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Analysis of factorial experiments using mixed-effects models:
options for estimation, prediction and inference
Abstract

In linear mixed-effects modelling of experiments, estimation of variance com-
ponents, prediction of random effects, and computation of denominator de-
grees of freedom associated with inference on fixed effects, are important ele-
ments of the analysis. This thesis investigates alternatives to the likelihood-
based procedures for analysis of factorial experiments with normally dis-
tributed observations. Consistent methods, such as the maximum likelihood
method, can be disadvantageous in cases where only small samples are avail-
able. Moreover, the algorithms used in linear mixed-effects models can be
computationally demanding in large datasets.

In this thesis, Henderson’s method 3, a non-iterative variance component
estimation method, was considered for estimation of the variance components
in a two-way mixed linear model with three variance components. The vari-
ance component estimator corresponding to one of the random effects was
improved by perturbing the standard unbiased estimator. The improved vari-
ance component estimator performed better in terms of mean square error.

In an application on a quantitative trait loci (QTL) study, the modified
estimator was compared to the restricted maximum likelihood estimator on
data from European wild boar × domestic pig intercross. The modified es-
timator was shown to approximate the results obtained from the restricted
maximum likelihood (REML) method very closely.

For balanced and unbalanced data in two-way with and without interac-
tion models, the generalized prediction intervals for the random effects were
derived. The coverage probabilities of the proposed intervals were compared
with those based on the REML method and the approximate methods of
Satterthwaite (1946) and Kenward and Roger (1997). The coverage of the
proposed intervals was closer to the chosen nominal level than coverage of
prediction intervals based on the REML method.

With focus on Type I error, the implications of the available options in
the mixed procedure of SAS and the lmer function of R for the inference
on the fixed effects were examined. With the default setting of SAS, the
frequency of Type I error was higher than with R. The Type I error rate in
SAS was close to the nominal value when negative estimates of the variance
components were allowed. Both software packages occasionally produced
inaccurate results.
Keywords: generalized prediction intervals, Henderson’s method 3, mean
square error, mixed-effects models, QTL, REML, variance components
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Statistisk analys med linjära blandade modeller: alternativ för
analys av faktoriella försök

Sammanfattning
När linjära blandade modeller används för statistisk analys av experiment är
skattning av varianskomponenter, prediktion av slumpmässiga effekter och
beräkning av frihetsgrader väsentliga delar av analysen. I denna avhandling
undersöker vi alternativ till de likelihood-baserade metoder som oftast
används vid analys av flerfaktoriella försök med normalfördelade obser-
vationer när modellen innehåller flera varianskomponenter. Asymptotiskt
väl fungerande metoder, såsom likelihood-baserade metoder, kan fungera
mindre bra när stickproven är små. Vid stora datamängder kan algoritmerna
dessutom vara beräkningskrävande.

Hendersons metod 3 är en icke-iterativ metod för att skatta varianskom-
ponenter i en linjär blandad modell. Denna var utgångspunkten för artikel I.
Modellen innehöll två faktorer med slumpmässiga effekter. Estimatorn för
den ena varianskomponenten modifierades genom att göra avkall på vän-
tevärdesriktighet. Den modifierade estimatorn ger lägre medelkvadratfel.

I artikel II tillämpades den modifierade estimatorn på en studie av
quantitative-trait-loci (QTL) i data från en korsning av europeiska vildsvin
med tamgris. Den modifierade estimatorn jämfördes sedan med estimatorn
baserad på restricted-maximum-likelihood (REML). De båda metoderna gav
likartade skattningar av varianskomponenterna, däremot den modifierade
estimatorn är mindre beräkningskrävande.

Generaliserad statistisk inferens har använts i artikel III. Ekvationer för
generaliserade prediktionsintervall har härletts för några balanserade och icke
balanserade modeller med slumpmässiga effekter. Täckningsgraden för de
generaliserade prediktionsintervallen har jämförts med såväl täckningsgraden
för REML-baserade prediktionsintervall som de approximativa prediktionsin-
tervallen beräknade enligt Satterthwaites och Kenward och Rogers approx-
imativa metoder. De generaliserade prediktionsintervallens täckningsgrader
låg betydligt närmare den valda nominella nivån än vad de REML-baserade
prediktionsintervallens täckningsgrader gjorde.

I artikel IV studerades proceduren mixed i SAS och funktionen lmer i
R. Speciellt studerades olika alternativ som användaren kan välja mellan
och valets betydelse för slutsatserna vad gäller modellens fixa effekter. Med
de förvalda alternativen i SAS var frekvensen av typ-I fel högre än i R. När
negativa variansskattningar tilläts i SAS låg frekvensen för typ-I-fel nära den
valda nominella nivån. Ibland gav båda programvarupaketen helt felaktiga
resultat.
Nyckelord: blandade modeller, generaliserade prediktionsintervall, Hender-
sons metod 3, medelkvadratfel, QTL, REML, varianskomponenter
Författarens adress: Razaw Al-Sarraj, SLU, Institutionen för energi och
teknik, Box 7032, 750 07 Uppsala, Sverige
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1 Introduction

Over the past decades, the mixed linear models, also known as variance
component models, have been a widely used tool for statistical analy-
sis and inference in agricultural, medical, ecological, and environmental
researches as well as in econometrics and social sciences. Mixed linear
models comprise both fixed and random effects, consisting as such not
only of the error variance component, but also of other variance com-
ponents that are associated with the random effects. The fixed effects
are estimated by the best linear unbiased estimation (BLUE) whereas
the random effects are predicted by the best linear unbiased prediction
(BLUP) (Henderson, 1975; Robinson, 1991; Searle et al., 1992).

Historically, the analysis of variance (ANOVA) has been the most
common method used, especially in the agricultural experiments. The
analysis and inference of the effects, fixed or random, initially require
the estimation of the variance components. With ANOVA, the estima-
tors are obtained through equating the observed and expected mean
squares and subsequently solving the resulting equations for the estima-
tors. For balanced data, the ANOVA method is known to have appeal-
ing properties, such as unbiasedness and minimum variance, among all
unbiased estimators that are quadratic functions of the observations,
(Graybill and Hultquist, 1961). In unbalanced data the situation is
however more complicated, as all optimal properties lack to hold apart
from unbiasedness.

Analogous to the balanced case, Henderson (1953) developed tech-
niques suitable for all kinds of unbalanced data (Searle et al., 1992).
With its three different variations, the method has been widely used
in different areas of research, particularly in animal breeding. Other
methods of estimation have been developed for both balanced and un-
balanced data, with the likelihood-based methods being the most im-
portant ones, namely the maximum likelihood (ML) (Hartley and Rao,
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1967), and the restricted maximum likelihood (REML) methods (Pat-
terson and Thompson, 1971).

The methods vary in their degree of computational effort. In the
ANOVA method, the estimators are obtained explicitly, whereas the
likelihood-based methods are computationally extensive. Despite the
availability of technologies nowadays, there are research problems de-
manding a huge number of computations, for instance in image analy-
sis and in animal breeding experiments involving quantitative trait loci
(QTL) analysis. The ANOVA-method can yield negative estimates of
the variance components, which in the likelihood-based methods can
be constrained at zero.

The likelihood-based methods are well established in most software
programmes. For instance, the REMLmethod is often set as the default
option for estimation of variance components. This is the case for both
the mixed procedure of SAS (Stroup et al., 2018) and the lmer function
of R (Bates et al., 2015). In practice, estimates are often bounded to be
non-negative, however, zero-estimates of the variance components may
lead to problems with regard to certain aspects of the analysis. For
instance, the F-tests employed for testing the fixed-effects hypothesis
are in general approximate and the number of degrees of freedom in
the denominator may be affected by the zero-estimate of the variance
component. Different methods for estimating the denominator degrees
of freedom are available (Verbeke and Molenberghs, 2000). The Ken-
ward and Roger (1997, 2009) method has been recommended by many
authors (Alnosair, 2007; Chen and Wei, 2003; Spilke et al., 2005a,b).
However, this method is implemented differently in different softwares
when a zero-estimate is computed for the variance component, some-
times resulting in different, or even incorrect, conclusions.

In the analysis of agricultural field experiments, variance compo-
nents are employed to quantify the variation between the experimental
units. In a simple randomized complete block experiment with a block
variance and an error variance component, a zero-estimate of the block
variance may result in the neglecting of the block-effects. Hence, the
analyses of the experiment would proceed as if no blocks existed. Sim-
ilarly, for a split-plot experiment with main plot-, sub-plot- and error
variance components, a zero-estimate of the main-plot variance com-
ponent would result in the main plot effect being neglected.

Furthermore, a zero-estimate of the variance component may affect
the prediction of the random effects, i.e. the BLUPs, and may even
impact their prediction intervals. In a model with random effects of ex-
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perimental treatments, the BLUPs are characterized by their shrinkage
property (James and Stein, 1961). In a simple one-way random-effects
model, all BLUPs become equal to the overall mean when the between-
treatment variance is zero (Yu et al., 2015). Noted by Forkman and
Piepho (2013), the prediction intervals for the random effects degen-
erate at zero when the between-treatments variance in a randomized
complete block experiment is estimated to zero. In order to overcome
the problem of inavailability of classical confidence intervals for a pa-
rameter of interest, the generalized inference methodology introduced
by Tsui and Weerahandi (1989) and Weerahandi (1993) can be em-
ployed.

Taking into consideration the difficulties encountered with the avail-
able methods, there is a need to modify and explore alternatives to the
already existing methods.

1.1 Aim and outline of the thesis

The general aim was to explore alternatives to likelihood-based pro-
cedures for analysis of factorial experiments using linear mixed-effects
models. If only small samples are available, using an asymptotic ap-
proach such as the likelihood-based methods can be misleading. More-
over, the algorithms used in linear mixed models can be computation-
ally demanding. With explicit estimators, it is possible to speed up
computations. The thesis includes four papers:

i) Improving Henderson’s method 3 approach when estimating vari-
ance components in a two-way mixed linear model

ii) Non-iterative variance component estimation in QTL analysis

iii) Generalized prediction intervals for treatment effects in random-
effects models

iv) Notes on correctness of p-values when analyzing experiments us-
ing SAS and R

In Paper I, the intention was to improve Henderson’s method 3 for
a two-way linear mixed-effects model with three variance components,
to achieve a better performance in terms of mean square error.

In Paper II, the modified variance component estimator of Paper I is
applied on QTL data to investigate replacement of the REML method
by a non-iterative estimation method.
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In Paper III, generalized prediction intervals for random effects are
derived and introduced in some balanced and unbalanced models in-
tending to reach intervals with better coverages compared to those
obtained from other methods.

In Paper IV, the implications of the available options in the software
packages of SAS and R are investigated on accuracy of results using
linear mixed-effects models. Furthermore, it is examined under which
circumstances the software produce incorrect Type I error rates.

The outline of the thesis is as follows:

- Chapter 2 presents a background to the models and the estima-
tion methods.

- Chapter 3 summarizes the papers.

- Chapter 4 provides a general discussion with conclusions.

- The four papers, which are the basis for the thesis, are provided
in the Appendix.
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2 Theory and methods

This chapter presents the fixed-, random- and mixed-effects models as
well as the inference on the fixed effects and the methods used for vari-
ance component estimation. Henderson’s three methods for variance
component estimation are described in general with the focus on the
third method (Searle et al., 1992). Finally, the generalized confidence
intervals are presented (Weerahandi, 1993, 1995).

2.1 Fixed-effects models

A general fixed-effects linear model has been described by many au-
thors, among others Searle (1971) and Graybill (1976). Let

Y = Xβ + e, (1)

where Y : N × 1 is a vector of observations, X : N ×m is the design or
incidence matrix of known elements and β: m×1 is a vector of unknown
fixed-effects parameters. Finally, e: N × 1 is a vector representing the
within-subject variability or the measurement error, assumed to have
mean 0 and dispersion matrix σ2

eIN , where IN is the N × N identity
matrix. This implies that the expected value of Y is E(Y ) = Xβ and
its dispersion matrix is D[Y ] = σ2

eIN .
If X is of full rank, then the best linear unbiased estimator (BLUE)

is obtained from the least squares solution for the fixed effects β is β̂ =
(X ′X)−1X ′Y . Otherwise, if X is not of full rank, i.e. some columns are
linearly dependent, then the model is overparameterized and (X ′X)−1

cannot be obtained. Instead, a generalized inverse, (X ′X)−, can be
employed and the solution for β is β̂ = (X ′X)−X ′Y (Searle, 1971).
This solution is not unique. But unique solutions can be computed
for the so-called estimable functions, which are linear functions of the
parameters.
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Assume e is an independently normally distributed random vari-
able, e ∼ N(0, σ2

eIN ). Then Y is distributed as Y ∼ N(Xβ, σ2
eIN ). A

general form for the null hypotheses about the fixed effects in (1) can
be expressed as

H0 : Lβ = 0, (2)
where L is a row vector or matrix corresponding to a linear function of
X. The null hypothesis (2) can be tested using the F -statistic

F = QA/k

σ̂2
e

, (3)

where QA = (Lβ̂)′(L(X ′X)−L′)−1(Lβ̂), σ̂2
e is the estimated error vari-

ance, and k is the degrees of freedom which is equal to the row rank of
L, i.e. k = rank(L) (the rank of a matrix, is the number of linearly in-
dependent rows or columns of the matrix). Under the null hypothesis,
F in (3) is F-distributed with k an N − rank(X) degrees of freedom.

Alternatively, the problem of overparameterized models can be
dealt with by laying constraints on the levels of the factors in the
model. This is usually performed by setting the parameters corre-
sponding to the first or last level to zero, or simply constrain the factor
levels to add up to zero, which is known as sigma-restriction (Searle,
1987).

2.2 Mixed-effects models

Model (1) may be extended by adding a random term, often denoted
in the literature by Zu,

Y = Xβ + Zu+ e, (4)

where the terms Y , X and β are defined as in (1). The term Zu given
in model (4) can be partitioned conformably as

Zu =
[
Z1 Z2 . . . Zr

]

u1
u2
...
ur

 =
r∑
i=1

Ziui.

Thus, model (4) can be rewritten as

Y = Xβ +
r∑
i=1

Ziui + e. (5)
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The new added matrix Zi is an N × ni incidence matrix of known
elements, ui is an ni × 1 vector of random effects, i = 1, . . . , r, with
expected value E(ui) = 0 and dispersion matrix D[u] = G. The error
term, e, is an N × 1 random vector with E(e) = 0 and dispersion
matrix D[e] = R. Further it is assumed that ui and e are uncorrelated
random variables. It follows that Y ∼ (Xβ, V ), where E(Y ) is Xβ and
the dispersion matrix, V , is ZGZ ′ + R. Model (4), is referred to as a
mixed model (Searle et al., 1992; Stroup et al., 2018).

An important special case of model (4) is when the only fixed effect
in model is the overall mean, µ. In this case, the model can be written
as

Y = Xµ+ Zu+ e, (6)

where X = 1N is an N -vector of ones, µ is a scalar and all other
components (Y , Z, u, e) are defined as in model (4). This model is
referred to as a random-effects model.

Inference on fixed-effects

In model (4), let the random variables u and e be independently and
normally distributed, u ∼ N(0, G) and e ∼ N(0, R). It follows that
Y ∼ N(Xβ, V ), where V = ZGZ ′+R. Usually, the matrices G and R
are unknown and have to be estimated from the observed data. The
estimates are denoted as Ĝ and R̂, respectively. Henderson (1975)
developed a set of estimation equations, referred to as Henderson’s
mixed model equations, which simultaneously yield the BLUE of Xβ
and the BLUP of the random effects u. The solutions of Henderson’s
mixed model equations are

β̂ = (X ′V̂ −1X)−1X ′V̂ −1Y,

and
û = ĜZ ′V̂ −1(Y −Xβ̂),

where V̂ = ZĜZ ′ + R̂. The test statistic for testing the fixed effects
hypothesis in (2) can be expressed as

F = (Lβ̂)′(L(X ′V̂ −1X)−L′)−1(Lβ̂)
k

. (7)

This F-statistic follows an approximate F distribution, with numer-
ator degrees of freedom k equal to the rank of L and approximate
denominator degrees of freedom that can be estimated using various
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methods. Among them, the Satterthwaite (1946) and the Kenward
and Roger (1997) methods are the most commonly used (Verbeke and
Molenberghs, 2000).

2.3 The different types of sums of squares

At least three types of sums of squares are used to calculate the nu-
merator of the F-tests given in (3) and (7). In the major statistical
software packages of e.g. the mixed procedure of SAS (Stroup et al.,
2018) and the lmer function of R (Bates et al., 2015), they are referred
to as Type I, Type II and Type III sums of squares. When data is bal-
anced, all three are equivalent. For unbalanced data they are not. All
three methods were introduced in a landmark paper by Yates (1934).
In that paper, Yates’ unadjusted and adjusted method of fitting con-
stants, and the method of weighted squares of means, correspond to
the Types I, II and III sums of squares, respectively.

Consider a two-way fixed-effects model with interaction.

yijk = µ+ αi + βj + γij + eijk, (8)

where i = 1, . . . , a, j = 1, . . . , b, and k = 1, . . . , nij . Here, yijk is the
response of the kth observation on the ith level of factor A and the
jth level of factor B, µ is the overall mean and α and β are unknown
fixed effects of the factors A and B, respectively. The interaction effect
between the i-th and j-th level of the two factors A and B is denoted
as γij . The experimental errors are assumed to be independently and
normally distributed, eij ∼ N(0, σ2

e). The data for such a model can
be represented in a table consisting of a columns and b rows and nij
observations in the ij-th cell, and assuming nij > 0 for every i and j.

Model (8) can be rewritten as

yijk = µijk + eijk, (9)

where µijk = µ + αi + βj + γij is the expected value in the ij-th cell.
Table 1 illustrates the layout of a two-way factorial experiment with
two levels of factor A and three levels of factor B,
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Table 1: Two-way factorial experiment layout
Factor A

Factor B 1 2 Total
1 µ11(n11) µ21(n21) µ.1(n.1)
2 µ12(n12) µ22(n22) µ.2(n.2)
3 µ13(n13) µ23(n23) µ.3(n.3)

Total µ1.(n1.) µ2.(n2.) µ..(n..)

where n.. =
∑a
j=1

∑b
j=1 nij is the total number of observations, and the

number of observations for the levels of factor A and factor B are ni.
and n.j , respectively. We let µi. and µ.j denote the marginal means for
factor level i averaged over all the levels of factor j, and for factor level
j averaged over all the levels of factor i, respectively.

For instance, consider testing the hypothesis for the main factor A
in model (8). The three types of sums of squares can be expressed as
follows:

- Type I test: a sequential type of sums of squares. It is calculated
by adjusting each effect to the one that has emerged in the model
before that term. The null hypothesis for the main factor A when
factor A enters the model first, is

H0 : (1/n1.)
b∑

j=1
n1jµ1j = · · · = (1/na.)

b∑
j=1

najµaj , (10)

where ni. is the total number of observations for i-th level of
factor A. Each cell mean µij is weighted with respect to the
number of observations in the ij-th cell.

- Type II test: the sum of squares for each effect are adjusted for
the other effects except for the interaction. The null hypothesis
tested by this type is

H0 :
b∑

j=1
nijµij =

a∑
k=1

b∑
j=1

(nijnkj/n.j)µkj for all i, j, i 6= k,

(11)
where n.j is the total number of observations of the j-th level of
factor B.
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- Type III test: each effect is adjusted for the other effects. This
test is most easily performed if the parameters are constrained to
add up to zero when summed over any subscript, i.e. if the sigma-
restricted parametrization is used (Searle, 1987). The hypothesis
tested is

H0 : µ1. = µ2. = · · · = µa., (12)

where µi. =
∑b
j=1 µij/b is the unweighted marginal mean of the

i-th treatment. All cells are weighted the same, regardless of their
cell frequencies.

Applying the three different types of sums of squares on model (8),
provides the same p-value for the interaction. The main difference
between the sums of squares when data is unbalanced, comes down to
what hypotheses is being tested (Pendleton et al., 1986; Speed et al.,
1978). In general, null hypotheses should be specified before conducting
the experiment. If observations are missing at random, this cannot be
done using (10) and (11).

2.4 A review of variance component estimation methods

When mixed models are considered, there are many methods for es-
timation of variance components. The most commonly used methods
are

i) the ANOVA-based methods, (Henderson, 1953),

ii) the likelihood-based methods, such as the ML and REML
methods (Hartley and Rao, 1967; Harville, 1977; Patterson and
Thompson, 1971), and

iii) the minimum norm quadratic unbiased estimation (MINQUE)
and minimum variance quadratic unbiased estimator (MIVQUE)
methods (Rao, 1970, 1971a,b, 1972).

The ANOVA method is the oldest procedure used in the biological sci-
ences. It was pioneered by Fisher (1918) while developing the theory of
quantitative genetics to describe the inheritance of continuous traits.
Despite the fact that many others followed, they all dealt with the bal-
anced data case; see the book by Searle et al. (1992) for a comprehen-
sive literature review. It was first in Cochran (1939) that unbalanced
data appeared and the principle of equating sums of squares to their
expectations was used on a one-way random model, which is a special
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case of the model defined in (6). The paper by Henderson (1953) ad-
dressed the problem of variance component estimation in unbalanced
data. This paper has played an important role, among others in pop-
ulation genetics and in animal breeding, where the use of estimates of
variance components is important for the application of selection the-
ory. However, the method leads to negative estimates of the variance
components with positive probability. Therefore, it has been essential
to develop other estimation procedures.

Hartley and Rao (1967) introduced the ML procedure to variance
component estimation. This is a likelihood-based estimation procedure,
i.e. it assumes a probability distribution for the underlying data. It
maximizes the full likelihood function over the parameter space. Pat-
terson and Thompson (1971) proposed the REML procedure. This
method has been reviewed extensively by Harville (1977). In the REML
procedure, the likelihood under normality is partitioned into two parts;
one being free of the fixed effects. Maximizing this part over the op-
tionally non-negative space of variance components parameters, yield
the REML estimators. These two likelihood-based procedures take care
of the deficiency of the ANOVA-based method since positive estima-
tors can be obtained. They also have several nice statistical properties
such that they are functions of the sufficient statistics, consistent, and
asymptotically normal. Furthermore, the asymptotic sampling disper-
sion matrix of the estimators is known.

Rao (1971a,b, 1972) proposed a general method for estimating a
linear function of the variance components by a quadratic function of
the data. This method is called MINQUE. According to this method,
the estimators of the variance components can be obtained explicitly
and the method is distribution free. This is of advantage, in compari-
son to the ML and REML procedures. The most important property
of the MINQUE method is unbiasedness. However, the method can
produce negative estimates. All the methods mentioned above vary
in the degree of their computational effort. For the ANOVA and the
MINQUE method, the estimators can be obtained explicitly, while the
likelihood-based methods require a numerical solution. In other words,
the ML and REML estimators require iterative procedures to solve the
set of non-linear estimation equations, see Searle et al. (1992) for de-
tails.

