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Abstract: Abiotic stresses, such as temperature (heat and cold), salinity, and drought negatively
affect plant productivity; hence, the molecular responses of abiotic stresses need to be investigated.
Numerous molecular and genetic engineering studies have made substantial contributions and
revealed that abiotic stresses are the key factors associated with production losses in plants. In
response to abiotic stresses, altered expression patterns of miRNAs have been reported, and, as
a result, cDNA-microarray and microRNA (miRNA) have been used to identify genes and their
expression patterns against environmental adversities in plants. MicroRNA plays a significant role
in environmental stresses, plant growth and development, and regulation of various biological and
metabolic activities. MicroRNAs have been studied for over a decade to identify those susceptible
to environmental stimuli, characterize expression patterns, and recognize their involvement in
stress responses and tolerance. Recent findings have been reported that plants assign miRNAs as
critical post-transcriptional regulators of gene expression in a sequence-specific manner to adapt to
multiple abiotic stresses during their growth and developmental cycle. In this study, we reviewed
the current status and described the application of cDNA-microarray and miRNA to understand
the abiotic stress responses and different approaches used in plants to survive against different
stresses. Despite the accessibility to suitable miRNAs, there is a lack of simple ways to identify
miRNA and the application of cDNA-microarray. The elucidation of miRNA responses to abiotic
stresses may lead to developing technologies for the early detection of plant environmental stressors.
The miRNAs and cDNA-microarrays are powerful tools to enhance abiotic stress tolerance in plants
through multiple advanced sequencing and bioinformatics techniques, including miRNA-regulated
network, miRNA target prediction, miRNA identification, expression profile, features (disease or
stress, biomarkers) association, tools based on machine learning algorithms, NGS, and tools specific
for plants. Such technologies were established to identify miRNA and their target gene network
prediction, emphasizing current achievements, impediments, and future perspectives. Furthermore,
there is also a need to identify and classify new functional genes that may play a role in stress
resistance, since many plant genes constitute an unexplained fraction.

Keywords: abiotic stress tolerance; drought stress; salinity stress; cold stress; miRNA target gene
expression; adaptation
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1. Introduction

Plants are subjected to a wide range of abiotic stresses that are primarily hostile to plant
growth, leading to plant death worldwide. Abiotic stresses have an extensive impact on
various physiological, molecular, and metabolic responses. Much progress has been made
in unravelling the complex stress response mechanisms, particularly in identifying stress-
responsive genes with the help of biotechnological tools [1,2]. MicroRNAs (miRNAs), play
a critical role in post-transcriptional regulation through base-pairing with other miRNA
targets, including transcription factors (TFs) [1,3]. Understanding the role of miRNAs
in abiotic stresses may be helpful in the development of innovative ways for improving
plant responses against abiotic stresses. MicroRNAs are involved in multiple cellular
and metabolic pathways under abiotic stresses, such as flowering, morphogenesis, signal
transduction [4–6], and gene feedback regulation [7]. MicroRNAs are a group of single-
stranded non-protein-coding short length RNA of approximately 18–25 nucleotides in
length with a highly conserved class [8–10]. MicroRNAs are formed by antecedence with
distinctive stem-loop assemblies [11]. In the plants, miRNAs are important regulators
of gene expression at various stages of plant development; for instance, 959 founding
members representing 178 miRNA families were identified in rapeseed (Brassica napus),
earth mosses (Physcomitrella patens), arabidopsis (Arabidopsis thaliana), maize (Zea mays),
black cottonwood (Populus trichocarpa), barrel clover (Medicago truncatula), rice (Oryza
sativa), soybean (Glycine max), sorghum (Sorghum bicolor), and sugar cane (Saccharum
officinarum) [12,13] (Tables 1 and 2). Usually, intronic miRNAs are coordinately expressed
in host plant miRNAs, suggesting that they are also initiated from mutual transcripts. Host
gene expression by situ analysis was used to probe the temporal and spatial localization of
intronic miRNAs. These non-coding small RNAs are proposed to perform crucial roles in
plant adaptation and immunity to adverse environmental conditions [14,15].

Table 1. Examples of miRNAs identified in model plants under drought, cold and salinity stresses.

Stress
Condition Plant Species Inducible Genes Known Responsive

miRNAs Functions References

Drought
stress

Arabidopsis
thaliana

Rd29A (At5g52310)
CCAAT-binding

transcription factors

miR164, miR169,
miR389, miR393,
miR396, miR397,

miR402

Pathogen immune response
Drought tolerance

Oxidative stress tolerance
Pathogen immunity response

Syncytium formation
response to parasitic

nematodes

[16–19]

Medicago
truncatula

CCAAT Binding Factor (CBF)
Growth Regulating Factor

(GRF)
Cu/Zn superoxide dismutases

(CSD1, CSD2)
TIR-NBS-LRR domain protein

miR169,
miR396
miR398,
miR2118

Drought tolerance
Syncytium formation
response to parasitic

nematodes
Oxidative stress tolerance

Photoperiod-sensitive male
sterility

[16,20]

Oryza sativa
SalT (LOC_Os01g24710)

TIR1
OsLEA3 (LOC_Os05g46480)

miR393
miR402 Salt/cold tolerance [6,17,18,21]

Cold stress

Arabidopsis
thaliana

Rd29A (At5g52310)
CBF3 (At4g25480)

miR165, miR172,
miR169,

miR396, miR397,
miR402

Drought/cold tolerance
Drought tolerance

Heat stress tolerance
[16,17]

Oryza Sativa

OsWRKY71
(LOC_Os02g08440)

OsMAPK2(LOC_Os03g17700)
Os05g47550, Os03g42280
Os01g73250, Os12g16350

Os03g19380

miR319, miR389,
miR393,

miR1320, miR1435
miR1884b, CHY1

CP12-2

Drought/salt tolerance
Cold tolerance

Pathogen immunity response
[17,21–23]
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Table 1. Cont.

