potential
for ammonia oxidation at broad geographic scale. Our
results also illustrate the expected selective role played
by soil N, and are consistent with demonstrated effects of
soil C:N ratio (Bates et al., 2011; Jiang et al., 2014) and
ammonium supply (Verhamme et al., 2011; Hink
et al., 2018) on the abundance and structure of soil AOA
communities. Random forest modelling revealed that
nearly all of the above-mentioned relationships were
nonlinear. Furthermore, some accumulated local effect
curves, showing how the predictions change on average
over the range of each individual environmental variable,
suggested the existence of thresholds (TH). The increase
of nitrososphaerial PD in the low range of the C:N ratio
(TH � 10) could be due to preferences for mineralized N
from organic matter (Levičnik-Höfferle et al., 2012). This
aligns with the observed sharp increase of archaeal nitrifi-
cation rates at C:N ratios below 20 (Lu et al., 2015), indi-
cating a coupling between nitrososphaerial diversity
levels and nitrification activity. However, the high number
of significant shallow nodes in the phylogeny of both high
and low C:N ratio clusters in Southern Europe shows that
niche specialization in Nitrososphaeria extends past pref-
erences in soil C:N. For example, total N was a better
predictor for AOA abundances than C:N, showing a
strong positive effect across the measured range,
although it appeared weaker between 2 and 3.5 g N kg�1

soil. The soils’ CEC was also important, likely by influenc-
ing the retention of ammonium. We identified a threshold
above which CEC had a strong negative effect on
nitrososphaerial PD (TH � 15 cmol kg�1). Soil CEC is
linked to soil texture and clay content has previously
been reported to negatively affect the abundance of AOA
at the local scale (Wessén et al., 2011). We did not
observe any effect of neither clay content or CEC on
AOA abundance, which suggests that soil texture and its
implications on CEC has a stronger effect on diversity
than on abundance of AOA at the continental scale.

For the overall soil archaeal communities, MAT was an
important factor and the main driver of β-diversity. As for
the Nitrososphaeria, the importance of MAT also reflects
the effect of distance on the changes in community com-
position, as shown by the higher explanatory power of

spatial distance compared to MAT in the variation par-
titioning analysis and the high fitness value of the
distance-decay relationship (R2

adj = 0.22) along the geo-
graphical gradient. This latter observation contrasts with
a recent survey where substantially weaker decays of
community similarity were found in archaeal communities
in maize and rice fields across Eastern China (Jiao
et al., 2019b). At large spatial scales, distance-decay
relationships are typically influenced by dispersal limita-
tion (stochastic process) and species sorting (determinis-
tic process), i.e. the combined effect of environmental
filtering and biotic interactions (Hanson et al., 2012). In
the present study, dispersal limitation and environmental
filtering had comparable effects on the overall β-diversity
of archaea, whereas the few other studies of archaeal
communities across broad spatial scales in arable soils
have reported larger sorting: dispersal effect ratios (Liu
et al., 2019; Jiao et al., 2019b). The relative importance
of dispersal limitation in the present study could have
been overestimated, since some of the variation
explained by spatial factors alone likely encompass
unmeasured environmental variables and we could have
missed environmental variables that are relevant for
archaea. Nevertheless, the use of ASVs instead of OTUs
and the removal of the rare taxa combined with broader
environmental and geographic gradients, as we did,
should lead to a more accurate assessment of the rela-
tive importance of environmental filtering versus dispersal
limitation for the assembly of archaeal communities when
compared to other studies (Liu et al., 2019; Jiao
et al., 2019b). Our results thus indicate that the structure
of archaeal communities associated to fields under cereal
cultivation could be less influenced by changes in envi-
ronmental conditions than previously suggested; an
important finding in the context of ongoing climate
change. Moreover, balanced effects of stochastic versus
deterministic processes were recently found to promote
diverse, yet uneven ecosystem functions in a study com-
paring three types of agroecosystems (Liu et al., 2021).
This interpretation of effects of balanced stochastic and
deterministic processes fits with the observed low even-
ness of the archaeal community and the presence of a
high diversity of low abundant groups harbouring poten-
tially diverse functional capabilities at the continental
scale.

