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Abstract: Leaf rust constitutes one of the most important foliar diseases in rye (Secale cereale L.). To
discover new sources of resistance, we phenotyped 180 lines belonging to a less well-characterized
Gülzow germplasm at three field trial locations in Denmark and Northern Germany in 2018 and
2019. We observed lines with high leaf rust resistance efficacy at all locations in both years. A
genome-wide association study using 261,406 informative single-nucleotide polymorphisms revealed
two genomic regions associated with resistance on chromosome arms 1RS and 7RS, respectively. The
most resistance-associated marker on chromosome arm 1RS physically co-localized with molecular
markers delimiting Pr3. In the reference genomes Lo7 and Weining, the genomic region associated
with resistance on chromosome arm 7RS contained a large number of nucleotide-binding leucine-
rich repeat (NLR) genes. Residing in close proximity to the most resistance-associated marker, we
identified a cluster of NLRs exhibiting close protein sequence similarity with the wheat leaf rust Lr1
gene situated on chromosome arm 5DL in wheat, which is syntenic to chromosome arm 7RS in rye.
Due to the close proximity to the most resistance-associated marker, our findings suggest that the
considered leaf rust R gene, provisionally denoted Pr6, could be a Lr1 ortholog in rye.

Keywords: hybrid breeding; Gülzow germplasm; field trial; disease progression; 600K high-density
SNP array; nucleotide-binding leucine-rich repeat (NLR); NB-ARC domain; phylogenetic analysis;
Lr1-like disease resistance protein

1. Introduction

Winter rye (Secale cereale L.) is an important cereal crop in Northern and Eastern
Europe, with an acreage of 903,800 ha in Poland, 636,300 ha in Germany, 146,600 ha in
Denmark and 113,200 ha in the Baltic countries in 2017 [1]. Since the introduction of hybrids
in the mid-1980s, the primary focus of resistance breeding in rye shifted towards ergot
caused by Claviceps purpurea (Fr.) Tul [2,3]. Recent decades of breeding efforts and the
introduction of the exotic restoration of male fertility genes have, however, reduced the
importance of ergot and the resulting toxic alkaloids in rye grains [4,5]. This provides an
opportunity to focus on leaf rust, also termed brown rust, which has received little scientific
attention and commercial interest in recent years. In 2002, Miedaner et al. [6] reported a
low level of inherent resistance to leaf rust in the predominant hybrid rye breeding gene
pools Petkus and Carsten. This is still the case based on observations of top-yielding hybrid
cultivars and population varieties in the Danish official trials, which showed 9.5% mean
leaf rust severity in 2019 (Table S2 [7]). Similarly, the German list of recommended varieties
of rye had 11.5% mean leaf rust severity in 2021 (Table S2 [8]). Under moderate to severe
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infection levels, leaf rust has been reported to cause a 11–27% reduction in grain yield, in
addition to considerable quality losses [9].

The cereal rusts are heteroecious, requiring two taxonomically unrelated host plants to
complete their life cycle, and macrocyclic, entailing five distinct spore types corresponding
to different life stages [10–12]. During the growing season, rusts can cause severe epidemics
through repetitive infection and clonal reproduction of asexual urediniospores [13,14]. As
obligate biotrophs, rusts require a living host for reproduction, but it may survive parts
of the year as telia on rye plant debris, or as aecia on the alternate host [15]. In years with
conditions conducive to leaf rust, the successive autumn-sown winter rye crop can likewise
be infected, leading to an early establishment [16].

Cereal rusts are capable of migrating long distances by wind dissemination of ure-
diniospores [17–20], which may result in exotic incursions of new races from distant
areas [21]. In wheat, two new races of yellow rust, ‘Warrior’ (Pst7) and ‘Kranich’ (Pst8),
first detected in Europe in 2011, are believed to have migrated from a sexual population
in the near-Himalayan region of Asia [22]. Sexual recombination in rust fungi facilitates
the development of new virulence combinations, driving adaptation to deployed host
resistance and the emergence of novel aggressive pathotypes [22,23]. Population studies
on wheat leaf and yellow rust populations, however, reveal clonal population structures
and the absence of sexual recombination in many areas [24–27]. In such populations,
novel genetic variation may be driven by means of mutations, somatic hybridization and
internuclear exchange [23,28].

In rye, leaf rust is caused by a fungal basidiomycete Puccinia recondita f. sp. secalis
Roberge. ex Desmaz. (Prs) [29]. Unlike the alternate hosts for the rusts of wheat, the
alternate host of Prs, small bugloss (Anchusa arvensis L.), is widespread in the North
European flora, being a common weed in agricultural fields [12,30–32]. Observation of high
pathotype diversity and virulence complexity in the German Prs population may suggest
the occurrence of sexual recombination in rye leaf rust [33], which may facilitate Prs to
overcome deployed resistance (R) genes [23,33].

Currently, five major leaf rust R genes have been identified in rye, Pr3 (1RS), Pr4 (1RL),
Pr5 (1RL), Pr1 (6RL) and Pr2 (7RL) [34,35]. An additional three major leaf rust R genes
have been identified in wheat–rye substitution and translocation lines, in the wheat gene
nomenclature denoted Lr26 (1BL-1RS), Lr25 (4BS.4BL-2RL) and Lr45 (2AS-2RS.2RL) [36,37].