Stress
Condition Plant Species Inducible Genes Known Responsive

miRNAs Functions References

Salinity
stress

Arabidopsis
thaliana

Rd29A (At5g52310)
COR15A (At2g42540) miR389, miR393, Oxidative stress tolerance

Heat stress tolerance [24]

Populus
trichocarpa Dihydropyrimidinase

miR162, miR164,
miR166, miR167,
miR168, miR172,
miR395, miR396

Pathogen immune response
Drought tolerance

Drought/cold tolerance
Sulfate-deficiency response

[25–27]

Glycine max miR1507a, miR395 Sulfate-deficiency response [28]

Oryza sativa SalT (LOC_Os01g24710)
OsLEA3 (LOC_Os05g46480)

miR156, miR158,
miR159, miR397,

miR398, miR482.2,
miR530a, miR1445

Drought tolerance
Pathogen immune response

Heat stress tolerance
[22,29–31]

Zea mays miR402
Seed germination and

seedling growth of
Arabidopsis under stress

[18]

Table 2. Microarray analysis of genes involved in the drought, salinity and cold stress responses in
Arabidopsis.

Phenotype of
Mutants Genes Function AGI Code Coded Proteins Microarrays

Increased tolerance to
drought AtPARP2 DNA repair At2g31320 Poly (ADPribose)

polymerase
24K

Affymetrix [32–34]

Hypersensitive to
drought stress

AHK1/
ATHK1

positive regulator of
drought and salt stress

responses
At2g17820 Histidine kinase 22K Agilent [32,35,36]

Increased tolerance
to drought stress

AREB1/
ABF2

regulate the
ABRE-dependent

expression
At1g45249 bZIP TF 22K Agilent [33,37,38]

Increased tolerance to
salt stress AtbZIP60 encodes a predicted

protein of 295 aa At1g42990 bZIP TF 44K Agilent [37,39]

Increased tolerance to
drought stress AtMYB60

regulates stomatal
movements and plant

drought tolerance
At1g08810 MYB TF 7K cDNA [40]

Increased sensitivity
to

drought stress
AtMYB41

control of primary
metabolism and

negative regulation
At4g28110 MYB TF 24K

Affymetrix [41,42]

Increased tolerance to
drought and salt

stress
AHK2 positive regulators for

cytokinin signaling At5g35750 Histidine kinase Agilent [35,36]

Increased tolerance to
drought and salt

stress
AHK3

perception of cytokinin,
downstream signal

transduction
At1g27320 Histidine kinase 22K Agilent [35,36]

Increased tolerance to
drought and freezing

stress
DREB1A/

CBF3
stress-inducible

transcription factor ERF/AP2 TF ERF/AP2 TF 1.3K cDNA [43]

Increased tolerance to
drought stress DREB2A heat shock-stress

responses. At5g05410 ERF/AP2 TF 22K Agilent
7K cDNA [44]

Hypersensitive to
salt HOS10

coordinating factor for
responses to abiotic

stress and for growth
and development.

At1g35515 MYB TF 24K
Affymetrix [32,45]

Increased tolerance to
drought stress ZFHD1

mediates all the
protein-protein

interactions
At1g69600 Zinc finger HD

TF 22K Agilent [36,39]

Numerous miRNAs/target gene expression modules are responsive to abiotic stresses
in arabidopsis; therefore, altering the molecular profile of certain expression modules
might help plants adapt to abiotic stresses [46,47]. To date, miRNAs have become an
important field of intense study in recent years. Functional analysis of conserved miRNAs
revealed their association with numerous developmental and biological processes. They
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regulate diverse metabolic events, including meristem boundary formation, organ sepa-
ration and auxin signaling, the transition from the vegetative to the reproductive stage
(juvenile-to-adult), and stress tolerance (Figure 1). The first reported miRNA in Arabidop-
sis thaliana to regulate the auxin signaling pathway was miR398, and miR398 was the
first-ever reported miRNA related to stress tolerance. At the same time, the expression of
miR398 was down-regulated under various oxidative activities and environmental stresses
(Figure 1) [48,49], which further validate the substantial involvement of miRNAs in adverse
environmental conditions [15]. MicroRNAs are significantly hardboard during plant devel-
opment by negative gene expressions at the post-transcriptional level [50,51], and hence are
considered as a popular molecular tool in modern biotechnology to study signal transduc-
tion, environmental extremes, response to stresses, protein degradation, biogenesis, and
pathogen incursion [50,52,53]. Recently, several miRNAs have been mutually recognized
by experimental and computational tactics in many crops [54]. In contrast, hundreds
of identified miRNAs are documented as conserved across several species, suggesting
that miRNAs might be used to develop abiotic stress tolerance in plants through genetic
modifications [52,55].
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Figure 1. Schematic summary of miRNA-mediated regulatory mechanisms under abiotic stress in 
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Figure 1. Schematic summary of miRNA-mediated regulatory mechanisms under abiotic stress in
plant cells, with the particular formation process of miRNAs and miRNA mediated gene regulation:
(1) miRNA gene is transcribed to a long sequence of primary miRNA (pri-miRNA). Primary miRNAs
(pri-miRNAs) are transcribed from nuclear-encoded MIR genes by RNA polymerase II (Pol II), leading
to precursor transcripts with a characteristic hairpin structure. (2) The pri-miRNA is cleaved to a
stem-loop intermediate called miRNA precursor or pre-miRNA.

The second important function of miRNAs is in post-transcriptional regulation by
targeting mRNAs for repressing or cleavage translation [16]. Many detrimental environ-
mental factors adversely affect the plant’s metabolic activities which, as a result, inhibit
plant growth and development. However, it is quite challenging to differentiate and quan-
tify the impact of various stresses on the plants through visual identification of hazardous
factors, such as ozone, wound, and drought. Therefore, the development of sensitive
and reliable techniques for diagnostics based on determining altering genes expression
in DNA microarray is required [56]. Thus, the use of high-throughput sequencing (HTS)
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and genome tilling miRNA are focused on discovering the function of epigenetic mecha-
nisms in ecological adaptation and genome idiomatic expressions. However, epigenomics,
expression-pattern, and functional characterization urge us to elucidate the communal
regulatory pathways by miRNAs that control abiotic stress resistance in plants [57]. Small
RNA cloning and high-throughput deep sequencing technologies can obtain the expression
profiles of both known and unknown miRNAs. The study of post-transcriptional regulation
is also crucial in improving stress tolerance and suggesting next-generation targeting for
classical breeding and genetic improvement.