Fig. 3. Relationship between environmental variables and α-diversity indices or the abundance of AOA, based on random forest (RF) analyses.
Variables selected by VSURF (x-axis; see Table 1 for units and range) were used to generate accumulated local effects plots, which show how
the prediction of the response variables (phylogenetic diversity, evenness or abundance of AOA) changes along the range of each environmental
variable in each of the RF models (y-axis; range indicated in brackets). Model parameters and fit are indicated in Table S3. Full plots are avail-
able as Figs. S1, S2 and S3B.
A. Phylogenetic diversity of archaeal communities.
B. Evenness of archaeal communities.
C. Abundance of AOA, measured as the copy number of the archaeal amoA gene (g�1 dw soil).
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Fig. 4. Legend on next page.
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Archaeal classes present at low abundance exhibited
different responses to the environmental factors evalu-
ated. Soil pH displayed a negative relationship with both
PD and evenness in Group 1.1c thaumarchaeota.
Accordingly, these microorganisms have mainly been
detected in acidic environments (Lehtovirta et al., 2009;
Tripathi et al., 2013). The few known representatives of
this group do not have amoA homologues and do not
produce nitrite or nitrate in culture. It is therefore hypoth-
esized that Group 1.1c is a non-ammonia oxidizing line-
age within the Thaumarchaeota (Lin et al., 2015; Weber
et al., 2015), which is supported by the lack of signifi-
cant effects of N-related variables observed in this
study. Woesearchaeia and the two classes of meth-
anogens shared only a few environmental preferences
(i.e. elevation and clay content) with regards to α-diver-
sity, despite recent findings that they that are potential
metabolic partners (Liu et al., 2018). This partnership or
their importance in arable soils thus remain elusive.
Finally, diversity and evenness of the Thermoplasmata,
which was the second most abundant class in terms of
both ASVs and relative abundance, appeared to be pre-
dominantly driven by MAT and soil texture along the
gradient. Their ecology in agricultural soils is largely
unknown as Thermoplasmata have mainly been studied
in acid mine drainage (Baker and Banfield, 2003) and
hot environments (Massello et al., 2020). Members of
this class however account for approximately 5% of
archaeal sequences in global soil samples (Auguet
et al., 2010) and have been detected at high abun-
dances in deeper soil layers in both boreal (Kemnitz
et al., 2007) and temperate, acidic deciduous forests
(Isoda et al., 2017). There are few cultivated representa-
tives, but more than 400 genomes available that sug-
gest a versatile metabolic potential for this class,
including methanogenesis, sulfur (S) cycling and even
dinitrogen fixation (Baker et al., 2020). Sulfur cycling
was also detected in a genome obtained from peat soil
(Lin et al., 2015), while methanogenic Thermoplasmata
appear to be widespread in wetlands (Söllinger
et al., 2016). Several low-abundant archaeal lineages
could thus be involved in C and S cycling and play a
more important role than previously thought in arable
soils.

This study provides novel insights into the ecology of
archaea, particularly putative ammonia-oxidizing
Nitrososphaeria, in arable soils across Europe. Our
results suggest extensive ecophysiological differences
between closely related Nitrososphaeria and underline
the multifactorial nature of niche differentiation in this
class. Both MAT (i.e. distance) and soil C:N ratio were
unexpectedly better predictors of their diversity and distri-
bution than soil pH, for which multiple, independent adap-
tations were inferred. Thresholds for soil C:N and CEC
were also identified. Overall, we show that future studies
aiming at deciphering the ecology of Nitrososphaeria
should be performed at fine phylogenetic scale, using
methods accounting for non-linear relationships between
environmental drivers and the diversity of these function-
ally important archaea in arable soils.