Most major R genes belong to a large family of nucleotide-binding leucine-rich repeat
proteins (NLR) [38]. In rye, 1,167 NLR genes have been identified in the Lo7 reference
genome and 1,447 NLR genes in the Weining reference genome [39,40]. In grasses, the
canonical NLR gene consists of three domains: a C-terminus leucine-rich repeat (LRR)
domain, involved in pathogen effector recognition [41], a central nucleotide-binding (NB)
domain functioning as a regulatory domain determining protein activation state [42] and an
N-terminus coiled-coil (CC) domain believed to be involved in signaling and the induction
of cell death [43].

Genomic-based breeding techniques have accelerated the introgression and pyramid-
ing of R genes for enhancing resistance durability [44–46]. Recent advances in genomic
resources available in rye, including the 600K high-density SNP array and chromosomal-
scale reference genomes of a German inbred winter rye line Lo7, and a Chinese population
rye variety Weining, respectively, constitute significant milestones in rye genomic breed-
ing [39,40,47]. In order to expand the ‘toolbox’ available for resistance breeding in rye,
continuous mining for the discovery of novel genetic variability in R genes is essential.

In this paper, we investigate leaf rust resistance in a Gülzow-based elite hybrid rye
breeding germplasm. The Gülzow germplasm is differentiated from the predominant
hybrid rye breeding gene pools, Petkus and Carsten, by a distinct cytoplasmic male sterility
system [48,49]. Our objectives were to (I) characterize leaf rust resistance and disease
progression in the assayed germplasm, (II) identify genomic regions and molecular markers
associated with leaf rust resistance to facilitate marker-assisted selection for leaf rust
resistance and (III) investigate in silico whether NLR genes residing in leaf rust resistance-
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associated regions on the Lo7 and Weining reference genomes resemble known leaf rust
R genes.

2. Materials and Methods
2.1. Plant Material and DNA Extraction

A panel of 180 inbred rye (Secale cereale L.) lines, 92 restorer and 88 non-restorer
germplasms, belonging to the Gülzow-based elite hybrid rye breeding germplasm at
Nordic Seed A/S (Dyngby, Denmark), were investigated in this study. Population structure
and information on the genetic characteristics of the accessions were investigated in a
recent study by Vendelbo et al. [50]. DNA extraction was done using an adapted SDS-
based method according to USDA [51], after Pallotta et al. [52], on an equivalent of 75 mg
plant material collected from the primary leaves of two seven-day old seedlings per line.
DNA concentration and 260/280 nm absorption ratio of samples were measured using an
EpochTM microplate spectrophotometer (Biotek®, Santa Clara, CA, USA) and evidence of
fragmentation by size visualization on 1.2% agarose gel.

2.2. Molecular Marker Resource and SNP Genotyping

Samples of each line containing 200 ng high-molecular-weight gDNA with ≥1.8 260/280nm
ratio were sent for single-nucleotide polymorphism (SNP) genotyping at Eurofins Genomics
Europe Genotyping (Aarhus, Denmark). Genotyping was done using a 600K SNP array
with 600,843 SNP markers on a Affymetrix GeneTitanTM Scanner platform (Thermo Fisher
Scientific Inc., Waltham, MA, USA) [47]. Marker map for the 600K SNP array on the
Lo7 reference genome and evaluation of its performance in the assayed germplasm was
recently presented in a study by Vendelbo et al. [53]. The marker map was acquired from
https://doi.org/10.5281/ZENODO.5086235 (Access date: 9 July 2021). Prior to analysis,
markers were filtered for marker allele frequency ≥0.05, missing individual score ≤ 0.2
and missing marker score ≤ 0.1 to identify informative markers.

2.3. Collection of Puccinia Recondite f. sp. secalis Populations

To establish a representative bulk inoculum of Puccinia recondita f. sp. secalis (Prs) for
inoculation of field trials, leaf samples of rye in the field were collected from four locations
in the period May-July 2018 in Denmark and Northern Germany. In Denmark, the locations
were Dyngby in Jutland (55.9479◦ N, 10.2572◦ E), Flakkebjerg on Zealand (55.3255◦ N,
11.3826◦ E) and Holeby on Lolland (54.6998◦ N, 11.4511◦ E). In Northern Germany, the
location was Nienstädt (52.3451◦ N, 9.1664◦ E). Multiplication of Prs was done at the Global
Rust Reference Centre (GRRC), Institute of Agroecology, Aarhus University (Flakkebjerg,
Denmark). The detailed protocol has been provided at https://doi.org/10.5281/zenodo.54
78060 (Access date: 9 July 2021). Spores from each leaf sample were multiplied individually,
resulting in 10 ‘unique’ Prs field populations from each of the four sampled locations. For
multiplication of Prs, a 50:50 mixture of hybrid rye cvs. KWS Bono and KWS Florano was
selected on the basis of high leaf rust susceptibility reported in the Danish official trials
from 2015 to 2018 [7].