DNA microarrays are a commonly developed tool in functional genomics. Analysis
of the microarray expression profiles is a positive approach to improve in-depth under-
standing of genes involved in regulatory networks and signal transduction associated with
resistance against multiple abiotic stresses [58,59]. With the continued progress of genome
sequencing, DNA-microarray technology has become the pioneer in biotechnology and
has bridged the gap between functional genomics and sequencing data. Microarrays are
classified into two main classes according to the nature of immobilized probes: (1) DNA
microarrays created with DNA-fragments which are normally produced by employing
PCR techniques [60–62] and spotted cDNA-microarrays (most commonly used) and (2)
oligonucleotide microarrays produced with longer (up to 120-mer) or shorter (10 to 40-mer)
oligonucleotides premeditatedly corresponding to explicit coding targets. These cDNA-
microarrays have certain advantages, particularly for regulating gene expression patterns.
However, oligonucleotide-microarrays are restricted to low sequence complication array
elements. The hybridization specificity for a compound probe is amended with arrays
containing DNA fragments that are significantly longer than oligonucleotides [61,63]. The
spotted cDNA-microarray was the earliest and widely used technology, which comprised
several PCR-amplified probes of cDNA-fragments dropped, cross-linked, and dried in a
matrix pattern of spots on a treated glass surface. The targets for these samples are prefer-
entially identified cDNA solutions derived from reverse-transcribed mRNAs obtained from
two cell samples populations [64,65]. There are two modifications to the DNA array series
that may contain cDNAs that are immobilized to a firm base, such as oligonucleotides or
glass/nylon membranes, that are perceived on glass slides (20 to 80-mer) [63]. The most
hotly debated topics are the data normalization techniques, the purpose of which is to
reduce the sample variations resulting from the technical features of microarray processing
that may obscure biological differences in a specific experiment [66]. The review presents
a perspective analysis and bridges the gap between previous and recent advancements
in MicroRNAs and cDNA-Microarray as potent targets to cope with abiotic adversities
in plants.

2. MicroRNAs and Microarray Target Prediction against Abiotic Stress

Perusing plant stress responses is an inclusive concern, which has been threatened by
global warming and other abiotic factors. Currently, numerous miRNAs related to stress-
responses have been identified as being triggered under high salinity, low temperature, and
drought [58,67,68] (Tables 1–3, Figure 2). The stress-induced miRNAs depend upon the
type of stress, tissues or organs, and plant genotype. Stress-sensitive miRNAs can either be
negative regulators by downregulation or positive regulators by upregulation of the accu-
mulation of positive regulators [57]. MicroRNA regulates gene modulation in a sequence-
specific mode and plays a significant role against stress. Understanding and recognizing
abiotic stress-associated microRNAs can help to establish schemes and improve tolerance
against extreme stress [69,70]. Various advancements in miRNA identification—for ex-
ample, deep sequencing, cloning, and prediction by bioinformatics methods, including
miRNA-regulated network, miRNA target prediction, miRNA identification, expression
profile, features (disease or stress, biomarker) association, tools based on machine learning
algorithms, NGS, and tools specific for plants—have been developed to study the expres-
sion patterns of miRNA against stress [70–72]. High-throughput sequencing (HTS) evalu-
ated the miRNA landscape of Arabidopsis entire seedlings subjected to heat, drought, and
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salinity stress, and 121, 123, and 118 miRNAs with a larger than 2-fold changed abundance,
respectively, were discovered [46]. cDNA-microarray includes 3628 distinctive sequences
retrieved from the Yukon ecotype of Thellungiella salsuginea, earlier stress-induced cDNA
libraries, and reported transcript profiles in response to simulated drought, cold, and salin-
ity [73]. Many stress-inducible genes are responsible for low temperature and dehydration;
their sequences have been used to prepare cDNA-microarray with descriptive exposure
of the T. salsuginea genome developed with stress-associated gene expression [41,73,74].
In addition, microarray revealed a larger number of stress-related genes (1886) as differ-
entially regulated in RGA1 mutants [75]. Using full-length cDNA or Gene Chips array
transcription profiling experiments on A. thaliana reveals an extensive alteration occurrence
in transcription against salinity, cold, and drought stress [74,76] (Table 2).

Table 3. miRNAs regulated by drought stress, salinity stress, and cold stress in plants.

Stress Condition Plant Species miRNA Key Functions Response References

Drought stress
Medicago
truncatula

miR398a,b
miR408

miR399k
miR2089

miR2111a-f,h-s
miR2111g
miR4414a

Oxidative stress tolerance
Salt/drought/cold/oxidative

osmotic-stress responses
Phosphate-deficiency

response

Up-regulated [20,77–80]

miR398b,c
miR2111u,v
miR5274b

miR1510a-3p, 5p
miR1510a

Heat stress tolerance
Drought responsive

Oxidative-stress tolerance
triggering phasiRNA

production from numerous
NB-LRRs

Down-regulated
[77,79,80]

Glycine max miR5554a-c Drought responsive [79]

Salinity stress
Glycine max

miR169d
miR395a

miR395b,c
miR1510a-5p

miR1520d,e,l,n,q

Drought tolerance
Sulfate-deficiency response

triggering phasiRNA
production from numerous

NB-LRRs

Up-regulated [20,81,82]

gma-miR159b,c
gma-miR169b,c
gma-miR1520c

Pathogen immune response
Drought/Salt tolerance Down-regulated

[82]

Phaseolus vulgaris pvu-miR159.2 Plant–nematode interaction

[31]
Cold stress Phaseolus vulgaris pvu-miR2118

regulate the expression of
genes encoding the

TIR-NBS-LRR resistance
protein

Up-regulated

Cold- or drought-inducing genes were clustered based on the RNA gel blot and
microarray analyses. The clusters were (1) cold-specific, (2) cold-inducible, and (3) drought-
specific inducible genes. Recently, microRNAs have appeared as gene expression regulators
that have also been associated with stress responses. However, the association between
stress responses and miRNA expression is just beginning to be unfolded and documented.
Fourteen stress-inducible miRNAs were established using microarray, in which the results
of three main environmental stresses in Arabidopsis were plotted. Of them, 10 were cold
regulated and had high salinity, while four were detected for drought miRNAs [83,84]
(Tables 1 and 2). Seki M., et al. [43] reported 20 genes related with cold and drought-
inducible genes, five which were drought-specific, and four novel genes, including
FL5-2D23, FL5-3J4, FL2-56, and FL6-55, and two genes that were cold-specific inducible,
including a novel (FL5-90) gene. Additionally, in rice, two siRNAs were previously re-
ported as miR441 and miR446 [70,85,86]. They were testified to be down-regulated due to
water deficiency; miR169g is the individual gene tempted by the scarcity of water which
belongs to the miR169 family (Table 1). Moreover, the miRNAs responsive to abiotic stress
inducements were comprised of 21 miRNAs belonging to 11 miRNA families which were
up-regulated by UV-B stress in Arabidopsis [51,87,88].
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Figure 2. Summary of commonly used (A) microarrays (cDNA, Affymetrix, and Agilent) to stress
and (B) miRNAs, categorized based on the stress, that respond to drought stress, salinity and
temperature stress and (C) miRNAs reported in (D) plant species: Populus trichocarpa, Medicago
truncatula, Arabidopsis thaliana, Oryza sativa, Zea mays and Glycine max.