Depending on which method is used, different variance component
estimates are obtained. How to choose between them has been an is-
sue of great importance. Therefore, some authors have compared the
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performance of various estimators with each other in terms of some
criteria, e.g. squared bias and mean square error, using simulation
techniques. Swallow and Monahan (1984) compared different estima-
tion procedures for a one-way random model with a between-group
variance (σ2

1) and an error variance (σ2
e). Among other methods, the

ANOVA, MIVQUE, REML and ML methods were compared in terms
of MSE and bias. This was carried out by a Monte Carlo simulation
under several data layouts and for several values of σ2

1/σ
2
e . According

to their results, the ANOVA method was adequate and the estimators
performed well except with seriously unbalanced data when σ2

1/σ
2
e > 1.

In addition, when σ2
1/σ

2
e < 0.5, the performance of the estimator σ2

1
obtained by ML was better than the ones obtained using the other
methods.

For the same model and data layouts of Swallow and Monahan
(1984), Conerly and Webster (1987) considered the MSE of the MINQE
(Rao and Chaubey, 1978), i.e. the MINQUE without the condition of
unbiasedness, and compared it with the MSE of the estimators inves-
tigated by Swallow and Monahan (1984). When σ2

1 > σ2
e , the MSE of

the estimator σ2
1 obtained using the MINQE method was smaller than

the MSE of the estimators obtained using the other methods.

2.5 ANOVA-based methods for variance component estimation

Originally, the ANOVA-based methodology was used to estimate the
variance associated with the error component, σ2

e , in models with bal-
anced data, where all factors’ levels were considered fixed. The esti-
mator was obtained through equating the expected mean square errors
(or the sums of squares) to the corresponding value calculated from the
data, i.e. E(MSE) = MSE. Thus,

E(MSE) = σ2
e ,

yielding the following variance estimate σ̂2
e = MSE.

This idea was extended to models with several variance components.
Let σ2 be the vector of variance components to be estimated in some
model, and let s be a vector of the sums of squares. Further, let C be
a non-singular matrix. Then taking the expected value

E(s) = Cσ2, (13)

yields the ANOVA estimator of σ2, based on (13) and is the solution
to s = Cσ̂2. It follows that σ̂2 = C−1s.
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The expression in (13), can be extended to include not only sums of
squares but also any set of quadratic forms. Let q be the m× 1 vector
of quadratic forms such that

E(q) = Aσ2, (14)

where A is a m × r matrix of known coefficients and σ2 =
(σ2

1, σ
2
2, . . . , σ

2
r )′ is the vector of r × 1 variance components. If A

is square, i.e. m = r and non-singular, then an unbiased estimator of
σ2 can be obtained, as in expression (13), from the solution σ̂2 = A−1q.
In certain situations when m > r, i.e. when there are more quadratic
forms than there are variance components to estimate, the following
can be used to obtain an unbiased estimator: σ̂2 = (A′A)−1A′q (Searle
et al., 1992).

2.6 Henderson’s three methods

In a landmark paper, Henderson (1953) presented three methods for
estimation of variance components, suitable for unbalanced data lay-
outs. The methods are known as Henderson’s methods 1, 2 and 3.
They are sometimes described as three different ways of using the gen-
eral ANOVA-method (Searle, 1987). All three methods equate the ex-
pected mean square errors to their observed values, and subsequently
solve the resulting equations to obtain the estimators of the variance
components. Method 1 uses sums of squares and is a counterpart to the
ones used in the analysis of variance for balanced data. This method is
employed when random models are considered, i.e. models that apart
from the overall mean, consist of only random components. Method 2
uses sums of squares after being corrected for the fixed effects in the
model. Therefore, this type can be used on mixed models. However,
it cannot be used on models with interactions between the fixed and
random effects. Finally, method 3 uses various reductions in sums of
squares due to fitting sub-models of the full model. The drawback with
this method is that the obtained estimators are not unique since the
method can give rise to more equations than there are variance com-
ponents to be estimated. Method 3 can be employed on mixed models
with or without interactions. All three methods yield unbiased estima-
tors and are easy to compute. Furthermore, no distributional assump-
tions are required. However, the estimators of the variance components
can assume negative values. When data is balanced, all three methods
reduce to the customary ANOVA method. The merits and demerits
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of the three methods are presented and discussed thoroughly in Searle
(1968) and Searle et al. (1992).

Henderson’s method 3 for two variance components

Henderson’s method 3 uses reductions in sums of squares due to fit-
ting sub-models of the full model. Thereafter, the estimated variance
components are obtained by equating the reduced sums of squares to
their respective expected values. For this purpose, the so-called R(.)-
notation which was used by Searle (1971, 1987), can be employed. Let
R(.) denote the reduction in the total sums of squares due to fitting a
model. In other words, R(.|.) is the sum of squares due to regression.
For simplicity, we illustrate the method with model (5), consisting of
only one random effect (u1), i.e. a model including two variance com-
ponents, the first, σ2

1, associated with the random effect u1, and the
second being the error variance component σ2

e . The full model is

Y = Xβ + Z1u1 + e. (full model) (15)

The reduction sums of squares due to fitting this model is denoted as
R(β, u1). A sub-model (reduced model) is

Y = Xβ + e. (sub-model) (16)

The reduction in sums of squares of this model is R(β). Thus, the
difference in reduction is R(u1|β) = R(β, u1) − R(β). This represents
the reduction sum of squares due to adding an extra term u1 to the
sub-model. Model (15) consists of two variance components, hence,
one set of estimation equations may be considered:{

R(u1|β)
SSE (17)

where SSE denotes the error sum of squares. Each reduction can be
written as Y ′X(X ′X)−X ′Y , whereX is compatible with the considered
model, and with X(X ′X)−X ′ idempotent. Let A = X(X ′X)−X ′,
then each reduction in sums of squares can be expressed in the form,
Y ′AY , a quadratic form of the data for some symmetric matrix A.
The estimates of the variance components can be obtained by equating
the reductions in sums of squares to their expected values. We define
the following partitioned matrices: X = [X] and X1 = [X,Z1]. The
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reductions in sums of squares for models (15) and (16) can respectively
be expressed as:

R(β, u1) = Y ′X1(X ′1X1)−X ′1Y = Y ′Px1Y, (18)
R(β) = Y ′X(X ′X)−X ′Y = Y ′PxY,

where Px1 = X1(X ′1X1)−X ′1 and Px = X(X ′X)−X ′ are projection
matrices. A projection matrix for a matrix w can be defined as Pw =
w(w′w)−w′. Thus Pw is an idempotent matrix; for more properties see
Schott (1997).

Then R(u1|β) and SSE can be expressed as:

R(u1|β) = Y ′(Px1 − Px)Y, (19)
SSE = Y ′(I − Px1)Y.

The following result follow regarding the mean of Y ′AY , see Searle
(1971):

- Let Y ∼ N(µ, V ) and A be a symmetric matrix, the mean of
Y ′AY , is equal to

E(Y ′AY ) = tr(AV ) + µ′Aµ. (20)

The notation tr, i.e. the trace function for a square matrix, cor-
responds to the sum of the diagonal elements. The result in (20)
is true regardless of whether Y is normally distributed or not.
Moreover, when µ = 0, then E(Y ′AY ) = tr(AV ).

For our computations, assume Y is normally distributed with mean Xβ
and dispersion V = σ2

1V1 + σ2
eIN with V1 = Z1Z

′
1. Thus, taking the

expected value of (19), and equating it to its corresponding observed
values, and solving the resulting equations, the variance components
are obtained. Using the result in (20)

E[R(u1|β)] = tr(Px1 − Px)V, (21)
E[SSE] = tr(I − Px1)V,

The set of equations may be arranged in a vector. Thereafter, by
equating these expected values to their observed ones we get[

Y ′(Px1 − Px)Y
Y ′(I − Px1)Y

]
= J

[
σ2

1
σ2
e

]
,

25



where
J =

[
tr(Px1 − Px)V1 tr(Px1 − Px)I
tr(I − Px1)V1 tr(I − Px1)I

]
.

The estimators of the variance components are[
σ̂2

1
σ̂2
e

]
= J−1

[
Y ′(Px1 − Px)Y
Y ′(I − Px1)Y

]
.

Note that (Px1−Px) and (I−Px1) are idempotent matrices. Moreover,
since Px1V1 = V1, then tr(I − Px1)V1 = 0, the J matrix reduces to

J =
[
tr(Px1 − Px)V1 tr(Px1 − Px)I

0 tr(I − Px1)I

]
.

Thus,[
σ̂2

1
σ̂2
e

]
=

[
tr(Px1 − Px)V1 tr(Px1 − Px)I

0 tr(I − Px1)I

]−1 [
Y ′(Px1 − Px)Y
Y ′(I − Px1)Y

]
.

Solving the above system of equations gives the variance component
estimators

σ̂2
1 = Y ′(Px1 − Px)Y

tr(Px1 − Px)V1
− tr(Px1 − Px)Y ′(I − Px1)Y

tr((Px1 − Px)V1)(tr(I − Px1)) , (22)

and

σ̂2
e = Y ′(I − Px1)Y

tr(I − Px1) . (23)

Henderson’s method 3 for three variance components

Models consisting of more than two variance components have more
than one estimation equation for estimating the variance components.
For instance, in a two-way mixed model with no interaction there are
three variance components to be estimated of which two are associated
with the two random effects (σ2

u1, σ2
u2) and the third is the error vari-

ance component σ2
e . Let R(β, u1, u2) denote the reduction in sums of

squares due to fitting the full model

Y = Xβ + Z1u1 + Z2u2 + e. (full model) (24)

Further, let R(β), R(β, u1) and R(β, u2) be the reductions due to fitting
the sub-models
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Y = Xβ + e,

Y = Xβ + Z1u1 + e,

Y = Xβ + Z2u2 + e,

(25)

respectively. For model (24), two sets of estimation equations may be
considered 

R(u1|β)
R(u2|β, u1)

SSE
or


R(u2|β)

R(u1|β, u2)
SSE

Assuming normality, all the reductions in sums of squares follow a non-
central χ2 distribution, and all the reductions are independent of each
other and of SSE, see Searle (1987).

If we consider, for instance, the left-hand side set of estimation
equations in an analysis of variance context: the partitioning of the
total sums of squares are as in Table 2.

Table 2: Analysis of variance
Source of Variation Sum of squares

β R(β)
u1 adjusted for β R(u1|β) = R(u1, β)− R(β)

u2 adjusted for β and u1 R(u2|β, u1) = R(β, u1, u2)− R(β, u1)
Error SSE

Of note, the quadratics in Table 2 are equivalent to using Type I sums
of squares when u1 enters the model first followed by u2 (Searle et al.,
1992).

2.7 Generalized confidence intervals (GCIs)

A classical confidence interval can be defined as follows: let
(y1, y2, · · · , yn) be a random sample from a random variable Y with
known distribution function f(Y |υ), where υ = (θ, δ) are the unknown
parameters, θ is the parameter of interest and δ is the nuisance param-
eter (a parameter not of interest). Let α be a confidence coefficient,
i.e. a pre-specified constant between 0 and 1. Let L = L(y1, · · · , yn)
and U = U(y1, · · · , yn) be two functions of the data such that

P [L ≤ θ ≤ U ] = 1− α,

27



where P denotes probability. Then [L,U ] is said to be a confidence
interval for θ with 1− α confidence.

In general, confidence intervals can be computed using functions of
the data, particularly when the distribution is free of nuisance param-
eters. However, even with the presence of a nuisance parameter, con-
fidence intervals can be constructed using a function of both the data
and the unknown parameters, the so-called pivotal quantity (pivot). A
pivot can be defined as a random variable whose distribution is free of
any unknown parameter, including the nuisance parameters (Pawitan,
2001).

The generalized concept introduced by Tsui and Weerahandi (1989)
was used by Weerahandi (1993) to extend the standard notion of a
pivotal quantity to a generalized pivotal quantity (GPQ). The GPQs
can be used to construct confidence intervals. The obtained intervals
are referred to as generalized confidence intervals (GCIs).

The method can be described as follows: suppose we want to con-
struct a GCI for a scalar parameter θ. Let Y be an observable random
variable whose distribution depends on unknown parameters (θ, δ),
where θ is the parameter of interest and δ is a nuisance parameter
(possibly a vector parameter). Let the observed value of Y be denoted
as lower case y and let G = G(Y ; y, θ, δ) be a function of Y , y, θ, and
δ. Then G is a GPQ for θ if it satisfies the following two properties:

Property i: For a fixed y, the distribution of G does not depend
on any of the unknown parameters.

Property ii: The observed value of G, denoted as g(y; y, θ, δ), is
free of the nuisance parameters δ.

A two-sided equal-tailed (1− α) GCI is given by

Gα/2 < θ < G1−α/2,

where Gα is the (100α)th percentile of the distribution of G. The
quantiles can be estimated using Monte Carlo methods. Property i
ensures that the confidence region does not depend on the parameters
θ and δ. Property ii guarantees that the generalized confidence region
can be constructed using only observed data.

The method described above can be used to compute confidence in-
tervals for the parameters in random- and mixed-effects models. In ad-
dition, the method is applicable to various interval estimation problems
where the standard methods are difficult to apply. Many applications
appear in Weerahandi (1993, 1995).
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Example: GCI for σ2
A

Consider a one-way random-effects model with balanced data,

Yij = µ+ ui + eij , i = 1, . . . , a; j = 1, . . . , n, (26)

where ui and eij are independent random variables with ui ∼ N(0, σ2
A)

and eij ∼ N(0, σ2
e), a is the number of groups, and n is the number

of observations per group. Let XA and XE denote the between groups
and error sums of squares, respectively. The ANOVA for model (26) is
as shown in Table 3.

Table 3: ANOVA for a balanced one-way random-effects model
Source of Variation Degrees of freedom Mean square Expected mean square
Factor A a− 1 XA/(a− 1) σ2

e + nσ2
A

Error an− a XE/(an− a) σ2
e

Let UA = XA/(σ2
e + nσ2

A) and UE = XE/σ
2
e . Then UA and UE

are independent chi-square distributed random variables with a − 1
and an − a degrees of freedom. Solving UA and UE for σ2

A and σ2
e ,

and thereafter replacing the random variables XA and XE with their
corresponding observed values xA and xE , respectively, the following
GPQ for σ2

A is obtained:

G(σ2
A) = xA

nUA
− xE
nUE

.

Regarding the two properties mentioned above; the distribution of
G(σ2

A) is free of any unknown parameters. Moreover, at the observed
sample value G(σ2

A) is free of nuisance parameters. Thus, G(σ2
A) is a

GPQ for σ2
A. The generalized confidence intervals for σ2

A can be ob-
tained from the percentiles of the G(σ2

A) using Monte Carlo simulation.
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3 Summary of the papers

3.1 Paper I

In this paper, we propose two modified variance component estima-
tors, which are originally computed from the well known non-iterative
variance component estimation method, Henderson’s method 3. The
estimators are expected to perform better than the original unbiased
ones in terms of MSE.

A two-way linear mixed-effects model consisting of three variance
components was considered. Two variance components, σ2

1 and σ2
2,

are associated with the random effects in the model, and the third
corresponds to the error variance component, σ2

e . Our primary interest
was σ2

1. This variance component, denoted as σ2
u1, was estimated as

σ̂2
u1 = Y ′AY

a
− d(Y ′BY )

ab
+ k(Y ′CY )

abc
,

where A, B, C, a, b and c are defined as in Eq.(18) of Paper I and
k = tr((Px1 − Px)V2)tr(Px12 − Px1)− tr(Px1 − Px)tr((Px12 − Px1)V2).

The mean square error of this unbiased variance component, de-
noted as MSE(σ̂2

u1), was calculated as:

MSE(σ̂2
u1) = [ 2

a2 tr(AV1AV1)]σ4
1

+ [ 2
a2 tr(AV2AV2) + 2d2

a2b2 tr(BV2BV2)]σ4
2

+ [ 4
a2 tr(AV1AV2)]σ2

1σ
2
2

+ [ 4
a2 tr(A

2V1)]σ2
1σ

2
e

+ [ 4
a2 tr(AV2A) + 4d2

a2b2 tr(BV2B)]σ2
2σ

2
e

+ [ 2
a2 tr(A

2) + 2d2

a2b2 tr(B
2) + 2k2

a2b2c2 tr(C
2)]σ4

e .
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The variance component σ̂2
u1 was modified by introducing pertur-

bation coefficients into the standard unbiased estimator denoted by c1,
d1 and d2. The modified variance component estimator, denoted by
σ̂2

11 is:

σ̂2
11 = c1

a
(Y ′AY − d

b
d1Y

′BY + k

bc
d2Y

′CY ),

where A, B, C, a, b, c, d and k are all defined as previously for σ̂2
u1.

The mean square error of the modified estimator denoted by MSE(σ̂2
11)

was calculated in Eq.(34) of Paper I. The values of c1, d1 and d2 were
chosen such that they minimize the coefficients in the leading terms
of σ4

1, σ4
2 and σ4

e in MSE(σ̂2
11). Thereafter, the mean square errors of

the modified and unmodified estimators were compared. In Proposi-
tion 1 and Theorem 1 of Paper I, the sufficient conditions under which
MSE(σ̂2

11) ≤ MSE(σ̂2
u1) holds are summarized.

The algorithm was intially published in the research report Al-
Sarraj and von Rosen (2007), which also addressed the problem of non-
uniqueness of the decomposition of the reduction in sums of squares.
The number of variance components in a linear mixed-effects model
consisting of three variance components (σ2

1, σ
2
2, σ

2
e), can be reduced

from three to two variance components: σ2
1 and σ2

e , for instance by us-
ing an orthogonal projection. Thereafter, the variance component esti-
mator σ̂2

1 can be modified. To motivate the choice of the approach and
which estimator to modify, two different decompositions of Henderson’s
method 3 were considered, referred to as Partition I and Partition II.
Partition I is the decomposition and set of equations found in Paper I.
In Partition II, a different set of reduction sums of squares are used, as
specified in Section (4.2) of Al-Sarraj and von Rosen (2007), still with
the focus on σ2

1. The obtained estimators from both Partition I and
Partition II were denoted by σ̂2

u1 and σ̂2
1, respectively. The obtained

variance component estimator from Partition II was calculated as:

σ̂2
1 = Y ′(Px12 − Px2)Y

tr(Px12 − Px2)V1
− tr(Px12 − Px2)Y ′(I − Px12)Y

tr(Px12 − Px2)V1tr(I − Px12) . (27)

The variances of the two estimators obtained from the partitions I
and II, denoted as D[σ̂2

u1] and D[σ̂2
1], were compared. This comparison

was substantiated by assuming the variance component estimator σ2
2 to

be diminutive to the extent rendering it acceptable to ignore its impact.
Sufficient conditions under which D[σ̂2

u1] ≤ D[σ̂2
1] holds were summa-

rized in Proposition 2 (Al-Sarraj and von Rosen, 2007). The chosen
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partition, i.e. Partition I or Partition II, was based on the estimator
with less variance. If the estimator from Partition I has less variance,
the estimator is then modified as in Paper I, and if the estimator from
Partition II has less variance, the modification suggested by Kelly and
Mathew (1994) should be chosen.

3.2 Paper II

Variance component models are widely used in genetics, especially in
animal breeding to study quantitative traits of individuals. In variance
component QTL analysis, a mixed model is used to localize the most
likely chromosome position of a QTL. In line with Paper I, the modified
variance component estimator was applied on data from European wild
boar × domestic pig intercross. For this, a mixed linear model consist-
ing of three variance components was used to detect the most likely
chromosome position of a QTL. A meat quality trait was examined.
This trait is affected by the halothane gene located on chromosome 6
at position 80,4 cM. The model was fitted at every 5 cM. Variance com-
ponents were estimated using both non-modified and modified Hender-
son’s method 3 with Partition I and II. These were compared to REML
estimators.

The REML and the two modified Henderson method 3 estimators
of σ2

1 were similar for most positions. The estimators at the halothane
gene (80 cM) for REML, modified Partition I and modified Partition
II, respectively, were: 4.96, 4.32, 5.06. A likelihood ratio (LR) was
calculated at each position, as: LR = −2(l0 − l1), where l0 is the log-
likelihood under the null hypothesis of no QTL (i.e. u1 removed from
the model) and l1 is the log-likelihood for the full model at a specific
position. The LR curve, obtained from fitting the variance compo-
nent QTL model in the full model, using REML, showed a peak at
80 cM. Approximated LR curves were calculated for both the modi-
fied Partition I and II estimates of the QTL variance, which gave good
approximations of the correct LR curve.

3.3 Paper III

In this paper, the generalized prediction intervals (GPIs) for linear
combinations of random effects in balanced and unbalanced random-
effects models were derived, based on generalized inference methods
of Tsui and Weerahandi (1989) and Weerahandi (1993). Six different
models were considered; one- and two-way models, with and without
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interaction. The random effects were assumed to be independently and
normally distributed variables, with the GPIs for the quantities µ+u1,
u1 and u1 − u2 being of particular interest. Depending on the model,
the quantities corresponded to a treatment mean, a treatment effect
and a difference between two treatment effects, respectively.

Initially, the generalized pivotal quantities (GPQs) for the expected
value and the variance components were constructed. The conditional
distributions were computed for (µ + u1|Ȳ1.), (u1|Ȳ1. − Ȳ..) and (u1 −
u2|Ȳ1. − Ȳ2.), where Ȳ1., Ȳ1. − Ȳ.. and Ȳ1. − Ȳ2. represented averages
in the considered models. The unknown parameters in the conditional
distributions were replaced by their corresponding GPQs.

For each case of the different model layouts, 10 000 independent
datasets were randomly generated. For each generated dataset, new
independent samples of the GPQs were used. The 100(α/2)th and
100(1−α/2)th percentiles of the GPIs were obtained from the empirical
conditional distributions and the estimated coverages were computed.

The simulation study was performed using the lmer function in
R (Bates et al., 2015). The proposed GPIs were compared to corre-
sponding REML-based prediction intervals of random effects (Pawitan,
2001):

û± zα/2se(û), (28)

where û and se(û) denote the estimated random effect and its estimated
standard error, respectively. The 100(1−α/2)th percentiles of the stan-
dard normal distribution is denoted as zα/2. In (28) the approximate
t-distributions can be used as an alternative, i.e. û±tνse(û). The num-
ber of degrees of freedom ν can be approximated using the methods of
Satterthwaite (1946) and Kenward and Roger (1997) alongside the con-
tainment method, which is the default method in the mixed procedure
of the SAS software package. In almost all cases, estimated coverages
using the GPI method were closer to the chosen nominal level than
the ones obtained using the REML-method. The estimated coverages
using the REML-based methods resulted in coverages lower than the
nominal confidence level. This was also the case with the approximate
methods of Satterthwaite (1946) and Kenward and Roger (1997).