2.4. Field Trial

Field trials were conducted at three locations, two situated in Denmark at Gylling in
Central Jutland (55.8946◦ N, 10.1705◦ E) and Flakkebjerg on Zealand (55.3216◦ N, 11.3901◦

E), and one located in Northern Germany at Nienstädt in Niedersachsen (52.3556◦ N,
9.2270◦ E). Trials were sown in a Seedmatic® layout with a single parcel (1.0 m × 1.25 m)
consisting of six rows of approximately 25 plants per breeding line, with a between-row
distance of 25 cm and between-parcel distance of 40 cm. Each block comprised 18 parcels,
with three blocks per replicate, of which the first was laid down in numerical order and
the second in an incomplete randomized block design [54]. Hybrid cv. KWS Serafino was
included as a ‘resistant’ control, and cv. KWS Binntto as ‘susceptible’, selected on the basis
of disease severity recordings in the Danish official trials from 2015 to 2018 [7]. At Nienstädt
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and Flakkebjerg, a leaf-rust-susceptible spreader row consisting of 50:50 hybrid cvs. KWS
Binntto and KWS Serafino was sown as a spreader row at 2nd and 4th row position in
each parcel to facilitate artificial inoculation. The trial site at Gylling was not artificially
inoculated and no spreader rows were sown here. The Gylling trial site was sown on the
18th of September 2018, Flakkebjerg the 25th of September and Nienstädt the 4th of October
in 2018. The trial at Nienstädt was repeated and sown on the 13th of October 2019.

2.5. Field Inoculation

Flakkebjerg and Nienstädt were artificially inoculated using seedlings with sporulating
rust that had been inoculated with Prs field populations collected in 2018. The Gylling trial
site in 2019 was kept for natural infection to study the progression of leaf rust disease under
non-inoculated conditions. For each of the two sites, four sowing trays were prepared,
each containing 35 multiplication pots. Multiplication of field trial inoculum was done
according to the protocol provided at https://doi.org/10.5281/zenodo.5478060 (Access
date: 9 July 2021). Inoculation of trays was done using an airbrush compression system
in accordance with Thach et al. [27]. A spore inoculum solution was prepared for each
of the trials in Denmark by mixing one tube, containing ≈ 6–7 mg spores, for each of the
30 Prs field populations collected at the three Danish locations in 2018 in a single tube
by shaking for 60 s. The spore inoculum was split into four equal portions, one per tray,
of approximately 50 mg, transferred to a 50 mL airbrush glass container and suspended
in 4 mL 3MTM NovecTM 7100 engineering fluid. The inoculum solution for the trial in
Northern Germany was prepared following the same procedure, using the Prs populations
collected at Nienstädt. At 14 DAI, rusts were sporulating on the seedlings and trials were
inoculated by brushing a single multiplication pot over three consecutive spreader rows.
Three days later, multiplication pots were brushed in a similar manner across the same
spreader rows in the opposite direction, plastic pots removed and seedlings planted. Trials
were artificially inoculated in April in both years, following the same procedure to ensure
uniform disease pressure.

2.6. Disease Scoring

Trials were scored for leaf rust severity a minimum of two times using a 1–9 scoring
scale (Supplementary Table S1, [55]). The lines were scored by evaluating all plants of the
individual breeding line within the plot. The experiment at Gylling, Denmark was scored
four times in 2019 from the first detection of leaf rust in May until crop senescence at the
end of June to study the disease progression under untreated conditions.

2.7. Analysis of Disease Scoring Data

Area under disease progress curve (AUDPC) was calculated at the non-treated site,
Gylling, Denmark, using the agrocolae (v. 1.3–5) package in R [56]. For the purpose of
interpretation, disease severity scale was adjusted to calculate a corrected AUDPC starting
from zero (completely resistant with no evidence of chlorosis). Based on AUDPC and
the disease progression curve at Gylling, lines were placed into four groups in order to
characterize the assayed germplasms’ qualitative and quantitative resistance to leaf rust.
The groups comprised (i) resistant (‘R’), with an AUDPC less than 20, (ii) partially resistant
(‘P–R’), with an AUDPC of 20–80, (iii) partially susceptible (‘P–S’) and (iv) susceptible (‘S’),
with an AUDPC between 70 and 170. While the AUDPC intervals of groups overlapped,
each was distinguished by their disease progression; breeding lines assigned to (i) ‘R’ had
a near-linear curve with disease severity less than 2, (ii) ‘PS’ had a stable inclining curve
with a terminal severity score less than 6, (iii) ‘P–S’ had a late occurrence with a terminal
severity score between 6 and 8, and (iv) ‘S’ had an early occurrence with a terminal severity
score between 6 and 8. A pairwise t-test using a standard Bonferroni correction for multiple
comparison was done on the four groups’ AUDPC scores using inherent functions in R.

In order to correct the resistance phenotype for effects of replicate, block position,
population, location-year and G × E interaction effect, four linear mixed models were

https://doi.org/10.5281/zenodo.5478060
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constructed using the lme4 (v. 1.1.26) package in R. The models were used for (1) indi-
vidual locations per parental population, (2) individual locations using the entire assayed
germplasm, (3) all locations per parental population and (4) all locations using the entire
assayed germplasm

y = u + b + r + G + ε

y = u + b + r + P + G + ε

y = u + b + r + G + E + G × E + ε

y = u + b + r + P + G + E + G × E + ε

where µ is the general mean, b is the block, r is the replicate, P is the population, G is the
line id, E is the location-year, G × E is the genotype, i.e., line and environment interaction
effect, and ε is the residuals. The parameters b, r and G × E were set as random effects and
P, E and G were set as fixed effects. The random effects and residuals were assumed to be
independent, normally distributed variables described as follows: b~N (0, I σ2

b ), r~N (0, I
σ2

r ), G × E~N (0, I σ2
G×E) and ε~N (0, I σ2

ε ). The best linear unbiased estimator (BLUE) for
the line effect, referred to as the resistance value, was used as phenotypic input for GWAS.