High-throughput sequencing (HTS) microarray techniques have been employed for
gene expression profiling under environmental stresses [42,89–91]. Several members of
stress-regulated gene families were reported, such as bZIP to drought, AP2 family to
drought and cold, MYB to dehydration, NAC and bHLH to drought, ABA, and salinity, and
zinc finger to drought and cold [92–94]. In addition, up-to-date, numerous drought-sensitive
genes have been acknowledged in populous and pine [95,96].

3. Drought Responsive miRNAs and cDNA-Microarray

Drought stress is the foremost ecological factor that profoundly influences plant
growth and development. Drought or soil water scarcity and perturbations is a main
abiotic stress condition that causes yield reduction or complete crop loss [69]. It may be
enduring in climatic zones with low or random water accessibility, due to meteorological
changes during plant growth [97,98]. Therefore, preliminary physiological modifications in
drought stress lead to radical gene expression variations [99]. A transcriptomic study in
Pinus taeda was conducted in order to understand how plants were treated for mild drought
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and recuperation cycles [100]. To understand the role of microRNA, an oligonucleotide
microarray was employed to control a rice microRNA expression profile against drought
stress. Furthermore, it was confirmed that mir169g was stimulated by drought along with
the mir169 family, and the introduction of mir169g was more prominent in roots than in
shoots [16,93]. Among the miR169 family, only miR169g in Oryza sativa was regulated by
drought [16]. Many genes associated with drought stress responses have been identified
(Table 3) through cloning and characterization of cDNAs [101]. The examination of gene
regulation through the drought stress response illuminated the roles of genes involved
against abiotic stresses [67]. Moreover, microRNAs induced in drought was identified,
and mir169g was reported as the only family member of mir169 which was induced under
drought condition. The presence of mir169g was more pronounced in plant roots than
in shoots. Several microRNAs in rice were modified against stress conditions on the
microarray. RNA-seq analysis revealed two adjacent Dehydration-responsive elements
(DREs) upstream of the MIR169g. Mir169g was substantially up-regulated and mir169 was
the only family member caused via drought. The expression of mir169g might be directly
synchronized by the CBF/DREBs [16,41].

Water uptake mechanisms are improved under stress, and the crop cells can confer
drought avoidance to retain water and regulate the water deficit. The molecular response
of higher plant mechanisms to water stress was analyzed by identifying various genes
that are sensitive to drought stress at the transcriptional levels [102]. Comprehensive
study on transcriptome analysis has presented important evidence on gene expression
and pathways expressed differently in cotton cultivars, which are useful in developing
drought tolerance [15,42]. MicroRNAs are known to significantly regulate the function
against stress, but miRNAs associated with drought have not been recognized (Figure 2).
Moreover, it is unclear that miRNAs could contribute to drought lenience capabilities in
some plants (such as cowpeas) [103,104].

Expression microarrays provided novel insights into the physiological and metabolic
pathways of dehydration tolerance, which led to the detection of candidate genes that
might be helpful to speed up the breeding of tolerant varieties [99,100], and exhibited a pho-
tosynthetic acclimatization trend in response to moderate drought. Because of the novelty
of the technology, performing DNA-microarray experiments remains a challenge [105,106].
PHENOPSIS was developed as an automated controlled drought screen to measure various
Arabidopsis accessions efficiency and identify resistant ecotypes [107]. cDNA-microarrays
have been designed for aquaporins (AQPs) to determine the expression patterns of 35
Arabidopsis AQPs in roots, flowers, and leaves, however, no leaf specific AQPs were
identified. Plasma membrane intrinsic protein (PIP) transcripts were reported, usually
down-regulated under moderate drought in the leaves, apart from AtPIP2;5-6 and At-
PIP1; 4, which were expressed constitutively and were unaffected by drought stress [108].
Liu, et al. [84] reported seven drought regulated miRNAs by microarray analysis in Ara-
bidopsis thaliana (miR167, miR165, miR31, miR156, miR168, miR171, and miR396) and
confirmed this by spotting their expression patterns in their promoter sequences and an-
alyzing the cis-elements. Moreover, an additional subset of c.150 gene expression was
discovered during recovery from the stress. Identifying co-regulated gene groups has made
it possible to identify common sequence patterns between promoters of certain genes and
to detect transcription factors that control their expression [30,67,76] (Tables 1 and 2).

The plant stress-responsive pathways are not linear, but are dynamically integrated cir-
cuits consisting of several passages involving various tissues, cellular compartments, cofac-
tors, and signaling molecules to organize a precise response to particular signals [109,110].
Microarray research showed that transgenic drought resistance was associated with several
stress tolerant pathway genes, such as DREB1A/CBF3, RD29A, and COR15A, and was
up-regulated. Protein phosphorylation/dephosphorylation is the main signaling event,
which is being stimulated by osmotic stress. Arabidopsis 2-Oligo Microarray (Agilent) was
used to analyze transcription profiles of the SRK2C gene, and protein kinase activated by
osmotic stress (Table 1, Figure 2) [111].
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4. miRNAs and cDNA-Microarray Associated with Cold Stress

