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Simple Summary: Demand for organically grown crops has risen globally due to its healthier
and safer food products. From a sustainability perspective, organic farming offers an eco-friendly
cultivation system that minimizes agrochemicals and producing food with little or no environmental
footprint. However, organic agriculture’s biggest drawback is the generally lower and variable
yield in contrast to conventional farming. Compatible with organic farming, the selective use
of biostimulants can close the apparent yield gap between organic and conventional cultivation
systems. A biostimulant is defined as natural microorganisms (bacteria, fungi) or biologically active
substances that are able to improve plant growth and yield through several processes. Biostimulants
are derived from a range of natural resources including organic materials (composts, seaweeds),
manures (earthworms, fish, insects) and extracts derived from microbes, plant, insect or animal origin.
The current trend is indicative that a mixture of biostimulants is generally delivering better growth,
yield and quality rather than applying biostimulant individually. When used correctly, biostimulants
are known to help plants cope with stressful situations like drought, salinity, extreme temperatures
and even certain diseases. More research is needed to understand the different biostimulants, key
components, and also to adjust the formulations to improve their reliability in the field.

Abstract: Demand for organically grown food crops is rising substantially annually owing to their
contributions to human health. However, organic farm production is still generally lower compared
to conventional farming. Nutrient availability, content consistency, uptake, assimilation, and crop
responses to various stresses were reported as critical yield-limiting factors in many organic farming
systems. In recent years, plant biostimulants (BSs) have gained much interest from researchers and
growers, and with the objective of integrating these products to enhance nutrient use efficiency
(NUE), crop performance, and delivering better stress resilience in organic-related farming. This
review gave an overview of direct and indirect mechanisms of microbial and non-microbial BSs in
enhancing plant nutrient uptake, physiological status, productivity, resilience to various stressors,
and soil-microbe-plant interactions. BSs offer a promising, innovative and sustainable strategy to
supplement and replace agrochemicals in the near future. With greater mechanistic clarity, designing
purposeful combinations of microbial and non-microbial BSs that would interact synergistically
and deliver desired outcomes in terms of acceptable yield and high-quality products sustainably
will be pivotal. Understanding these mechanisms will improve the next generation of novel and
well-characterized BSs, combining microbial and non-microbial BSs strategically with specific desired
synergistic bio-stimulatory action, to deliver enhanced plant growth, yield, quality, and resilience
consistently in organic-related cultivation.

Keywords: plant biostimulants; synergistic effect; nutrient use efficiency; abiotic stress; crop resilience;
organic farming; phytohormones; microbes
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1. Introduction

The pressing concern of global food security combined with projections of global
population increase and climate change poses a major threat to agriculture in terms of
reliability, sustainability, maximizing productivity while minimizing the agro-ecosystems’
environmental impact. The current global population is expected to rise from approxi-
mately 7.5 billion to over 9.7 billion by 2050 [1]. Consequently, global requirement for food
crops was projected to rise by at least 60% by 2050 [2]. The green revolution has increased
agricultural productivity by intensifying food production through the extensive use of
chemical fertilizers, agrochemicals, and modified crop varieties. However, in many cases,
commercialization of these practices has a substantial impact on soil health, inevitably
leading to hazardous environmental consequences. The prolonged and extensive usage
of agrochemicals and fertilizer has inevitably led to soil degradation, soil acidification,
depletion of essential soil nutrients, groundwater contamination, eutrophication of water-
ways, and greenhouse gas emissions [3,4]. Recent studies reported that approximately 1%
of chemical pesticides actually reach their target sites, and remaining amount resided in
the environment [5,6]. Besides, loss of beneficial microbial populations from soil is one of
the serious long-term impacts of agrochemicals in the soil ecosystem [7,8]. In this context,
organic farming, which restricts the use of agrochemicals, has drawn tremendous consumer
attention and scientific interest.

Over the last decades, consumers’ interest in organically grown crops has risen world-
wide due to its healthier and safer products [9–11]. Furthermore, organic farming offers an
eco-friendly production system that minimizes off-farm inputs and minimal damage to
the ecosystems [9,12]. However, organic agriculture’s biggest drawback is the generally
lower yield in contrast to intensive farming [9,13]. Several meta-analyses reported 8–25%
lower yield in organic farming than intensive farming [13–15]. Therefore, more land is
required to produce the same yield return, which in many instances contribute to greater
land-use requirements (e.g., deforestation) and, consequently, outweigh the environmental
benefits of organic farming practices [9,16]. The major yield-limiting factor in organic
farming is associated with nutrient bioavailability, uptake, and assimilation owing to slow
and/or inconsistent release of nutrients from various organic inputs [11,17]. Furthermore,
biotic pressures (both fungal and bacterial diseases) were reported to cause substantial
yield reduction in some organic production systems [18,19]. Apart from this, the rapidly
changing climate poses environmental constraints, including drought, temperature, and
salinity stresses [20,21]. Genetically modified (GM) crops remain a feasible option to over-
come such limitations. However, research and regulations required to produce resistant
varieties through traditional breeding approaches would take decades to reach the market
place with formal approvals [22]. Therefore, to address these contemporary challenges in
an environment-friendly, practical, and sustainable way, organic farming practices seek
innovative solutions focusing on nutrient use efficiency (NUE), consistency in nutrient
availability, abiotic stress tolerance, crop yield, and quality [9,23,24].

A plausible, innovative and organic farming compatible technology would be the use
of plant biostimulants (BSs) that have recently gained much interest globally [21,25–29].
According to du Jardin [30], BSs are naturally occurring compounds that stimulate plant
physiological and molecular processes and thereby modulating crop yield and quality.
However, there is no legal framework globally for defining BSs from a regulatory perspec-
tive [31,32]. Nonetheless, the global BSs market continues to grow rapidly, surpassing
€2.7 billion by 2022, propelled by many governments’ increasing focus on improving sus-
tainability while reducing the environmental footprint of food production [33]. Moreover,
the estimated demand for organic food products is over US$300 billion by 2022, with
simultaneous increase in organic farmland of 75 million hectares by 2020 [33].

In recent years, advancement in biochemical, genomic, and transcriptomic tools signif-
icantly contributed to unveiling the mode of actions of BSs [27,34–37]. This advancement
has opened the doors for many BSs related industries to look for more effective and reliable
formulations by blending microbial BSs with non-microbial BSs. However, many of these
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approaches were implemented without having proper scientific evaluation. Recent litera-
ture reported that the purposeful combinations of microbial and non-microbial BSs would
interact synergistically and enhance growth and yield over a single application [24,32,33].
Designing target-specific BSs formulations would be pivotal for increasing NUE, consis-
tency in nutrient availability, crop growth, and resilience in supporting a renaissance in
organic farming. However, little is known about the interactive effects between microbial
and non-microbial BSs, their ecological effects on rhizosphere microbes, rhizosphere, and
plant metabolic dynamics. This review examined bio-stimulatory actions/mechanisms,
interactive effects of microbial and non-microbial BSs affecting growth, and resilience to
environmental stresses. It also discussed the scientific progress made in microbial and
non-microbial BSs formulations and their performance in various fields and greenhouse
experiments. The review also identified issues hindering improvements in crop yield and
resilience as the world moves towards meeting the challenges of sustainable farming.

