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A B S T R A C T   

In this study, we compared a two-phase laser-scanning-based forest inventory of stands versus a traditional field 
inventory using sample plots. The two approaches were used to estimate stem volume (VOL), Lorey’s mean 
height (HL), Lorey’s stem diameter (DL), and VOL per tree species in a study area in Sweden. The estimates were 
compared at the stand level with the harvested reference values obtained using a forest harvester. In the first 
phase, a helicopter acquired airborne laser scanning (ALS) data with >500 points/m2 along 50-m wide strips 
across the stands. These strips intersected systematic plots in phase two, where terrestrial laser scanning (TLS) 
was used to model DL for individual trees. In total, phase two included 99 plots across 10 boreal forest stands in 
Sweden (lat 62.9◦ N, long 16.9◦ E). The single trees were segmented in both the ALS and TLS data and linked to 
each other. The very-high-resolution ALS data enabled us to directly measure tree heights and also classify tree 
species using a convolutional neural network. Stem volume was predicted from the predicted DBH and the 
estimated height, using national models, and aggregated at the stand level. The study demonstrates a workflow 
to derive forest variables and stand-level statistics that has potential to replace many manual field inventories 
thanks to its time efficiency and improved accuracy. To evaluate the inventories, we estimated bias, RMSE, and 
precision, expressed as standard error. The laser-scanning-based inventory provided estimates with an accuracy 
considerably higher than the field inventory. The RMSE was 17 m3/ha (7.24%), 0.9 m (5.63%), and 16 mm 
(5.99%) for VOL, HL, and DL respectively. The tree species classification was generally successful and improved 
the three species-specific VOL estimates by 9% to 74%, compared to field estimates. In conclusion, the 
demonstrated laser-scanning-based inventory shows potential to replace some future forest inventories, thanks to 
the increased accuracy demonstrated empirically in the Swedish forest study area.   

1. Introduction 

Remote sensing (RS) has become an invaluable resource for many 
forest-related applications. However, forestry companies in Sweden and 
practitioners worldwide rely widely on field sample plots as the main 
information source for design-based (DB) inventories used to generate 
descriptive statistics about forests. Field plots are manually inventoried, 
which is both costly and error-prone, since both subjective assessments 
and the use of generic models are required (the former, in particular, 
involve a dependence on personnel). The transition to a more-digital 
forestry includes frequent and objective monitoring, which to date 
only appears possible with the use of RS to acquire the necessary 
auxiliary data. To utilize the auxiliary data, a model-based (MB) or 
model-assisted (MA) framework is commonly used, where model pa-
rameters are estimated from a sample of field plots (Gregoire, 1998; 
McRoberts, 2006). The model is used to predict the target variable for all 
units in the auxiliary data (McRoberts et al., 2014). The accuracy, cost, 

and possible frequency of acquiring RS data typically guide the user to 
select the most suitable sensor. This study focused on how a two-phase 
design with hybrid (HYB) inference, based on ALS and TLS, can be used 
for inventorying forests. This could both replace traditional DB in-
ventories and provide a more accurate and precise estimate compared to 
current MB approaches, although it does not provide wall-to-wall data. 

ALS has long been successfully used in forestry, and several countries 
have implemented operational, regular, national scanning programs 
(Kotivuori et al., 2016; Næsset et al., 2004; Nilsson et al., 2017; Persson 
et al., 2002; Waser et al., 2017). Historically, the sparse point densities 
made area-based approaches more feasible (Naesset, 1997a, 1997b), but 
current technical progress supports densities exceeding 10–100 points/ 
m2, which enable mapping of single-trees (Breidenbach et al., 2010; 
Lindberg and Holmgren, 2017; Olofsson and Holmgren, 2016; Sumnall 
et al., 2021; Yu et al., 2008). This has also improved the predictive ac-
curacy and increased the challenges of evaluating the methods, due to 
the fact that both predictions and references may possess errors of 
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similar magnitudes (Persson and Ståhl, 2020). Field plots have histori-
cally been considered sufficiently accurate in the sense of providing 
reliable reference data for common forest variables, such as tree height, 
diameter, basal area, and stem volume (VOL). However, dense point 
clouds (sufficient to identify branches of single trees) from the latest 
laser scanners enable single-tree estimates that require even more ac-
curate references than traditional field measurements can provide 
(Dalponte et al., 2011, 2014, 2019; Peuhkurinen et al., 2011). Modern 
harvesters appear feasible for this task, and they record measurements 
along the stem of single harvested trees, including diameter, length, and 
position, while tree species and damage are recorded based on the visual 
assessment of the harvester operator. Still, positional accuracy is limited 
(although current research may soon improve this). Both traditional 
field inventories and the modern harvesters use a global navigation 
satellite system (GNSS), which has a lower accuracy due to shadowing 
and interference when the antenna is located below a canopy (Frair 
et al., 2010; Valbuena et al., 2010). At the same time, the antenna is 
often located higher on a harvester compared to when using handheld 
receivers, which increases accuracy. Furthermore, the harvester 
removes the blocking trees, which improves the positioning accuracy of 
data from harvesters. These technical developments enable references 
that are more accurate when provided from a harvester. 