Cold stress (frost and chilling) decreases crop yields worldwide through tissue degra-
dation and delayed growth. Most temperate plants have evolved cold resistance through
cold-acclimatization [112]. Signaling pathways were being used in response to winter stress.
The functional genes transform reactions, and reposts suggest that the signaling pathways
for leaf senescence and plant defense responses may overlap [113]. The most characteristic
region of cold-stress responsive genes includes transcription factors, such as CBF/DREB and
stress-inducible candidate genes, identified as KIN (cold-induced), COR (cold-regulated),
and LTI genes (induced by low temperature) or RD (dehydration) [114]. Several HSPs
(heat shock proteins) are also reported for their functions against cold stress. HSPs, which
perform as molecular chaperons, play an important regulatory function in protecting from
stress by restoring normal protein conformation and thus maintaining cellular homeostasis
in plants [115]. The number of the miRNA target genes in expression is intricate during
stress and plant growth. These miRNAs are co-regulated by both developmental signals
and ecological factors (Table 3). The cold-responsive miRNAs were detected by microarray
analysis in Arabidopsis thaliana (miR165, miR31, miR156, miR168, miR171, miR396) and
recommended by identifying their expression patterns in their promoter sequences and
evaluating the cis-components (Table 3, Figure 1) [116,117]. Furthermore, high-intensity
light (HL) responsive genes were assessed with the drought-inducible genes reported
with a similar microarray system, which exposed an impenetrable intersection between
drought and HL-induced genes. Moreover, 10 genes were identified as being involved
in the regulation by HL, drought, salinity, and cold stress (Tables 1 and 2). These genes
are comprised of ERD10, RD29A, KIN1, LEA14, COR15a, and ERD7, and most of them are
considered to be concerned in the defense of cellular components [78,118,119]. Along with
the HL-inducible genes, some are also identified and encouraged by other stresses (heat,
drought, and cold), including AtGolS, LEA, RAB, RD, COR, ERD, HSP, KIN, lipid-transfer
proteins, and fibrillins [76,120,121].

DNA microarrays almost in all genes of the unicellular Synechocystis sp PCC6803 were
used to investigate the gene expression sequential software [122]. A cDNA-microarray was
used to test the profile expression in cold stress, and 328 temperature-regulated transcripts
were reported. OsMYB3R-2 was studied further and was shown to be a dominant regulator
against stress [123]. In this study, there was an attempt to use a 3.1K cDNA-microarray to
express the cold-regulated transcripts in the Capsicum annuum. Several TFs, including the
EREBP (CaEREBP-C1 to C4) family of four genes, a protein of the ring domain, a bZIP pro-
tein (CaBZ1), RVA1, a WRKY (CaWRKY1), and HSF1 protein have been observed among
the cold stress-regulated genes. These genes included CaBZ1, CaEREBP-C3, NtPRp27, the
SAR8.2 protein precursor, putative trans-activator factor, malate hydrogenase, putative
protein of auxin-repressed, xyloglu-canendo-1, 4-D-gucanase precursor, LEA protein 5
(LEA5), homologous DNAJ protein, PR10 and Stns LTP [124,125]. cDNA microarray z1300
full-length cDNAs were used in Arabidopsis to identify cold stress-inducing genes and
target genes of DREB1A/CBF3. Six genes were documented based on microarray and, in
RNA gel blot analyses, it was observed that a novel DREB1A controls cold- and drought-
inducible genes [43,126]. Furthermore, microarray with full-length cDNA was performed
by 1300 full-length cDNAs and cDNA microarray to discover cold-induced genes. Previous
reposts exhibited the target genes of DREB1A/CBF3 and stress-inducible gene expressions
were controlled by transcription factors [76]; in contrast, stress-sensitive genes’ expressions
were reported as specific to the growth stage [42]. Full-length cDNA microarray is conve-
nient for analyzing the Arabidopsis gene expression patterns under cold stress, and can
also be used to identify the functional genes of stress-related TFs that are likely to act as
DNA elements by merging the genomic sequence data with the expression data [76,127].
Additionally, cold stress is also induced by the increase in the proline content in plants (os-
moprotectant). Microarray and RNA gel blot research found that the proline can induce the
expression of several genes with the proline-responsive elements in their promoters (PRE,
ACTCAT) [120,127,128]. Microarray analysis was carried out to detect the cold-inducible
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AP2 gene family transcription factor RAV1 [129], which could control plant growth under
stress. RAV1 is down-regulated by epibrassinolide, and transgenic Arabidopsis overex-
pressing RAV1 exhibits a rosette leaf and adjacent root growth retardation, although the
early-flowering phenotype showed antisense to RAV1 plants [130,131].

5. miRNAs and cDNA-Microarray Response to Salinity Stress

Salt intrusion from saline soils and irrigation water is one of the most severe and
harmful risks to reduce agricultural production and adverse effects on cultivated land
and the geographical distribution of plant species [70,132,133], coupled with oxidative
stress [134]. The most imperative cations in saline soils are calcium, potassium, magnesium,
and sodium, and the main anions in saline soils are chloride, bicarbonate, sulfate, nitrate,
and carbonates. Other electrolytes causative to salinity are borane, molybdenum, strontium,
silicon dioxide, aluminum cation, and barium ion [135,136]. Higher concentrations of
sodium chloride (NaCl) typically affect plant development, metabolism, and physiology at
various metabolic phases (ion toxicity, nutrient imbalance, and oxidative stress) [70,137].
Despite such advances in scientific research, it remains unclear about the underlying
molecular mechanism of salinity responses in plants. However, based on the combination
of microarray and inhibition subtractive hybridization (SSH), changes in the transcriptome
profile caused by salt induction were studied and evaluated [138]. Investigation of complete
transcriptomics suggests that these processes, such as the synthesis of osmolytes and ion
carriers and the regulation of transcription and translation mechanisms, have distinctive
reactions under salinity stress. In particular, the introduction of transcripts of specific TFs,
ribosomal genes, RNA-binding proteins, and translation initiation and elongation factors
has been testified [139,140].

Using cDNA microarray in Synechocystis, 19 genes were reported to be instantaneously
regulated under salinity stress. The salt- and osmo-regulated genes, and some putative
sensor molecules, have been implicated during salinity stress signaling [35]. Several dif-
ferentially regulated miRNAs have been reported against salinity stress. In A. thaliana,
several microRNAs are regulated against salinity stress, such as miR156, miR158, miR159,
miR165, miR167, miR168, miR169, miR171, miR319, miR393, miR394, miR396, and miR397
(Table 3, Figure 2) [84]. In Populus trichocarpa, miR1445, miR1447, miR1446a-e, miR530a,
and miR171l-n were down-regulated (Table 3) [141]. Arenas-Huertero et al. [31] reported,
in Proteus vulgaris, the production of miRS1 and miR159.2 expression in response to salin-
ity. Furthermore, miR169g and family members of miR169n were induced in saline-rich
conditions [142]. However, there is a need to discover and annotate novel functional genes
which have a probable function against salinity stress. Subsequently, a large number of
genes in plants still have unknown functions [143]. Recent studies revealed that specific
down-regulation of the bacterial-type phosphoenolpyruvate carboxylase (PEPC) gene Atppc4
by artificial microRNA enhanced the salinity tolerance in A. thaliana. The increased salinity
tolerance might be linked to enhanced PEPC activity [10,144]. Transcript control for salinity-
tolerant rice with microarrays, like 1728 cDNAs from salinity-stressed roots libraries, was
studied in response to high salinity (Table 3) [144–146].