The broad sense heritability per plot (H2) was extracted using a modified model no. 4
with line set as random effect, distributed G~N (0, I σ2

G) and estimated as

H2 =
σ2

G
σ2

G + σ2
b + σ2

r + σ2
G×E + σ2

ε

where σ2
l is line variance, σ2

b is block variance, σ2
r is replicate variance, σ2

G×E is genotype–
environment interaction variance, and σ2

ε is the residual variance.

2.8. Genome-Wide Association Study

Discovery of leaf rust resistance-associated SNP markers was done by genome-wide
association study (GWAS) using the genomic association and prediction integration tool
(GAPIT) (v.3) package in R [57]. The Manhattan plot was colorized using the RColorBrewer
(v.1.1-2) R package colour palette [58]. GWAS was done using both the mixed linear
model (MLM) and the Bayesian information and Linkage Disequilibrium Iteratively Nested
Keyway (BLINK) method [59]. BLINK uses a multiple loci test for MLM by combining a
fixed effects model, Bayesian information content and linkage disequilibrium information,
collectively improving the statistical power in the GWAS. Markers that are in linkage
disequilibrium with the most significant marker at a site are excluded in BLINK. A standard
Bonferroni-corrected threshold of α = 0.05 was used as the significance threshold. To
investigate whether identified resistance-associated SNP markers on chromosome arm 1RS
resided in proximity to known Pr genes (Pr3, Pr4, Pr5), flanking co-segregating markers
were extracted and anchored to the Lo7 and Weining reference genomes using the NCBI
blast function [35,60,61].

2.9. Phylogenetic Analysis of Lines

In order to investigate the phylogenetic distribution of resistance, a neighbor-joining
clustering analysis of breeding lines was done using available SNP marker data with
the Euclidean genetic distance measure in the ape (v. 5.3) R package [62]. The tree was
constructed after 10.000 bootstrapping iterations, with weak nodes (≤80% recurrence)
collapsed into multifurcations. Circular neighbor-joining tree was generated using the
iTOL (v. 5) online tool (http://itol.embl.de/, access date: 5 October 2021), enabling a color
visualization of the resistance response of each line at the three field trial locations and the
distribution of lines carrying the resistance concentric circles [63].

http://itol.embl.de/
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2.10. Phylogenetic Analysis and In Silico Characterization of Nucleotide-Binding Leucine-Rich
Repeat Genes in Leaf Rust Resistance-Associated Regions

The leaf rust resistance-associated sites in the Weining reference genome were identi-
fied by the mapping of resistance-associated markers using the same procedure as described
previously for the Lo7 reference genome. Nucleotide-binding leucine-rich repeat (NLR)
genes residing in leaf rust resistance-associated regions in the Lo7 and Weining refer-
ence genomes were identified using the NLR annotation provided in a recent study by
Vendelbo et al. [53], available at https://doi.org/10.5281/zenodo.5085854 (Access date:
9 July 2021). Coding sequences of potential candidate NLR genes were extracted using
an online data repository [39,40]. Gene structures of NLR genes were predicted using the
AUGUSTUS (3.4.0) program [64].

To investigate whether NLR genes residing in leaf rust resistance-associated sites on
the Lo7 and Weining reference genomes resembled known leaf rust R genes, the NCBI blastp
function was used for a protein–protein search in the online database and a phylogenetic
analysis was conducted using a panel of cloned cereal rust R genes as reference [61]. The
phylogenetic analysis was performed using NLR genes’ conserved NB-ARC (nucleotide-
binding adaptor shared by APAF-1, R proteins and CED-4) domain sequences. The NB-ARC
sequences of NLR genes residing within the sites on the Lo7 and Weining reference genomes
were extracted from the data repository file referred to above by Vendelbo et al. [53]. The
panel of known NLR-type R genes comprised leaf rust (Lr1, Lr10, Lr21, Lr22a), stem rust
(Sr13, Sr22) and yellow rust (Yr5, Yr10, Yr28). NB-ARC sequences of reference NLR genes
were obtained from the UniProt online database [65]. Phylogenetic analysis was conducted
using a pipeline developed by Toparslan et al. [66] in R. Multiple sequence alignment
of NB-ARC domain sequences was done using the msa (v. 1.20.1) and pairwise genetic
distance based on identity calculated using the seqinr (4.2-8) package in R [67,68]. A tree
was constructed for the respective NLR repertoire of Lo7 and Weining reference genome
and visualized using the ggtree (v. 2.2.4) R package [69].

2.11. Graphical Editing

Graphs and figures were outputted from R in svg format and manually curated using
the Inkscape (v. 1.1) program (https://inkscape.org/, accessed on 7 September 2021).

3. Results
3.1. 600 K SNP Genotyping of Panel

Quality filtration of markers for low minor allele frequency, missing markers and
missing individual scores across the panel led to the identification of 261,406 informative
markers. Markers were homogeneously distributed across the rye genome, with an average
of 32,676 markers per chromosome and mean marker-to-marker distance of 25.54 kb.