Experimental procedures

Sampling and measurement of edaphic parameters

Soil samples were collected across a north–south gradi-
ent in Europe (Sweden, Germany, Switzerland, France
and Spain) in a total of 151 agricultural fields (Garland
et al., 2021) (Fig. S5). To homogenize variation in plant
development stages and associated farming practices,
the sampling was performed around flowering time
(i.e. anthesis) between May and August 2017 depending
on country and location. Only fields under cereal cultiva-
tion (barley, oat or wheat) and conventional tillage were
surveyed. In each field, eight soil cores (Ø5 � 20 cm)
were taken within a 10 m radius. Five cores were sieved
(2 mm) and homogenized into a composite sample,
which was air-dried before measuring soil parameters
(Table 1) using the Swiss standard protocols (FAL
et al., 1996). A fresh subsample of the composite soil
was taken before drying for DNA extraction and stored at
�20�C until DNA extraction (one extraction per sample).
The three remaining cores were kept intact and used to
measure bulk density of the fine soil (< 8 mm). Mean
annual atmospheric temperature (MAT) data (1987–
2017) were obtained for each sampling site using their
GPS coordinates and the closest weather station in the
NOAA database (https://www.noaa.gov/), through the R

Fig. 4. Effect of environmental parameters on the balances within the phylogeny of Nitrososphaeria. The variables contributing the most to
explain the variation in community composition and structure were selected by multivariate regression trees and are displayed on the left
(R2 = 0.42; see Table 1 for the units). In each environmental cluster (A–H), only the significant nodes (green dots; p < 0.01) and their associated
balances were plotted (country of origin and number of samples are indicated in brackets; CH: Switzerland, DE: Germany, ES: Spain, FR:
France and SE: Sweden). The branch colour and its intensity depict the direction and magnitude of change between two neighbouring clades, rel-
atively to each other (blue: increasing clade, red: decreasing clade). The scale bar represents the average substitutions per site in the phylogeny.
The clades within Nitrososphaerales correspond to Nitrososphaera spp. (α), Nitrosocosmicus sp. (ζ) and fosmid clone 54d9 (δ) from Alves
et al., 2018. *Variables with equal predictive power: cation exchange capacity (CEC; < 17.0 to the right), C:N ratio (< 13.7 to the left), mean
annual temperature (MAT; < 5.0 to the right), soil organic carbon (SOC; < 22.1 to the left) and total C (< 26.1 to the left); **Variables with equal
predictive power: calcium (Ca; < 1.8 to the right) and SOC (< 6.6 to the left).

© 2021 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
Environmental Microbiology, 24, 341–356

Nitrososphaeria in arable soils across Europe 349

https://www.noaa.gov/


package ‘rnoaa’ (v. 0.8.4; Chamberlain, 2019). The same
GPS coordinates were also used to gather elevation data
using the R package ‘elevatr’ (v. 0.2.0; Hollister and
Shah, 2017).