A tiling path microarray was used to examine the high-throughput expression pro-
filing patterns under various environmental stresses for all of the known miRNAs [16,70]
(Tables 1 and 4). The analysis revealed that the effects of miRNAs under low-temperature,
drought, and high salinity with miRNA chips represent, approximately, all of the reported
miRNAs cloned or recognized in A. thaliana (L.). High salinity stress agitates homeostasis
in water potential. Extreme changes in water homeostasis and ions lead to molecular
breakdown, stunted growth, and even the death of cells or whole plants [16,147].
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Table 4. Software and tools used for the detection of plant miRNA and cDNA microarray data
analysis.

Software and
Tools Function Website Reference Accessed

Software and tools used for detection of plant miRNA and data analysis

MiPred

Random forest (RF)-based miRNA
predictor, which can distinguish

between real and pseudo-miRNA
precursors

http://server.malab.cn/
MiPred/ [72] 5 November 2021

miBridge Algorithm and database http://sitemaker.umich.
edu/mibridge/home [148] 5 November 2021

miRTar
A novel rule-based model learning

method for cell line specific
microRNA target prediction

http://miRTar.mbc.nctu.
edu.tw [72] 5 November 2021

PolymiRTS Linking polymorphisms in
microRNAs and their target sites

http://compbio.uthsc.
edu/miRSNP [149] 25 November 2021

miRGator
microRNA portal for deep

sequencing, expression profiling
and mRNA targeting

http:
//mirgator.kobic.re.kr [150] 10 November 2021

Bowtie Aligns efficiently, and short-read
aligners

http://bowtie-bio.
sourceforge.net [72] 5 November 2021

miRBase Provides handy and useful ID
conversion tools

http:
//www.mirbase.org/ [72] 25 November 2021

miRDB miRNA target databases http://www.mirdb.org [151] 25 November 2021

mirDIP Integrative database of microRNA
target predictions

http://ophid.utoronto.
ca/mirDIP [152] 25 November 2021

miRanda Predict or collect miRNA targets http://34.236.212.39/
microrna/home.do [72] 25 November 2021

RNAhybrid microRNA target prediction
https:

//bibiserv.cebitec.uni-
bielefeld.de/rnahybrid

[72] 8 November 2021

miTALOS Analyzes tissue specific microRNA
function.

http://mips.helmholtz-
muenchen.de/mitalos [153] 5 November 2021

RNA22 microRNA target predictions https://cm.jefferson.
edu/rna22 [154] 5 November 2021

psRNATarget Small RNA target analysis server http://plantgrn.noble.
org/psRNATarget/ [155] 5 November 2021

miRandola Curated knowledge base of
non-invasive biomarkers

http:
//mirandola.iit.cnr.it/ [155] 5 November 2021

ChIPBase

Decoding transcriptional
regulatory networks of non-coding
RNAs and protein-coding genes

from ChIP-seq data

http://rna.sysu.edu.cn/
chipbase/ [155,156] 1 October 2021

MirGeneDB Curated miRNA gene database http://mirgenedb.org/ [157] 28 November 2021

TarHunter Predicting conserved microRNA
targets and target mimics in plants

http://tarhunter.
genetics.ac.cn [158] 28 November 2021

TissueAtlas Tissue specificity miRNA database https://ccb-web.cs.uni-
saarland.de/tissueatlas/ [72] 28 November 2021

miRNAme
Converter miRNA ID converter

http://163.172.134.150/
miRNAmeConverter-

shiny
[159] 28 November 2021

http://server.malab.cn/MiPred/
http://server.malab.cn/MiPred/
http://sitemaker.umich.edu/mibridge/home
http://sitemaker.umich.edu/mibridge/home
http://miRTar.mbc.nctu.edu.tw
http://miRTar.mbc.nctu.edu.tw
http://compbio.uthsc.edu/miRSNP
http://compbio.uthsc.edu/miRSNP
http://mirgator.kobic.re.kr
http://mirgator.kobic.re.kr
http://bowtie-bio.sourceforge.net
http://bowtie-bio.sourceforge.net
http://www.mirbase.org/
http://www.mirbase.org/
http://www.mirdb.org
http://ophid.utoronto.ca/mirDIP
http://ophid.utoronto.ca/mirDIP
http://34.236.212.39/microrna/home.do
http://34.236.212.39/microrna/home.do
https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid
https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid
https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid
http://mips.helmholtz-muenchen.de/mitalos
http://mips.helmholtz-muenchen.de/mitalos
https://cm.jefferson.edu/rna22
https://cm.jefferson.edu/rna22
http://plantgrn.noble.org/psRNATarget/
http://plantgrn.noble.org/psRNATarget/
http://mirandola.iit.cnr.it/
http://mirandola.iit.cnr.it/
http://rna.sysu.edu.cn/chipbase/
http://rna.sysu.edu.cn/chipbase/
http://mirgenedb.org/
http://tarhunter.genetics.ac.cn
http://tarhunter.genetics.ac.cn
https://ccb-web.cs.uni-saarland.de/tissueatlas/
https://ccb-web.cs.uni-saarland.de/tissueatlas/
http://163.172.134.150/miRNAmeConverter-shiny
http://163.172.134.150/miRNAmeConverter-shiny
http://163.172.134.150/miRNAmeConverter-shiny
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Table 4. Cont.