3.2. Phenotyping of Leaf Rust Resistance

In both 2019 and 2020, field trials demonstrated a high level of leaf rust disease, with a
clear segregation of resistance within the assayed germplasm. Based on the AUDPC and
disease progression at the natural infection site, Gylling, lines were divided into four groups
(Supplementary Tables S3 and S5). The resistant (‘R’) group consisted of 48 restorer and 23
non-restorer germplasm lines, displaying a mean final disease severity (1–9) of 1.38 ± 0.84
standard deviation (SD) across trials (Supplementary Table S5). The partially resistant
(‘P-R’) group consisted of nine restorer and five non-restorer germplasm lines, displaying a
mean final disease severity of 3.85 ± 2.29 SD across trials. The partially susceptible (‘P-S’)
group consisted of 12 restorer and 52 non-restorer germplasm lines, displaying a mean
final disease severity of 7.21 ± 1.47 SD across trials. Finally, the susceptible (‘S’) group
consisted of 23 restorer and 8 non-restorer germplasm lines, displaying a mean final disease
severity of 7.21 ± 1.34 SD across year-location. AUDPCs for each group were 0.97 ± 3.6 SD
for the ‘R’ group, 41.4 ± 22.9 SD for the ‘P-R’ group, 84.6 ± 25.8 SD of the ‘P-S’ group and
116.4 ± 26.6 SD for the ‘S’ group (Figure 1A). Calculation of a pairwise t-test showed that

https://doi.org/10.5281/zenodo.5085854
https://inkscape.org/
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the AUDPC distribution of all groups differed significantly (p < 0.05). Susceptible control
hybrid cv. KWS Binntto demonstrated a mean final disease severity of 7.29 ± 0.86 SD across
trials, with an AUDPC of 144.1 (Supplementary Table S4, Figure 1B). Resistant control
hybrid cv. KWS Serafino demonstrated a mean final disease severity of 6.75 ± 1.03 SD
across trials, with an AUDPC of 91.3.
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progress curve (AUDPC) boxplot with standard error of each assigned resistance response group—
resistant (‘R’), partially resistant (‘P-R’), partially susceptible (‘P-S’) and susceptible (‘S’) groups—with
different letters indicating significant differences (p < 0.05). (B) Mean disease progression curve of
each group during the growing season, including resistant control hybrid cv. KWS Binntto and
susceptible control hybrid cv. KWS Serafino.

The resistance spectrum of breeding lines was visualized in a circular neighbor-joining
dendrogram in iTOL, with concentric circles added to integrate the phenotypic score at
each trial site (Figure 2). The phylogenetic analysis revealed a uniform distribution of
resistant lines across the tree in both parental populations, while the majority of susceptible
lines in the restorer population were largely found to form a secluded clade.

3.3. Genome-Wide Association Study

For the identification of SNP markers associated with leaf rust resistance, a genome-
wide association study (GWAS) was done on each of the individual field trial locations,
across all trials and on AUDPC using both the entire germplasm and individual parental
populations (Supplementary Figure S1). GWAS conducted on the entire germplasm and
non-restorer germplasm population led to a consistent finding of a highly significant
peak (−log10(p) = 9.7–48.5) on chromosome arm 7RS from 1.56 to 4.85 Mb, with the most
associated marker at 4.7 Mb (Figure 3A, Supplementary Table S6). The most leaf rust
resistance-associated SNP markers on chromosome arm 7RS explained between 15.9 and
27.1% of the phenotypic variance (Supplementary Table S6). In the GWAS conducted on
the entire population across all trials, a significant peak (−log10(p) = 7.9) was identified at
115.1 Mb on chromosome arm 1RS, explaining 11.8% of the phenotypic variance (Figure 3A).
The SCM9 and Xscm1 markers co-segregating with Pr3, and flanking either side of the
gene, mapped to 96.7 and 137.6 Mb on chromosome arm 1RS of Lo7 and 118.1 to 184.1 Mb,
respectively, on the Weining reference genome. None of the GWAS analyses conducted
on the restorer population alone led to the observation of significant associated SNP
markers (Supplementary Figure S1). Non-significant peaks were, however, observed
on chromosome arms 1RS, 2RS, 2RL 3RS, 6RL, 7RS and 7RL in the restorer population,
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explaining between 6.9 and 10.2% of the phenotypic variance. While additional markers
with a moderately significant association were identified in GWAS on the entire germplasm
and non-restorer germplasm, these were disregarded due to inadequate consistency in the
discovery relationship. Using MLM-GWAS, the leaf rust resistance-associated region on
chromosome arm 7RS was found to span 11 Mb from the distal tip (Figure 3B).
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Figure 2. Circular neighbor-joining dendrogram of 180 hybrid rye (Secale cereale L.) breeding lines
using 261,406 informative SNP markers. Leaf rust resistance (1–9) at four field trials in Denmark and
Northern Germany in 2019 and 2020 displayed by concentric circles around the dendrogram. Lines
carrying the resistant genotype of single-nucleotide polymorphism (SNP) markers associated with
leaf rust resistance gene on chromosome arm 1RS (putative Pr3) and 7RS (Pr6) are likewise displayed
in the concentric circles.

The resistant allele of the most resistance-associated marker, AX-99370891, on chro-
mosome arm 7RS was exclusive to the non-restorer germplasm population and found
in all 23 resistant lines, two out of nine partially resistant lines and one susceptible line
(Figure 2, Supplementary Table S6). The resistant allele of the most resistance-associated
marker, AX-99442596, on chromosome arm 1RS was exclusive to the restorer population
and found in 33 out of 48 resistant lines and two out of nine partially resistant lines (Figure 2,
Supplementary Table S6).