3.4 Paper IV

This paper examined the accuracy of results in the software packages of
the mixed procedure of SAS (Stroup et al., 2018) and the lmer function
of R (Bates et al., 2015) when analyzing linear mixed-effects models
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with the focus on randomized complete block experiments (RCB) and
split-plot experiments. The implications were examined with regard to
inference on fixed-effects, with focus on Type I errors.

The F-test statistics in the mixed-effects models are functions of the
variance components associated with the random effects. In a simple
analysis of variance setting, the variance components can be estimated
by equating the mean square errors to their observed values, or by
using likelihood-based methods, e.g. the REML method (Patterson
and Thompson, 1971). The obtained estimates of the variance com-
ponents can assume negative values. In some softwares, the estimates
are constrained at zero, e.g. when applying the lmer function of R and
the default of the mixed procedure in SAS. As such, the denominator
degrees of freedom (ddf) of the F-test is implemented differently in R
and in SAS, despite both using the Kenward and Roger (1997, 2009)
method. However, with the nobound option of the mixed procedure,
the variance component estimators are not constrained.

In addition, exact F-tests were calculated from three different types
of sums of squares known as types I, II and III. In R, the parameter
levels were constrained by setting the first level of the factor to zero (as
implemented by contr.treatment), by setting the levels of the factors
to sum up to zero (as implemented by contr.sum) and finally, by set-
ting the last level of the factor to zero (as implemented by contr.SAS)
(Fox and Weisberg, 2019).

The implications of the available options were examined in a ran-
domized complete block experiment and in three split-plot experiments.
The accuracy of results (F-test, ddf and p-value) in both software pro-
grammes were investigated alongside the exact F-test. Generally, with
the default setting of the mixed procedure of SAS and the lmer function
of R, the results differed considerably between the programmes. The
degrees of freedom with the default setting of the mixed procedure of
SAS was higher, resulting in more significant results.

Finally, 200 000 datasets were generated from a randomized com-
plete block model and a split-plot model in a simulation study. The
Type I error rates were estimated using six different layouts of each of
the models. For the RCB model, the error variance was σ2

e = 1 and
the block variance varied: σ2

B = (0.1, 0.3, 0.5, 0.7, 0.9). In the split-
plot model, the block and error variances were σ2

b = 1 and σ2
e =

1, respectively, while the main plot error variance varied: σ2
AB =

(0.1, 0.3, 0.5, 0.7, 0.9). Other terms in the model were assumed equal
to zero. The analysis was performed using both R and SAS. In R, the
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lmer and Anova functions were used. The type II test was used with
the default parametrization contr.treatment and with the contr.sum
parametrization. In the mixed procedure of SAS, both the default
and the nobound options were investigated. The Kenward and Roger
method, as implemented in the software, was applied to calculate the
denominator degrees of freedom. In addition, using the anova pro-
cedure in SAS, the exact F-tests were computed with the denominator
degrees of freedom of (a−1)(b−1), where a is the number of treatment
levels and b is the number of blocks in the experiment.

For the randomized complete block model, the simulation results
in R showed too high frequency of Type I errors, especially when the
block variance (σ2

B) was low. Using the nobound option of the mixed
procedure of SAS, the frequency of Type I errors was close to the nom-
inal level 0.05, except for the layout with three treatment levels and
two blocks, i.e. {a = 3, b = 2}. With the default option of the mixed
procedure, the frequency of Type I errors was consistently larger than
the nominal level.

For the split-plot model with a main plots, b blocks and c sub-plots,
the following results were obtained. Using R, the frequency of Type I
errors was below 0.05 when σ2

AB was small. With the nobound option
of the mixed procedure of SAS, the frequency of Type I errors was
close to the nominal level 0.05, except for two cases with the layouts
{a = 2, b = 4, c = 12} and {a = 3, b = 2, c = 12} where the Type I error
rates were too low. With the default setting of the mixed procedure of
SAS, the frequency of Type I errors was almost always higher than the
nominal level of 0.05.
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4 General discussion

4.1 Research of this thesis

In analysis of experiments, considerable attention has been drawn to
the importance of the variance component estimation in linear random-
and mixed-effects models. When performing this type of analysis, there
are certain issues a user may frequently face:

i. The choice of method of variance component estimation is am-
biguous since there is no uniformly best method. Given that data
are balanced, the results are identical regardless of the method
used. If data are unbalanced, the outcomes may substantially
differ, and this is almost always the case with real world data.

ii. Likelihood-based methods can in large data sets be computation-
ally demanding. In addition, the methods do not provide any
exact statistical inference except for the special case with bal-
anced data.

iii. The methods used for variance component estimation may result
in negative values of the variance estimates, despite the variance
components being non-negative quantities.

The first two issues (i, ii) were addressed in Paper I and Paper II.
The intention was to use a non-iterative variance component estimation
method that is easy to compute and less time-consuming than the al-
ready well-established variance component estimation procedures such
as the ML and REML procedures. The idea was to sacrifice unbiased-
ness, and instead obtain a smaller MSE in a certain class of estimators.
The method used was based on Henderson’s method 3. A linear mixed-
effects model consisting of three variances was considered, where one
of the variance components was of interest. This variance estimator
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was improved such that the resulting estimator was expected to per-
form better in terms of MSE than the original estimator obtained from
Henderson’s method 3. In Paper II, the proposed estimator was tested
on QTL data and compared with the likelihood-based procedures. The
variances in the model were: 1) the variance between effects of base gen-
eration alleles, 2) the variance between effects of families, and 3) the
residual variance. Of these, the first variance component mentioned
was of interest.

The third issue (iii), the problem of negative variance estimates, is
a major and frequently occurring problem, especially in small exper-
iments or when many variance components are considered. Negative
variance estimates are often set to zero. This practice leads to many
inferential difficulties. For instance, prediction intervals for the random
effects cannot be constructed using the traditional approximative meth-
ods of Satterthwaite (1946) and Kenward and Roger (1997, 2009). In
Paper III, this problem was addressed where the generalized inference
methodology, introduced by Tsui and Weerahandi (1989) and Weera-
handi (1993), was utilized to derive and propose prediction intervals
for random effects in some balanced and unbalanced model layouts.

When analyzing linear mixed-effects models in Paper IV, the avail-
ability of various software options posed a question as to which of the
results obtained would offer a higher degree of accuracy. The mixed
procedure of SAS (Stroup et al., 2018) and the lmer function of R
(Bates et al., 2015) were examined in this paper. The implications for
inference on the fixed effects were investigated with focus on Type I
error.

4.2 Previous research

In the ANOVA-methodology, negative variance estimates are in-
evitable. How to deal with this issue has been presented by Searle
(1971) and Searle et al. (1992). In practice, the most commonly used
action in the case of a negative estimate is setting the value to zero.
While other authors present alternative interpretations to negative
variance estimates (Nelder, 1954; Smith and Murray, 1984; Stroup
et al., 2018).

Instead of setting the negative ANOVA estimates directly to
zero, Kelly and Mathew (1993, 1994) attempted to first improve the
ANOVA-estimator in terms of MSE and then truncate the improved
estimator at zero to obtain non-negative estimates. In terms of MSE,
the truncated-at-zero improved estimator was considerably better
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than the truncated ANOVA estimator. For a balanced one-way
model, Kelly and Mathew (1993) improved the unbiased ANOVA
variance estimator such that the resulting estimator had lower MSE
and lower probability of negativity than the ANOVA-estimator. Kelly
and Mathew (1994) used a similar approach and derived several
non-negative estimators for mixed models with unbalanced data. The
models they considered involved two variance components: one corre-
sponding to the error variance, and the second being the parameter of
interest. For models consisting of more than two variance components,
they suggested using suitable linear transformations to reduce the
number of variance components to two. Based on their simulation
results on some unbalanced model layouts, the improved non-negative
estimator performed better in terms of MSE than the non-negative
estimator obtained from the ANOVA, ML and REML methods.

Henderson’s method 3 is one of the three variance component es-
timation procedures proposed by Henderson (1953). The method can
be used on linear mixed-effects models with or without interactions
and with unbalanced data. This method relies crucially on the de-
composition of the reduction sums of squares, which is not uniquely
defined. In a two-way model without interaction consisting of three
variance components (two for the random effects and one for the er-
ror component), two different decompositions of the Henderson’s equa-
tions may be applied to estimate the variance component of interest,
say σ2

1. The two decompositions were referred to as Partition I and
Partition II in Al-Sarraj and von Rosen (2007); the first consisting of
all three variance components (σ2

1, σ2
2, σ2

e) and the second consisting
of two variance components (σ2

1, σ2
e). The variances obtained from

Partition I can then be modified as in Paper I and the ones obtained
from Partition II can be modified as in Kelly and Mathew (1994).
The R code for both modified partitions is available on GitHub at
https://github.com/razaw1964/Modified-Henderson-method-3.

Different layouts of a two-way model without interaction were con-
sidered in a simulation study conducted by Al-Sarraj et al. (2011).
The performance of the variance component estimator obtained from
the two partitions and their corresponding modified variance compo-
nents were compared and evaluated. In addition, the comparison in-
cluded variance component estimators obtained from the likelihood-
based procedures, ML and REML. These six different estimators were
compared in terms of MSE, squared bias and probability of obtain-
ing negative estimates. The modified variance component estimator
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obtained from Partition I was recommended over the one from Par-
tition II when σ2

2/σ
2
1 < 1.0. Furthermore, the MSEs of the modified

Partition I estimator and the MLE estimator were very close and lower
than all other estimators’ MSEs.

Using the approximate methods of Satterthwaite (1946) and Ken-
ward and Roger (1997, 2009), the prediction intervals for the random
effects degenerate when a zero estimate occurs. To overcome this prob-
lem, Weerahandi (1993) used the generalized concept to obtain confi-
dence intervals for cases where the classical approaches fail to provide
reliable results. He introduced the generalized pivotal quantity (GPQ)
which is used to construct confidence intervals; the intervals are referred
to as generalized confidence intervals (GCIs). Several authors provided
GCIs in many practical problems (Burdick et al., 2006; Chiang, 2001;
Hannig et al., 2006; Iyer and Patterson, 2002; Krishnamoorthy et al.,
2006; Wang et al., 2012; Weerahandi, 1995).

For a one-way random-effects model with balanced data, Gamage
et al. (2013) derived the generalized prediction interval (GPI) for the
predictor µ+k(ȳ1.−µ), where µ denotes the overall mean, ȳ1. the first
treatment’s mean and k the shrinkage factor: k = nσ2

A/(σ2
e + nσ2

A).
When using the mixed procedure of SAS and the lmer function

of R for the inference on the fixed effects, there is an opportunity to
choose one of the three different sums of squares known as Type I,
Type II and Type III. For balanced data layouts, all three types yield
identical results, however, this is not the case for the unbalanced ones
as the types correspond to different hypotheses being tested (Pendleton
et al., 1986).

There has been considerable debate among authors as to which
of the tests can be considered best; the Type III test was criticized by
Nelder (1994) and Nelder and Lane (1995), explaining that a test of the
main effects in the presence of an interaction was uninteresting, while
others like Langsrud (2003) prefer the Type II test, as summarized by
Maxwell et al. (2018). To date, there is no consensus in the literature
as to which of these tests is best.

4.3 Main contributions

In this work, we have explored some options for explicit variance com-
ponent estimation and introduced a new approach for prediction inter-
vals of random effects. Moreover, some inference problems encountered
when analyzing some simple models with two of the most commonly
used statistical software packages, the mixed procedure of SAS and the
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lmer function of R, were investigated.
The main contributions can be summarized as follows:

i. Two modified variance component estimators were proposed, each
appropriate under certain given conditions. The estimators were
easy to compute and had smaller MSE than the unmodified one
(Paper I).

ii. The modified estimator applied on QTL data was easy to com-
pute and less time-consuming than the ML and REML methods.
The variance estimators were very close to the REML estima-
tors at the QTL position with the likelihood ratio curve well ap-
proximated by the non-iterative variance component estimators
(Paper II).

iii. The coverages of the proposed GPIs, derived for linear combina-
tions of random effects, were closer to the chosen nominal level
than the coverages of those obtained with REML-based methods
(Paper III).

iv. With the default settings of the software packages SAS and R, the
frequencies of Type I error differed greatly. This was attributed
to the fact that the software packages computed the denominator
degrees of freedom differently when the variance components were
constrained at zero. The frequency of Type I error was close to
the correct value when the nobound option of the mixed procedure
of SAS was used. Inaccurate results were, however, occasionally
obtained both with the nobound option of SAS and the default
setting of R (Paper IV).

4.4 Suggestions for future work

Conducting a study to modify an estimator obtained from a model
comprising four variance components would be of interest. Further-
more, finding necessary and sufficient conditions for the estimator to
have a lower mean square error than the original unbiased estimator
would pave the way for further research. The generalized prediction
intervals in our studies were proposed for three treatment effects in six
random-effects models with balanced and unbalanced data. A possible
direction for future work may be to extend the idea to models also in-
cluding fixed effects, i.e. mixed-effects models. Further research studies
are particularly needed to investigate more general unbalanced linear
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random- and mixed-effects models, and using the generalized method
to compute intervals for a broader class of linear combinations of the
random effects.

4.5 Conclusion

In this thesis we have modified an already existing non-iterative vari-
ance component estimation method, Henderson’s method 3. Under
‘easy to examine conditions’ the proposed modified estimators have
less mean square error. Applied to QTL data, the modified estimators
demonstrated a good approximation to the REML estimates at the
QTL position.

In our study, the generalized prediction intervals for some linear
combinations of the random effects provided good results. The cov-
erage probabilities for the proposed generalized prediction intervals
outperformed the REML-based procedures and the approximate t-
distribution methods of Satterthwaite (1946) and Kenward and Roger
(1997).

As a final remark, standard procedures for analysis of linear mixed-
effects models often provide approximate results when using statistical
software. In cases where exact and explicit solutions exist, these should
be preferred to the approximate methods.

While the present studies have introduced generalized prediction
intervals for the random effects, and examined an alternative to the
likelihood-based procedures for variance components estimation, there
remains a need for further development of explicit non-iterative meth-
ods for analysis of linear mixed models.
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Improving Henderson’s Method 3 Approach
when Estimating Variance Components in a
two-way mixed linear model

Razaw al Sarraj and Dietrich von Rosen

Abstract A two-way linear mixed model, consisting of three variance components,
σ2

1 , σ2
2 and σ2

e is considered. The variance component estimators are estimated us-
ing a well known non-iterative estimation procedure, Henderson’s method 3. For σ2

1
we propose two modified estimators. The modification is carried out by perturbing
the standard estimator, such that the obtained estimator is expected to perform better
in terms of its mean square error.

1 Introduction

In an analysis of variance context, the most commonly used method for estimating
the variance components has been through equating the observed and expected mean
squares, and solving a set of linear equations. As long as the data are balanced the
ANOVA estimators are known to have good statistical properties, i.e., the obtained
estimators are unbiased and have minimum variance among all unbiased estima-
tors which are quadratic functions of the observations, see Graybill and Hultquist
(1961). However, since real world data often are always unbalanced, this method
is no longer appealing. For instance, the uniformly minimum variance property is
lost. Furthermore, whether data are balanced or unbalanced, there is nothing in the
ANOVA methodology that would prevent negative estimates of the variance com-
ponents to occur, (LaMotte, 1973).

In a seminal paper Henderson (1953) considered variance component estimation
with unbalanced data. He presented three methods of estimation which later on,
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came to be known as Henderson’s method 1, 2 and 3. The obtained estimators are
unbiased and translation invariant.

However, since all three methods are variations of the general ANOVA method,
they suffer from the weaknesses of it. In particular, the lack of uniqueness.

In this paper we were motivated by Kelly and Mathew’s (1994) work, where
they improved the ANOVA estimators in a one-way variance component model.
The model consists of two variance components, one is the random effect of inter-
est, and the second is the error component. They modified the variance component
estimator corresponding to the random effect such that the resulting estimator per-
formed better than the unmodified ANOVA estimator in terms of the mean square
error (MSE) criteria. If more components were to be included into the model, they
were excluded by orthogonal projections. Hence, the model could always be dealt
with as if it had two variance components.

Our aim is to modify the variance component estimators obtained by Hender-
son’s method 3, in a two-way linear mixed model, i.e. a model with three variance
components of which two components corresponding to the two random effects in-
cluded in the model, and the third corresponds to the error component. Here, we
want to emphasize that we are primarily interested in one of the variance compo-
nents. We intend to modify this component and calculate its MSE. Thereafter, we
compare it with the MSE of the unmodified one. This modified variance component
estimator is expected to perform better in terms of the MSE criteria.

1.1 Quadratic forms

Estimation of variance components for balanced and unbalanced data are based on
quadratic forms Y ′AY where A is a symmetric matrix, and

Y ∼ N(µ,V ).

In particular the mean and the variance of Y ′AY are needed.

(i) The mean of Y ′AY , is equal to

E(Y ′AY ) = tr(AV )+ µ
′Aµ, (1)

which is true even if Y is not normally distributed.
(ii)the variance of Y ′AY is

D[Y ′AY ] = 2tr(AVAV )+4(µ
′AVAµ). (2)

(iii)If AV is idempotent, the distribution of Y ′AY is given by

Y ′AY ∼ χ
2(rA,

1
2

µ
′Aµ),
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where χ2(rA, 1
2 µ ′Aµ) is non-central chi-square distribution, with degrees of free-

dom equal to rA, i.e., the rank of A, and the non-centrality parameter 1
2 µ ′Aµ .

1.2 Important criteria for deriving estimators

Consider the following mixed linear model

Y = Xβ +Zu+ e, (3)

where Y is the N× 1 vector of observations, X is a known N×m matrix, β is an
m×1 vector of unknown fixed effect parameters, and e is an N×1 vector of random
error with mean 0 and dispersion matrix σ2

e IN . The term Zu given in model (3) is a
random term that can be partitioned conformably as

Zu =
[

Z1 Z2 . . . Zr
]


u1
u2
...

ur

=
r

∑
i=1

Ziui.

Thus, model (3) can be rewritten as

Y = Xβ +
r

∑
i=1

Ziui + e, (4)

where Zi is N× ni incidence matrix of known elements, ui is ni× 1 vector of ran-
dom effects, with zero mean value and dispersion matrix σ2

i Ini , i = 1, · · · ,r. Further
it is assumed that the ui and e are uncorrelated random variables. Then from (4),
E(Y ) = Xβ and the dispersion matrix V = D[Y ] = Σ r

i=1ZiZ′iσ
2
i +σ2

e IN . The param-
eters σ2

i and σ2
e are unknown. Since Zu and e are random effects, they can be com-

bined into one random term. Thus (4) can be rewritten as Y = Xβ + Σ r
i=0Ziui and

the dispersion matrix V= Σ r
i=0ZiZ′iσ

2
i , where u0 = e, σ2

0 = σ2
e and Z0 = IN .

To generalize the idea of estimating a single variance component, we consider es-
timating a linear function of the variance components, p0σ2

0 + p1σ2
2 + · · ·+ prσ

2
r ,

where pi are known, by a quadratic function Y ′AY of the random variable Y in (4).
The matrix A should be chosen according to some suitable criteria.

(i) Unbiasedness: If Y ′AY is unbiased for ∑
r
i=0 piσ

2
i for all σ2

i , then under the re-
striction X ′AX = 0,

E(Y ′AY ) = tr(AV ) =
r

∑
i=0

tr(AZiZ′i)σ
2
i =

r

∑
i=0

piσ
2
i . (5)

i.e., an unbiased estimator is obtained if pi = tr(AZiZ′i).



128 Razaw al Sarraj and Dietrich von Rosen

(ii)Translation Invariance: Y ′AY is translation invariant if it’s value is not affected
by any change in the fixed effect parameter for the model. If instead of β we
consider γ = β −β0 as the unknown parameter, where β0 is fixed. Then Y ′AY is
translation invariant if Y ′AY = (Y −Xγ)′A(Y −Xγ) for all γ . Thus AX = 0. Since
AX = 0 always implies X ′AX = 0, we also have the unbiasedness condition satis-
fied. However, the reverse is not true i.e., unbiasedness does not imply invariance
except when A is n.n.d..

(iii)Minimum Variance: The variance of Y ′AY under a normality assumption equals

D[Y ′AY ] = 2tr[AVAV ]+4β
′X ′AVAXβ . (6)

Under unbiasedness i.e., AX = 0, the variance reduces to

D[Y ′AY ] = 2tr[AVAV ].

The mean squared error, of Y ′AY equals

MSE[Y ′AY ] = D[Y ′AY ]+ [Bias(Y ′AY )]2. (7)

Using the condition for translation invariance AX = 0 and unbiasedness tr[AZiZ′i ] =
pi, equation (7) reduces to

MSE[Y ′AY ] = D[Y ′AY ] = 2tr[AVAV ].

Both (6) and (7), under unbiasedness and invariance reduce to 2tr(AVAV ).

1.3 ANOVA- based methods of estimation

This method is derived by equating the sums of squares in an analysis of variance
table to their expected values. Let σ2 be the vector of variance components to be
estimated in some model, and let s be a vector of sums of squares. Then taking the
expected value

E(s) = Cσ
2, (8)

where C is a non-singular matrix, the ANOVA estimator of σ̂2 is based on (8) and
is the solution to s = Cσ̂2, which equals

σ̂
2 = C−1s. (9)

The expression in (8) can be extended to include not only sums of squares but also
any set of quadratic forms. Let q = (q1,q2, · · · ,qm)′ be the m×1 vector of quadratic
forms such that

E(q) = Aσ
2, (10)
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where σ2 = (σ2
1 ,σ2

2 , . . . ,σ2
k )′ is the vector of k×1 variance components and A be-

ing an m×k matrix of known coefficients. Then, if m = k and A is non-singular, (10)
will give σ̂2 = A−1q as an unbiased estimator of σ2, as in (9). In cases when there
are more quadratic forms than there are variance components to estimate, the fol-
lowing formula gives an unbiased estimator: σ̂2 = (A′A)−1A′q, (see Searle, Casella
& McCulloch 1992).

2 Henderson’s three methods

Henderson (1953) presented in his paper three methods of estimation of variance
components, currently known as Henderson’s method 1, 2 and 3. This paper is con-
sidered to be the landmark work of dealing with the problem of estimation of vari-
ance components for unbalanced data. For balanced data, variances are usually esti-
mated using the minimum variance estimators based on the sums of squares, appear-
ing in the analysis of variance table. For unbalanced data the situation is different; it
is not always clear which mean squares should be used (see Searle 1971). Hender-
son’s methods are sometimes described as being three different ways of using the
general ANOVA-method (Searle 1987). They differ only in the different quadratics
(not always sums of squares), used for a vector of any linearly independent quadratic
forms of observations. All three methods involve calculations of mean squares, tak-
ing their expected values, equating them to the observed ones, and then solving the
resulting equations in order to obtain the variance component estimators. Some of
the merits of the methods is that they are easy to compute, they require no strong
distributional assumptions, and by construction these methods yield unbiased esti-
mators. However, the estimators can fall outside the parameter space, i.e., they can
become negative. Moreover, the estimators are not unique, because when there are
several random effects, the sums of squares for them can be computed in several
ways, i.e, corrected for several combinations of other effects. When data are bal-
anced, all three methods reduce to the usual ANOVA-method. For a review of all
three methods, see Searle (1968). In our work, we will be concentrating on Hender-
son’s method 3.