Software and
Tools Function Website Reference Accessed

Software and tools used for detection of plant microarray and data analysis

Array Designer
Design primers and probes for

oligo and cDNA expression
microarrays.

http:
//www.premierbiosoft.

com/dnamicroarray/
index.html

[160] 1 November 2021

Stanford
Microarray

Database SMD

Stores raw and normalized data
from microarray experiments

http:
//smd-www.stanford.

edu//download/
[161] 1 November 2021

eArray Designing Agilent arrays
http:

//earray.chem.agilent.
com/earray/login.do

[160] 1 November 2021

Significance
Analysis of
Microarrays

Adjustments for multiple testing,
statistical analysis for discrete,

quantitative, and time series data,
gene set enrichment analysis

http:
//www-stat.stanford.

edu/~tibs/SAM/
[162] 5 November 2021

Visual OMP

Design software for RNA, DNA,
single or multiple probe design,

microarrays, Taq Manassays,
genotyping, single and multiplex

PCR, secondary structure
simulation, sequencing,

genotyping.

http://www.
dnasoftware.com/

Products/VisualOMP
[160] 5 November 2021

caArray

Open-source, web and
programmatically accessible

microarray data management
system that supports the
annotation of microarray

http:
//caarray.nci.nih.gov/ 5 November 2021

Gene Expression
Model Selector

Diagnostic models and biomarker
discovery

http://www.gems-
system.org/ [163] 18 November 2021

Gene index

Gene Index Project is to use the
available EST and gene sequences,
along with the reference genomes,
to provide an inventory of likely

genes and variants.

http:
//compbio.dfci.harvard.

edu/tgi/plant.html
[160] 5 November 2021

Genesis

Java package of tools to
simultaneously visualize and
analyze a whole set of gene

expression experiments

http://genome.tugraz.
at/genesisclient/

genesisclient_
description.shtml

18 November 2021

RMA Express

Standalone GUI program for
Windows, OS X and Linux to

compute gene expression
summary values for Affymetrix

http://rmaexpress.
bmbolstad.com

http:
//www.r-project.org

http://www.
bioconductor.org

18 November 2021

dCHIP
Model-based expression analysis
for Affymetrix gene expression

arrays
http://www.dchip.org [164] 18 November 2021

TM4

Microarray Data Manager
(MADAM), TIGR Spotfinder,

Microarray Data Analysis System
(MIDAS), and Multi experiment

Viewer (MeV)

http://www.tm4.org/ [164] 18 November 2021

http://www.premierbiosoft.com/dnamicroarray/index.html
http://www.premierbiosoft.com/dnamicroarray/index.html
http://www.premierbiosoft.com/dnamicroarray/index.html
http://www.premierbiosoft.com/dnamicroarray/index.html
http://smd-www.stanford.edu//download/
http://smd-www.stanford.edu//download/
http://smd-www.stanford.edu//download/
http://earray.chem.agilent.com/earray/login.do
http://earray.chem.agilent.com/earray/login.do
http://earray.chem.agilent.com/earray/login.do
http://www-stat.stanford.edu/~tibs/SAM/
http://www-stat.stanford.edu/~tibs/SAM/
http://www-stat.stanford.edu/~tibs/SAM/
http://www.dnasoftware.com/Products/VisualOMP
http://www.dnasoftware.com/Products/VisualOMP
http://www.dnasoftware.com/Products/VisualOMP
http://caarray.nci.nih.gov/
http://caarray.nci.nih.gov/
http://www.gems-system.org/
http://www.gems-system.org/
http://compbio.dfci.harvard.edu/tgi/plant.html
http://compbio.dfci.harvard.edu/tgi/plant.html
http://compbio.dfci.harvard.edu/tgi/plant.html
http://genome.tugraz.at/genesisclient/genesisclient_description.shtml
http://genome.tugraz.at/genesisclient/genesisclient_description.shtml
http://genome.tugraz.at/genesisclient/genesisclient_description.shtml
http://genome.tugraz.at/genesisclient/genesisclient_description.shtml
http://rmaexpress.bmbolstad.com
http://rmaexpress.bmbolstad.com
http://www.r-project.org
http://www.r-project.org
http://www.bioconductor.org
http://www.bioconductor.org
http://www.dchip.org
http://www.tm4.org/
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Table 4. Cont.

Software and
Tools Function Website Reference Accessed

Able Image
Analyser

Software for image analysis. It
enables dimensional

measurements: distance, area,
angle in digital images

http://able.mulabs.com [160] 18 November 2021

ImaGene

Unique, robust, room-temperature
preservation solutions for nucleic

acids, biospecimens and
bioreagents for in the living ectors

http:
//www.biodiscovery.
com/index/imagene

[160] 13 November 2021

Spotfinder
Custom-designed cDNA array, the

chips are scanned using a
microarray scanner

http://www.tm4.org/
spotfinder.html [164] 18 November 2021

SNOMAD

Web-based tool and has various
normalization options for

two-channel and single-channel
experiments

http://pevsnerlab.
kennedykrieger.org/
snomadinput.html

[164] 18 November 2021

Multiexperimet
Viewer

Cloud-based application
supporting analysis, visualization,
and stratification of large genomic

data

http://www.tm4.org/
mev.html 18 November 2021

Onto-Express and
Pathway-Express

Automatically translates DE gene
transcripts from microarray
experiments into functional

profiles characterizing the impact
of the condition studied

http://vortex.cs.wayne.
edu/projects.htm [164] 13 November 2021

DAVID/EASE

Database for annotation,
visualization and integrated

discovery (DAVID) is an online
tool for annotation and functional

analysis. Expression analysis
systematic sxplorer (EASE)

http:
//david.abcc.ncifcrf.gov [164] 13 November 2021

Oligo-DNA microarrays were developed in common wheat, and these microarrays
were designed to include approximately 32,000 distinctive genes characterized by several
expressed sequence tags (ESTs). To classify the salinity-stress responsive genes, the expres-
sion profiles of transcripts that responded to stress were examined using microarrays. It
was concluded that 5996 genes were verified by more than a 2-fold change in expression.
These genes were categorized into twelve groups based on gene expression patterns [165].
Transcription-regulator activity, DNA binding, and the genes’ assigned transcription factor
functions were preferentially classified as immediate response genes. In wheat, candidate
genes were identified as involved in salinity-stress tolerance [165,166]. These genes are ac-
tive in the regulation of transcription [112,143] and the signal transduction that is engaged
in metabolic pathways [167] or acting as ion transporters [168]. cDNA library in yeast (Sac-
charomyces cerevisiae) was examined using a synthetic medium augmented with excessive
salt concentrations (900 mM). A few clones showed comparatively improved growth. The
notorious clones bore the Guanyl transferase (OsMPG1) mannose-1-phosphate gene [133].
Extreme salinity stress was significantly linked with the transcription factors of four tomato
genes from the family of zinc finger. There has been prior evidence of the relationship be-
tween zinc finger transcription factors and plant salinity tolerance [169,170]. Overexpression
of OSISAP1 in transgenic tobacco resulted in tolerance to salinity, dehydration, and cold
stress in the new sprouts [171].