2. Microbial and Non-Microbial Biostimulants: Action/Mechanisms and
Biostimulatory Effects on Plants

Bio-based products such as organic BSs render a sustainable, effective technology
for enhancing NUE and ensuring a stable yield of agricultural and horticultural crops
under optimal and sub-optimal conditions [24,26,32,34–38]. Non-microbial organic BSs
include humic substances (HSs), protein hydrolysates (PHs), and seaweed extracts (SWEs).
Besides, bacterial-based BSs, including diverse species of PGPRs (Azotobacter, Azospirillum,
and Rhizobium spp.) and fungal-based BSs (Trichoderma spp., mycorrhizal fungi) have been
promoted as promising microbial BSs for enhanced crop productivity and stress tolerance
in numerous crops [29,38–40]. Based on scientific literature, we collated the different
effects of BS application on various agronomic, physiological, biochemical, and molecular
aspects of plant growth, productivity, quality, and resilience (Figure 1). Apart from the
bio-stimulatory effects of BSs on crops and other species, it was important to shed more
light on the key mechanisms of non-microbial BSs (Figure 3) and microbial BSs (Figure 2)
involved in regulating physiological and other metabolic processes, leading to better NUE,
growth and resilience.
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2.1. Non-Microbial Plant Biostimulants
2.1.1. Humic Substances

Humic substances (HSs) are natural soil organic substances derived from plant, animal,
microbial decomposition, and the metabolic activity of soil microbes. These heterogeneous
compounds exhibit complex dynamics with soil microbes that are influenced by plant roots
and their exudates. The interactivity of HSs, plant roots, and rhizosphere microbes com-
bined generally to promote plant growth and yield. In fact, HSs are well recognized for their
long-term contribution to soil fertility through enhanced physical, chemical, and biological
attributes. The most widely reported bio-stimulatory action of HSs is the enhanced macro-
and micro-nutrient uptake through increased cation exchange capacity of soil, known
commonly as the HS-facilitated root nutrition. The stimulation of plasma membrane H+
ATPases transformed free energy produced by ATP hydrolysis into a transmembrane elec-
trochemical potential that is used for importing nitrate and other nutrients [41,42]. HSs are
known to interact with calcium-phosphate precipitation and thereby increasing phosphorus
solubility for plant uptake [42,43]. Additionally, HSs were reported to regulate reactive
oxygen species (ROS) concentration and superoxide dismutase (SOD) genes in cytosol,
promoting cell growth and differentiation [44]. The biostimulatory actions of HSs were
found to be effective in increasing root uptake of sulphate as well as gene expression of
primary sulphate transporters in roots [45]. Interestingly, HSs were involved in triggering
the signaling pathways mediated by auxin and nitric oxide, along with up-regulation of
numerous auxin-regulated genes in roots [42,46]. Apart from this, HSs could enhance
key enzyme activity due to their higher molecular masses that could modulate stress
responses [47,48]. HSs were able to reduce hydrogen peroxide, and lipid peroxidation,
thereby increasing proline content and favoring a stress-responsive microbial community
in rhizosphere, especially against salinity and drought [49,50].

2.1.2. Protein Hydrolysates

Protein hydrolysates (PHs) are a complex group of compounds derived from the
chemical and enzymatic protein hydrolysis of agro-industrial and household byproducts of
plant and animal origins [25,34,51]. Animal sourced PHs include leather byproducts, fish
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byproducts, and chicken feathers, whereas plant origin PHs include vegetable byproducts,
legume seeds, alfalfa hay, etc. [52]. Recently, PHs obtained from fish-waste and other
aquaculture byproducts have become popular in various communities and industries due
to the eco-friendly approach to waste disposal and contributions to circular bioeconomy [53].
According to Colla and co-workers [54], PHs represented a vital category of organic non-
microbial BSs with a mixture of active compounds such as amino acids, oligopeptides,
polypeptides, etc. These compounds could act directly or indirectly as signaling molecules
triggering numerous physiological and molecular processes in plants; thus enhancing
growth, and mitigating the adverse effects of abiotic stressors on crops [24,35,36,54–56].
PHs stimulate carbon and nitrogen metabolisms, activating key enzymes involved in N
uptake and assimilation [30,55]. Interestingly, some phytohormones were found in certain
type of PHs; while other PHs showed hormone-like (mainly auxin related) activities in
bioassays [24,54–56]. Furthermore, PHs contained bioactive peptides, that were reported to
stimulate hormonal activities [24,55,56]. Several greenhouse and open-field experiments
demonstrated that commercial PHs were able to elicit hormone-like actions (auxin and
gibberellins) and fostered favourable root and shoot development leading to better crop
productivity [35]. In addition, PHs were reported to modulate root architecture especially
root hair development and improving nutrient uptake [54].

2.1.3. Seaweed Extracts

Seaweed extracts (SWEs), predominantly brown seaweed extracts, are widely used BSs
for growth promotion and mitigating abiotic stress such as salinity, drought, and extreme
temperatures in many agricultural and horticultural crops. The commercial SWEs from
brown seaweed contain a complex mixture of polysaccharides, fatty acids, phytohormones
(auxins, cytokinins, gibberellins, abscisic acid, and brassinosteroids), vitamins, mineral
nutrients, and a diverse range of organic components [57–59]. SWEs also contain various
osmolytes such as betaines that play a crucial role in osmotic and temperature stress
tolerance in plants [60,61]. Researchers are working actively on discovering the diversity of
bioactive compounds in SWEs and elucidating their bio-stimulatory actions/mechanisms
in plants [57–61]. Using advanced analytical tools (metabolomics and transcriptomics
approach), researchers discovered alga-specific polysaccharides, betaines, polyamines,
phenolic compounds, and phytohormones; these compounds could regulate several gene
expression and signaling pathways that are responsible for many observed effects on
plants [58–61]. For instance, SWEs were reported to regulate the nitrate transporter gene
“NRT1.1.” which has a significant role in N uptake and assimilation [62]. Furthermore, Khan
and co-workers [63] reported that Ascophyllum nodosum SWEs activated the nodC bacterial
gene and triggered bacteria-plant signaling by mimicking the effect of a flavonoid, luteolin.
The triggering of flavonoid production by SWEs plays a substantial role in regulating plant
development and responses to UV light and other environmental stresses, although the
precise mechanism remains unclear [64]. In addition, the constituents of SWEs were able to
induce root colonization of beneficial fungi in rhizosphere [65]. A recent molecular study
highlighted the possible mechanisms of SWEs in regulating plant growth and development
through hormonal homeostasis, biosynthesis of new transporters for nutrient uptake and
assimilation, stimulating photosynthesis, and stress tolerance [66]. Moreover, SWEs were
able to promote antioxidant stimulation whilst reducing lipid peroxidation under abiotic
stress and contributing to the scavenging of reactive oxygen species (ROS) [58,59,61].