2.1 Method 3

This method can be used on mixed models with or without interactions. Instead of
the sums of squares that method 1 and 2 use, method 3 uses reductions in sums
of squares due to fitting sub-models of the full model, and then equating the re-
duced sums of squares to their respective expected values. The outcome will be a
set of linear estimation equations, which have to be solved in order to obtain the
variance component estimators. The drawback with this method is that sometimes
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more reduction sum of squares are available than necessary to estimate the variance
component estimators (see Searle 1987). In other words, occasionally more than
one set of estimating equations for the variance components can be computed for
one model. From each set we get different estimators of the variance components.
Which set of estimators to prefer is not clear, i.e., the variance component estima-
tors are not unique. We will consider the following two-way mixed model with no
interaction,

Y = Xβ +Z1u1 +Z2u2 + e, (full model) (11)

where β is the fixed parameter vector and u1, u2 are random effect parameters.
For this model there are three variance components to estimate, i.e., the variance
of the two random effects denoted by σ2

1 and σ2
2 respectively, and the third is the

error variance component denoted by σ2
e . We may obtain several sets of estimation

equations. The sub-models which may give estimation equations are,

Y = Xβ + e, (12)

Y = Xβ +Z1u1 + e, (13)

Y = Xβ +Z2u2 + e. (14)

Now we present some special notation for reduction sum of squares which was
used by Searle (1971, 1987). Let R(.) denote the reduction sum of squares. The
sum of squares used for estimation corresponding to the sub-models (12), (13) and
(14) can according to this notation be expressed as, R(β ), R(β ,u1) and R(β ,u2),
respectively. Another notation which will be needed before we write the possible set
of equations is R(./.) which is the reduction sum of squares due to fitting the full
model (11) minus that of the sub-model. For (11) two sets of estimation equations
may be considered  R(u1/β )

R(u2/β ,u1)
SSE

or

 R(u2/β )
R(u1/u2,β )

SSE

where SSE denotes the residual sum of squares. For the first set of estimation equa-
tions we define the following partitioned matrices: [X ] , [X ,Z1] and [X ,Z1,Z2]. Each
reduction R(./.) can be expressed in the form Y ′AY for some symmetric matrix A.
Define the projection matrix Pw=w(w′w)−w′. Thus Pw is an idempotent matrix, for
more properties see Schott (1997). Assuming normality all the reduction sum of
squares follow a non-central χ2 distribution and all these reduction sum of squares
are independent of each other and of SSE, see Searle (1987). We shall be using the
first set of estimation equation in the first part of the work. In the second part, i.e.,
in section 4, different reductions in sums of squares will be compared. For the first
set of equations we need to define the following projection matrices,

Px = X(X ′X)−X ′, (15)
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Px1 = (X ,Z1)((X ,Z1)′(X ,Z1))−(X ,Z1)′, (16)

Px12 = (X ,Z1,Z2)((X ,Z1,Z2)′(X ,Z1,Z2))−(X ,Z1,Z2)′. (17)

The reduction sums of squares R(./.) can now be obtained as.

R(u1/β ) = R(u1,β )−R(β )
= Y ′(Px1 −Px)Y,

R(u2/β ,u1) = R(β ,u1,u2)−R(β ,u1)
= Y ′(Px12 −Px1)Y,

and

SSE = Y ′(I−Px12)Y.

To apply the procedure, the expected values of the reduction sums of squares are
computed. Thereafter the expected values are to be equated to their observed val-
ues and by solving the obtained equations the variance components are obtained.
The expression for the expected value given in (1), can be used since the dispersion
matrix, denoted by V is V =σ2

1V1+σ2
2V2+σ2

e I, where V1=Z1Z′1 and V2=Z2Z′2. The fol-
lowing is obtained

E[R(u1/β )] = tr(Px1 −Px)[σ2
1V1 +σ

2
2V2 +σ

2
e I],

ER(u2/β ,u1) = tr(Px12 −Px1)[σ
2
1V1 +σ

2
2V2 +σ

2
e I],

and

E[SSE] = tr(I−Px12)[σ
2
1V1 +σ

2
2V2 +σ

2
e I].

The set of calculated reduction sum of squares may be arranged in a vector. There-
after by equating these expected values to the observed ones we get Y ′(Px1 −Px)Y

Y ′(Px12 −Px1)Y
Y ′(I−Px12)Y

= J

σ2
1

σ2
2

σ2
e

 ,

where

J =

 tr(Px1 −Px)V1 tr(Px1 −Px)V2 tr(Px1 −Px)I
tr(Px12 −Px1)V1 tr(Px12 −Px1)V2 tr(Px12 −Px1)I
tr(I−Px12)V1 tr(I−Px12)V2 tr(I−Px12)I

 .

Thus, the estimators of the variance components are
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1

σ̂2
2

σ̂2
e

= J−1

 Y ′(Px1 −Px)Y
Y ′(Px12 −Px1)Y
Y ′(I−Px12)Y

 .

However, since Px1V1 = V1, Px12V2 = V2 and Px12V1 = V1, the J matrix reduces to

J =

 tr(Px1 −Px)V1 tr(Px1 −Px)V2 tr(Px1 −Px)
0 tr(Px12 −Px1)V2 tr(Px12 −Px1)
0 0 tr(I−Px12)

 .

Let

A = (Px1 −Px), B = (Px12 −Px1), C = (I−Px12),
a = tr(Px1 −Px)V1, b = tr(Px12 −Px1)V2, c = tr(I−Px12),
d = tr(Px1 −Px)V2, e = tr(Px12 −Px1), f = tr(Px1 −Px)), (18)

we note that A, B and C are idempotent matrices. Using these notations the estima-
tion equations can be written as σ̂2

1
σ̂2

2
σ̂2

e

 = J−1

Y ′AY
Y ′BY
Y ′CY

 , (19)

The variance component estimator of σ2
1 , denoted by σ̂2

u1 is:

σ̂
2
u1 =

tr((Px12 −Px1)V2)tr(I−Px12)Y
′(Px1 −Px)Y

tr((Px1 −Px)V1)tr((Px12 −Px1)V2)tr(I−Px12)

−
tr((Px1 −Px)V2)tr(I−Px12)Y

′(Px12 −Px1)Y
tr((Px1 −Px)V1)tr((Px12 −Px1)V2)tr(I−Px12)

+
kY ′(I−Px12)Y

tr((Px1 −Px)V1)tr((Px12 −Px1)V2)tr(I−Px12)
, (20)

where k = tr((Px1 − Px)V2)tr(Px12 − Px1)− tr(Px1 − Px)tr((Px12 − Px1)V2). Equation
(20) simplifies to

σ̂
2
u1 =

Y ′(Px1 −Px)Y
tr((Px1 −Px)V1)

−
tr((Px1 −Px)V2)Y ′(Px12 −Px1)Y

tr((Px1 −Px)V1)tr((Px12 −Px1)V2)

+
kY ′(I−Px12)Y

tr((Px1 −Px)V1)tr((Px12 −Px1)V2)tr(I−Px12)
. (21)

Using the previous notations we can write σ̂2
u1 as

σ̂
2
u1 =

Y ′AY
a
− d(Y ′BY )

ab
+

k(Y ′CY )
abc

, (22)
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where A, B, C, b, c and e are defined as in (18). Despite the fact that in our study we
will focus on one of the variance components we also give the estimators of the two
other components which may be calculated from (19);

σ̂
2
u2

=
tr(I−Px12)Y

′(Px12 −Px1)Y
tr((Px12 −Px1)V2)tr(I−Px12)

−
tr(Px12 −Px1)Y

′(I−Px12)Y
tr((Px12 −Px1)V2)tr(I−Px12)

,

σ̂
2
e =

tr((Px1 −Px)V1)tr((Px12 −Px1)V2)Y ′(I−Px12)Y
tr((Px1 −Px)V1)tr((Px12 −Px1)V2)tr(I−Px2)

=
Y ′(I−Px12)Y

tr(I−Px12)
.

2.1.1 Mean Square Error of σ̂2
u1

The mean square of σ̂2
u1 equals its variance since σ̂2

u1 is an unbiased estimator,

MSE(σ̂2
u1) = D[σ̂2

u1] = D
[

Y ′AY
a
− d(Y ′BY )

ab
+

k(Y ′CY )
abc

]
=

1
a2 D[Y ′AY ]+

d2

a2b2 D[Y ′BY ]+
k2

a2b2c2 D[Y ′CY ]

=
2
a

tr[AV ]2 +
2d2

a2b2 tr[BV ]2 +
2k2

a2b2c2 tr[CV ]2, (23)

Moreover since all the involved quadratic forms are uncorrelated, V = σ2
1V1 +

σ2
2V2 +σ2

e I and the MSE equals

D[σ̂2
u1

] = A1 +A2 +A3, (24)

where

A1 =
2
a2 [tr(AV1AV1)σ4

1 +2tr(AV1AV2)σ2
1 σ

2
2 + tr(AV2AV2)σ4

2 +2tr(AV1A)σ2
1 σ

2
e

+2tr(AV2A)σ2
2 σ

2
e + tr(A2)σ4

e ],

A2 =
2d2

a2b2 [tr(BV1BV1)σ4
1 +2tr(BV1BV2)σ2

1 σ
2
2 + tr(BV2BV2)σ4

2 +2tr(BV1B)σ2
1 σ

2
e

+2tr(BV2B)σ2
2 σ

2
e + tr(B2)σ4

e ],

A3 =
2k2

a2b2c2 [tr(CV1CV1)σ4
1 +2tr(CV1CV2)σ2

1 σ
2
2 + tr(CV2CV2)σ4

2

+2tr(CV1C)σ2
1 σ

2
e +2tr(CV2C)σ2

2 σ
2
e + tr(C2)σ4

e ].

Thus, the following MSE is obtained:
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MSE(σ̂2
u1) =

[
2
a2 tr(AV1AV1)+

2d2

a2b2 tr(BV1BV1)+
2k2

a2b2c2 tr(CV1CV1)
]

σ
4
1

+
[

2
a2 tr(AV2AV2)+

2d2

a2b2 tr(BV2BV2)+
2k2

a2b2c2 tr(CV2CV2)
]

σ
4
2

+
[

4
a2 tr(AV1AV2)+

4d2

a2b2 tr(BV1BV2)+
4k2

a2b2c2 tr(CV1CV2)
]

σ
2
1 σ

2
2

+
[

4
a2 tr(A2V1)+

4d2

a2b2 tr(B2V1)+
4k2

a2b2c2 tr(C2V1)
]

σ
2
1 σ

2
e

+
[

4
a2 tr(A2V2)+

4d2

a2b2 tr(B2V2)+
4k2

a2b2c2 tr(C2V2)
]

σ
2
2 σ

2
e

+
[

2
a2 tr(A2)+

2d2

a2b2 tr(B2)+
2k2

a2b2c2 tr(C2)
]

σ
4
e ,

since tr(CV1) = 0, tr(CV2) = 0 and tr(BV1) = 0 . The above can be simplified to

MSE(σ̂2
u1) =

[
2
a2 tr(AV1AV1)

]
σ

4
1 +
[

2
a2 tr(AV2AV2)+

2d2

a2b2 tr(BV2BV2)
]

σ
4
2

+
[

4
a2 tr(AV1AV2)

]
σ

2
1 σ

2
2 +
[

4
a2 tr(A2V1)

]
σ

2
1 σ

2
e

+
[

4
a2 tr(AV2A)+

4d2

a2b2 tr(BV2B)
]

σ
2
2 σ

2
e

+
[

2
a2 tr(A2)+

2d2

a2b2 tr(B2)+
2k2

a2b2c2 tr(C2)
]

σ
4
e . (25)
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3 Perturbing Henderson’s equation

In this section, we modify the variance component estimators obtained by Hen-
derson’s method 3. This modification is carried out by perturbing the Henderson’s
estimation equation. Thus, the obtained variance component estimators are biased.
Thereafter, by using some suitable criterion, for instance, the MSE, we evaluate
the performance of the estimator by comparing it with the MSE of the unmodified
estimator. For the estimation equation (19), we define a new class of estimators c1Y ′AY

c1d1Y ′BY
c1d2Y ′CY

 = J

σ2
1

σ2
2

σ2
e

 (26)

where J is defined in section (2.1), and c1 ≥ 0, d1 and d2 are constants to be deter-
mined such that it would minimize the leading terms in the MSE of the estimator.
The resulting estimator will perform better in terms of MSE since c1 = d1 = d2 = 1
gives the same MSE. Thus, the modified variance component estimator of σ2

1 , de-
noted by σ̂2

11 is

σ̂
2
11 =

c1

a

(
Y ′AY − d

b
d1Y ′BY +

k
bc

d2Y ′CY
)

, (27)

where A, B, C, a, b, c and d are all defined in (18). The MSE of this modified
variance component is

MSE[σ̂2
11] = D[σ̂2

11]+ [E(σ̂2
11)−σ

2
1 ]2. (28)

Since now (19) is perturbed, the estimator is not unbiased, The variance in (27)
equals

D[σ̂2
11] =

c2
1

a2 D[Y ′AY ]+
d2c2

1d2
1

a2b2 D[Y ′BY ]+
k2c2

1d2
2

a2b2c2 D[Y ′CY ],

since D[σ̂2
11] has the same structure as (25). Hence the variance of the modified

estimator σ̂2
11 can be written

D[σ̂2
11] =

[
2c2

1
a2 tr(AV1AV1)

]
σ

4
1 +
[

2c2
1

a2 tr(AV2AV2)+
2d2c2

1d2
1

a2b2 tr(BV2BV2)
]

σ
4
2

+
[

4c2
1

a2 tr(AV1AV2)
]

σ
2
1 σ

2
2

+
[

4c2
1

a2 tr(A2V1)
]

σ
2
1 σ

2
e +
[

4c2
1

a2 tr(AV2A)+
4d2c2

1d2
1

a2b2 tr(BV2B)
]

σ
2
2 σ

2
e

+
[

2c2
1

a2 tr(A2)+
2d2c2

1d2
1

a2b2 tr(B2)+
2k2c2

1d2
2

a2b2c2 tr(C2)
]

σ
4
e . (29)
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Now we will calculate the bias part of (27), and thus the expectation of σ̂2
11 is

needed:

E[σ̂2
11] =

c1

a
E(Y ′AY )− dc1

ab
d1E(Y ′BY )+

c1kd2

abc
E(Y ′CY )

=
c1

a
tr[A(σ2

1V1 +σ
2
2V2 +σ

2
e I)]

− dc1d1

ab
tr[B(σ2

1V1 +σ
2
2V2 +σ

2
e I)]

+
c1kd2

abc
tr[C(σ2

1V1 +σ
2
2V2 +σ

2
e I)],

which can be simplified to

E[σ̂2
11] =

[
c1

a
tr(AV1)−

dc1d1

ab
tr(BV1)+

c1kd2

abc
tr(CV1)

]
σ

2
1

+
[

c1

a
tr(AV2)−

dc1d1

ab
tr(BV2)+

c1kd2

abc
tr(CV2)

]
σ

2
2

+
[

c1

a
tr(A)− dc1d1

ab
tr(B)+

c1kd2

abc
tr(C)

]
σ

2
e . (30)

Thus, the squared bias can be written

(E[σ̂2
11]−σ

2
1 )2 =

[(c1

a
tr(AV1)−1

)
σ

2
1 +
(

c1

a
tr(AV2)−

dc1d1

ab
tr(BV2)

)
σ

2
2

+
(

c1

a
tr(A)− dc1d1

ab
tr(B)+

c1kd2

abc
tr(C)

)
σ

2
e

]2

. (31)

If we substitute the variance and biased part back into (28), we get the following:

MSE(σ̂2
11) =

[
2c2

1
a2 tr(AV1AV1)

]
σ

4
1 +
[

4c2
1

a2 tr(AV1AV2)
]

σ
2
1 σ

2
2

+
[

2c2
1

a2 tr(AV2AV2)+
2d2c2

1d2
1

a2b2 tr(BV2BV2)
]

σ
4
2

+
[

4c2
1

a2 tr(A2V1)
]

σ
2
1 σ

2
e

+
[

4c2
1

a2 tr(A2V2)+
4d2c2

1d2
1

a2b2 tr(B2V2)
]

σ
2
2 σ

2
e

+
[

2c2
1

a2 tr(A2)+
2d2c2

1d2
1

a2b2 tr(B2)+
2k2c2

1d2
2

a2b2c2 tr(C2)
]

σ
4
e

+
[(c1

a
tr(AV1)−1

)
σ

2
u1 +

(
c1

a
tr(AV2)−

dc1d1

ab
tr(BV2)

)]
σ

2
2

+
[

c1

a
tr(A)− dc1d1

ab
tr(B)+

c1kd2

abc
tr(C)σ2

e

]2

. (32)
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We write the latter expression as below. First let

r =
c1

a
tr(AV2)−

dc1d1

ab
tr(BV2).

Rewriting it gives the following:

r =
c1d
a
− dc1d1

a
,

where from (18) we have tr(AV2) = d and tr(BV2) = b. Moreover, let

t =
c1

a
tr(A)− dc1d1

ab
tr(B)+

c1kd2

ab
. (33)

Hence, the following mean square error is obtained for the modified estimator σ̂2
u11:

MSE(σ̂2
11) =

[
2c2

1
a2 tr(AV1AV1)+(c1−1)2

]
σ

4
1

+
[

4c2
1

a2 tr(AV1AV2)+2(c1−1)r
]

σ
2
1 σ

2
2

+
[

2c2
1

a2 tr(AV2AV2)+
2d2c2

1d2
1

a2b2 tr(BV2BV2)+ r2
]

σ
4
2

+
[

4c2
1

a2 tr(A2V1)+2(c1−1)t
]

σ
2
1 σ

2
e

+
[

4c2
1

a2 tr(A2V2)+
4d2c2

1d2
1

a2b2 tr(B2V2)+2rt
]

σ
2
2 σ

2
e

+
[

2c2
1

a2 tr(A2)+
2d2c2

1d2
1

a2b2 tr(B2)+
2k2c2

1d2
2

a2b2c2 tr(C2)+ t2
]

σ
4
e . (34)

3.1 Mean square error comparison

In this section we compare the mean square errors of the modified σ̂2
11 and the

unmodified estimator σ̂2
u1, given by (34) and (25), respectively. We will investigate

if MSE(σ̂2
11) ≤MSE(σ̂2

u1). To do so we compare all coefficients of σ4
1 , σ4

2 and σ4
e

and all their cross combinations which appeared in (34) and (25). We will investigate
a number of inequalities. If they hold, then the coefficients of the modified estimator
σ̂2

11 are less than the coefficients of the unmodified one σ̂2
u1.

From the terms corresponding to σ4
1 in (34) and (25) it follows that we have to

investigate if
2c2

1
a2 tr(AV1AV1)+(c1−1)2 ≤ 2

a2 tr(AV1AV1). (35)
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From the terms corresponding to σ4
2 we obtain that

2c2
1

a2 tr(AV2AV2)+
2d2c2

1d2
1

a2b2 tr(BV2BV2)+ r2

≤ 2
a2 tr(AV2AV2)+

2d2

a2b2 tr(BV2BV2), (36)

should be studied, where r = ( c1d
a −

dc1d1
a ) and by assumption c1 > 0. Corresponding

to σ4
e we will study the inequality

2c2
1

a2 tr(A2)+
2d2c2

1d2
1

a2b2 tr(B2)+
2k2c2

1d2
2

a2b2c
+ t2

≤ 2
a2 tr(A2)+

2d2

a2b2 tr(B2)+
2k2

a2b2c
(37)

where k = dtr(B)−btr(A) and t is defined in (33).
Now the cross combination coefficients of (25) and (34) will be compared. We have
first the coefficients of σ2

1 σ2
2 .

4c2
1

a2 tr(AV1AV2)+2(c1−1)r ≤ 4
a2 tr(AV1AV2), (38)

where

(c1−1)r = (c1−1)(
c1d
a
− dc1d1

a
) =

d
a
(1−d1)(c2

1− c1).

Corresponding to σ2
1 σ2

e we investigate

4c2
1

a2 tr(A2V1)+2(c1−1)t ≤ 4
a2 tr(A2V1), (39)

where

(c1−1)t = (c1−1)
(

c1

a
tr(A)− dc1d1

ab
tr(B)+

c1kd2

ab

)
,

and A, defined in (18), is an idempotent matrix. Finally we also study the coefficients
corresponding to σ2

2 σ2
e ,

4c2
1

a2 tr(AV2)+
4d2c2

1d2
1

a2b2 tr(B2V2)+2rt ≤ 4
a2 tr(A2V2)+

4d2

a2b2 tr(B2V2), (40)

where
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2rt = 2
(

c1d
a
− dc1d1

a

)(
c1

a
tr(A)− dc1d1

ab
tr(B)+

c1kd2

ab

)
=

2c2
1d

a2 (1−d1)
(

tr(A)− dd1

b
tr(B)+

k
b

d2

)
.

In order to find appropriate values of c1, d1 and d2 we have chosen to minimize the
leading terms in (34), i.e., the terms that involve the coefficients of σ4

1 , σ4
2 and σ4

e ,
respectively. When minimizing the coefficient of σ4

1 in (34) the following equation
is obtained,

∂

∂c1

[
2c2

1
a2 tr(AV1AV1)+(c1−1)2

]
= 0,

with a solution given by

c1 =
1

2
a2 tr(AV1AV1)+1

. (41)

Moreover, minimizing the coefficient of σ4
2 gives

∂

∂d1

[
2c2

1
a2 tr(AV2AV2)+

2d2c2
1d2

1
a2b2 tr(BV2BV2)+

(
c1d
a
− dc1d1

a

)2
]

= 0,

which implies

d1 =
1

2
b2 tr(BV2BV2)+1

. (42)

Finally, when minimizing the coefficient of the error variance component σ4
e we

have to solve

∂

∂d2

[
c2

1
a2 tr(A2)+

2d2c2
1d2

1
a2b2 tr(B2)+

2k2c2
1d2

2
a2b2c

+
c2

1
a2 (tr(A))2− 2dc2

1d1

a2b
tr(A)tr(B)+

2c2
1kd2

a2b
tr(A)

−2dc2
1kd1d2

a2b2 tr(B)+
c2

1k2d2
2

a2b2 +
d2c2

1d2
1

a2b2 (tr(B))2
]

= 0.