The plot-based broad sense heritability (H2) was high for all of the linear mixed models
conducted both on individual and across parental populations and locations, ranging from
0.79 to 0.92 (Supplementary Figure S1, Supplementary Table S7). In the non-restorer
population, the H2 ranged from 0.82 to 0.92, and in the restorer population, the H2 ranged
from 0.79 to 0.87.
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Figure 3. Manhattan plot for genome-wide association study (GWAS) using BLINK method on leaf
rust disease resistance in 180 hybrid rye (Secale cereale L.) breeding lines using 261,406 informative
SNP markers anchored to the Lo7 reference genome. (A) Using best linear unbiased estimator (BLUE)
resistance value across four field trials in 2019 and 2020 for the entire germplasm as phenotypic
input, including Q-Q plot. (B) Excerpt of the chromosome arm 7RS from GWAS using the same
phenotypic input as in (A) with MLM method instead. The span of most associated marker position
is highlighted in green, mean position of most associated marker by an asterisk and NLR genes
in the Lo7 reference genome by vertical bars. The purple line represents the Bonferroni-adjusted
significance threshold based on informative markers.

3.4. Phylogenetic Analysis and In Silico Characterization of Nucleotide-Binding Leucine-Rich
Repeat Genes in Leaf Rust Resistance-Associated Block on Chromosome Arm 7RS

Mapping of 442 out of 685 resistance-associated markers on chromosome arm 7RS in
the Lo7 reference genome to the Weining reference genome led to the positioning of the
resistance-associated region from 5.8 to 23.6 Mb on chromosome arm 7RS (Supplementary
Table S8). Gene mining in the resistance-associated region led to the identification of
33 nucleotide-binding leucine-rich repeat (NLR) genes in the Lo7 reference genome and
38 NLR genes in the Weining reference genome (Supplementary Table S9).

Phylogenetic analysis and in silico characterization led to the identification of a large
cluster of full-length (‘complete’) NLR genes in both reference genomes, showing ≤80.7%
sequence similarity at a complete alignment with wheat leaf rust R gene Lr1 (Figure 4,
Table 1 and Table S10). In the Lo7 reference genome, the cluster consisted of five NLR
genes situated at 2.7 to 2.9 Mb, with the most leaf rust resistance-associated markers
from 1.59 to 4.9 Mb (Supplementary Table S6). In the Weining reference genome, the
cluster consisted of six NLR genes situated at 12.2 to 14.5 Mb, with the most leaf rust
resistance-associated markers positioned from 10.0 to 12.8 Mb (Supplementary Table S6).
The resistance-associated region on chromosome arm 7RS also housed NLR genes in both
reference genomes, showing ≤ 59.2% sequence similarity, aligning from 350 to 534 of
the entire 1020 aa protein sequence, with a putative rust resistance protein Rp1-dp8 in
Brachypodium distachyon (Figure 4, Tables 1 and S10). The Rp1-dp8-like NLR gene was



Cells 2022, 11, 64 10 of 19

situated at 9.6 Mb in the Lo7 reference genome, and, in the Weining reference genome, the
two respective NLR genes were situated at 18.9 and 19.1 Mb.
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Figure 4. Phylogenetic relationship of nucleotide-binding leucine-rich repeat (NLR) genes in a leaf
rust resistance association region on rye (Secale cereale L.) chromosome arm 7RS in the reference
genomes Lo7 and Weining. The tree was constructed using the central NB-ARC domain sequence.
Panels of known wheat leaf rust (Lr), stripe rust (Yr) and stem rust (Sr) genes are included as reference.
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Table 1. Characteristics of nucleotide-binding leucine-rich repeat (NLR) genes residing in leaf
resistance-associated region on rye (Secale cereale L.) chromosome arm 7RS in the reference genomes
Lo7 and Weining showing similarity with known leaf rust resistance genes.
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Lo7

Lo7_chr7R_nlr_9 2.37 3294 1098 1408 Lr1 disease protein Triticum aestivum 1183 84.60 4.18
Lo7_chr7R_nlr_10 2.41 3141 1047 1326 Lr1 disease protein Triticum aestivum 1270 80.48 6.31
Lo7_chr7R_nlr_12 2.80 3258 1086 1387 Lr1 disease protein Triticum aestivum 1341 80.67 5.44
Lo7_chr7R_nlr_13 2.81 3246 1082 1429 Lr1 disease protein Triticum aestivum 1195 81.99 4.00
Lo7_chr7R_nlr_15 2.87 3207 1068 1438 Lr1 disease protein Triticum aestivum 1195 84.69 3.75

Lo7_chr7R_nlr_33 9.57 2294 526 -
Putative rust

resistance protein
Rp1-dp8

Brachypodium
distachyon 350 62.90 17.74

Weining

Wei_chr7R_nlr_15 12.21 3687 1075 - Lr1 disease protein Triticum aestivum 1064 83.72 4.29
Wei_chr7R_nlr_17 12.35 3207 1069 - Lr1 disease protein Triticum aestivum 1054 85.41 3.88
Wei_chr7R_nlr_18 12.46 6438 1730 - Lr1 disease protein Triticum aestivum 1113 86.03 3.87
Wei_chr7R_nlr_20 12.53 3294 1098 - Lr1 disease protein Triticum aestivum 1078 84.32 3.87
Wei_chr7R_nlr_27 14.41 1392 464 - Lr1 disease protein Triticum aestivum 464 81.66 3.41
Wei_chr7R_nlr_29 14.52 11,906 1044 - Lr1 disease protein Triticum aestivum 915 82.43 5.75