2.1.4. Bioconversion Compost-Derived Biostimulants

Apart from the well-defined categories of BSs, bioconversion of organic by-products
that exhibit bio-stimulatory activity could also be classified as a new sub-category within
existing ones, as well as creating additional avenues for waste and by-product manage-
ment [9,27,28,67–70]. Multiple studies have demonstrated that bioconversion composts,
such as earthworms (vermicompost) and larvae-based (e.g., mealworms, black soldier fly)
bioconversion compost, produced a substantial number of bioactive compounds that have
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a wide range of beneficial impacts on plant growth, soil attributes, and alleviation of abiotic
stresses [28,68,70,71]. The bio-stimulatory activity of vermicompost is due to a combination
of plant hormones, cytokinins, auxins, abscisic acid, gibberellins, brassinosteroids, and
other beneficial compounds yet-to-be-identified. For example, numerous cytokinin types
have been identified and quantified in vermicompost using advanced analytical technique
of mass spectrometry [28,72]. These include zeatin (Z) and isopentenyladenine (iP) classes
of cytokinins, which serve as positive phytohormonal signals and guide the plants to
advance through key cell cycle checkpoints culminating in increased cell proliferation and
growth [28,73–75]. Earthworms’ faeces (vermicompost) have been shown to contain iP-type
cytokinins due to the presence of gut microbiota in the digestive system, which are an-
tecedents of Z-type cytokinins [28,76]. Interestingly, coconut water was reported to contain
a significant amount of Z-type cytokinins and other phytohormones, which have the po-
tential to regulate plant growth as BSs [77–79]. Research has specifically linked cytokinins
and auxins found in coconut water to a variety of beneficial effects, including plant growth
biostimulation, through the regulatory role in plant cell cycle and signaling pathways via
several critical molecular checkpoints [73,74,80]. In light of these findings, it was suggested
that plants could obtain additional cytokinins in addition to those produced endogenously
by directly enriching the soil with a phytohormone-based BSs product. Furthermore,
other phytohormones, such as gibberellins, auxins, and brassinosteroids, are anticipated to
boost growth-related physiological effects when vermicompost is applied to the soil ma-
trix [28,70,71,81]. The presence of humic and fulvic acids in vermicompost boosted nutrient
absorption and activated membrane-associated signal transduction cascades that govern
plant growth and development [70,82]. The biostimulatory action of betaines derived from
seaweed extracts was also well-established in scientific literature [59,60]. Recently, Huang
and co-workers [83] discovered the existence of several betaines in vermicompost and
larval bioconversion compost. Betaines have been demonstrated in numerous trials to play
a critical role in stabilizing enzyme and protein structure, improving the protection of lipids
and membranes and enhancing plants’ resilience to various stressors [84,85].
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2.2. Microbial Plant Biostimulants
2.2.1. Fungal-Based Microbial Biostimulants

During the evolution of terrestrial plants, plants and fungi have co-evolved together;
fungi interact with plant roots in numerous ways, ranging from mutualistic to para-
sitic [88,89]. Several scientific studies demonstrated that the parasitism-mutualism con-
tinuum is beneficial for maintaining ecosystem balance and increasing crop growth and
productivity [29,90–93]. According to leading BSs researchers [30,34,51], the biostimulants’
classification includes fungal-based products used on plants for promoting nutrient uptake
efficiency, stress tolerance, crop performance, and product quality. The widely known
fungal BSs are Trichoderma spp. and various mycorrhizal fungi; well known to increase
nutrient uptake and plant growth in an environmentally-friendly way [24,56,94–97]. Com-
mercially, Trichoderma spp. have gained much interest as “effective” microbial BSs due
to their multifunctional role in mitigating biotic and abiotic stresses on crops [24,94,95].
Several research groups reported that Trichoderma species improved root to shoot signaling
by stimulating the biosynthesis of several hormones; these included enhancing nutrient
solubility, uptake, assimilation, and leading to higher crop productivity [24,56,65,94,95]. Ar-
buscular mycorrhizal fungi (AMF), another commonly used microbial BSs, form interesting
symbiotic associations with more than 90% of plant species and economically important
crops [88,89,94,95]. Generally, AMF provide widespread benefits in sustainable agriculture
by improving the nutrient exploration in soil matrices, nutrient uptake and maintaining
ion homeostasis under normal and stressful conditions. Although beneficial fungi and
their products are widely used as BSs to enhance growth, productivity, and resilience to
environmental stresses [65,88,94–97], the complexity in their interactions with other soil
microbes do make it difficult to determine their host-specific bio-stimulatory functions,
interactions and nutrient dynamics within any agro-ecosystems [16,29,56,94–97].

2.2.2. Bacterial-Based Microbial Biostimulants

Bacterial-based BSs are formulations of microbial-derived compounds and diverse
groups of plant growth-promoting Rhizobacteria (PGPR) and other beneficial bacteria (e.g.,
Actinomycetes) that promote root development, growth, and stress tolerance [2,29,39,98].
The bacterial taxa commonly used as microbial BSs include Acetobacter, Agrobacterium,
Azospirillum, Azotobacter, Bacillus, Burkholderia, Enterobacter, Frankia, Pseudomonas, Rhizo-
bia, Serratia, and Streptomyces [39,75,98–104]. Applications of microbial BSs were reported
to alter several metabolic processes, influence ion homeostasis, enhance water holding
capacity, and strengthen antioxidant defense mechanisms, thus delivering better plant
growth and resilience [29,51,98,99]. The bio-stimulatory effect of bacterial-based micro-
bial BSs under both normal and stress conditions could be attributed to various direct
and indirect actions/mechanisms: (i) enhancing nutrient availability in soil, plant uptake
and assimilation; (ii) modulation of root system architecture; (iii) improving water rela-
tions and photosynthetic efficiency; (iv) strengthening the antioxidant defense system;
(v) production and regulation of phytohormones (auxins, ABA, cytokinins, ethylene, and
gibberellins, etc.); (vi) promoting nutrient transporters (NRT1.1, NRT2, NAR2.2, AMT,
Pht1, and PT2-1); and (vii) modulation of soil microbiome through enzymes and organic
compounds [24,39,75,98–105].

3. Implications of Biostimulants for Enhancing Plant Nutrition in Organic Farming
3.1. Soil Nutrient Availability

Organically grown crops are often subjected to nutrient shortages attributed to low
soil nutrient levels or to poor nutrient solubility within rhizosphere. Increasing nutri-
ent availability and improving utilization efficiency, especially N and P, are critical for
growers operating in this “low-input” cultivation system. The use of bioactive natural
substances and inoculants, commonly defined as BSs, would be a valuable method to
increase NUE in organic agriculture [9,11,24,39,75,94–96]. Operating within any organic
production system (“low input” system), the strategic usage of selected BSs will improve
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nutrient availability by enhancing cation exchange capacity (CEC), thereby increasing
the solubility of nutrients in soil for plants’ uptake [42,55,82]. HSs have been reported to
enhance soil physico-chemical attributes, consequently increasing essential soil nutrient
availability [42,55]. Furthermore, HSs increase CEC and buffer soil pH, which facilitated
certain nutrients to become available [42,82]. HSs could also form soluble HSs complexes
with trace elements that were identified as a sustainable strategy to prevent micronutrient
leaching, thus enhancing their availability for plant uptake [82,106,107]. Several research
documented that HSs activated the H+-ATPase plasma-membrane, thereby increasing
radical H+ extrusion and reducing root surface pH, which facilitated increased soil nutrient
availability for enhanced absorption and translocation [42,82]. PHs also improved soil nu-
trient availability by forming complexes and chelates between peptides and micronutrients,
thus facilitating root-zone nutrient availability [30,52,54,55]. Moreover, PHs provide mi-
crobes with amino acids and peptides, thus enhancing substrate availability for microbes,
soil respiration and promoting microbial activity, leading ultimately to better nutrient
availability [108]. SWEs are another group of organic BSs containing alginates that were
reported to be effective soil-conditioners and able to form high molecular mass polymers
via metal chelation [109,110]. Furthermore, it was reported that these cross-linked poly-
meric networks would enhance the soil’s water-holding capacity, promoting root growth
and microbial activity and thereby improving nutrient availability in soil [110]. Apart from
the non-microbial BSs, microbial BSs such as PGPR were able to promote plant growth
through improving nutrient availability, especially for N, P, and Fe [98–100]. In addition,
through the production of organic acids, PGPR could enhance solubility of phosphates in
both organic and conventional systems [98,111]. Fungal-based BSs Trichoderma species were
able to enhance iron solubility by producing siderophores, thus enhancing plant nutrient
uptake [94,95,98,112]. Similarly, AMF could develop extensive hyphal networks to enlarge
the surface area for nutrient exploration and uptake and producing organic substances that
could solubilize P [95,96,113,114]. Moreover, AMF indirectly increased nutrient availability
by improving soil aggregate stability, enhancing cation retention, especially Ca2+ and Mg2+,
and improving the nitrification process [115].