The minimum is obtained when

d2 =
d
b d1tr(B)− tr(A)

( k
b )( 2

c +1)
. (43)

It has been verified that if c1, d1 and d2 satisfy the minimum of the coefficients
σ4

1 , σ4
2 and σ4

e , respectively, in equation (34). It follows that (35) and (36) hold for
the given values in (41) and (42), respectively. Concerning (37), omitting a2 and
simplifying, the left hand side can be written as
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c2
1tr(A)+

d2c2
1d2

1
b2 tr(B)+

k2c2
1d2

2
b2c

+
1
2

c2
1

(
tr(A)− d

b
d1tr(B)+

kd2

b

)2

. (44)

However, since c1 and d1 given by (41) and (42) respectively, are less than 1 it is
enough to study when

k2c2
1d2

2
b2c

+
1
2

c2
1

(
tr(A)− d

b
d1tr(B)+

kd2

b

)2

≤ k2

b2c
(45)

The following is obtained after substituting d2 defined in (43) into the left hand side
of (45)

k2c2
1

b2c
( d

b d1tr(B)− tr(A))2

( k
b )2( 2

c +1)2
+

c2
1

2

(
tr(A)− d

b
d1tr(B)+

k
b

d
b d1tr(B)− tr(A)

( k
b )( 2

c +1)

)2

(46)

which can be simplified to,

c2
1

(
d
b

d1tr(B)− tr(A)
)2 [ c

(2+ c)2 −
2

(2+ c)2

]
. (47)

Hence, for (37) to hold the following must be satisfied(
d
b

d1tr(B)− tr(A)
)2

≤
(

d
b

tr(B)− tr(A)
)2

. (48)

Therefore we have two cases to consider, either

tr(A)≤ d
b

d1tr(B), (49)

or

tr(A) >
d
b

d1tr(B), (50)

which have to be treated separately. If (49) holds, then (48) is always satisfied. If
instead (50) is true we will return one step and suppose d1 = 1. Then, obviously
(36) and (48) will hold. Observe that d1 = 1 means that we should not perturb (26)
with respect to d1.
Moreover, (38) is always satisfied since,

(c1−1)r =
d
a
(1−d1)(c2

1− c1)≤ 0. (51)

Concerning (39), we study the second term in the left hand side,

(c1−1)t = (c1−1)
(

c1

a
tr(A)− dc1d1

ab
tr(B)+

c1kd2

ab

)
.
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Substituting d2, defined in (43), yields

(c1−1)

(
c1

a
tr(A)− dc1d1

ab
tr(B)+

c1k
ab

d
b d1tr(B)− tr(A)

( k
b )( 2

c +1)

)
,

giving

1
a
(c2

1− c1)

(
tr(A)− dc1

b
d1tr(B)+

d
b d1tr(B)− tr(A)

2
c +1

)
.

Thus, for (39), we have from (18) that tr(AV1) = a which implies that (39) can be
written as

2c2
1

a
+

1
a
(c2

1− c1)

(
tr(A)− dc1

b
d1tr(B)+

d
b d1tr(B)− tr(A)

2
c +1

)
≤ 2

a
.

Hence, if (49) is true (39) will hold if

2c2
1 +(c2

1− c1)
(

tr(A)− d
b

d1tr(B)
)(

2
2+ c

)
≤ 2, (52)

and we obtain the additional condition

tr(A)≥ d
b

d1tr(B)− (2+ c)(1+ c1)
c1

. (53)

If (50) holds, then it’s obvious that (53) will be true. Finally, we check the inequality
(40). Since from (18) we have tr(AV2) = d and tr(BV2) = b we rewrite (40) as

4c2
1d

a2 +
4d2c2

1d2
1

a2b2 +
2c2

1d
a2 (1−d1)

(
tr(A)− dd1

b
tr(B)+

k
b

d2

)
≤ 4d

a2 +
4d2

a2b
.

It is enough to investigate the third term in the left hand side:

c2
1d
a2 (1−d1)

(
tr(A)− dd1

b
tr(B)+

k
b

d2

)
.

As previously, after substituting d2 and omitting identical terms from both sides,
(40) can be written as,

2c2
1 +

2dc2
1d2

1
b

+ c2
1(1−d1)

(
tr(A)− d

b
d1tr(B)

)(
2

2+ c

)
≤ 2+

2d
b

. (54)

Thus, (40) is satisfied under (49). Moreover, if d1 = 1 as assumed if (50) holds, then
(40) is also valid. The above results can be summarized in the following proposition
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Proposition 1 Let the variance component estimator corresponding to the first ran-
dom effect σ̂2

u1 in the model defined in (11) be modified as in (27), where c1, d1 and
d2 are chosen as in (41), (42) and (43), respectively. Then (35)– (40) are sufficient
conditions for MSE(σ̂2

11)≤MSE(σ̂2
u1).

Moreover, for the two cases that emerged from (48) we have the following theo-
rem
Theorem 1 Given the model defined in (11), let MSE(σ̂2

u1) be the mean square er-
ror of the unmodified estimator given in (25) and let MSE(σ̂2

11) be the mean square
error of the modified estimator given in (34).

(i) If (49) and (53) hold, MSE(σ̂2
11)≤MSE(σ̂2

u1).
(ii)If (50) and d1 = 1, MSE(σ̂2

11)≤MSE(σ̂2
u1).

4 Conclusion

The problem of modifying the variance component estimator obtained by using
Henderson’s method 3, has been the focus of our work.

För a two-way linear mixed model, consisting of three variance components, σ2
1 ,

σ2
2 , and σ2

e , we have perturbed the Henderson’s estimation equations. The main
aim, was to modify the standard unbiased estimator, corresponding to one of the
random effects, by multiplying the estimator with some coefficients that are chosen
to minimize the leading terms σ2

1 , σ2
2 , and σ2

e in the mean square error equation.
Two modified variance component estimators are proposed; each appropriate un-
der certain given conditions. Our proposed estimators are easy to compute and have
smaller MSE than the unmodified one. Moreover, the conditions under which each
of the proposed estimators are valid, are easy to investigate. For instance, in practi-
cal application if the unbiasedness condition is not of major concern, our proposed
estimators should be considered.
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Introduction

Regions on the genome known to affect continuous

traits are called quantitative trait loci (QTL). In ani-

mal experimental data, breeds that are expected to

differ genetically are crossed. These data are com-

monly analysed using a simple regression model that

assumes no genetic variation in QTL between indi-

viduals of the same breed (Haley and Knott 1992;

Broman 1997). Animal breeds are known to vary

genetically, and the within-breed variation may be

modelled as a random effect (Perez-Enciso and

Varona 2000; Rönnegård et al. 2008). The variance

component estimation can be extremely computa-

tionally demanding because the model is fitted at

every tested location (often >1000) on the genome.

In a variance component QTL analysis, all the ped-

igree founders are assumed unrelated to genes ran-

domly sampled from an outbred population (see

Rönnegård et al. 2008 for models with related

founders). Here, the QTL effects are modelled as a

random effect in a mixed linear model (Goldgar

1990; Blangero et al. 2001). The variance compo-

nents of this model have so far been estimated using

iterative maximum likelihood-based algorithms. The

two most commonly used methods are maximum

likelihood estimation with Fisher’s scoring (see, e.g.

Pawitan 2001) and restricted maximum likelihood

(REML) estimation with average information REML

(Johnson and Thompson 1995) that combines New-

ton method and Fisher’s scoring. The power to

detect QTL is considerably higher in controlled ani-

mal crosses than in, e.g. human data. The computa-

tional demands are lower in human data, where

many small and independent families are analysed,

than in animal crosses, where most animals are

related in a single pedigree. Numerical methods to

speed up the variance component estimation using

REML in animal crosses with a small number of

founders have recently been developed (Rönnegård
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components.
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Summary

In variance component quantitative trait loci (QTL) analysis, a mixed

model is used to detect the most likely chromosome position of a QTL.

The putative QTL is included as a random effect and a method is needed

to estimate the QTL variance. The standard estimation method used is

an iterative method based on the restricted maximum likelihood

(REML). In this paper, we present a novel non-iterative variance com-

ponent estimation method. This method is based on Henderson’s

method 3, but relaxes the condition of unbiasedness. Two similar esti-

mators were compared, which were developed from two different parti-

tions of the sum of squares in Henderson’s method 3. The approach was

compared with REML on data from a European wild boar · domestic

pig intercross. A meat quality trait was studied on chromosome 6 where

a functional gene was known to be located. Both partitions resulted in

estimated QTL variances close to the REML estimates. From the non-

iterative estimates, we could also compute good approximations of the

likelihood ratio curve on the studied chromosome.

J. Anim. Breed. Genet. ISSN 0931-2668
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et al. 2007), but the REML estimation is still very

computationally demanding and depends on good

initial values in the iterative procedure to converge

within a limited number of iterations.

Henderson (1953) developed non-iterative meth-

ods that gives unbiased variance component estima-

tors. In our paper, we will concentrate on

Henderson’s method 3, which allows for fixed, ran-

dom and interaction effects in the model. A problem

with this method is that the estimates can assume

negative values and the properties of the estimators

are inferior to REML. For a balanced linear mixed

model, Kelly and Mathew (1993) improved the

unbiased anova estimator such that the resulting

estimator had smaller MSE and smaller probability

of negativity than the anova estimator. Kelly and

Mathew (1994) presented several non-negative esti-

mators for mixed models with unbalanced data. The

models they considered consisted of two variance

components, where one of the components is the

error variance and the other variance component is

the parameter of interest. If additional variance com-

ponents were to be included in their model then

these were treated as nuisance parameters and were

deleted from the model by orthogonal projections.

Following the ideas of Kelly and Mathew (1993,

1994), for mixed models with three variance compo-

nents Henderson’s method 3 has been improved by

Al-Sarraj and von Rosen (2007). The variance com-

ponent estimator corresponding to the QTL was

modified such that the leading terms of the MSE

were minimized.

The aim of this study was to test the utility of

modified Henderson’s 3 estimates in a QTL study.

Two modified estimators based on Henderson’s

method 3 are compared; all the variance compo-

nents are included in the first estimator, whereas the

second estimator includes only two variance compo-

nents, i.e. the model is reduced by a suitable linear

transformation (following Kelly and Mathew 1993).

The methods are tested on data from an experimen-

tal cross between wild and domestic pigs. The esti-

mates are also compared with REML estimates

obtained from the same data.

Materials and methods

QTL variance component model

The aim of a QTL analysis is to detect regions most

likely to harbour genes affecting the trait studied. In

the data set that we analyse, the functional halo-

thane gene has previously been identified, which

means that we know the position and can compare

estimated position from our QTL analysis with the

true position.

We use a variance component model in our QTL

analysis. Let Y be the n · 1 trait vector that may also

be influenced by fixed effects such as sex, age, etc.

Moreover, the correlation between trait values is

often affected by common family environments.

Hence, this can be represented by the following

mixed linear model

Y ¼ Xbþ Z1u1 þ Z2u2 þ e; ð1Þ

where Y is multivariate normal, b is a c · 1 vector of

fixed effects and X is a known n · c design matrix.

The first random effect of Eqn (1), u1, is an m · 1

vector of independently normally distributed base

generation allele effects, i.e. u1 � MVNð0; 1
2 r2

1IÞwhere

I is the identity matrix and r2
1 is the QTL genotypic

variance. The number of base generation alleles m

equals twice the number of base generation individ-

uals. The QTL genotypic value ti of individual i in

the base generation is the sum of the pair of QTL

allele effects at a specific position ti ¼ uk + uk+1,

where the QTL alleles are arbitrarily numbered k ¼
2i ) 1 in the base. Hence, by defining the variance

of the random QTL genotypic effects as r2
1, the vari-

ance of the QTL allele effects is 1
2 r2

1. The QTL alleles

are all assumed to be independent in the base gener-

ation, i.e. cov(ui,uj) ¼ 0 where i and j are different

indices for the m base alleles. Z1 is the n · m inci-

dence matrix giving the two base generation alleles

that have been inherited by a specific individual.

Furthermore, the second random effect represented

in Eqn (1) by u2 is the q · 1 vector of family effects,

u2 � MVNð0; Ir2
2Þ and Z2 is the corresponding n · q

incidence matrix. e is the n · 1 vector of random

error with e � MVNð0; Ir2
eÞ where r2

e is the error

variance. The variance–covariance matrix of Y is

therefore:

V ¼ 1
2 Z1Z 01r

2
1 þ Z2Z 02r

2
2 þ Ir2

e ð2Þ

where 0:5Z1Z 01 is the identity-by-descent (IBD)

matrix �. The flow of alleles through the pedigree is

generally not ambiguously known and has to be cal-

culated from genetic marker information. Instruc-

tions and algorithms for calculating � are found in

Fernando and Grossman (1989), Almasy and Blang-

ero (1998) and Goldgar (1990).

In our study, we used a deterministic method

(Pong-Wong et al. 2001) to calculate the IBD matrix

at every 5 cM along pig chromosome 6. Z1 was then

calculated from single-value decomposition of �.
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Modified Henderson’s method 3

In Henderson’s method 3, the mean squares associ-

ated with various anova tables are set equal to their

expectation, and estimates are obtained by solving

the resulting linear equations. The set of equations

are not uniquely defined as there are more reduc-

tion sums of squares than variance components. We

will study two cases which we will refer to as parti-

tion I and partition II. In partition I, all three vari-

ance components are included, whereas only r2
1 and

r2
e are included in partition II. The latter partitioning

is similar to the case studied by Kelly and Mathew

(1993). The variance component estimators obtained

from the two partitions are given in Appendix A.

Modified estimators are then obtained by perturbing

the standard estimator, such that the obtained esti-

mator has an MSE that is less than the unmodified

one (for details see Al-Sarraj and von Rosen 2007).

The modified estimator from partition I is given by:

where k ¼ tr((Px1 ) Px)V2)tr(Px12
) Px1) ) tr(Px1 ) Px)

tr((Px12
) Px1)V2). For partition II, a second set of

estimation equations are used, where the modified

estimator of r2
1 is

r̂2
1 ¼

c2Y 0ðPx12
� Px2ÞY

trðPx12
� Px2ÞV1

� c2e1 trðPx12
� Px2ÞY 0ðI � Px12

ÞY
trðPx12

� Px2ÞV1 trðI � Px12
Þ :

ð4Þ

The coefficients c1, d1 and d2 and the coefficients c2

and e1 that are involved in Eqns (3) and (4), respec-

tively, are chosen to minimize the MSE of r̂2
1. For

details of the two different estimation equations and

the involved coefficients, see Appendix A.

Data

A detailed description of the data is found in Knott

et al. (1998) and Lundström et al. (1995). In the

analysed F2 cross, two European wild boars were

mated to eight Large White sows. Four F1 boars

were then mated to 22 F1 sows, producing 191

recorded F2 offspring in 26 families. In our analysis,

we examined a meat quality trait (reflectance value,

EEL), which is affected by the halothane gene

located on chromosome 6 at position 80.4 cM. One

of the founder boars was heterozygote (HalN/Haln)

for this gene, whereas all other founders were

homozygotes (HalN/HalN) for the same allele. Fol-

lowing Knott et al. (1998), we included sex, litter

and slaughter weight as fixed effects in our analysis.

Family was included as random effect. Twenty-two

markers were genotyped on chromosome 6 at 0.0,

8.6, 36.6, 49.7, 50.5, 62.9, 79.2, 80.4, 83.7, 84.1,

84.8, 90.6, 95.4, 100.7, 101.9, 115.9, 116.7, 119.0,

120.2, 124.0, 127.0 and 170.9 cM.

Analysis

The standard method to analyse experimental inter-

crosses is a simple regression model (Haley and

Knott 1992), which assumes that there is a large

genetic variation between breeds and small variation

within breeds. The halothane gene would not have

been detected with this model (Andersson-Eklund

et al. 1998), because there was only one copy of the

Haln allele among the founders.

The variance component QTL model (1) was fitted

at every 5 cM. Variance components were estimated

using both non-modified and modified Henderson’s

method 3 with partitions I and II. These were com-

pared with REML estimates. REML gives both the

variance component estimates and a likelihood pro-

file curve along the chromosome. A likelihood ratio

was calculated at each position as: LR ¼ ) 2(l0 ) l1)

where l1 is the log-likelihood for Eqn (1) at a specific

position and l0 is the log-likelihood under the null

hypothesis of no QTL (i.e. for model (1) with

r2
1 ¼ 0). Approximations of the LR curve were cal-

culated by calculating the log-likelihood for r̂2
2 and

r̂2
e estimated under the null hypothesis and r̂2

1 esti-

mated with one of the modified Henderson’s estima-

tors. The approximated LR values were put equal to

0 for negative values of r̂2
1.

Results

Variance component estimates

A QTL scan was performed at every 5 cM along pig

chromosome 6 for the meat quality trait EEL. The

phenotype observations from the F2 individuals were

r̂2
1 ¼ c1

Y 0ðPx1 � PxÞY
trðPx1 � PxÞV1

� trðPx1 � PxÞV2d1Y 0ðPx12
� Px1ÞY

trðPx1 � PxÞV1 trðPx12
� Px1ÞV2

þ kd2Y 0ðI � Px12
ÞY

trðPx12�Px1
ÞV2 trðI � Px12

Þ

� �
: ð3Þ
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approximately normally distributed (Figure 1). The

REML and the two modified Henderson 3 estimators

of r2
1 were similar for most positions (Figure 2). The

estimates at the halothane gene (80 cM) for REML,

modified partition I and modified partition II, respec-

tively, were 4.96, 4.32 and 5.06. The modified parti-

tion I estimators resulted in slightly lower estimates

and the difference was the greatest at the right end of

the chromosome around 150 cM.

The non-modified partition I estimates tended to

be lower than the REML estimates, whereas the

non-modified partition II estimates tended to be

higher than the REML estimates (Figure 3). Hence,

we could not conclude which of the two partitions

that was the superior one.

Likelihood ratio curve

The LR curve, obtained from fitting the variance

component QTL model in Eqn (1) using REML,

showed a peak at 80 cM (Figure 4). This position

coincides with the location of the halothane gene.

The log-likelihood under the null hypothesis was

l0 ¼ )378.0, and the REML variance component

estimates of the family and residual effects were

r̂2
2 ¼ 0:94 and r̂2

e ¼ 17:6.

Approximated LR curves were calculated for both

the modified partition I and II estimates of the QTL

variance, which gave good approximations of the

correct LR curve (Figure 4).

For positions with low LR values the uncertainty

in the VC estimates are large. Consequently, the var-

iation between the VC estimators in Figure 2

increases when we move away from the QTL posi-

tion.

Discussion

We have tested a new non-iterative variance compo-

nent estimation method on a QTL chromosome scan
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Figure 1 Q-Q-plot of the F2 individuals’ meat quality (EEL) values from

the studied Wild Boar x Domestic Pig intercross.
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Figure 2 Estimates of the QTL variance r2
1 along pig chromosome 6.

Solid line-REML estimates, dashed line-modified Partition I, dotted line

with bullets-modified Partition II.
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Figure 3 Non-modified estimators of the QTL variance r2
1 along pig

chromosome 6. Solid line-REML estimators, dashed line-Partition I, dot-

ted line with bullets-Partition II.
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of the meat quality trait EEL. The variance compo-

nent estimates differed substantially from REML esti-

mates at several chromosome positions, but they

were very close to the REML estimates at the QTL

position. Moreover, the likelihood ratio curve could

be very well approximated from our non-iterative

VC estimators. Our method would also have given

the same estimated position of the halothane gene

as REML.

The large computational requirements of iterative

REML algorithms are a major concern in QTL analy-

sis (Rönnegård et al. 2007) and limits the analysis of

large data sets. Furthermore, as the cost for genotyp-

ing decreases, the size of the analysed pedigrees is

likely to increase in future, making full genome

scans computationally slow or even infeasible.

We present explicit solutions for QTL variance

estimation and our main focus has been on compar-

ing VC estimates. These explicit solutions opens up

new possibilities to develop fast and accurate QTL

genome scan methods. The most computationally

demanding part of the iterative REML algorithms is

to calculate the inverse of V in each iteration. In the

modified partition I method, for instance, the only

matrix inversions required are the generalized

inverses of (X,Z1,Z2)¢(X,Z1,Z2), (X,Z1)¢(X,Z1) and (X¢X)

in Px, Px1
and Px12

, see Appendix A. These

matrix inversions are relatively easy to optimize in

computational speed when there are few columns in

(X,Z1,Z2). The number of fixed effects are usually

small in QTL problems, and the rank of the IBD

matrices is either small or can be approximated with

lower rank matrices (Rönnegård and Carlborg 2007;

Rönnegård et al. 2007). We can, therefore, expect

that (X,Z1,Z2) has few columns. Hence, our method

should be easy to optimize numerically for two rea-

sons; it is non-iterative and does not involve inverses

of large matrices.

In conclusion, we have developed a novel method

for QTL analysis, which is simpler to calculate than

REML and gives better estimators than those

obtained from Henderson’s (1953) method.
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Appendix A: expressions for the reduction sum of

squares needed for Henderson’s method 3

To estimate the VC, we define the following matrices

[X], [X,Z1] and [X,Z1,Z2]. The corresponding projec-

tion matrices are

Px ¼ XðX0XÞ�X0

Px1
¼ ðX;Z1ÞððX;Z1Þ0ðX;Z1ÞÞ�ðX;Z1Þ0

Px12
¼ ðX;Z1;Z2ÞððX;Z1;Z2Þ0ðX;Z1;Z2ÞÞ�ðX;Z1;Z2Þ0

where ) represents the g-inverse AA)A ¼ A. The

first set of estimation equation partition I are

based on the following quadratic forms and their

expectations:

Y 0ðPx1
� PxÞY

Y 0ðPx12
� Px1

ÞY
Y 0ðI � Px12

ÞY

0
@

1
A ¼ E

Y 0ðPx1
� PxÞY

Y 0ðPx12
� Px1

ÞY
Y 0ðI � Px12

ÞY

0
@

1
A

which gives a set of equations:

Y 0ðPx1
� PxÞY

Y 0ðPx12
� Px1

ÞY
Y 0ðI � Px12

ÞY

0
@

1
A ¼ J

r2
u1

r2
u2

r2
ue

0
@

1
A

where the elements in the matrix J are traces of

matrix products.

The VC estimates for Henderson’s method are then

obtained as:

r̂2
u1

r̂2
u2

r̂2
ue

0
@

1
A ¼ J�1

Y 0ðPx1
� PxÞY

Y 0ðPx12
� Px1

ÞY
Y 0ðI � Px12

ÞY

0
@

1
A

The modified estimates are obtained from:

r̂2
u1

r̂2
u2

r̂2
ue

0
@

1
A ¼ J�1

c1Y 0ðPx1
� PxÞY

c1d1Y 0ðPx12
� Px1

ÞY
c1d2Y 0ðI � Px12

ÞY

0
@

1
A

For the second set of estimation equations, we

need to define [X,Z2] and the corresponding projec-

tion matrix

Px2
¼ ðX;Z2ÞððX;Z2Þ0ðX;Z2ÞÞ�ðX;Z2Þ0

The second set of estimation equations partition II

are based on the following quadratic forms and their

expectations:

Y 0ðPx12
� Px2

ÞY
Y 0ðI � Px12

ÞY

� �
¼ E

Y 0ðPx12
� Px2

ÞY
Y 0ðI � Px12

ÞY

� �

which gives a set of equations:

Y 0ðPx12
� Px2

ÞY
Y 0ðI � Px12

ÞY

� �
¼ K

r2
u1

r2
ue

� �

where the elements in the matrix K are traces of

matrix products.