DNA extraction, amplification and sequencing

DNA was extracted on the homogenized soil samples
using the DNeasy PowerSoil-htp 96 well DNA isolation
kit (Qiagen, Hilden, Germany), according to the manufac-
turer’s instructions. Archaeal 16S rRNA gene fragments,
encompassing the V3–V4 hypervariable regions, were
amplified using the primer pair S-D-Arch-0349-a-S-17
(Takai and Horikoshi, 2000) and S-D-Bact-0785-a-A-21
(Herlemann et al., 2011) to capture both
Thaumarchaeota and low-abundant and under-studied
groups typically present in soils (e.g. different classes of
methanogens, Thermoplasmata; George et al., 2019;
Jiao et al., 2019a; Liu et al., 2019). The PCRs were run
in duplicate 15 μl reactions under the following condi-
tions: 3 min at 98�C, followed by 30 cycles of 98�C for
30 s, 65�C for 30 s and 72�C for 30 s and a final exten-
sion step of 10 min at 72�C. The PCR products were then
pooled and inspected by gel electrophoresis. For the sec-
ond (indexing) PCR, a single 30 μl reaction was per-
formed using 0.2 μM of primers with Nextera adaptor and
index sequences, and 3 μl of the pooled PCR product
from the first PCR as template. Conditions were the same
as in the first PCR, except an annealing temperature of
55�C, an extension time of 45 s, and 8 cycles. The final
PCR products were purified using AMPure XP PCR puri-
fication beads (Beckman Coulter, Indianapolis, IN, USA)
following the manufacturer’s protocol. The amplicons
were checked by gel electrophoresis and using a 2100
BioAnalyzer (Agilent, Santa Clara, CA, USA) to verify the
correct size and that there were no additional amplicons.
All samples passed the control. After quantification using
a Qubit™ fluorometer (Thermo Fischer Scientific, Wal-
tham, MA, USA), a single library was created by pooling
equal amounts of purified amplicons from all the 151 sam-
ples. Sequencing was performed by SciLifeLab (Uppsala,
Sweden) on the Illumina MiSeq (2 � 250 bp) platform.

Quantitative PCR analysis

The abundance of AOA was determined by quantitative
real-time PCR (qPCR) based on SYBR green detection
and the archaeal amoA gene (encoding the ammonia
monooxygenase subunit A). The qPCR reactions were
carried out in duplicate runs on a ViiA7 (Life Technolo-
gies, Carlsbad, CA, USA) and a 15 μl reaction volume
containing 7.5 μl of Takyon Master Mix (Eurogentec,
Liège, Belgium), 1 μM of each primer (CrenamoA23f and
CrenamoA616r; Tourna et al., 2008), 250 ng of T4 gene

32 (QBiogene, Carlsbad, CA, USA) and 1 ng of DNA).
Cycling conditions were 15 min at 95�C, 35 cycles of
15 s at 95�C, 30 s at 55�C, 30 s at 72�C and a plate read
of 15 s at 80�C (efficiency: 88%). Standard curves were
obtained by serial dilutions of linearized plasmids with
cloned fragments of the specific gene. The amplifications
were validated by melting curve analyses. Potential inhi-
bition of PCR reactions was checked by amplifying a
known amount of the pGEM-T plasmid (Promega, Madi-
son, WI, USA) with the plasmid specific T7 and SP6
primers when added to the DNA extracts or non-template
controls. No inhibition was detected with the amount of
DNA used.

Sequence processing and phylogenetic reconstruction

All sequence analyses were performed using the R soft-
ware (v. 3.6.4, R Core Team, 2019). The archaeal 16S
rRNA gene amplicons were processed with the ‘dada2’
package (v. 1.6.0; Callahan et al., 2016) to infer amplicon
sequence variants (ASVs), which allow detection of eco-
logical preferences at the finest phylogenetic scale (Hunt
et al., 2008; Larkin and Martiny, 2017). Briefly, primer
sequences were removed and the reads merged using
default parameters. Chimeras were discarded using a
denovo approach with the removeBimeraDenovo func-
tion (‘consensus’ method). The resulting ASVs were
aligned to the SILVA reference database (SSU132 Ref
NR) using the SINA aligner (v. 1.6.0; Pruesse
et al., 2012) and classified using SINA’s least common
ancestor algorithm. After elimination of the bacterial
ASVs, 2042 archaeal ASVs remained based on a total of
63 16 715 high-quality 16S rRNA gene amplicons (corr-
esponding to approximately 70% of the original dataset).
The reads were also clustered into OTUs at a similarity
cut-off of 97% (Supplementary Methods) to compare the
diversity of nitrosophaerial taxa based on ASVs
and OTUs.