3.2. Plant Nutrient Uptake

Plant nutrient uptake is influenced by a range of factors, including plant species,
physiological status, environmental conditions, root growth, and root-associated microor-
ganisms [98,107,116]. In a typical organic farming system, root growth plays a vital role
in nutrient acquisition where soil nutrient is usually available at comparatively lower
concentrations. In this context, the extensive and vigorous root growth, with optimal root
architecture is imperative for ensuring sufficient nutrient uptake to meet crop nutrient
demand in this “low-input” farming system. Several studies demonstrated that BSs such as
HSs, PHs, and SWEs could foster better root growth and development, thereby facilitating
the exploration of more soil matrices for plant nutrient uptake [24,117]. BSs are effective
not only for stimulating root growth but can also increase the amount of nutrients ab-
sorbed by plants. For instance, studies have demonstrated that HSs not only increased the
bioavailability of micronutrients under nutrient-limited conditions but also able to enhance
root’s capacity to absorb micronutrients from soil solution [106,107,118]. According to
Colla and co-workers [52], PHs stimulated root growth in many crops such as tomato,
lettuce, corn, etc. Similarly, for another group of commonly used BSs, the SWEs were
effective in stimulating root growth in cuttings [119]. Furthermore, it was also reported that
polysaccharide-enriched SWEs promoted stronger root growth-promoting action through
several processes: triggering of signaling molecules, changes in endogenous phytohormone
metabolism, and up-regulation of selected metabolic genes [120]. Interestingly, some BSs
can stimulate specific enzyme activity and promote micronutrient uptake. For instance,
PHs enhanced the Fe (III)-chelate reductase activity in both roots and leaves, leading to
Fe’s uptake and assimilation under Fe deficient conditions [121].
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Several researchers have reported that microbial BSs such as AMF and Trichoderma
spp. stimulated root growth by producing auxin-like compounds, which promoted root
formation [94–97]. A recent meta-analysis of 52 published PGPR articles reported that PGPR
generally increased root biomass by 35% and 43% under well-irrigated and water deficit
conditions, respectively [122]. The increased root growth triggered by AMF and PGPR
allows plants to explore more soil matrices, thus strengthening plants’ capacity to cope
with possible low nutrient and soil water availability situations. Moreover, HSs were able
to upregulate several nutrient transporter genes such as the nitrate transporters (BnNRT1.1
and BnNRT2.1) and sulfate transporters (BnSultr1.1 and BnSultr1.2), thereby increasing
nitrogen and sulfate uptake by plants [45]. Apart from non-microbial BSs, microbial BSs
such as AMF and PGPR were reported to upregulate the nitrate transporter gene (NRT1.1,
NRT2, and NAR2.2) expressions and subsequently increase the nitrogen uptake [105].

3.3. Plant Nutrient Assimilation

BSs can promote the assimilation of nutrients (for example, nitrate, ammonium, phos-
phate, and sulfate) directly through inducing gene expression of plant metabolism enzymes;
and indirectly by increasing nutrient absorption and transport. Jannin and co-workers [45]
conducted a microarray analysis of 31,561 genes. They demonstrated that 300 genes
were expressed after three days following HSs’ application, whereas the numbers were
reduced to 102 genes after 30 days. Among them, 80% of the genes were related to sulfate
metabolism and these were upregulated by HSs. The bio-stimulatory actions of PHs were
also reported to stimulate enzymatic activity of carbon metabolism (malate dehydrogenase,
citrate synthase, etc.) and as well as assimilation of nitrate (nitrate reductase, glutamine
synthetase, aspartate aminotransferase, etc.) [123]. A similar observation was also reported
by Ertani and co-workers [124], who found higher nitrate reductase and glutamine syn-
thetase activity after receiving PHs treatment; leading to higher nitrate assimilation in roots
and leaves of corn seedlings. Foliar application of SWEs were reported to enhance foliar
nitrate reductase and trans-zeatin riboside (a cytokinin) levels in bentgrass [125]. A recent
study reported that SWEs (extracts with some modifications) of A. nodosum upregulated the
nitrate transporters’ (NRT1.1, NRT2.1, NRT1.5) gene expression and some other associated
N assimilation enzymes in spring barley roots, thereby enhancing NUE; barley yield was
maintained despite using 27% less N fertilizer under field conditions [62,126]. Interestingly,
the stimulatory action of SWEs was observed to be more pronounced when plants were
grown at lower nitrate levels, which implied that SWEs application might be a suitable
strategy to enhance nutrient assimilation under nutrient-limited conditions commonly
encountered in many organic farming scenarios [127]. Apart from the normal conditions,
AMF and PGPR microbial BSs were reported to increase nitrate reductase activity in let-
tuce under moderate drought stress conditions [128]. Therefore, BSs appeared to be more
effective for plants encountering sub-optimal conditions such as nutrient deficiency and
adverse climatic conditions.