http://able.mulabs.com
http://www.biodiscovery.com/index/imagene
http://www.biodiscovery.com/index/imagene
http://www.biodiscovery.com/index/imagene
http://www.tm4.org/spotfinder.html
http://www.tm4.org/spotfinder.html
http://pevsnerlab.kennedykrieger.org/snomadinput.html
http://pevsnerlab.kennedykrieger.org/snomadinput.html
http://pevsnerlab.kennedykrieger.org/snomadinput.html
http://www.tm4.org/mev.html
http://www.tm4.org/mev.html
http://vortex.cs.wayne.edu/projects.htm
http://vortex.cs.wayne.edu/projects.htm
http://david.abcc.ncifcrf.gov
http://david.abcc.ncifcrf.gov
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A microarray containing 384 genes associated with stress responses was used in
Medicago truncatula genotypes (Jemalong A17 and 108-R) to compare rooting gene expres-
sion during salt stress. The homolog of flora TFIIIA-related TF, MtZpt2-1, and COLD-
REGULATEDA1 genes were known to regulate the previous genes and were acknowledged
in Jemalong A17 stress-tolerant genotypes. Two MtZpt2 Transcription factors (MtZpt2-1
and MtZpt2-2) have shown increased expression in the roots compared to 108-R [172].
Salinity stress is attributed to diverse stresses that persuade overlapping patterns in gene
expression. For example, in an investigation of 8100 A. thaliana genes, approximately
2400 genes were reported to have a widespread expression in exposure to salt, oxidative
and cold stress [92]. In addition, 23 genes were reported against NaCl stress. This also
accounted for a small percentage of DEGs, including encoding transcription factors WOX2
and BZIP3, calcium-binding protein CML42, ubiquitin-protein ligase UBC17, and IDA-like 5
protein [92]. Most prominently, synthesized isiA encoded a novel chlorophyll (Chl)-binding
protein [173] (Table 3).

6. Potential Role of Bioinformatics in the Prediction of miRNA and cDNA Microarray

Next-generation sequencing methods are crucial in gene expression profiling, epige-
nomics, genomics, and transcriptomics. These tools can sequence multiple DNA molecules
within a short period. The recent introduction of innovative “-omics” technologies, such
as metabolomics, proteomics, and genomics allows for analyzing and identifying the
genetic elements that contribute to system complexity [72,90,174,175]. Bioinformatics
tools developed for miRNA prediction include miRNA target prediction, analysis, and
structure prediction. For example, miRanda, RNAhybrid, RNA22, and TarHunter detect
miRNA expression and perform analysis based on miRNA-Seq data (Table 4). Existing
plant miRNA prediction tools lack a cross-species conservation filter and eTM prediction
function. TarHunter features a strict cross-species conservation filter and the capability of
predicting eTMs [158]. Despite ongoing progress, bioinformatics prediction of microRNA
targets remains difficult, since current tools have a lack of accuracy and sensitivity. [72,176].
Microarrays are an effective method for determining the quantity of RNA in a sample. Since
microarray data have computational complexity and contain hundreds of genes, statistical
and bioinformatics methods are required for data interpretation [160]. These specialized
tools provide statistical analysis, sample comparisons, and functional interpretation of
data generated in a series following visualization and normalization in a microarray study,
such as Array Designer, eArray, Visual OMP, caArray, and dCHIP (Table 4). The software,
including Able Image Analyser, Gene pix pro-6.0, and GeneChip operating software, are
used for analyzing images in order to obtain the intensity at each spot and quantify the
expression for each transcript. Additionally, this also provides different types of discov-
eries by comparing gene expression data with already reported biological information,
such as protein–protein interactions, pathway analysis, transcription factor binding sites,
and network analysis tools, including Array Designer, eArray, Significance Analysis of
Microarrays, Gene Expression, and Model Selector (Table 4) [164].

7. Conclusions and Future Perspectives

MicroRNAs (miRNAs) have been considered a potential target in genetic engineer-
ing against abiotic stresses in plants. Thus, miRNAs can also be utilized in the initial
monitoring and transmission of abiotic stresses, and to elucidate the genetic and physio-
logical responses against stress in plants. This review summarized current developments
and the history of miRNAs and microarray with diverse functions in several stress re-
sponses, predominantly abiotic stresses. Many traditional approaches have identified
significant numbers of miRNAs in plants from various organisms. Microarray-based
genomic technologies for ecological studies have received great attention, particularly
in plants, to disclose the role of stress-responsive loci in plants. DNA microarrays pro-
vide a novel insight into the cell and provide a solution for several problems from the
viewpoint of analytical calculation, despite the inconceivable amount of work done in
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the last two decades to reduce the different sources of uncertainty on the subsequent
measurements. The review will provide valuable insight to plant researchers, especially
plant breeders and stress physiologists, to design a comprehensive strategy to cope with
environmental stresses.

The elucidation of miRNA responses to abiotic stresses may lead to the development
of technologies for the early detection of plants’ environmental stressors. MicroRNAs
and cDNA-microarrays are powerful targets for engineering abiotic stress tolerance in
transgenic plants. The field of bioinformatics is developing rapidly, and it is inevitable
to progress in plant genomics and breeding without integrating the latest bioinformatics
tools. Multiple advanced sequencing and bioinformatics tools were established to identify
miRNAs and their target gene network and prediction. As the understanding of the
function of miRNAs under stress deepens, the potential use of miRNA mediated genes to
enhance plant tolerance will also increase. In the future, the large-scale microarrays might
be substituted with small biosensors which contain a unique or a small number of novel
microbes deposited on an electronic platform. We would like to conclude by illustrating the
existing gap between the detection of stress-regulated miRNAs and microarray to validate
their role. In conclusion, we recommend the utilization of miRNAs for the identification
and classification of new functional genes conferring a significant functional role in stress
tolerance and to exploit the unexplained fraction of genes further.
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