Rarefaction curves of species richness were generated
from the raw ASV table using the rarcurve function in
‘vegan’ (v. 2.5.5; Oksanen et al., 2018) (Fig. S6) and a
rarefied table (n = 1079 ASVs) was obtained by averag-
ing the ASV counts over 1000 computations using the
rrarefy function in ‘vegan’. A phylogeny was built with the
rarefied ASVs and a broad taxonomic selection of refer-
ence sequences extracted from SILVA. Sequences were
aligned using the SINA aligner and the phylogeny gener-
ated using FastTreeMP (v. 2.1.10; Price et al., 2010) with
the GTR + CAT model of nucleotide evolution.

Partitioning and transformation of sequence data

The ASV abundance distributions were examined to fur-
ther partition the rarefied table between frequent and rare
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community members. An index of dispersion
corresponding to the ratio of the variance to the mean
abundance multiplied by the occurrence was calculated
(Hubbell, 2001) to split the dataset according to the fre-
quency of occurrence of each ASV (Magurran, 2007).
This index was then used to model whether ASVs
followed a stochastic (Poisson) distribution and those fall-
ing below the 2.5% confidence limit of the χ2 distribution
were discarded (Krebs, 1999) (Fig. S7). By focusing on
the frequent community members, we minimized the risk
of sampling artefacts that would bias the distribution of
the ASVs and thus increased the likelihood to detect rele-
vant ecological patterns. Such partitioning remains rarely
used in microbial ecology (but see Fillol et al., 2016;
Jeanbille et al., 2016; Liu et al., 2018), despite being
more statistically robust than traditional approaches using
arbitrary cut-offs of local and regional abundances
(e.g. Mo et al., 2018). The resulting community included
718 ASVs representing 99.6% of the reads in the rarefied
dataset. Zero count ASVs were replaced by an imputed
value using the Bayesian-multiplicatives replacement
method available in the ‘zCompositions’ package
(v. 1.2.0; Martín-Fern�andez et al., 2015). An isometric
log-ratio transformation (Egozcue et al., 2003), as
implemented in the ‘philr’ package (default parameters,
v. 1.10.0; Silverman et al., 2017), was then applied to the
zero replaced dataset using the phylogenetic tree of the
ASVs as the sequential binary partition. The output of this
transformation consists of a matrix of sites x nodes con-
taining the balances calculated on the inner nodes of the
phylogeny. Balances were computed for each node and
depict relative changes in ASV abundance between two
neighbouring clades relative to each other, while ignoring
abundances in the remainder of the tree. This approach
accounts for the compositional nature of amplicon
datasets (Gloor et al., 2017) by inferring changes
between phylogeny-based subcommunities (i.e. the two
set of branches stemming from any given node) rather
than changes of individual taxa (i.e. branch tips) (Morton
et al., 2017; Silverman et al., 2017).

Statistical analyses

Alpha-diversity indices and taxonomic composition were
calculated using the full rarefied table. The alpha diversity
metric Faith’s phylogenetic diversity (PD), which mea-
sures the shared phylogenetic history among taxa occur-
ring in a sample (Faith, 1992), was calculated at both
domain and class levels using the phylogenetic tree of
the ASVs and the pd function in the ‘picante’ package
(v. 1.8; Kembel et al., 2010). Pielou’s evenness
(Pielou, 1966) was computed with the diversity function
in ‘vegan’.