The modified estimates for partition II are obtained

from:

r̂2
u1

r̂2
ue

� �
¼ K�1 c2Y 0ðPx12

� Px2
ÞY

e1Y 0ðI � Px12
ÞY

� �

The coefficients c1,d1 and d2 minimizing the mean

square error of Eqn (3) are
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c1 ¼
1

2
½trðPx1�PxÞV1�2

½trðPx1 � PxÞV1ðPx1 � PxÞV1� þ 1
;

d1 ¼
1

2
½trðPx12

�Px1ÞV2�2
½trðPx12

� Px1ÞV2ðPx12
� Px1ÞV2� þ 1

;

d2 ¼
ðtrðPx1�PxÞV2Þ
trðPx12�Px1ÞV2

d1trðPx12
� Px1Þ � trðPx1 � PxÞ

k
trðPx12�Px1ÞV2

h i
2

trðI�Px12 Þ
þ 1

h i :

where V1 ¼ Z1Z 01 and V2 ¼ Z2Z 02. For details and

calculations see Al-Sarraj and von Rosen (2007).

Now for the coefficients that are involved in parti-

tion II, i.e. c2 and e1 we refer to Kelly and Mathew

(1994). However, we have calculated the values

such that they would be appropriate for the second

set of estimation equations partition II,

c2 ¼
1

2
½trðPx12

�Px2ÞV1�2
½trðPx12

� Px2ÞV1 trðPx12
� Px2ÞV1�

;

e1 ¼
1

2
trðI�Px12

Þ þ 1
:
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Abstract
This article derives generalized prediction intervals for random effects in linear

random-effects models. For balanced and unbalanced data in two-way layouts, mod-

els are considered with and without interaction. Coverage of the proposed generalized

prediction intervals was estimated in a simulation study based on an agricultural field

experiment. Generalized prediction intervals were compared with prediction intervals

based on the restricted maximum likelihood (REML) procedure and the approximate

methods of Satterthwaite and Kenward and Roger. The simulation study showed that

coverage of generalized prediction intervals was closer to the nominal level 0.95 than

coverage of prediction intervals based on the REML procedure.

K E Y W O R D S
generalized prediction intervals, random effects, random models, REML

1 INTRODUCTION

Random-effects models are extensively used in many areas of research. The models consist of a single fixed intercept and

independently normally distributed random effects. Analyzing these models requires estimating not only the variance component

due to residual error, but also the variance components due to the random effects. For this problem, an array of ANOVA and

likelihood-based variance component estimation methods are available (Searle, Casella, & McCulloch, 1992). The random

effects are predicted by the best linear unbiased predictions (BLUPs), which can be obtained from the so called mixed model

equations (Henderson, 1953). The BLUPs are characterized by the shrinkage property (James & Stein, 1961), which results in

treatment means that are shrunk toward the overall mean. As a consequence, BLUP gives smaller mean squared error (MSE)

than best linear unbiased estimation (BLUE), which is used when effect are assumed to be fixed. For prediction of a specific

treatment mean, BLUP utilizes all available data, while BLUE uses only the observations of the specific treatment. For a thorough

explanation of the advantages of BLUP, see Robinson (1991).

Forkman and Piepho (2013) showed that in analysis of randomized complete block experiments, it is preferable to model

effects of treatments as random in order to minimize mean square error in prediction of differences between treatment means.

This applies also when the number of blocks and experimental treatments are small and estimates of variances are uncertain.

Their result suggests that random-effects models are useful for analysis of agricultural field experiments. However, they noted

that when the between-treatments variance was estimated to be zero, prediction intervals for treatment effects degenerate at

zero using maximum-likelihood methods. In small experiments or when there are many variance components, zero-estimates

of variance components are common, so this is a major drawback from a practical point of view. When treatment effects are

estimated to be zero, this indicates that the null hypothesis of no treatment effects is true. However, we may still want to compute

prediction intervals for the treatment effects.

To account for drawbacks of standard inferential procedures, Tsui and Weerahandi (1989) and Weerahandi (1993) intro-

duced generalized pivotal quantities (GPQs) and generalized confidence intervals (GCIs). Many authors have used GPQs for

1242 © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Biometrical Journal. 2019;61:1242–1257.www.biometrical-journal.com
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hypotheses testing and interval estimation in analysis of experiments. For a one-way and two-way balanced layout, Weerahandi

(1991) developed GPQ tests for variance components that are equivalent to usual F-tests. Zhou and Mathew (1994) proposed

generalized 𝑃 -values in testing hypotheses regarding variance components in balanced-mixed models when exact F tests do

not exist. Ye and Wang (2009) computed and evaluated GCIs for intraclass correlation coefficients in a two-way random effects

model with interaction.

For an unbalanced nested model, Li and Wang (2011) proposed a method for testing functions of variance components using

generalized 𝑃 -values. Burdick, Quirozb, and Iyer (2006) provided GCIs for parameters in the one-way random-effects model, for

both balanced and unbalanced data. Iyer and Patterson (2002) and Hannig, Iyer, and Patterson (2006) provided general methods

for constructing GPQs and studied asymptotic properties. Wang, Hannig, and Iyer (2012) proposed, for several distributions, a

method to construct prediction intervals for future observations.

For the one-way random-effects model with balanced data: 𝑦𝑖𝑗 = 𝜇 + 𝑢𝑖 + 𝑒𝑖𝑗 , where 𝑖 = 1, ..., 𝑎 and 𝑗 = 1, ..., 𝑛, with 𝑢𝑖 ∼
𝑁(0, 𝜎2

𝐴
) and 𝑒𝑖𝑗 ∼ 𝑁(0, 𝜎2

𝑒
), Gamage, Mathew, and Weerahandi (2013) derived a generalized prediction interval (GPI) for

the predictor 𝜇 + 𝑘(�̄�1. − 𝜇), where 𝜇 is the overall mean, �̄�1. is the mean of the first treatment effect and 𝑘 is the shrinkage

factor: 𝑘 = 𝑛𝜎2
𝐴
∕(𝜎2

𝑒
+ 𝑛𝜎2

𝐴
). Yu, Zou, Carlsson, and Weerahandi (2015) considered the problem of nonnegative estimates of the

variance components and proposed a generalized estimate of the BLUP.

The aim of this article is to derive and introduce GPIs for 𝜇 + 𝑢1, 𝑢1, and 𝑢1 − 𝑢2, in random-effects models. We are particularly

interested in these quantities, since in analysis of experiments they represent the mean of the first treatment, the effect of the first

treatment, and the difference between the first and the second treatment, respectively. These factor levels are considered without

loss of generality.

In Section 2, we describe the new method and provide equations for balanced and unbalanced one-way and two-way layouts.

Section 3 reviews other methods for computing prediction intervals in random-effects models. In Section 4, through a simulation

study, we investigate performance of the methods. In Section 5, an agricultural field experiment exemplifies the method, followed

by a discussion in Section 6.

2 THE GENERALIZED PREDICTION INTERVAL METHOD FOR RANDOM
EFFECTS

The GPI method that is presented here can be used for any linear combination of the intercept and the random effects. Sec-

tions 2.1–2.6 consider six different one-way and two-way random-effects models. In these models, 𝜇 + 𝑢1, 𝑢1, and 𝑢1 − 𝑢2 may,

depending on the context, correspond to a treatment mean, a treatment effect and a difference between two treatment effects,

respectively. These are the linear combinations that we will focus on, as they are important in analysis of experiments. For the

computation of GPIs for 𝜇 + 𝑢1, 𝑢1, and 𝑢1 − 𝑢2, our proposed method can be described as follows:

(i) Derive the joint bivariate normal distributions of (𝜇 + 𝑢1, 𝑌1.), (𝑢1, 𝑌1. − 𝑌..), and (𝑢1 − 𝑢2, 𝑌1. − 𝑌2.), where 𝑌1., 𝑌1. − 𝑌..

and 𝑌1. − 𝑌2. are averages specified in Sections 2.1–2.6. The joint distributions are provided in Appendix A.1.

(ii) Derive the conditional distributions of (𝜇 + 𝑢1|𝑌1.), (𝑢1|𝑌1. − 𝑌..), and (𝑢1 − 𝑢2|𝑌1. − 𝑌2.), following Appendix A.2. With

regard to each of the models considered in Sections 2.1–2.6, the shrinkage factors needed for the computations are provided

in Appendix A.3.

(iii) Construct GPQs for the expected value and the variance components (Tsui & Weerahandi, 1989; Burdick, Borror, & Mont-

gomery, 2005).

(iv) Substitute the GPQs for the parameters in the conditional normal distributions obtained in (ii).

(v) Sample from the conditional distribution. For each sample, use new independent samples of the GPQs.

(vi) The limits of the 1 − 𝛼 GPIs are the 100(𝛼∕2)th and 100(1 − 𝛼∕2)th percentiles of the empirical distributions obtained

in (v).

2.1 One-way random-effects model, balanced data
Consider the model

𝑌𝑖𝑗 = 𝜇 + 𝑢𝑖 + 𝑒𝑖𝑗 , 𝑖 = 1,… , 𝑎; 𝑗 = 1,… , 𝑛, (1)
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where 𝑢𝑖 ∼ 𝑁(0, 𝜎2
𝐴
) and 𝑒𝑖𝑗 ∼ 𝑁(0, 𝜎2

𝑒
) independently distributed. Let �̄�𝑖. =

∑𝑛

𝑗=1 𝑦𝑖𝑗∕𝑛 and �̄�.. =
∑𝑎

𝑖=1 �̄�𝑖.∕𝑎, where 𝑦𝑖𝑗 is a

realized value, that is, an observation of 𝑌𝑖𝑗 . In the context of an experiment, 𝑎 is the number of treatments, and 𝑛 is the number

of observations per treatment. The BLUP of 𝑢1 is given by 𝑘(�̄�1. − �̄�..), where 𝑘 = 𝑛𝜎2
𝐴
∕(𝜎2

𝑒
+ 𝑛𝜎2

𝐴
) is the shrinkage factor.

The variance components are usually estimated using the maximum likelihood method or the restricted maximum likelihood

(REML) method (Patterson & Thompson, 1971). Denote the sum of squares by 𝑥𝐴 and 𝑥𝐸 , where 𝑥𝐴 = Σ𝑖Σ𝑗(�̄�𝑖. − �̄�..)2 and

𝑥𝐸 = Σ𝑖Σ𝑗(𝑦𝑖𝑗 − �̄�𝑖.)2. The statistics 𝑥𝐴 and 𝑥𝐸 are realized values of the random variables 𝑋𝐴, and 𝑋𝐸 , respectively.

Let 𝑈𝐴 = 𝑋𝐴∕(𝜎2
𝑒
+ 𝑛𝜎2

𝐴
), 𝑈𝐸 = 𝑋𝐸∕𝜎2

𝑒
and 𝑍 = (𝑌.. − 𝜇)∕

√
𝑉 𝑎𝑟(𝑌..), where 𝑌.. =

∑𝑎

𝑖=1 𝑌𝑖.∕𝑎, 𝑌𝑖. =
∑𝑛

𝑗=1 𝑌𝑖𝑗∕𝑛 and

Var(𝑌..) = 𝜎2
𝐴
∕𝑎 + 𝜎2

𝑒
∕𝑎𝑛. Then 𝑈𝐴 ∼ 𝜒2

𝑎−1, 𝑈𝐸 ∼ 𝜒2
𝑎(𝑛−1) and 𝑍 ∼ 𝑁(0, 1). When replacing the random variables 𝑋𝐴, 𝑋𝐸 ,

and 𝑌.. by their observed values 𝑥𝐴, 𝑥𝐸 , and �̄�.., respectively, the following GPQs are obtained:

𝐺
(
𝜎2
𝐴

)
=

𝑥𝐴

𝑛𝑈𝐴

−
𝑥𝐸

𝑛𝑈𝐸

, (2)

𝐺
(
𝜎2
𝑒

)
=

𝑥𝐸

𝑈𝐸

, (3)

𝐺(𝜇) = �̄�.. −𝑍

√
𝐺
(
𝜎2
𝐴

)
𝑎

+
𝐺
(
𝜎2
𝑒

)
𝑎𝑛

. (4)

We now show how GPIs can be computed for 𝜇 + 𝑢1, 𝑢1, and 𝑢1 − 𝑢2 in model (1), using the proposed method. The joint

distributions are provided in Appendix A.1. Substituting (2), (3), and (4) for 𝜎2
𝐴

, 𝜎2
𝑒
, and 𝜇, respectively, and applying the

equations of Appendix A.2 the following conditional distributions are obtained:

(𝜇 + 𝑢1)|�̄�1. ∼ 𝑁(𝐺(𝜇) + �̂�11(�̄�1. − 𝐺(𝜇)), max(0, �̂�11𝐺
(
𝜎2
𝑒

)
∕𝑛)), (5)

𝑢1|(�̄�1. − �̄�..) ∼ 𝑁(�̂�11(�̄�1. − �̄�..), max(0, 𝐺
(
𝜎2
𝐴

)
(1 − �̂�11(𝑎 − 1)∕𝑎))), (6)

(𝑢1 − 𝑢2)|(�̄�1. − �̄�2.) ∼ 𝑁(�̂�11(�̄�1. − �̄�2.), max(0, 2�̂�11𝐺
(
𝜎2
𝑒

)
∕𝑛)), (7)

where the shrinkage factor �̂�11 is specified in Appendix A.3. GPIs are easily obtained through simulation of these conditional

distributions. For each sample of the conditional distributions, new independent samples of 𝐺
(
𝜎2
𝐴

)
, 𝐺

(
𝜎2
𝑒

)
, and 𝐺(𝜇) are used

for the computation of the expected values and variances. The limits of the 1 − 𝛼 GPIs are the 100(𝛼∕2)-th and 100(1 − 𝛼∕2)-th
percentiles of the obtained empirical distributions.

2.2 One-way random-effects model, unbalanced data
When the one-way layout is unbalanced, that is, when the data has unequal cell frequencies, 𝑖 = 1,… , 𝑎; 𝑗 = 1,… , 𝑛𝑖, let

�̄�𝑖. =
∑𝑛𝑖

𝑖=1 𝑦𝑖𝑗∕𝑛𝑖 and �̄�.. =
∑𝑎

𝑖=1 �̄�𝑖.∕𝑎 be observations of 𝑌𝑖. =
∑𝑛𝑖

𝑖=1 𝑌𝑖𝑗∕𝑛𝑖 and 𝑌.. =
∑𝑎

𝑖=1 𝑌𝑖.∕𝑎, respectively. Further, 𝑌𝑖. ∼
𝑁(𝜇, 𝜎2

𝐴
+ 𝜎2

𝑒
∕𝑛𝑖) and 𝑌.. ∼ 𝑁(𝜇, (𝜎2

𝐴
∕𝑎 + 𝜎2

𝑒
∕𝑎�̃�ℎ)), where �̃�ℎ = 𝑎∕

∑
𝑖(1∕𝑛𝑖) is the harmonic mean of the cell frequencies.

The error and treatment sum of squares are 𝑋𝐸 =
∑𝑎

𝑖=1
∑𝑛𝑖

𝑗=1(𝑌𝑖𝑗 − 𝑌𝑖.)2 and 𝑋𝐴 = �̃�ℎ

∑𝑎

𝑖=1(𝑌𝑖. − 𝑌..)2, respectively.

The GPQs, 𝐺
(
𝜎2
𝐴

)
, 𝐺

(
𝜎2
𝑒

)
, and 𝐺(𝜇) are defined as in Section 2.1, but �̃�ℎ is used instead of 𝑛. In this case, 𝑈𝐴 ∼ 𝜒2

𝑎−1 approx-

imately, however, 𝑈𝐴 is not independent of 𝜎2
𝐴

and 𝜎2
𝑒
, (Thomas & Hultquist, 1978). From the joint densities of Appendix A.1,

the following conditional densities are derived:

(𝜇 + 𝑢1)|�̄�1. ∼ 𝑁(𝐺(𝜇) + �̂�21(�̄�1. − 𝐺(𝜇)), max(0, �̂�21𝐺
(
𝜎2
𝑒

)
∕𝑛1)), (8)

𝑢1|(�̄�1. − �̄�..) ∼ 𝑁(�̂�22(�̄�1. − �̄�..), max(0, 𝐺
(
𝜎2
𝐴

)
(1 − �̂�22(𝑎 − 1)∕𝑎))), (9)

(𝑢1 − 𝑢2)|(�̄�1. − �̄�2.) ∼ 𝑁(�̂�23(�̄�1. − �̄�2.), max(0, 2𝐺
(
𝜎2
𝐴

)
(1 − �̂�23))), (10)

where 𝐺
(
𝜎2
𝐴

)
, 𝐺

(
𝜎2
𝑒

)
, and 𝐺(𝜇) were substituted for 𝜎2

𝐴
, 𝜎2

𝑒
, and 𝜇, respectively.

2.3 Two-way random-effects model without interaction, balanced data
Consider the model

𝑌𝑖𝑗 = 𝜇 + 𝑢𝑖 + 𝑏𝑗 + 𝑒𝑖𝑗 ; 𝑖 = 1,… , 𝑎; 𝑗 = 1,… , 𝑏, (11)
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where 𝑢𝑖 ∼ 𝑁(0, 𝜎2
𝐴
) are treatment effects, 𝑏𝑗 ∼ 𝑁(0, 𝜎2

𝑏
) are block effects, and 𝑒𝑖𝑗 ∼ 𝑁(0, 𝜎2

𝑒
) are residual error effects. Let 𝑌𝑖. =∑𝑏

𝑗=1 𝑌𝑖𝑗∕𝑏 and 𝑌.. =
∑𝑎

𝑖=1
∑𝑏

𝑗=1 𝑌𝑖𝑗∕(𝑎𝑏). Then 𝑌.. ∼ 𝑁(𝜇, 𝜎2
𝐴
∕𝑎 + 𝜎2

𝑏
∕𝑏 + 𝜎2

𝑒
∕(𝑎𝑏)). The sums of squares, denoted by 𝑥𝐴, 𝑥𝐵 ,

and 𝑥𝐸 are realized values of 𝑋𝐴, 𝑋𝐵 , and 𝑋𝐸 , respectively. Let 𝑈𝐴 = 𝑋𝐴∕(𝜎2
𝑒
+ 𝑏𝜎2

𝐴
), 𝑈𝐵 = 𝑋𝐵∕(𝜎2

𝑒
+ 𝑎𝜎2

𝑏
), 𝑈𝐸 = 𝑋𝐸∕𝜎2

𝑒
,

and 𝑍 = (𝑌.. − 𝜇)∕
√

𝑉 𝑎𝑟(𝑌..), such that 𝑈𝐴 ∼ 𝜒2
𝑎−1, 𝑈𝐵 ∼ 𝜒2

𝑏−1, 𝑈𝐸 ∼ 𝜒2
(𝑎−1)(𝑏−1) and 𝑍 ∼ 𝑁(0, 1). Replacing 𝑋𝐴, 𝑋𝐵 , 𝑋𝐸 ,

and 𝑌.. by their realized values, the following GPQs are obtained:

𝐺
(
𝜎2
𝐴

)
=

𝑥𝐴

𝑏𝑈𝐴

−
𝐺(𝜎2

𝑒
)

𝑏
, (12)

𝐺(𝜎2
𝑏
) =

𝑥𝐵

𝑎𝑈𝐵

−
𝐺
(
𝜎2
𝑒

)
𝑎

, (13)

𝐺
(
𝜎2
𝑒

)
=

𝑥𝐸

𝑈𝐸

, (14)

𝐺(𝜇) = �̄�.. −𝑍
√

𝑉 𝑎𝑟(�̄�..). (15)

Let �̄�𝑖. be the mean of the 𝑖-th treatment, and �̄�.. the overall mean. The joint densities in Appendix A.1 are used to obtain the

conditional distributions of 𝜇 + 𝑢1, 𝑢1, and 𝑢1 − 𝑢2. When the parameters 𝜎2
𝐴

, 𝜎2
𝑏
, 𝜎2

𝑒
, and 𝜇 are replaced by their corresponding

GPQs (12)–(15), these distributions can be written:

(𝜇 + 𝑢1)|�̄�1. ∼ 𝑁(𝐺(𝜇) + �̂�31(�̄�1. − 𝐺(𝜇)), max(0, 𝐺(𝜎2
𝐴
)(1 − �̂�31))), (16)

𝑢1|(�̄�1. − �̄�..) ∼ 𝑁(�̂�32(�̄�1. − �̄�..), max(0, 𝐺
(
𝜎2
𝐴

)
(1 − �̂�32(𝑎 − 1)∕𝑎))), (17)

(𝑢1 − 𝑢2)|(�̄�1. − �̄�2.) ∼ 𝑁(�̂�32(�̄�1. − �̄�2.), max(0, 2𝐺
(
𝜎2
𝐴

)
(1 − �̂�32))). (18)

2.4 Two-way random-effects model without interaction, unbalanced data
For the unbalanced case of model (11), that is, when 𝑖 = 1,… 𝑎, 𝑗 = 1… 𝑛𝑖, and 𝑁 =

∑𝑎

𝑖=1 𝑛𝑖, let �̄�𝑖. =
∑𝑛𝑖

𝑗=1 𝑦𝑖𝑗∕𝑛𝑖 and

�̄�.. =
∑𝑎

𝑖=1 �̄�𝑖.∕𝑎. Then 𝑉 𝑎𝑟(�̄�𝑖.) = 𝜎2
𝐴
+ 𝜎2

𝑏
∕𝑛𝑖 + 𝜎2

𝑒
∕𝑛𝑖. Let 𝑐𝑝𝑞 be the number of blocks that include both treatments 𝑝 and

𝑞. Thus 𝑐𝑝𝑞 = 𝑛𝑝 when 𝑝 = 𝑞, and the matrix 𝑐𝑝𝑞 is the concurrence matrix (John & Williams, 1995, p.21). If 𝑐𝑝𝑞 > 0, let

𝑑𝑝𝑞 = 1∕𝑐𝑝𝑞 , otherwise let 𝑑𝑝𝑞 = 0. Then 𝑉 𝑎𝑟(�̄�..) = 𝜎2
𝐴
∕𝑎 + 𝜎2

𝑏

∑𝑎

𝑝=1
∑𝑎

𝑞=1 𝑑𝑝𝑞∕𝑎2 + 𝜎2
𝑒
∕(𝑎�̃�ℎ), where �̃�ℎ is the harmonic mean

of 𝑛1,… , 𝑛𝑎. For the GPIs, the following random variables are defined: 𝑈𝐴 = 𝑋𝐴∕(𝜎2
𝑒
+ 𝑚𝑎𝜎

2
𝐴
), 𝑈𝐵 = 𝑋𝐵∕(𝜎2

𝑒
+ 𝑚𝑏𝜎

2
𝑏
),

𝑈𝐸 = 𝑋𝐸∕𝜎2
𝑒
, and 𝑍 = (𝑌.. − 𝜇)∕

√
𝑉 𝑎𝑟(𝑌..), where 𝑋𝐴, 𝑋𝐵 and 𝑋𝐸 are the Type III sums of squares (Henderson, 1953).