4. Implications of Biostimulants for Enhancing Crop Physiology, Productivity,
and Quality

Plant growth and yield are influenced by a variety of complex genetic, biochem-
ical, metabolic, and environmental factors that are regulated by internal and external
stimulators [7,9,21,29,74,80,86,129–131]. Due to the large diversity of BSs and complex-
ity associated with plant growth and developmental regulation, it is likely that there
will be several mechanisms regulating growth, development and responses to various
stressors [28,34,42,43,74,80,86,129,131,132]. For a specific group of BSs such as vermicom-
posts and their various “teas,” the scientific evidence is indicative that vermi-linked BSs
enhanced plant growth and development through bio-stimulatory actions of various phy-
tohormones present in it [28,70,75,81,130]. One could envisage that various groups of
BSs would employ different mechanisms in accordance with their intrinsic chemistry and
molecular mechanisms.
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In general, BSs promote growth, development, and resilience to abiotic stresses by
exerting a bio-stimulatory effect on target plant due to phytohormones, secondary metabo-
lites, and organic and inorganic nutrients [28,42,66,94,95,129,131]. Furthermore, application
of BSs was reported to stimulate seed germination, seedling growth, and crop productivity
by promoting primary and secondary metabolisms through the bio-stimulatory actions
of signaling bioactive molecules existing in BSs [21,29,34,75]. A recent study by Briglia
and coworkers [132] reported that BS application upregulated several genes involved in
hormone metabolisms and biosynthesis, regulating nitrogen metabolisms and mineral trans-
port in maize. Interestingly, researchers have reported that BSs effectively enhanced yield,
nutritional and functional attributes of a wide range of fruits and vegetables [112,133,134].
Trichoderma-based BSs were reported to enhance biosynthesis and accumulation of phy-
tochemicals such as ascorbic acid by regulating secondary plant metabolism, providing
several health benefits to consumer [38,94,95,112]. Similarly, Carillo and co-workers [134]
demonstrated that application of BSs on plum tomatoes enhanced the levels of lycopene,
asparagine, and γ-aminobutyric acid by stimulating secondary metabolism and enhancing
nutritional quality of fruits. Furthermore, AMF was able to modulate plant secondary
metabolites’ synthesis, thereby improving the health-promoting attributes of fruits and
vegetables [135]. A recent study by Di Mola and co-workers [136] indicated that legume-
derived PHs were able to enhance antioxidant contents of green leafy vegetables, thereby
improving the vital health benefits in consumer diet. Their study further revealed that PHs
could further modify primary and secondary metabolism in spinach, thus contributing
to various phytochemicals associated with numerous health-promoting attributes. Foliar
application of SWEs (A. nodosum) was reported to increase health-promoting phenolics
and flavonoids [137]. Moreover, Sani and co-workers [138] stated that both microbial
and non-microbial BSs assisted in modifying primary and secondary metabolisms that
led to synthesis and accumulation of antioxidants associated with health benefits. The
combined application of Trichoderma + SWEs (A. nodosum) enhanced growth, nutritional
quality, and mineral contents of organically grown tomatoes [138]. Similarly, a combination
of Trichoderma-based BSs and bio-fortified spent mushroom substrate (SMS) improved
nutritional quality of tomato through the synthesis and higher accumulation of TSS (total
soluble sugars), carotenoids, polyphenols, and mineral contents [139]. Moreover, a plethora
of recent research documented numerous beneficial effects of BSs on growth, physiology,
yield, and quality, summarized in Table 1.

Table 1. Biostimulatory effect of biostimulants in enhancing crop physiology, productivity,
and quality.

BSs Applied Crop Effect on Crop Growth, Yield and Quality Reference

SWEs (Ascophyllum nodosum) Wheat Increased in grain yield and protein quantity [140]

SWEs (E. maxima, A. nodosum,
Sargassum sp.) Tomato

Increased mineral (Fe, Zn) content, enhanced
germination, plant height, chlorophyll content, yield

Expression of 6 flowering genes, increased flower bud
and fruits

[141–143]

SWEs
(Sargassum swartzii) Cowpea Increased phenolic and flavonoid content [144]

SWEs (A. nodosum,
Laminaria ochroleuca) Broccoli Increased antioxidants, flavonoids, and phenolic

Enhanced both glucosinolates and phenolic compounds [145,146]

SWEs (E. intestinelis) Cucumber Increased mineral (Fe, Mn, Zn) content of fruits, yield [147]

SWEs (A. nodosum) Pepper Increased growth (height), chlorophyll content, yield [148]

SWEs (Ecklonia maxima) Spinach Increased leaf number, chlorophyll, carotenoids,
proteins, phytohormones, and phenolic acid [149]

SWEs
(commercial mixture) Maize Enhanced carbohydrate, organic substance and

phosphorus metabolism, increased PGPR in rhizosphere [150]
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Table 1. Cont.

BSs Applied Crop Effect on Crop Growth, Yield and Quality Reference

SWEs (A. nodosum) Strawberry Increased 10% marketable yield [151]

SWEs (Ecklonia maxima) Common bean
Increased yield and anthocyanins content in the seeds

Increased synthesis of phenolics, flavonoid,
anthocyanins and antioxidant activities

[152,153]

HSs Maize
Increased leaf biomass, chlorophyll and carotene content
Increased growth, grain yield and water use efficiency
Faster induction of a higher capacity to take up nitrate

[154,155]

HSs Onion Increased yield, carbohydrate, protein and mineral
contents in bulb [156,157]

HSs Strawberry Increased growth, nutritional and chemical composition [158]

HSs Common bean Increased seed yield and mineral content [159]

HSs Thai basil Increased leaf nitrogen content [160]

HSs Arabidopsis Enzyme activation of the glycolytic pathway and
up-regulation of ribosomal protein [161]

PHs Tomato

Increased photosynthesis, antioxidant activities, total
soluble solids, mineral composition

Regulated the expression of genes involved in nitrate,
ammonium and amino acid transporters as well as the

key genes involved in N metabolism

[162]

PHs Maize

Increased macro-and micro-nutrients in leaves, protein
content in grain and yield

Increased growth and accumulation of N-compounds
(proteins, chlorophylls and phenols)

Increased root growth and accumulation of K, Zn, Cu,
and Mn in roots

[163–165]

AMF Tomato Increased foliar and root growth and protein content [166]

AMF Maize Increased biomass and yield through biological
improvement of soil properties [167]

Trichoderma-based BSs Lettuce, Rocket Increased growth, yield and nutritional quality [38,138,168]

PGPR (Bacillus spp.) Tomato Increased growth and yield [169]

PGPR (Bacillus
amyloliquefaciens) Arabidopsis Increased photosynthesis, biomass and seed yield [170]

PGPR (consortia) Wheat Increased root growth and nitrogen accumulation [171]

PGPR (Cellulosimicrobium and
Pseudomonas) Pepper Increased phenolic compounds [172]

PGPR (Azospirillum and
Agrobacterium) Pea Increased nutrient uptake, vegetative growth,

chlorophyll content and antioxidant capacity [173]

Abbreviations: AMF, Arbuscular mycorrhizal fungi; BSs, Biostimulants; HSs, Humic substances; PGPR, Plant
growth-promoting rhizobacteria; PHs, Protein hydrolysates; SWEs, Seaweed extracts.