Random forest (RF) based variable selection was per-
formed on the entire set of variables (Table 1) using the
‘VSURF’ package (v. 1.1.0; Genuer et al., 2015) to iden-
tify the best predictors for PD and evenness of archaeal
groups and the absolute abundance of AOA (response
variables). Random forests represent an ensemble
machine learning algorithm that is well suited to model
non-linear relationships between predictors and response
variables and can deal with non-normality and high collin-
earity among predictors (Breiman, 2001). Briefly, vari-
ables were first ranked according to a variable
importance score, averaged across 50 RFs. The set of
variables leading to the model with the smallest out-of-
bag error, averaged across a nested collection of 25 RFs
starting from one with only the most important variable,
was selected. To account for the random nature of RFs,
the algorithm was run with default parameters 100 times
and only the variables selected in the second step
in >95% of the runs were retained. Random forest ana-
lyses, as implemented in the ‘randomForest’ package
(v. 4.6–14; Liaw and Wiener, 2002), were then used to
study the relationship between the selected environmen-
tal variables and the response variables. A grid search
was first conducted to find the optimal combination of
tuning parameters (with ntree = 500): the number of vari-
ables to randomly sample as candidates at each split
(mtry; range 1–10, step = 1), the minimal number of sam-
ples within the terminal nodes (node_size; range 2–10,
step = 1) and the fraction of samples to train the model
on (samp_size; 55%, 63.25% (default), 70% and 80%).
The search was run 100 times and the combination of
parameters corresponding to the best model fit (or lowest
out-of-bag root-mean-square error) was selected
(Table S3). The relationship between each environmental
variable and PD, evenness and the absolute abundance
of AOA was visualized using accumulated local effects
plots (grid.size = 30) implemented in the ‘iml’ package
(v. 0.9.0; Molnar et al., 2018). These plots show how the
prediction of a response variable in a given RF model
(PD, evenness or abundance of AOA) changes on aver-
age over the range of each individual environmental vari-
able, while accounting for potential correlations among
explanatory variables (Apley and Zhu, 2020).

All statistical analyses on β-diversity were conducted
on the philr-transformed (Silverman et al., 2017) ASV
table. Differences in community composition and struc-
ture were visualized with a principal component analysis
(PCA) using the rda function in ‘vegan’. Distance-decay
curves were calculated as the linear regression relation-
ship between geographical distance and Euclidean
distance-based community similarity. The relative influ-
ence of climatic, edaphic and spatial factors on the pat-
terns of β-diversity was estimated by variation partitioning
analysis (VPA; varpart function in ‘vegan’). To this end,
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cartesian coordinates of each sampling site were
obtained from the GPS data (geoXY function, package
‘SoDA’ v. 1.0.6) and used to construct a matrix of
distance-based Moran’s eigenvectors maps (dbMEM).
The edaphic factors were selected following a procedure
similar to Power et al. (2018). First, individual permuta-
tional multivariate analyses of variance (PERMANOVA)
and Mantel tests were conducted between overall
β-diversity and each variable using the adonis and mantel
functions implemented in ‘vegan’ (number of permuta-
tions = 9999), respectively (Table S1). Collinearity
among edaphic factors was assessed by pair-wise
Spearman correlations; only the variable with the highest
mantel statistic was retained in each collinear group
(jrj > 0.7). Thereby, the selected edaphic factors were
calcium, clay, C:N and C:P ratios, magnesium, moisture,
pH, silt, SOC and total C. Finally, a forward selection step
(p < 0.05) was applied to select the final set of variables
before running the VPA (forward.sel function, package
‘adespatial’ v. 0.3.4). The significance of each compo-
nent of the VPA was estimated by a permutation test
(adonis function). Elevation, although significant, only
improved the explanatory power by 0.4% and was not
included in the final analysis. The VPA was also applied
to the nitrososphaerial communities and a subset of the
full phlir-transformed ASV table was generated by
extracting the nodes corresponding to Nitrososphaeria.
The abundance of the archaeal amoA gene was fitted
onto the nitrososphaerial ordination using the envfit func-
tion in ‘vegan’ (permutations = 9999). Since the correla-
tion was significant (p < 0.001), the abundance of amoA
genes was included in the VPA as a biotic component
(functional predictor), along edaphic, climatic and spatial
factors.
Since Nitrososphaeria represent putative AOA (Alves

et al., 2018), their ecological preferences were predicted
at a finer taxonomic scale by recursive partitioning of the
corresponding philr-transformed ASV table with the entire
set of metadata (Table 1). Multivariate regression trees
(MRT) were computed using the ‘mvpart’ package
(v. 1.6.2; De’ath, 2002). to predict the relationships
between the set of variables (Table 1) and the community
structure of Nitrososphaeria. This approach has the
advantage to allow for the examination of the sequential
effect of several environmental filters (contrary to Gubry-
Rangin et al., 2011, 2015; Oton et al., 2016; Alves
et al., 2018 who assessed effects of each variable indi-
vidually) and delineate clusters of samples in which the
variation in environmental conditions is minimized
(Table S2). The selected tree represented the most parsi-
monious solution within one standard error above the
minimal cross-validated relative error (Fig. S8;
n = 10,000 trees), following (Breiman et al., 1984), and
explained 42% of the variation. Indicator nodes were