The values of 𝑚𝑎 and 𝑚𝑏 are calculated as in Appendix A.4. Then 𝑈𝐸 ∼ 𝜒2
(𝑁−𝑎−𝑏+1) and 𝑍 ∼ 𝑁(0, 1). Moreover, 𝑈𝐴 ∼ 𝜒2

𝑎−1
and 𝑈𝐵 ∼ 𝜒2

𝑏−1, approximately. Replacing 𝑋𝐴, 𝑋𝐵 , 𝑋𝐸 , and 𝑌.. by their observed values, the GPQs can be written as:

𝐺
(
𝜎2
𝐴

)
=

𝑥𝐴

𝑚𝑎𝑈𝐴

−
𝐺
(
𝜎2
𝑒

)
𝑚𝑎

, (19)

𝐺(𝜎2
𝑏
) =

𝑥𝐵

𝑚𝑏𝑈𝐵

−
𝐺
(
𝜎2
𝑒

)
𝑚𝑏

, (20)

𝐺
(
𝜎2
𝑒

)
=

𝑥𝐸

𝑈𝐸

, (21)

𝐺(𝜇) = �̄�.. −𝑍
√

𝑉 𝑎𝑟(�̄�..). (22)

For the GPIs, the joint densities, specified in Appendix A.1, are used to derive the conditional distributions:

(𝜇 + 𝑢1)|�̄�1. ∼ 𝑁(𝐺(𝜇) + �̂�41(�̄�1. − 𝐺(𝜇)), max(0, 𝐺
(
𝜎2
𝐴

)
(1 − �̂�41))), (23)

𝑢1|(�̄�1. − �̄�..) ∼ 𝑁(�̂�42(�̄�1. − �̄�..), max(0, 𝐺
(
𝜎2
𝐴

)
(1 − �̂�42(𝑎 − 1)∕𝑎))), (24)
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(𝑢1 − 𝑢2)|(�̄�1. − �̄�2.) ∼ 𝑁(�̂�43(�̄�1. − �̄�2.), max(0, 2𝐺
(
𝜎2
𝐴

)
(1 − �̂�43))). (25)

2.5 Two-way random-effects model with interaction, balanced data
Consider the model

𝑌𝑖𝑗𝑟 = 𝜇 + 𝑢𝑖 + 𝑏𝑗 + 𝛾𝑖𝑗 + 𝑒𝑖𝑗𝑟 𝑖 = 1,… , 𝑎; 𝑗 = 1,… , 𝑏; 𝑟 = 1,… , 𝑛. (26)

It is assumed that 𝑢𝑖 ∼ 𝑁(0, 𝜎2
𝐴
), 𝑏𝑗 ∼ 𝑁(0, 𝜎2

𝑏
), 𝛾𝑖𝑗 ∼ 𝑁(0, 𝜎2

𝑎𝑏
) and 𝑒𝑖𝑗𝑟 ∼ 𝑁(0, 𝜎2

𝑒
). The overall mean is 𝑌... =

∑
𝑖𝑗𝑟 𝑌𝑖𝑗𝑟∕(𝑎𝑏𝑛)

with variance 𝜎2
𝐴
∕𝑎 + 𝜎2

𝑏
∕𝑏 + 𝜎2

𝑎𝑏
∕(𝑎𝑏) + 𝜎2

𝑒
∕(𝑎𝑏𝑛)), and the 𝑖-th treatment mean is 𝑌𝑖.. =

∑𝑏

𝑗=1
∑𝑛

𝑟=1 𝑌𝑖𝑗𝑟∕(𝑏𝑛) with variance

𝜎2
𝑎
+ (𝜎2

𝑏
+ 𝜎2

𝑎𝑏
+ 𝜎2

𝑒
∕𝑛)∕𝑏. The sums of squares for this model are denoted by 𝑥𝐴, 𝑥𝐵 , 𝑥𝐴𝐵, and 𝑥𝐸 . These are the realized values

of the random variables 𝑋𝐴, 𝑋𝐵 , 𝑋𝐴𝐵, and 𝑋𝐸 , respectively. Let 𝑈𝐴 = 𝑋𝐴∕(𝜎2
𝑒
+ 𝑏𝑛𝜎2

𝐴
+ 𝑛𝜎2

𝑎𝑏
), 𝑈𝐵 = 𝑋𝐵∕(𝜎2

𝑒
+ 𝑎𝑛𝜎2

𝑏
+ 𝑛𝜎2

𝑎𝑏
),

𝑈𝐴𝐵 = 𝑋𝐴𝐵∕(𝜎2
𝑒
+ 𝑛𝜎2

𝑎𝑏
), 𝑈𝐸 = 𝑋𝐸∕𝜎2

𝑒
, and 𝑍 = (𝑌... − 𝜇)∕

√
𝑉 𝑎𝑟(𝑌...), such that 𝑈𝐴 ∼ 𝜒2

𝑎−1, 𝑈𝐵 ∼ 𝜒2
𝑏−1, 𝑈𝐴𝐵 ∼ 𝜒2

(𝑎−1)(𝑏−1),

𝑈𝐸 ∼ 𝜒2
(𝑁−𝑎𝑏), and 𝑍 ∼ 𝑁(0, 1). Replacing 𝑋𝐴, 𝑋𝐵 , 𝑋𝐴𝐵 , 𝑋𝐸 , and 𝑌.. by their realized values, the GPQs are:

𝐺
(
𝜎2
𝐴

)
=

𝑥𝐴

𝑏𝑛𝑈𝐴

−
𝐺(𝜎2

𝑒
)

𝑏𝑛
−

𝐺
(
𝜎2
𝑎𝑏

)
𝑏

= 1
𝑏𝑛

(
𝑥𝐴

𝑈𝐴

−
𝑥𝐴𝐵

𝑈𝐴𝐵

)
. (27)

𝐺(𝜎2
𝑏
) =

𝑥𝐵

𝑎𝑛𝑈𝐵

−
𝐺(𝜎2

𝑒
)

𝑎𝑛
−

𝐺
(
𝜎2
𝑎𝑏

)
𝑎

= 1
𝑎𝑛

(
𝑥𝐵

𝑈𝐵

−
𝑥𝐴𝐵

𝑈𝐴𝐵

)
. (28)

𝐺
(
𝜎2
𝑎𝑏

)
=

𝑥𝐴𝐵

𝑛𝑈𝐴𝐵

−
𝑥𝐸

𝑛𝑈𝐸

. (29)

𝐺
(
𝜎2
𝑒

)
=

𝑥𝐸

𝑈𝐸

. (30)

𝐺(𝜇) = �̄�... −𝑍
√

𝑉 𝑎𝑟(�̄�...). (31)

The conditional distributions of the random effects are obtained using the joint densities given in Appendix A.1. Substituting

the GPQs (27)–(31) for their corresponding parameters in the conditional distributions, the following conditional distributions

are obtained:

(𝜇 + 𝑢1)|�̄�1.. ∼ 𝑁(𝐺(𝜇) + �̂�51(�̄�1.. − 𝐺(𝜇)), max(0, 𝐺
(
𝜎2
𝐴

)
(1 − �̂�51))), (32)

𝑢1|(�̄�1.. − �̄�...) ∼ 𝑁(�̂�52(�̄�1.. − �̄�...), max(0, 𝐺
(
𝜎2
𝐴

)
(1 − �̂�52(𝑎 − 1)∕𝑎))), (33)

(𝑢1 − 𝑢2)|(�̄�1.. − �̄�2..) ∼ 𝑁(�̂�52(�̄�1.. − �̄�2..), max(0, 2𝐺(𝜎2
𝐴
)(1 − �̂�52))). (34)

2.6 Two-way random-effects model with interaction, unbalanced data
For the model

𝑌𝑖𝑗𝑟 = 𝜇 + 𝑢𝑖 + 𝑏𝑗 + 𝛾𝑖𝑗 + 𝑒𝑖𝑗𝑟; 𝑖 = 1,… , 𝑎; 𝑗 = 1,… , 𝑏, 𝑟 = 1,… , 𝑛𝑖𝑗 , (35)

where the parameters and random effects are defined as in (26), let 𝑌𝑖𝑗. =
∑𝑛𝑖𝑗

𝑟=1 𝑌𝑖𝑗𝑟∕𝑛𝑖𝑗 , 𝑌𝑖.. =
∑𝑏

𝑗=1 𝑌𝑖𝑗.∕𝑏 and 𝑌... =∑𝑎

𝑖=1
∑𝑏

𝑗=1 𝑌𝑖𝑗.∕(𝑎𝑏). Further, let �̃�ℎ = 𝑎𝑏∕
∑

𝑖

∑
𝑗(1∕𝑛𝑖𝑗) denote the harmonic mean of all cell frequencies, and �̃�𝑖ℎ =

𝑏∕
∑𝑏

𝑗=1(1∕𝑛𝑖𝑗) the harmonic means of the cell frequencies of the 𝑖-th treatment. Let 𝑋𝐴, 𝑋𝐵 , and 𝑋𝐴𝐵 represent the unweighted

sum of squares (Khuri, 1998) corresponding to 𝑢𝑖, 𝑏𝑗 , and 𝛾𝑖𝑗 , respectively. The random variables 𝑈𝐴, 𝑈𝐵 , 𝑈𝐴𝐵, and 𝑈𝐸 are

defined as in Section 2.5, but 𝑛 is replaced with the harmonic mean �̃�ℎ. The random variables 𝑈𝐴, 𝑈𝐵 , and 𝑈𝐴𝐵 are approx-

imately chi-squared distributed with 𝑎 − 1, 𝑏 − 1, and (𝑎 − 1)(𝑏 − 1) degrees of freedom, respectively (Khuri, 1998). Further,

𝑈𝐸 ∼ 𝜒2
𝑁−𝑎𝑏

and 𝑍 ∼ 𝑁(0, 1). The GPQs are obtained when replacing 𝑌..., 𝑋𝐴, 𝑋𝐵 , 𝑋𝐴𝐵, and 𝑋𝐸 by their observed values �̄�...,
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𝑥𝐴, 𝑥𝐵 , 𝑥𝐴𝐵, and 𝑥𝐸 , respectively. The obtained GPQs are the same as the ones obtained in Section 2.5, but �̃�ℎ is used instead

of 𝑛 in (27)–(29). The conditional distributions are

(𝜇 + 𝑢1)|�̄�1.. ∼ 𝑁(𝐺(𝜇) + �̂�61(�̄�1.. − 𝐺(𝜇)), max(0, 𝐺(𝜎2
𝐴
)(1 − �̂�61))), (36)

𝑢1|(�̄�1.. − �̄�...) ∼ 𝑁(�̂�62(�̄�1.. − �̄�...), max(0, 𝐺
(
𝜎2
𝐴

)
(1 − �̂�62(𝑎 − 1)∕𝑎))), (37)

(𝑢1 − 𝑢2)|(�̄�1.. − �̄�2..) ∼ 𝑁(�̂�63(�̄�1.. − �̄�2..), max(0, 2𝐺
(
𝜎2
𝐴

)
(1 − �̂�63))). (38)

3 OTHER METHODS

3.1 REML-based prediction intervals
In general, any random-effects model, including those discussed in Sections 2.1–2.6, can be written as:

𝐘 = 𝐗𝜇+Z𝐮 + 𝐞, (39)

where 𝐘 is an 𝑁-vector of observations, 𝐗 = 1N is an 𝑁-vector of ones, 𝜇 is a scalar, Z is an 𝑁 × 𝑞 incidence matrix, and 𝐮
is a 𝑞-vector of unknown random effects that are distributed as 𝐮 ∼ 𝑁(𝟎,G). The 𝑁-vector of random errors 𝐞 is distributed

as 𝐞 ∼ 𝑁(𝟎,R). It follows that 𝐘 ∼ 𝑁(𝐗𝜇,ZGZ⊤ + R. The elements of the variance matrices G and R are unknown variance

components that can be estimated using the REML method. Let 𝐯 = (𝜇,𝐮⊤). A REML-based prediction interval for �̂� = 𝐯𝐋,

where 𝐋 is a contrast vector, is computed as follows (Pawitan, 2001):

Step 1: The estimates 𝜇 and 𝐮, denoted as �̂� and �̂�, respectively, are obtained by solving the mixed model equations (Henderson,

1975): (
𝐗⊤R−1𝐗 𝐗⊤R−1Z
𝐙⊤R−1𝐗 Z⊤R−1Z + G−1

)(
�̂�

�̂�

)
= C

(
�̂�

�̂�

)
=
(
𝐗⊤R−1𝐘
Z⊤R−1𝐘

)
.

Solving the equations above include calculating the generalized inverse of the covariance matrix denoted as C. This requires

substituting in C the estimated values of G and R. The estimated value of C can be denoted as Ĉ.

Step 2: The standard error, denoted as 𝑠𝑒(�̂�), is calculated as 𝑠𝑒(�̂�) =
√
𝐋⊤ĈL.

Step 3: The prediction interval for the different random effects are computed as:

�̂� ± 𝑧𝛼∕2 𝑠𝑒(�̂�), (40)

where 𝑧𝛼∕2 denotes the 100(1 − 𝛼∕2)th percentile of the standard normal distribution.

3.2 Approximate t-distributions
Instead of using the standard normal distribution in Step 3 of the REML-based method, approximate t-distributions can be

used. The number of degrees of freedom, 𝑣, can be computed using the so called containment method, the Satterthwaite (1946)

method or the Kenward and Roger (1997) method. The contaiment method is the default using the mixed procedure of the SAS
software package (Littell et al., 2006). The Kenward and Roger (1997) method applies the Satterthwaite approximation after an

adjusment of the variance-covariance matrix. The prediction interval is calculated as �̂� ± 𝑡𝑣 𝑠𝑒(�̂�), where �̂� and 𝑠𝑒(�̂�) are defined

as in Section 3.1, and 𝑡𝑣 denotes the 100(1 − 𝛼∕2)-th percentile of the t-distribution with 𝑣 degrees of freedom.

3.3 Gamage et al. (2013) generalized prediction intervals
For the one-way random-effects model (1), Gamage et al. (2013) considered the predictor 𝜇∗

1 = 𝜇 + 𝑘(�̄�1. − 𝜇), where 𝑘 is the

shrinkage factor 𝑛𝜎2
𝐴
∕(𝜎2

𝑒
+ 𝑛𝜎2

𝐴
), and proposed using the percentiles of

𝐺
(
𝜎2
𝑒

)
𝐺(𝜇) + 𝑛𝐺(𝜎2

𝐴
)�̄�1.

𝐺
(
𝜎2
𝑒

)
+ 𝑛𝐺

(
𝜎2
𝐴

) , (41)
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T A B L E 1 Estimated coverage of approximate 0.95 prediction intervals for 𝜇 + 𝑢1, 𝑢1, and 𝑢1 − 𝑢2 in the one-way model, balanced data, using

the REML-based method and the GPI method

REML GPI
𝒏 𝝈𝟐

𝒆
𝝈𝟐
𝑨

𝝁+ 𝒖𝟏 𝒖𝟏 𝒖𝟏 − 𝒖𝟐 𝝁+ 𝒖𝟏 𝒖𝟏 𝒖𝟏 − 𝒖𝟐

5 4 1 0.832 0.675 0.649 0.946 0.949 0.927

10 4 1 0.863 0.777 0.765 0.940 0.951 0.926

50 4 1 0.932 0.888 0.922 0.944 0.955 0.942

5 1 1 0.892 0.843 0.848 0.942 0.953 0.930

10 1 1 0.919 0.880 0.899 0.941 0.953 0.934

50 1 1 0.944 0.890 0.946 0.947 0.953 0.950

5 1 4 0.926 0.889 0.923 0.947 0.953 0.944

10 1 4 0.939 0.888 0.934 0.947 0.952 0.945

50 1 4 0.947 0.883 0.950 0.947 0.952 0.952

T A B L E 2 Estimated coverage of Gamage et al. (2013) generalized 0.95 prediction intervals for 𝜇∗
1 and 𝜇 + 𝑢1 in the one-way model, balanced

data

𝒂 𝒏 𝝈𝟐
𝒆

𝝈𝟐
𝑨

𝒌 𝝁∗
𝟏 𝝁+ 𝒖𝟏

5 5 4 1 0.556 0.949 0.717

5 10 4 1 0.714 0.954 0.602

5 50 4 1 0.926 0.951 0.341

5 5 1 1 0.833 0.949 0.513

5 10 1 1 0.909 0.951 0.389

5 50 1 1 0.980 0.950 0.192

5 5 1 4 0.950 0.951 0.320

5 10 1 4 0.975 0.951 0.220

5 50 1 4 0.995 0.951 0.090

where 𝐺(𝜎2
𝐴
), 𝐺

(
𝜎2
𝑒

)
, and 𝐺(𝜇) are given in (2), (3), and (4), respectively, for computation of GPIs. The 2.5th and 97.5th

percentiles, obtained through sampling from (41), are the lower and upper limits of their 0.95 GPI for 𝜇∗
1 . Note that (41) is

identically equal to the expected value of (5). Thus, GPIs for 𝜇∗
1 and 𝜇 + 𝑢1 are obtained through sampling from (41) and (5),

respectively.

4 SIMULATION STUDY

With regard to each of the six models considered, coverage of the generalized prediction intervals introduced in Section 2

was estimated using Monte Carlo sampling. The simulations in Tables 1–5 were carried out using the lmer function in R
(http://www.r-project.org). For comparison, coverage was estimated for the REML-based prediction interval described

in Section 3.1. Coverage was estimated as the frequency of 0.95 prediction intervals covering 𝜇 + 𝑢1, 𝑢1, and 𝑢1 − 𝑢2.

The balanced one-way random-effects model was studied for the same cases, that is, the same combinations of the parameters

𝑎, 𝑛, 𝜎2
𝑒
, and 𝜎2

𝐴
, as studied by Gamage et al. (2013), using 𝜇 = 100 (Table 1). In addition, for the same cases and using 𝜇 = 0,

coverage of the Gamage et al. (2013) prediction intervals (41) was studied, considering both 𝜇∗
1 , as defined in Section 3.3, and

𝜇 + 𝑢1 = 𝑢1 (Table 2). In the unbalanced one-way random-effects model six different layouts were adopted; the first two of them

are from Gamage et al. (2013) (Table 3).

The two-way random-effects models were studied for cases based on the oats variety trial that is presented in Section 5. In

these cases, the model parameters were 𝑎 = 10, 𝑏 = 4, 𝜇 = 68, 𝜎2
𝑏
= 15, and 𝜎2

𝑒
= 24. Several values of 𝜎2

𝐴
were investigated,

such that 𝑘 = 𝑛𝜎2
𝐴
∕(𝜎2

𝑒
+ 𝑛𝜎2

𝐴
) varied from 0 to 0.90. In model (26), the number of replicates per cell was 𝑛 = 3 and 𝜎2

𝑎𝑏
= 1.

In the unbalanced cases, 10% of the observations were randomly excluded, using the restrictions 𝑛𝑖 > 0 for the model without

interaction (Table 4) and 𝑛𝑖𝑗 > 0 for the model with interaction (Table 5).
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T A B L E 3 Estimated coverage of approximate 0.95 prediction intervals for 𝜇 + 𝑢1, 𝑢1, and 𝑢1 − 𝑢2 in the one-way model, unbalanced data,

using the REML-based method and the GPI method

REML GPI
𝒏𝒊 𝝈𝟐

𝒆
𝝈𝟐
𝑨

𝝁+ 𝒖𝟏 𝒖𝟏 𝒖𝟏 − 𝒖𝟐 𝝁+ 𝒖𝟏 𝒖𝟏 𝒖𝟏 − 𝒖𝟐

7,4,6,3 4 1 0.869 0.624 0.598 0.982 0.935 0.971

7,4,6,3 1 1 0.891 0.782 0.792 0.961 0.958 0.941

7,4,6,3 1 4 0.918 0.843 0.897 0.950 0.965 0.941

3,6,4,7 4 1 0.818 0.618 0.603 0.931 0.934 0.927

3,6,4,7 1 1 0.850 0.782 0.787 0.932 0.960 0.928

3,6,4,7 1 4 0.904 0.848 0.889 0.939 0.969 0.942

7,6,3,4 4 1 0.865 0.627 0.604 0.981 0.936 0.980

7,6,3,4 1 1 0.889 0.783 0.796 0.960 0.958 0.958

7,6,3,4 1 4 0.917 0.839 0.897 0.948 0.964 0.946

7,7,3,3 4 1 0.868 0.613 0.597 0.983 0.934 0.982

7,7,3,3 1 1 0.889 0.774 0.792 0.964 0.957 0.959

7,7,3,3 1 4 0.917 0.835 0.894 0.951 0.964 0.947

3,4,6,7 4 1 0.820 0.620 0.605 0.928 0.932 0.915

3,4,6,7 1 1 0.847 0.781 0.785 0.930 0.958 0.921

3,4,6,7 1 4 0.902 0.849 0.888 0.939 0.971 0.937

3,3,7,7 4 1 0.816 0.610 0.598 0.933 0.933 0.910

3,3,7,7 1 1 0.848 0.773 0.778 0.930 0.959 0.920

3,3,7,7 1 4 0.900 0.843 0.884 0.941 0.970 0.937

T A B L E 4 Estimated coverage of approximate 0.95 prediction intervals for 𝜇 + 𝑢1, 𝑢1, and 𝑢1 − 𝑢2 in the two-way model without interaction,

using the REML-based method and the GPI method

REML GPI
𝒌 𝝈𝟐

𝑨
𝝁+ 𝒖𝟏 𝒖𝟏 𝒖𝟏 − 𝒖𝟐 𝝁+ 𝒖𝟏 𝒖𝟏 𝒖𝟏 − 𝒖𝟐

Without interaction, balanced

0 0 0.882 0.592 0.587 0.978 0.956 0.955

0.25 2 0.876 0.607 0.600 0.969 0.946 0.938

0.40 4 0.875 0.703 0.698 0.961 0.937 0.933

0.50 6 0.880 0.765 0.759 0.955 0.936 0.932

0.60 9 0.890 0.826 0.821 0.951 0.939 0.932

0.70 14 0.900 0.875 0.869 0.947 0.942 0.933

0.75 18 0.906 0.896 0.891 0.945 0.945 0.936

0.80 24 0.912 0.910 0.907 0.943 0.948 0.938

0.85 34 0.916 0.921 0.920 0.942 0.952 0.940

0.90 54 0.920 0.929 0.928 0.943 0.954 0.942

Without interaction, unbalanced

0 0 0.882 0.585 0.580 0.973 0.964 0.982

0.25 2 0.874 0.573 0.570 0.967 0.947 0.964

0.40 4 0.871 0.663 0.660 0.964 0.944 0.947

0.50 6 0.876 0.730 0.724 0.963 0.944 0.939

0.60 9 0.884 0.792 0.789 0.958 0.947 0.937

0.70 14 0.893 0.847 0.849 0.958 0.954 0.934

0.75 18 0.901 0.872 0.871 0.958 0.958 0.935

0.80 24 0.907 0.891 0.892 0.955 0.962 0.934

0.85 34 0.913 0.906 0.908 0.955 0.968 0.936

0.90 54 0.918 0.917 0.921 0.956 0.974 0.935
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T A B L E 5 Estimated coverage of approximate 0.95 prediction intervals for 𝜇 + 𝑢1, 𝑢1, and 𝑢1 − 𝑢2 in the two-way model with interaction, using

the REML-based method and the GPI method

REML GPI
𝒌 𝝈𝟐

𝑨
𝝁+ 𝒖𝟏 𝒖𝟏 𝒖𝟏 − 𝒖𝟐 𝝁+ 𝒖𝟏 𝒖𝟏 𝒖𝟏 − 𝒖𝟐

With interaction, balanced

0 0 0.540 0.431 0.431 0.955 0.937 0.936

0.25 2 0.700 0.738 0.742 0.951 0.910 0.902

0.40 4 0.793 0.860 0.869 0.948 0.929 0.921

0.50 6 0.842 0.911 0.921 0.947 0.938 0.930

0.60 9 0.885 0.945 0.960 0.947 0.946 0.937

0.70 14 0.919 0.962 0.980 0.948 0.949 0.941

0.75 18 0.934 0.967 0.986 0.949 0.950 0.943

0.80 24 0.948 0.969 0.991 0.951 0.951 0.944

0.85 34 0.959 0.965 0.996 0.952 0.953 0.946

0.90 54 0.970 0.949 0.998 0.954 0.953 0.946

With interaction, unbalanced

0 0 0.561 0.430 0.430 0.959 0.937 0.935

0.25 2 0.708 0.715 0.715 0.954 0.917 0.907

0.40 4 0.793 0.846 0.852 0.952 0.931 0.924

0.50 6 0.842 0.900 0.912 0.952 0.941 0.931

0.60 9 0.886 0.938 0.954 0.953 0.948 0.941

0.70 14 0.920 0.961 0.977 0.951 0.949 0.942

0.75 18 0.936 0.966 0.986 0.953 0.956 0.943

0.80 24 0.950 0.968 0.991 0.952 0.957 0.949

0.85 34 0.960 0.965 0.995 0.955 0.955 0.948

0.90 54 0.969 0.951 0.997 0.957 0.957 0.947

For each case, 10,000 datasets were randomly generated. For each generated dataset, GPIs were computed using 10,000

Monte-Carlo samples from the conditional distributions.