5. Implications of Biostimulants in Alleviating Stress in Crop Plants

Unfavorable climatic and soil conditions such as drought, salinity, and extreme tem-
perature cause significant yield reduction in crops and are responsible for nearly 70% yield
differences as determined by global climate analysis [174]. The global climate is predicted
to change considerably in the next few decades and is likely to intensify adverse climatic
extreme events affecting crop production and global food security [1,4,20,21,29,32,95]. In
that context, non-microbial and microbial BSs have been widely touted as a promising
technology to improve crop productivity and maintaining yield stability under adverse
climatic conditions [21,29,32,100]. Although many BSs were able to enhance nutrient up-
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take, recent literature also reported that BSs could stimulate other rhizospheric microbes
and plant-microbe beneficial associations, altering various metabolic and physiological
mechanisms that allow them to ameliorate stress-induced adverse effects (Table 2). The
stress adaptation strategies delivered by applications of microbial BSs included cell wall
alteration and accumulation of high soluble solutes, leading to enhanced water retention,
thereby improving the osmotic and ionic stress tolerance [95,98,113,129,175]. Interestingly,
Rhizobium was shown to alleviate salt stress through the production and bio-stimulatory
actions of high indole-3-acetic acid (IAA) and EPS concentrations [176]. These mechanisms
were also reported to alleviate extreme temperature and drought stress in numerous agri-
cultural and horticultural crops. Furthermore, inoculation of Azotobacter strains increased
K+ uptake and exclusion of Na+, which mitigated the negative impact of salinity stress in
wheat, ensuring increased biomass and grain yield [177]. For rain-fed field crops, inocula-
tion of Pseudomonas putida resulted in significant improvement in heat tolerance of wheat
by minimizing ROS generation [178]. Similarly, the cold-tolerant PGPR Pantoea dispersa
was able to improve cold tolerance in wheat by enhancing nutrient solubilization and
higher production of IAA [179]. Burkholderia phytofrman, another commonly used PGPR,
was reported to increase ROS scavenging metabolites and stress-induced genes, thereby
enhancing the chilling tolerance capacity in Vitis vinifera L. [180]. Interestingly, PGPR with
ACC-deaminases were able to minimize ethylene-induced root inhibition, maintaining a
higher root-to-shoot ratio and, consequently, achieving better growth under salt stress [181].

A recent study reported that non-microbial BSs such as SWEs were able to confer
chilling stress tolerance in maize by enhancing the ROS responses through supplying
micronutrients (Zn, Mn, etc.) [182]. Similarly, SWE-based cytokinins were reported to
enhance heat tolerance in bentgrass (Agrostis stolonifera L.) [183]. The PHs derived from
alfalfa showed better salt tolerance in maize through bio-stimulatory actions of triacontanol
(TRIA) and IAA, which resulted in a higher concentration of flavonoids, proline, and
potassium [184]. PHs containing higher amino acids showed antioxidant and free radical
scavenging properties in lettuce and improved root dry biomass and yield and higher levels
of osmolytes and glucosinolates [35]. The application of HSs in common beans showed
increased endogenous proline concentration and minimal membrane leakage, facilitating
better salt tolerance in plants [49]. Apart from beneficial actions/effects of BSs on abiotic
stress tolerance, several studies also reported the role of BSs in biotic stress tolerance,
especially for microbial BSs, although protection against biotic stresses generally does
not fall under the arbitrarily accepted definition of BSs [30,102,103,128]. However, their
potential bio-stimulatory role in biotic stress tolerance, in addition to growth promotion,
will be relevant for future development of novel BSs products. Some beneficial microbes are
known to regulate induced systemic resistance (ISR) in plants by stimulating the immune
system against a broad spectrum of pests and providing more rapid and intense actions
against pathogens without compromising growth and yield [185]. Among the microbial
BSs, PGPR Pseudomonas, Serratia, and Bacillus, and beneficial fungi Trichoderma spp. and
Piriformospora indica have been well documented to induce ISR in various crops [186,187].
Trichoderma harzianum based commercial formulations (Trianum-Pfi) were reported to
induce ISR and provide defense against soil pathogens [188]. Furthermore, ACC deaminase-
producing PGPR were able to protect plants against bacteria, fungi, and nematodes by
hindering symptomatic development and minimizing disease severity [189]. For instance,
the ACC deaminase producing Pseudomonas putida UW4 was able to provide protection
against Pythium ultimum in cucumber [190].
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Table 2. Biostimulatory effect of biostimulants in enhancing stress tolerance and crop performance.

BSs Applied Type of Stress Crop Effect on Stress Tolerance and Crop
Performance Reference

SWEs (Euglena gracilis) Drought/water stress Tomato

Increased antioxidants (carotenoids,
vitamins and phenolic acids) and
soluble carbohydrates (glucose,

fructose, and sucrose) in
fruits;Increase endogenous
indole-3-acetic acid (auxin),
trans-zeatin (cytokinin), and

jasmonic acid

[191,192]

SWEs (A. nodosum) Drought Soybean

Reduced Reactive Oxygen Species
(ROS), increased antioxidant enzymes
activity, stomatal conductance, higher

energy efficiency

[193]

SWEs (Commercial) Cold Arabidopsis Increased superoxide dismutase
activity in the root and leaf tissue [194]

SWEs (Gracilaria dura) Drought Wheat Increased abscisic acid content and
expression of stress-protective genes [195]

SWEs (A. nodosum) Drought Spinach Increased leaf-water relations, growth
and yield [196]

SWEs (A. nodosum) Drought Arabidopsis
Enhanced stomatal conductance and

water use efficiency; regulation of
stress-responsive genes

[197,198]

SWEs (A. nodosum) Heat Tomato
Gene transcription of protective heat

shock proteins and increased
flowering and fruit number

[199]

SWEs (A. nodosum) Drought Broccoli Increased N, P, K, Mg, Cu and
Mn contents [200]

HSs Drought Potato Increased growth, photosynthetic
capacity and fresh tuber yield [201]

HSs Heavy metal stress
(Cd) Wheat

Increased activation of superoxide
dismutase (SOD), catalase (CAT) and
NADPH-oxidase (NOX) enzymes and

ascorbate, glutathione

[202]

HSs Salt Strawberry

Enhanced leaf water content,
membrane stability, chlorophyll
content and increased biomass

and yield

[203]

HSs Drought Rapeseed
Improved plants net photosynthesis

via increasing the rate of gas exchange
and electron transport flux

[204]

PHs Salt Common bean
Increased leaf photosynthetic
pigments contents, membrane
stability, relative water content

[205]

PHs Drought Grapevine Reduced water loss, enhanced yield
and quality [206]

PHs (legume derived) Mineral nutritional
Stress (N) Baby lettuce

Increased fresh weight, antioxidant
capacity and total ascorbic

acid content
[207]

PHs (legume derived) Mineral nutritional
Stress (N) Baby rocket Increased lipophilic antioxidant

activity and total ascorbic acid content [208]
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Table 2. Cont.

BSs Applied Type of Stress Crop Effect on Stress Tolerance and Crop
Performance Reference

PHs (legume derived) Mineral nutritional
Stress (N) Baby spinach

Increased lipophilic and hydrophilic
antioxidant activities, higher leaf

chlorophylls and lower nitrate content
[136]

Trichoderma based BSs Mineral nutritional
stress (N) Rocket Improved root N uptake; increased

ascorbic acid, K and Ca contents [38]

AMF Drought Fenugreek Increased root fresh weight, fresh
plant weight and seed yield [209]

AMF Salt Wheat
Increased photosynthesis and

stomatal conductance, lower intrinsic
water use efficiency and grain yield

[210]

AMF Salt Sweet basil Increased chlorophyll content, water
use efficiency and yield [211]

AMF Drought Maize

Increased photosynthesis, proline,
sugars and free amino acids;

up-regulation of the antioxidant
defense system

[212]

AMF Heavy metal stress Soybean

Retained heavy metals in roots and
reduced translocation of Cu, Pb and

Zn and improved overall growth and
seed yield

[213]

PGPR (Pseudomonas
fluorescens and
Microccucuce
yunnanensis)

Mineral nutritional
stress (Fe) Quince

Enhanced the expression of the genes
related to Fe homeostasis, increased

root, shoot biomass and
chlorophyll content

[214]