Wei_chr7R_nlr_31 18.91 2054 500 -
Putative rust

resistance protein
Rp1-dp8

Brachypodium
distachyon 534 54.68 25.72

Wei_chr7R_nlr_32 19.09 2053 440 -
Putative rust

resistance protein
Rp1-dp8

Brachypodium
distachyon 366 59.95 18.11

4. Discussion
4.1. Evidence of Quantitative Resistance in the Germplasm

Most race-specific resistance (R) genes in plants are subject to classical gene-for-gene
interactions with avirulence gene(s) in the pathogen, giving rise to effector-triggered immu-
nity responses [38,70]. In turn, selection drives the emergence of virulent pathogen geno-
types, permitting the evasion of R protein recognition, often termed the ‘arms-race’ [71,72].
As a result, monogenic inherited R genes exerting race-specific resistance under the gene-
for-gene principle have been associated with short durability and loss of effect for disease
control. In Canada, the wheat leaf rust pathogen P. triticina has been closely surveyed
since the early 1900s, documenting, amongst others, the rapid loss of effectiveness by race-
specific R genes such as Lr1, Lr13, Lr14a and Lr26 [73–75]. Contrary to R genes conferring
race-specific resistance, quantitative resistance conferring broad-spectrum resistance has
been associated with enhanced durability [76,77]. Quantitative resistance, also referred to
as partial resistance, is expressed as a susceptible infection type with reduced infection
frequency and severity [78]. While major R genes exerting quantitative resistance have
been identified, such as Lr34 in wheat [79], quantitative resistance is often governed by
several low-to-intermediate-effect quantitative trait loci (QTL) [80]. The potential additive
effect, however, may permit a high level of resistance by the pyramiding of multiple QTLs,
conferring quantitative resistance to leaf rust [81–83]. The adoption of marker-assisted
selection (MAS) in modern plant breeding systems has aided in breeding for oligogenic
traits, such as quantitative resistance [44,84]. In a large hybrid wheat breeding system,
Beukert et al. [85] found that MAS constituted an efficient strategy for the introgression of
leaf rust resistance QTLs. While quantitative resistance has been observed in inbred lines
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and population varieties of rye, no genes or QTLs have, to our knowledge, been deployed
in commercial hybrid rye cultivars [6,86,87].

In the assayed hybrid rye breeding germplasm, we observed a subset of breeding lines
in both parental populations (belonging to the assigned ‘P-R’ group), which demonstrated
a moderate to high level of quantitative resistance. These breeding lines were characterized
by the later occurrence of leaf rust and reduced disease progression compared to susceptible
lines. In the non-restorer germplasm population, none of the quantitative resistant lines
were found to harbor the resistant haplotype of the most leaf rust resistance-associated
markers on chromosome arm 7RS. This finding could suggest that the quantitatively
resistant lines do not carry the major Pr gene, instead either harboring rare variants of a
large effect, or several common QTLs of low to intermediate effect [88]. In both cases, this
would dramatically reduce the phenotypic variance explained and hence the statistical
power of GWAS to infer marker linkage.

In the restorer population, however, several of the quantitatively resistant lines carried
the resistance allele of the putative Pr3-associated marker on chromosome arm 1RS. If
the causative gene is Pr3, this could be explained by the observation of Prs pathotypes
virulent to Pr3 in Germany by Roux et al. [35] in 2004. However, the strict conservation of
the putative Pr3-associated marker amongst resistant or partially resistant lines indicates
that the R gene remains largely effective towards a large fraction of current pathotypes in
Northern Germany and Denmark. However, variation in copy number [89] or structural
variation [90] of the putative Pr3 gene may also give rise to the observed quantitative
resistance in these lines. This could be the case for the quantitatively resistant non-restorer
germplasm lines, potentially carrying a unique variant of the resistant locus on chromosome
arm 7RS.

4.2. Discovery of a Novel Major Pr Gene on Rye Chromosome Arm 7RS in the Non-Restorer
Germplasm Population

The use of genome-wide association studies (GWAS) has become a routine strategy for
the mining of R genes in crop species [91,92]. Exploiting recent advances in rye genomic
resources, we successfully identified a genomic region on the chromosome arm 7RS that
was significantly associated with leaf rust resistance [39,40]. With no previous Pr gene
identified on chromosome arm 7RS, we provisionally denote the new Pr gene discovered
in this study Pr6, in accordance with the nomenclature presented by Wehling et al. [34].

While Pr6 is a new finding in rye, several leaf rust R genes have been identified
in wheat and barley chromosomal segments syntenic to the rye chromosome arm 7RS.
During Triticeae speciation, a series of recurrent translocation events gave rise to major
patterns of chromosomal rearrangements, disturbing the collinearity of orthologous chro-
mosomes [93,94]. In barley, the chromosome arm 5HL, which is syntenic to the distal
tip of chromosome arm 7RS, harbors three major leaf rust R genes: Rph9, Rph9.z and
Rph12 [95–97]. In wheat, the 4A, 5B and 5D chromosomes are syntenic to rye chromosome
arm 7RS [40]. In total, ten major leaf rust R genes have been identified on wheat chromo-
somes syntenic to rye chromosome arm 7RS, comprising two on 4AL (Lr28, Lr30), three on
5BS (LrK1, Lr52), two on 5BL (Lr18, Lr), three on 5DS (Lr57, Lr70, Lr76) and two on the 5DL
(Lr1, LrSyn137) chromosome [98].