4.1 Results
For the balanced one-way random-effects model (1), Table 1 shows estimated coverage for the REML-based and GPI methods,

applying the percentiles of (40) for the REML-based method and the percentiles of (5), (6), and (7) for the GPI method. The

coverage of the REML-based method was far from the nominal level 0.95, especially for low values of the shrinkage factor 𝑘.

The coverage of the GPI method was closer to the nominal level in all situations.

Estimated coverage of the Gamage et al. (2013) prediction intervals (41) is shown in Table 2. The 0.95 GPIs for 𝜇∗
1 = 𝜇 +

𝑘(�̄�1. − 𝜇) in model (1) were computed using the percentiles of (41). Coverage was close to 95%, in agreement with the results

of Gamage et al. (2013). However, it was noted that these intervals should not be used as prediction intervals for 𝜇 + 𝑢1, since

as such, coverage is substantially lower than the nominal level.

In Table 3, results are provided for the one-way unbalanced layout discussed in Section 2.2. Coverage was obtained for

prediction intervals for 𝜇 + 𝑢1, 𝑢1, and 𝑢1 − 𝑢2, computed using (40) for the REML-based and (8), (9), and (10) for the GPI

method. The estimated coverage was closer to 0.95 using the GPI method than using the REML-based method.

For the two-way random-effects model (11), Table 4 presents estimated coverage for the REML-based and GPI methods.

Results are presented for both balanced and unbalanced layouts. For the REML-based prediction intervals, the percentiles of

(40) were used. Using the GPI method, the percentiles of (16), (17), (18), (23), (24), and (25) were used. In all cases, the

estimated coverage was closer to 0.95 using the GPI method than using the REML-based method.

Table 5 presents estimated coverage of prediction intervals for 𝜇 + 𝑢1, 𝑢1, and 𝑢1 − 𝑢2 in two-way random-effects models

(26) and (35), which include effects of interaction. For the REML-based method, the percentiles of (40) were applied for both

models. Using the GPI method, prediction intervals were computed using the percentiles of (32), (33), and (34) for model (26),
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T A B L E 6 Estimated coverage of approximate 0.95 prediction intervals for 𝜇 + 𝑢1, 𝑢1 and 𝑢1 − 𝑢2 in the two-way model without interaction,

balanced data, using t-distributions with degrees of freedom computed with the containment (C), the Satterthwaite (SAT) and the Kenward and

Roger (KR) methods

𝝁+ 𝒖𝟏 𝒖𝟏 𝒖𝟏 − 𝒖𝟐

𝒌 𝝈𝟐
𝑨

C SAT KR C SAT KR C SAT KR
0 0 0.972 0.961 0.967 0.460 0.461 0.463 0.456 0.458 0.462

0.25 2 0.969 0.954 0.962 0.604 0.649 0.654 0.599 0.644 0.650

0.40 4 0.969 0.947 0.961 0.704 0.773 0.780 0.702 0.766 0.776

0.50 6 0.974 0.948 0.962 0.773 0.844 0.855 0.767 0.836 0.851

0.60 9 0.976 0.940 0.957 0.833 0.895 0.909 0.827 0.883 0.903

0.70 14 0.984 0.942 0.954 0.881 0.927 0.942 0.881 0.915 0.937

0.75 18 0.987 0.944 0.957 0.904 0.939 0.955 0.901 0.924 0.945

0.80 24 0.988 0.940 0.953 0.915 0.938 0.954 0.921 0.935 0.953

0.85 34 0.992 0.947 0.956 0.932 0.945 0.956 0.931 0.937 0.953

0.90 54 0.993 0.945 0.951 0.935 0.942 0.949 0.942 0.941 0.951

T A B L E 7 Observed yield (dt/ha) in an agricultural field experiment with ten varieties of oats (columns) grown in four blocks (rows)

𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 𝒂𝟓 𝒂𝟔 𝒂𝟕 𝒂𝟖 𝒂𝟗 𝒂𝟏𝟎

𝑏1 55.65 51.82 51.86 66.49 72.41 80.86 54.18 51.47 72.57 68.11

𝑏2 67.65 73.79 66.19 72.53 66.61 74.46 60.05 59.69 73.27 71.41

𝑏3 64.90 71.22 61.56 66.03 62.78 78.40 58.22 64.97 73.66 69.73

𝑏4 78.67 69.16 76.84 74.34 75.41 74.65 60.98 63.91 81.20 74.00

and using the percentiles of (36), (37), and (38) for model (35). In most cases, estimated coverage was closer to the nominal

level using the GPI method than using the REML-based method.

For the results of Table 6, model (11) was adopted. The containment, the Satterthwaite (1946) and the Kenward and Roger

(1997) methods, as implemented in the SAS software package, were applied for calculation of approximate prediction intervals.

In almost all cases, coverage was lower than 0.95. For small values of 𝑘, that is, when shrinkage was large, coverage was much

lower than 0.95. The results of Table 6 can be compared with the results of the upper part of Table 4, which also refers to model

(11) used on balanced datasets.

Especially for 𝑢1 and 𝑢1 − 𝑢2, the GPI intervals outperformed the containment, Satterthwaite (1946) and Kenward and Roger

(1997) intervals with regard to coverage. Unexpectedly, for 𝑢1 and 𝑢1 − 𝑢2, the coverage of the containment, the Satterthwaite

(1946) and the Kenward and Roger (1997) methods were lower than that of the REML method when 𝜎2
𝐴
= 0. The reason for

this is that the REML procedure as implemented in the mixed procedure of SAS estimates 𝜎2
𝐴

to zero more often than the REML

procedure as implemented in the lmer function of R. When the estimate of 𝜎2
𝐴

approaches zero, then the length of the prediction

interval approaches zero. In cases when the estimate of 𝜎2
𝐴

was zero, we defined coverage to be zero. Since SAS more often than

R estimated 𝜎2
𝐴

to zero in the case 𝜎2
𝐴
= 0, coverage was smaller using SAS than using R in that specific case.

5 EXAMPLE

Table 7, which is classified by varieties of oats (columns) and blocks (rows), includes data from an agricultural field experiment.

Ten varieties of oats were randomly allocated to plots within four blocks. The observations are yields (dt/ha).

Model (11) was adopted. The estimated overall mean was �̄�..= 67.792, and the variance component estimates were �̂�2
𝐴
=

29.091, �̂�2
𝑏
=15.577 and �̂�2

𝑒
= 26.999. Generating 10,000 random samples of 𝐺

(
𝜎2
𝐴

)
, 𝐺(𝜎2

𝑏
), 𝐺

(
𝜎2
𝑒

)
and 𝐺(𝜇), GPIs were

computed using the 2.5th and 97.5th percentiles of (16), (17) and (18). The 0.95 GPIs for 𝜇 + 𝑢1, 𝑢1, and 𝑢1 − 𝑢2 were

(61.059,73.000), (−6.881, 5.002), and (−6.575, 6.720), respectively.

Figure 1 shows confidence curves (Schweder & Hjort, 2016) for 𝜇 + 𝑢1, 𝑢1 and 𝑢1 − 𝑢2, in which the GPIs are displayed for

arbitrary confidence levels, together with boxplots that illustrate the empirical conditional distributions.
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F I G U R E 1 Confidence curves for (A) 𝜇 + 𝑢1, (B) 𝑢1 and (C) 𝑢1 − 𝑢2. Boxplots of 10,000 random observations of (D) 𝜇 + 𝑢1, (E) 𝑢1, and

(F) 𝑢1 − 𝑢2

6 DISCUSSION

This article considered random-effects models for analysis of comparative experiments, since such models may reduce the MSEs

in the estimates of the treatment differences. Our main interest was to propose prediction intervals for differences between

experimental treatments when random-effects models are used.

An important finding of the current study is that the standard method for computing prediction intervals for random effects,

that is, the REML-based method, often yields too low coverage, deviating substantially from the nominal confidence level.

This also holds for the approximate t-distribution methods of Satterthwaite (1946) and Kenward and Roger (1997). The low

coverage observed for these methods can be attributed to their property that the lengths of the intervals diminish toward zero as

the estimate, �̂�, of the shrinkage factor approaches zero, which is the case when �̂�2
𝐴

becomes small as compared to �̂�2
𝑒
. In the

extreme, when �̂� = 0, the intervals degenerate. In small experiments, this scenario is not unlikely (Forkman & Piepho, 2013). It

is well known that the Kenward and Roger (1997) method works well for fixed effects (Spilke, Piepho, & Hu, 2005). According

to our study, the Kenward and Roger (1997) method does not to work well for random effects, which has not been much noted

previously.

Gamage et al. (2013) suggested a method for computation of a prediction interval for the predictor 𝜇 + 𝑘(�̄�1. − 𝜇) of the

treatment mean 𝜇 + 𝑢1. Our simulation study confirmed their results on the performance of this prediction interval. The present

article proposed prediction intervals for 𝜇 + 𝑢1, 𝑢1, and 𝑢1 − 𝑢2.

Comparative trials aim at estimating differences between experimental treatments (Bailey, 2008). It is a well-known problem

that experiments with many treatments give rise to many pairwise comparisons. The length of the confidence intervals can be

adjusted for multiple comparisons by using the nominal level 1 − 𝛼∕𝑝, where 𝑝 is the number of confidence intervals, instead of

1 − 𝛼 (Wellek, 2017).

GCIs are approximate by nature, but asymptotically correct under specific conditions (Hannig et al., 2006). In unbalanced

settings, our proposed GPIs are additionally imprecise due to nonindependent approximate chi-square distributions that are not

free of parameters, and conditioning on certain averages. The question on how to deal with negative GPQs for variance compo-

nents is challenging. Despite all approximation, coverage using the proposed GPI methods is still better than coverage using the
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REML-based method. The main idea of the proposed GPI methods is that prediction intervals are calculated via simulation of

conditional distributions that are dependent on unknown parameters whose uncertainties are included in the intervals through

replacement of the variance components by their respective GPQs.

In our proposed procedures, the random components of the GPQs are always sampled independently of each other. In unbal-

anced cases performance could perhaps be improved by sampling GPQs nonindependently.

In summary, we have developed the GPI method for calculating prediction intervals for linear combinations of random effects.

The GPI method showed better coverage than the REML-based procedures. The method can be applied to more complicated

models than was detailed here.
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APPENDIX A

A.1 Joint distributions

(i) One-way random-effects model, balanced data

(
𝜇 + 𝑢1
�̄�1.

)
∼ 𝑁
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𝑛
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(ii) One-way random-effects model, unbalanced data

(
𝜇 + 𝑢1
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)
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(
𝑢1
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(iii) Two-way random-effects model without interaction, balanced data

(
𝜇 + 𝑢1
�̄�1.

)
∼ 𝑁

⎛⎜⎜⎝
(
𝜇

𝜇

)
,

⎛⎜⎜⎝
𝜎2
𝐴

𝜎2
𝐴

𝜎2
𝐴

𝜎2
𝐴
+ 1

𝑏

(
𝜎2
𝑏
+ 𝜎2

𝑒

)⎞⎟⎟⎠
⎞⎟⎟⎠

(
𝑢1

�̄�1. − �̄�..

)
∼ 𝑁

⎛⎜⎜⎜⎜⎝
(
0
0

)
,

⎛⎜⎜⎜⎜⎝
𝜎2
𝐴

𝜎2
𝐴

(
𝑎 − 1
𝑎

)
𝜎2
𝐴

(
𝑎 − 1
𝑎

) (
𝜎2
𝐴
+

𝜎2
𝑒

𝑏

)(
𝑎 − 1
𝑎

)
⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠

(
𝑢1 − 𝑢2
�̄�1. − �̄�2.

)
∼ 𝑁

⎛⎜⎜⎜⎝
(
0
0

)
,

⎛⎜⎜⎜⎝
2𝜎2

𝐴
2𝜎2

𝐴

2𝜎2
𝐴

2

(
𝜎2
𝐴
+

𝜎2
𝑒

𝑏

)⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

(iv) Two-way random-effects model without interaction, unbalanced data

(
𝜇 + 𝑢1
�̄�1.

)
∼ 𝑁

⎛⎜⎜⎜⎝
(
𝜇

𝜇

)
,

⎛⎜⎜⎜⎝
𝜎2
𝐴

𝜎2
𝐴

𝜎2
𝐴

𝜎2
𝐴
+ 1

𝑛1

(
𝜎2
𝑏
+ 𝜎2

𝑒

))⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

(
𝑢1

�̄�1. − �̄�..

)
∼ 𝑁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
0
0

)
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜎2
𝐴

𝜎2
𝐴

(
𝑎 − 1
𝑎

)
𝜎2
𝐴

(
𝑎 − 1
𝑎

)
𝜎2
𝐴

(
𝑎 − 1
𝑎

)
+ 𝜎2

𝑏

(
1
𝑛1

+
∑𝑎

𝑝=1
∑𝑎

𝑞=1 𝑑𝑝𝑞

𝑎2
+

− 2
𝑎𝑛1

−
2
∑𝑎

𝑞=2 𝑑1𝑞

𝑎

)
+ 𝜎2

𝑒

(
1
𝑛1

+ 1
𝑎�̃�ℎ

− 2
𝑎𝑛1

))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(

𝑢1 − 𝑢2
�̄�1. − �̄�2.

)
∼ 𝑁

⎛⎜⎜⎜⎜⎜⎜⎝
(
0
0

)
,

⎛⎜⎜⎜⎜⎜⎜⎝

2𝜎2
𝐴

2𝜎2
𝐴

2𝜎2
𝐴

2𝜎2
𝐴
+ 𝜎2

𝑏

(
1
𝑛1

+ 1
𝑛2

+

− 2𝑑12
)
+ 𝜎2

𝑒

(
1
𝑛1

+ 1
𝑛2

)
⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠
(v) Two-way random-effects model with interaction, balanced data
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(vi) Two-way random-effects model with interaction, unbalanced data
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𝑏
+

𝜎2
𝑒

𝑏

(
1

�̃�1ℎ
+ 1

�̃�2ℎ

)⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

A.2 Conditional distribution

Let 𝐘 ∼ 𝑁(𝜇,Σ). Partition 𝐘, 𝜇, and Σ as follows:

𝑌 =
(

𝑌1
𝑌2

)
, 𝜇 =

(
𝜇1
𝜇2

)
and Σ =

(
Σ11 Σ12
Σ21 Σ22

)
.

The joint distribution can be written as: (
𝑌1
𝑌2

)
∼ 𝑁

((
𝜇1
𝜇2

)
,

(
Σ11 Σ12
Σ21 Σ22

))
.

Conditional on 𝑌2 = 𝑎, the distribution is normal with expectation and variance (Mardia, Kent, & Bibby, 1979):

E(𝑌1|𝑌2 = 𝑎) = 𝜇1 + Σ12Σ−1
22 (𝑎 − 𝜇2),

and

Var(𝑌1|𝑌2 = 𝑎) = Σ11 − Σ12Σ−1
22 Σ21.

A.3 Shrinkage factors

�̂�11 = 𝐺
(
𝜎2
𝐴

)
∕
(
𝐺
(
𝜎2
𝐴

)
+ 𝐺

(
𝜎2
𝑒

)
∕𝑛

)
.

�̂�21 = 𝐺
(
𝜎2
𝐴

)
∕
(
𝐺
(
𝜎2
𝐴

)
+ 𝐺

(
𝜎2
𝑒

)
∕𝑛1

)
.

�̂�22 = 𝐺
(
𝜎2
𝐴

)
(1 − 1∕𝑎)∕

(
𝐺
(
𝜎2
𝐴

)
(1 − 1∕𝑎) + 𝐺

(
𝜎2
𝑒

)
(1∕(𝑎�̃�ℎ) + 1∕𝑛1 − 2∕(𝑎𝑛1))

)
.
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�̂�23 = 2𝐺
(
𝜎2
𝐴

)
∕
(
2𝐺

(
𝜎2
𝐴

)
+ 𝐺

(
𝜎2
𝑒

)
(1∕𝑛1 + 1∕𝑛2)

)
.

�̂�31 = 𝐺
(
𝜎2
𝐴

)
∕
(
𝐺
(
𝜎2
𝐴

)
+
(
𝐺
(
𝜎2
𝑏
+ 𝐺

(
𝜎2
𝑒

))
∕𝑏
)
.

�̂�32 = 𝐺
(
𝜎2
𝐴

)
∕
(
𝐺
(
𝜎2
𝐴

)
+ 𝐺

(
𝜎2
𝑒

)
∕𝑏
)
.

�̂�41 = 𝐺
(
𝜎2
𝐴

)
∕
(
𝐺
(
𝜎2
𝐴

)
+ (𝐺(𝜎2

𝑏
) + 𝐺

(
𝜎2
𝑒

)
)∕𝑛1

)
.

�̂�42 = (𝐺
(
𝜎2
𝐴

)
(𝑎 − 1)∕𝑎)∕

((
𝐺
(
𝜎2
𝐴

)
(𝑎 − 1)∕𝑎

)
+ 𝐺

(
𝜎2
𝑏

)(
1∕𝑛1 +

𝑎∑
𝑝=1

𝑎∑
𝑞=1

𝑑𝑝𝑞∕𝑎2 − 2∕𝑎𝑛1+

−2
𝑎∑

𝑞=2
𝑑1𝑞∕𝑎) + 𝐺

(
𝜎2
𝑒

)
(1∕𝑛1 + 1∕𝑎�̃�ℎ − 2∕𝑎𝑛1)

)
.

�̂�43 = 2𝐺
(
𝜎2
𝐴

)
∕
(
2𝐺

(
𝜎2
𝐴

)
+ 𝐺(𝜎2

𝑏
)(1∕𝑛1 + 1∕𝑛2 − 2𝑑12) + 𝐺

(
𝜎2
𝑒

)
(1∕𝑛1 + 1∕𝑛2)

)
.

�̂�51 = 𝐺
(
𝜎2
𝐴

)
∕
(
𝐺
(
𝜎2
𝐴

)
+ 𝐺(𝜎2

𝑏
)∕𝑏 + 𝐺

(
𝜎2
𝑎𝑏

)
∕𝑏 + 𝐺

(
𝜎2
𝑒

)
∕(𝑏𝑛)

))
.

�̂�52 = 𝐺
(
𝜎2
𝐴

)
∕
(
𝐺(𝜎2

𝐴
) + 𝐺

(
𝜎2
𝑎𝑏

)
∕𝑏 + 𝐺(𝜎2

𝑒
)∕(𝑏𝑛)

)
.

�̂�61 = 𝐺
(
𝜎2
𝐴

)
∕
(
𝐺
(
𝜎2
𝐴

)
+ 𝐺(𝜎2

𝑏
)∕𝑏 + 𝐺

(
𝜎2
𝑎𝑏

)
∕𝑏 + 𝐺

(
𝜎2
𝑒

)
∕(𝑏�̃�1ℎ)

)
.

�̂�62 = 𝐺
(
𝜎2
𝐴

)
(1 − 1∕𝑎)∕

(
𝐺
(
𝜎2
𝐴

)
+ 𝐺

(
𝜎2
𝑎𝑏

)
∕𝑏
)
(1 − 1∕𝑎) + 𝐺

(
𝜎2
𝑒

)
(1∕(𝑏�̃�1ℎ) − 1∕(𝑎𝑏�̃�ℎ)).

�̂�63 = 2𝐺
(
𝜎2
𝐴

)
∕
(
2𝐺

(
𝜎2
𝐴

)
+ 2𝐺

(
𝜎2
𝑎𝑏

)
∕𝑏 + 𝐺

(
𝜎2
𝑒

)
(1∕(𝑏�̃�1ℎ) + 1∕(𝑏�̃�2ℎ))

)
.

A.4 The computation of 𝒎𝒂 and 𝒎𝒃

In model (39), let X1 = [𝐗|Z] and Q = L⊤(L(X⊤
1 X1)−L⊤)−1L, where L is any matrix of full row rank in the row space of X1

and (X⊤
1 X1)− is any generalized inverse of X⊤

1 X1. The values 𝑚𝑎 and 𝑚𝑏 are calculated as 𝑚𝑎 = trace(𝑄)∕(𝑎 − 1) and 𝑚𝑏 =
trace(𝑄)∕(𝑏 − 1) (Goodnight & Speed, 1978).
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