PGPR (Cupriavidus
necator and

Pseudomonas fluorescens)
Water stress Maize Increased N and P use efficiency

and biomass [215]

PGPR (Pseudomonas
aeruginosa and

Burkholderia gladioli)

Heavy metal stress
(Cd) Tomato

Alleviated Cd toxicity and enhanced
phenolic compounds, organic acids

and osmoprotectants
[216]

PGPR (Enterobacter HS9
and Bacillus G9) Water Stress Velvet bean Improved total biomass, water use

efficiency and carbon assimilation [217]

PGPR (Alcaligenes
faecalis) Salt Wheat

Improved ionic balance, increased
accumulation of osmolyte,

photosynthetic pigments and
improved photosystem II efficiency

[218]

PGPR (Azospirillum
brasiliense and

Azotobacter chroococcum)
Salt Coriander Increased chlorophyll content, fresh

weight and yield [219]

PGPR (Bacillus
licheniformis and

Pseudomonas
plecoglossicida)

Salt Sunflower

Increased fresh and dry biomass,
yield, enhanced up-regulation of

catalase (CAT), superoxide dismutase
(SOD) and guaiacol peroxidase (GPX)

antioxidant enzymes

[220]

PGPR (Streptomyces
spp.) Drought Tomato

Increased leaf RWC, proline, MDA,
H2O2 and total sugar content

and yield
[221]

Abbreviations: AMF, Arbuscular mycorrhizal fungi; BSs, Biostimulants; HSs, Humic substances; PGPR, Plant
growth-promoting rhizobacteria; PHs, Protein hydrolysates; SWEs, Seaweed extracts.



Biology 2022, 11, 41 15 of 27

6. Exploiting Synergistic Biostimulatory Interactions among Biostimulants

As discussed earlier, the pursuit of organic farming is to reduce dependence on
agrochemicals, particularly inorganic fertilizers (e.g., phosphorus), by improving nu-
trient availability and NUE while maintaining soil health, soil quality, and productiv-
ity [3,8,9,13,16,17,24]. Microbial and non-microbial BSs have been widely reported to
improve growth and protect plants from both biotic and abiotic stresses. When selected
correctly, an application of these BSs would exert desired effect(s) on plants that are facing
multiple abiotic constraints such as nutrient limitations, drought, salinity, heat, and con-
comitant biotic stresses simultaneously in a typical organic production system. Therefore,
the purposeful combinations of microbial and non-microbial BSs represent a promising strat-
egy that synergistically provide multiple beneficial effects to optimize growth and stress
tolerance while enhancing yield and quality in these “low input” scenarios [9,13,14,26].
However, a combination of microbial and non-microbial BSs may result in three plausible
outcomes: additive, antagonistic, and synergistic effects based on their interactive bio-
stimulatory actions and mechanisms. Firstly, for additive effects, the combined effects
exerted by BSs equaled the sum of their individual effects. Secondly, for antagonistic effects,
the overall effect exerted by BSs delivered less than the additive effects. Lastly, synergistic
effects could be observed when cumulative effects of BSs exceeded their additive effects;
which is ultimately the preferred outcome. In recent years, many studies demonstrated
that combined application of microbial and non-microbial BSs generally provided better
benefits due to synergistic interactions among the BSs, resulting in enhanced growth, and
stress protection [24,26,222–225]. For instance, microbial BSs Trichoderma virens (TG41) with
a vegetal biopolymer-based BSs (VBP) enhanced CO2 assimilation in lettuce and increased
mineral contents by 10% for K and 12% for Mg [226]. Their study further reported that
a combined application of (TG41) + (VBP) interacted synergistically and enhanced the
nutritional quality of lettuce by significantly increasing antioxidant activity, total ascorbic
acid (+61–91%), and total phenols (+14%) while minimizing nitrate content. According
to Sani and co-workers [138], a combined application of Trichoderma-based BSs and SWEs
interacted synergistically and enhanced the growth, nutritional, functional quality (ascorbic
acid, lycopene, minerals) of organically grown tomato. In addition, they found favorable
synergistic interaction between Trichoderma and SWEs and the concomitant increase of
soil fertility by fostering growth of rhizospheric fungal and bacterial populations, thereby
increasing NUE, plant growth and with higher levels of antioxidants and minerals in their
tomato experiments.

A recent study also demonstrated that AMF + SWEs induced a favorable synergistic
effect; higher biomass, leaf area, stomatal conductance, mineral concentration (N and P)
were reported in date palm [227]. Apart from optimal conditions, few studies also reported
the synergistic interactions providing better resilience in stress conditions. A combination of
plant-derived PHs and microbial BSs interacted synergistically and delivered a marketable
yield of greenhouse lettuce (Lactuca sativa L.) under alkalinity and salinity stress [26].
The combination of AMF + SWEs resulted in producing an additive effect in increasing
root growth as well as protein and carbohydrate content of tomato [166]. Interestingly,
their study also found a synergistic effect in accelerating flowering of tomato plants and
further demonstrated that additive and synergistic effects were due to the interactions
between microbial (AMF) and non-microbial (SWEs) BSs, thereby delivering better plant
performance. Researchers working on acclimatizing pineapple plants in a greenhouse
found that humic acid and PGPR (Burkholderia spp.) increased 50% and 81%, respectively,
whereas their combined application resulted in achieving the best growth (105%) [218]. The
application of non-microbial BSs with AMF significantly increased the phenolic compounds,
lipids, sugars, and proteins in leaves of Moringa oleifera, thus enhancing their functional
properties [228]. A greenhouse study on wall rocket (Diplotaxis tenuifolia L.) demonstrated
that combined application of PHs+ Trichoderma harzianum T22 interacted synergistically
and increased lipophilic and hydrophilic antioxidant activity as well as ascorbic acid
and chlorophyll content [229]. The study also found that combined application (PHs+
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Trichoderma harzianum T22) also increased N, P, Mg, and Na contents compared to the stand-
alone applications. Similarly, a combination of Trichoderma harzianum+ Biopolymer-based
BSs enhanced crop performance, nutritional and functional quality of greenhouse-grown
tomato [134]. A greenhouse study on perennial wall rocket demonstrated that PHs and BSs
(tropical plant extracts) interacted synergistically and significantly promoted ascorbic acid
content over the stand-alone applications [230]. In addition, it was reported that combined
application of SWEs and PGPR interactions led to a significant increase in growth and
photosynthetic pigments in Amaranthus hybridus [231].