4.3. Discovery of a Putative Pr3 Gene in the Restorer Population

While the majority of resistant lines in the assayed germplasm belonged to the restorer
population, no genomic region significantly associated with resistance could be identified
by GWAS on the parental population alone, including the Pr6 locus. However, several non-
significant peaks were identified that could potentially correspond to both known, such
as Pr6, and novel Pr genes [34,35]. GWAS used BLUE estimated resistance values across
all trial locations on the entire population, which resulted in a resistance-associated SNP
marker physically co-localizing with molecular markers delimiting Pr3 on chromosome
arm 1RS [35]. Intriguingly, the resistant allele of the putative Pr3-associated marker was
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strictly confined to the restorer population. While this indicates that the putative Pr3
locus is prevalent amongst resistant and partially resistant restorer lines, several did not
carry the resistant allele. In conjunction with the finding of several non-significant, low-to-
intermediate-effect QTLs in GWAS on the restorer population, this suggests the presence of
additional, less prevalent R genes or low-to-intermediate-effect QTLs.

The ability of GWAS to establish an association between a marker and trait of in-
terest is influenced by several biological factors [88]. In a recent population study by
Vendelbo et al. [50] on the assayed germplasm, the population genetic characteristics di-
verged considerably, with the restorer population showing high genetic diversity, effective
population size and low linkage disequilibrium The higher frequency of effective recombi-
nation events will in turn cause a more rapid decay in linkage; hence, influencing the extent
of linkage between non-functional markers and the R gene of interest needed in GWAS to
establish a significant association [88,99]. In heterogeneous cross-fertilizing crop species,
the rate of decay is often rapid compared to self-pollinated species [100]. Additionally, the
existence of several less prevalent Pr genes and low-to-intermediate-effect QTLs in various
combinations would, in addition to the low sample size, further reduce the phenotypic
variance explained by genes needed for GWAS to establish a significant association [92].
The potential existence of a more complex genetic architecture underlying leaf rust resis-
tance in the restorer population is supported by the high level and diverse spectra of leaf
rust resistance, discovery of several low-to-intermediate-effect QTLs and the absence of the
putative Pr3 locus in some resistant lines.

4.4. Pr6, a Potential Ortholog to Wheat Leaf Rust Resistance Gene Lr1 on Rye Chromosome
Arm 7RS

Enabled by recent advances in rye genomic resources, we investigated whether the
identified distal region of chromosome arm 7RS associated with Pr6 harbored NLRs resem-
bling known leaf rust R genes. In plants, NLR genes have been observed to accumulate
in large clusters at recombination hotspots in the subtelomeric region, contributing to
the rapid generation of novel genetic variation in NLR genes [99,101]. To detangle the
NLR diversity, we conducted a phylogenetic analysis using the conserved NB-ARC do-
main, including cloned cereal rust genes as a reference [102,103]. The analysis led to the
identification of a large clade of paralogous NLR genes showing a close evolutionary re-
lationship and protein sequence similarity with wheat leaf rust R gene Lr1. In wheat, Lr1
has been mapped to the 5D chromosome syntenic to rye chromosome arm 7RS [40,104].
Initial fine mapping of Lr1 revealed a close linkage of the gene to a molecular marker,
Xpsr567 [105,106]. Intriguingly, a successive study mapped the Xpsr567 marker to the
distal region of rye chromosome arm 7RS [107]. These findings suggest that the novel
leaf rust R gene Pr6 could potentially be a rye ortholog to Lr1. A similar observation has
been made on powdery mildew by Hurni et al. [108], who demonstrated that the powdery
mildew resistance genes Pm8 on rye 1RS and Pm3 on the syntenic chromosome arm 1AS in
wheat are orthologous genes. Despite an independent evolution since the species diverged
7 million years ago, the orthologous powdery mildew R genes retained a similar resistance
function. Pr6 in rye and Lr1 in wheat could be another such example. However, the in silico
study presented here only constitutes a preliminary finding of a potential co-evolution
between a wheat and rye leaf rust R gene. In order to investigate whether Pr6 constitutes
an Lr1 ortholog, identification of the causative gene, e.g., by resistance gene enrichment
sequencing (RenSeq) analysis, followed by the transformation of a susceptible non-restorer
germplasm line, would be required [109].

5. Conclusions

In contrast to previously investigated hybrid rye breeding germplasms, the assayed
Gülzow germplasm displayed a high level of qualitative as well as quantitative resistance
to leaf rust, providing opportunities for the development of leaf-rust-resistant rye hybrids.
By performing GWAS on 261,406 informative SNP markers, we identified a putative Pr3
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gene confined to the restorer population and a novel Pr gene on chromosome arm 7RS,
provisionally denoted Pr6, confined to the non-restorer germplasm population. Using
recent advances in rye genomic resources, we identified a large cluster of Lr1-like NLR
genes residing in close proximity to Pr6. With wheat leaf rust R gene Lr1 situated on 5D
homologous to rye 7RS, our finding suggests that Pr6 could potentially be a rye ortholog to
Lr1. Despite the discovery of two Pr genes, our findings show that GWAS was impeded by
several co-existing biological factors. To unveil the genetics underlying leaf rust resistance in
the genetically diverse restorer population, we recommend developing bi- and multiparent
mapping populations for the restorer, in addition to increasing the sample size [110,111].
This approach would equally permit the concurrent investigation of the genetics underlying
leaf rust resistance in the quantitatively resistant lines, constituting a valuable genetic
resource for enhancing the resistance durability [83]. As R genes in rye can be introgressed
into wheat by chromosomal translocation and substitution lines, gene mining in rye serves
a dual purpose, accentuating the relevance of studies in rye [60,112].
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