searched for in each partition (i.e. clusters of samples)
and corresponded to balances that significantly differed
from the mean across all partitions according to Tukey’s
HSD (p < 0.01). The balances within each MRT cluster
were plotted on the nitrososphaerial phylogeny with
ggtree (v. 1.16.0; Yu et al., 2017), with blue and red bra-
nches indicating an increase and a decrease, respec-
tively. Sequences of Group 1.1c thaumarchaeota were
used to root the phylogeny.

Availability of data and materials

Sequencing data has been deposited at the European
Nucleotide Archive (ENA) under the accession number
PRJEB35080. The datasets and code generated during
the current study are available in the Zenodo repository
(http://doi.org/10.5281/zenodo.4095504). They include
metadata, R code, amoA gene abundances and the phy-
logeny in newick format.
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Table S2. Range of environmental variables in the MRT
clusters presented in Fig. 4 (see Table 1 for units).
Table S3. Model parameters and fit (residual mean squared
error—RMSE) of the random forest analyses.
Fig. S1. Relationship between environmental variables and
the phylogenetic diversity of archaeal communities, based
on random forest analyses. Predictor variables selected by
VSURF were used to generate accumulated local effects
plots, which show the relationship between the predictor (x-
axis) and response variables in the model (y-axis) while
accounting for potential correlations among predictor values.
N.S. Non-significant variable. See Table 1 for units. Model
parameters and fit are indicated in Table S3.
Fig. S2. Relationship between environmental variables and
the evenness of archaeal communities, based on random
forest analyses. Predictor variables selected by VSURF
were used to generate accumulated local effects plots, which
show the relationship between the predictor (x-axis) and
response variables in the model (y-axis) while accounting for
potential correlations among predictor values. N.S. Non-
significant variable. See Table 1 for units. Model parameters
and fit are indicated in Table S3.
Fig. S3. Relationship between environmental variables and
the abundance of AOA (number of gene copies g�1 dw soil),
based on random forest analyses. (A) Abundances of AOA in
the 151 samples. (B) Predictor variables selected by VSURF
were used to generate accumulated local effects plots, which

show the relationship between the predictor (x-axis) and
response variables in the model (y-axis) while accounting for
potential correlations among predictor values. See Table 1 for
units. Model parameters and fit are indicated in Table S3.
Fig. S4. Factors driving the variation in nitrososphaerial com-
munity composition and structure across the European gradi-
ent according to variation partitioning analysis (VPA). The
biotic component corresponds to the abundance of the
archaeal amoA gene, which correlated to the nitrososphaerial
community structure (p < 0.001). All fractions were significant
(p < 0.001) and the variation explained is indicated (%).
Values < 0 are not shown. The VPA was performed on the
philr-transformed data corresponding to the Nitrososphaeria.
Fig. S5. Sampling sites across Europe.
Fig. S6. Rarefaction curves of archaeal communities.
Fig. S7. Occurence of each ASV plotted against its disper-
sion index. The dotted line represents the 2.5% confidence
limit of the χ2 distribution, with frequent ASVs depicted in
orange and rare ASVs in blue.
Fig. S8. Relationship between the size of trees and the rela-
tive error (green) and the cross-validated relative error (blue)
computed in the multivariate regression tree analysis. The
best predictive tree is indicated by a red dot. The orange dot
corresponds to the smallest tree one standard error above
the best tree. The green vertical bars indicate the number of
times that a given solution was selected as the best one dur-
ing the cross-validation iterations.
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