The application of combined AMF and potassium humate BSs on Russian olive (Elaeag-
nus angustifolia L.) exhibited synergistic interactions and enhanced the antioxidant defense
system through increasing superoxide dismutase and glutathione reductase activity as well
as phenolic content [232]. A single application of HSs and SWEs increased groundnut plant
height by 34.5% and 17.2%, respectively, whereas their combined application resulted in
65% compared to the sum of independent, stand-alone applications [225]. Alginic acid,
a major component of SWEs, was able to promote hyphal growth in AMF, leading to
enhanced P availability and improved nutrient uptake in plants [65]. Furthermore, HSs and
AMF showed significantly increased root dry weight in onions by 43.9, and 12.1%, whereas
their synergistic effect exhibited 106.7% compared to a sole application under elevated
CO2 [223]. Their study suggested that the synergistic bio-stimulatory interactions of HSs
and AMF resulted in achieving higher NUE, thus enhancing onion plants’ performance
under elevated CO2. Similarly, a co-application of substrate with AMF (R. intraradices) and
providing a subsequent HA spray at 30-day intervals delivered enhanced root biomass as
well as greater chlorophyll biosynthesis compared to stand-alone applications in perennial
ryegrass [224]. Moreover, Rouphael and co-workers demonstrated that endophytic fungal
consortium and PHs improved crop productivity over a single application by increasing
chlorophyll biosynthesis and maintaining the photosynthetic activity of PSII and leaf nutri-
tional status [26]. In a field grown-tomato trial, a consortium of fungal and bacterial BSs
delivered positive and synergistic effects on uptake of certain essential mineral nutrients
(K, Na, and Mn) from soil [233]. Based on the selection of literature provided, the syner-
gistic properties among BSs are interesting and indicative of their complex biostimulation
mechanisms in determining plant growth, performance and resilience. Thus, to develop
the next generation of BSs with specific synergistic effects for enhanced crop growth, yield,
quality, and resilience, we need to characterize the BSs individually and when they are
used in a mixture.

7. Ecological Considerations for Harnessing the Beneficial Functions of Biostimulants:
Moving from Lab towards Successful Field Application

Plant responses would be affected significantly by global climate change in terms
of above and belowground interactions with the growing environment and diversity of
organisms in terrestrial ecosystems. Therefore, applied BSs would need to be operative ef-
fectively in field conditions [4,7,21,24,29,51,100]. Several studies reported that efforts to use
microbial BSs under field conditions have failed to improve crop performance consistently.
The multiple-faceted interactions between plants and their symbiotic microbial species,
ecological effects of plant-associated soil microbes and soil, and plant metabolic dynamics
remain unclear [21,29,86,100,175,234,235]. For instance, we have little knowledge about the
stand-alone microbial inoculants in soil after inoculation and how these inoculants interact
with existing indigenous microbes while adapting to local abiotic conditions. Even with
successful laboratory or greenhouse (pot, planting beds) trials, it is also unclear whether
these introduced microbes could establish a compatible synergistic interaction with host
plants, including aspects of molecular defense with the plant immune system under field
conditions. Several factors can alter the success of microbial inoculation in agro-ecosystems,
including plant-microbial compatibility, the degree of their competition with existing native
microbial population, and timing of inoculation [29,100,175,236]. Throughout the whole
growing period, this microbial community undergoes continuous interactions and suc-
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cession with above- and belowground components of the crops [237]. Therefore, even
if beneficial microbial inoculants colonize the plants and the adjacent soils initially, their
persistence and functionality over time in the rhizosphere are not guaranteed. Moreover,
measuring the persistence of these microbial inoculants in soil poses major technical limita-
tions, as the inoculants need to be identified and profiled from within a complex community.
In addition, a stress episode may also induce existing (local) microbes to produce a variety
of compounds that may ultimately affecting the entire microbial community stability. For
instance, it was reported that drought-treated soils contained more antibiotics, which were
produced by drought-tolerant bacteria as a physiological response to outcompete other
bacteria for limited resources or possibly acting as signals to induce drought-response
pathways such as biofilm formation [238]. Therefore, the uncertainly posed by complex
microbial and plant interactions on soil-microbiome functionality remained a challenge
to the wider usage of BSs, especially under field conditions. Interestingly, attempts have
been made along these similar lines in restoration ecology where researchers used various
combination of BSs and an N-fixing legume (pigeon pea) to restore highly degraded mine
site soils for the purpose of re-introducing native vegetation post-mining [239].

In this context, microbial and non-microbial BSs’ combined application may offer
plants with better combinatorial effects through synergistic interactions favoring beneficial
physiological functions to plants. For example, HSs were effective in enhancing germ
tube elongation and hyphal branching of AMF, thus assisting the symbiotic expansion of
AMF in onions and thereby boosting root and shoot biomass production [223]. Several
studies demonstrated that combined application of AMF, Trichoderma, or PHs stimulated
the uptake of bivalent cations, principally Mg2+ and Fe2+ that were required for chlorophyll
biosynthesis and restoring foliar chlorophyll content to acceptable levels under adverse
saline and alkaline field conditions [113,154]. Furthermore, Rouphael and co-workers [26]
reported that a combined application of microbial-based BSs and PHs interacted syner-
gistically to activate both proline and antioxidant enzymes as a strategy against oxidative
damage under stress conditions and was proven more effective than a single microbial
BS application. Several researchers [54,238] reported that PHs could possibly stimulate
plant-associated microbiome; thus, these amino acids were serving as suitable substrates for
plant-associated microbes in rhizosphere. Therefore, the determinants of plant productivity
and stress responses under field conditions are dependent in part on diverse microbial com-
munities in rhizosphere. Their underlying interactions with plants and understanding the
combinatorial effects of BSs on soil microbiome function would pave the way to improve
our understanding of the soil-microbe-plant continuum. With more targeted research in BS
characterization and metabolism dynamics along the soil-microbe-plant continuum (e.g.,
BSs involved in root to shoot signaling after inoculation), we will better understand the com-
munication dynamics of plants and microbes in rhizosphere [21,29,235,240]. With greater
mechanistic clarity, we may be able to access the beneficial potential of these plant-microbe
interactions through strategic BS usage.

8. Concluding Remarks and Future Challenges

Microbial and non-microbial BSs offer a promising innovative and sustainable strategy
to supplement and replace agrochemicals in the near future. With greater mechanistic clar-
ity, the judicious use of BSs should improve plant growth and resilience to biotic and abiotic
stresses and deliver acceptable yield and good quality organically cultivated products. The
first step is to understand and characterize the diversity of BSs using advanced analytical ap-
proaches with concomitant validation of plant performance over a wide range of conditions.
The research community, growers and industrial companies are interested in identifying
the bioactive elements of BSs and elucidating underlying biochemical, physiological, and
molecular pathways of biostimulation. If the characterization of targeted BSs is successful,
we will be able to formulate more specific BSs to meet specific species requirements and
address the multitude of cultivation challenges. Nevertheless, further advanced research is
needed to address several uncertainties, such as: (i) How effectively can BSs modulate the
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rhizospheric microbial population quantitatively and qualitatively in rhizosphere? (ii) How
long can microbial BSs persist under field condition subsequent to their application and
their underlying interactions with existing microbes? (iii) How do BSs modulate hormonal
signaling under both normal and stress conditions within a plant? (iv) How and to what
extent BSs stimulate microbe-derived hormones in root microbiome assembly, rhizosphere,
entry to plant vascular system, and root-shoot signaling? The recent advancements in
omics-based and other technologies, such as meta-transcriptomics, meta-proteomics or
metabolomics, amplicon sequencing and phenotyping, will contribute to profiling of trace
metabolites facilitating the soil-microbe-root-shoot processes, and consequently help assess
plant performance and yield. Understanding these mechanisms will lead to the develop-
ment of novel and well characterized BSs, combining microbial and non-microbial BSs
strategically with specific desired synergistic bio-stimulatory action, to deliver enhanced
plant growth, yield, quality, and resilience consistently in organic agriculture.
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