The use of ALS is one alternative to meet the requirements of 
objective and frequent inventories. Yet despite its high accuracy, a 
number of challenges have hindered a complete transition to frequent, 
ALS-based inventories. Perhaps the most important reason may be that 
not all variables measured in the field have been possible to capture with 
ALS. Scanners with a single wavelength do not provide spectral infor-
mation about tree species, and to gain cost efficiency and cover large 
areas, their point density is generally too low to extract geometric fea-
tures for tree species classification. The accuracy of, e.g., VOL estimates 
from area-based ALS has, at best, been on a similar order as those ob-
tained from field inventories (Breidenbach et al., 2010; Nilsson et al., 
2017; Persson and Fransson, 2017; Tomppo et al., 2017; Yu et al., 2015). 
Furthermore, the prediction of tree stocking (stems per hectare) has 
often been limited due to the point density and airborne platform for 
ALS. The use of very-high-resolution (> 500 points/m2) ALS data pro-
vides more information about the shape of single trees (Burt et al., 2019; 
Holmgren et al., 2022; Lindberg and Holmgren, 2017), which may 
enable prediction of, e.g., tree species from a single-wavelength scanner 
(Hamraz et al., 2019; Marrs and Ni-Meister, 2019; Mizoguchi et al., 
2019; Seidel et al., 2021; Terryn et al., 2020). Furthermore, the accuracy 
of detecting single trees and predicting forest attributes is expected to 
increase, and suppressed trees may be detectable. However, to obtain 
reference values about variables that cannot be directly measured from 
the air and hence must be estimated—e.g., diameter at breast height 
(DBH)—the use of ground references appears necessary. To improve the 
consistency, accuracy, and speed of such acquisitions, TLS is a suitable 
alternative to manual measurements. For practical use, single scans 
appear to be most feasible due to their speed (a few minutes) and 
simplicity (no merging of data required), which, however, may provide 
incomplete data from sample plots due to shadowed trees and hidden 
sectors. Nevertheless, the scanned trees are reconstructed at very high 
detail and constitute excellent references for modeling trees. TLS has 
been used in forest inventory research for about 20 years (Liang et al., 
2016). Forest variables of interest have included DBH, tree height 
(Olofsson et al., 2014; Wang et al., 2019), and above-ground biomass 
(Olofsson and Holmgren, 2017; Olschofsky et al., 2016). Additional 
research includes modeling of stem profiles (Henning and Radtke, 2006; 
Liang et al., 2014; Maas et al., 2008; Mengesha et al., 2015; Olofsson and 
Holmgren, 2016; Raumonen et al., 2013; Thies et al., 2004) and 
branches (Raumonen et al., 2013). TLS can currently be used to provide 
estimates of DBH with an accuracy about 1 cm root mean square error 
(RMSE), (Olofsson and Holmgren, 2016), and interest in using TLS in 
commercial forest inventories has therefore increased. 

ALS and TLS measurements can be combined in a straightforward 

MB approach, where the traditional field measurements are replaced 
with the TLS measurements. However, the flight configuration for 
acquiring dense ALS data makes it impracticable to acquire these wall- 
to-wall, both from a time and cost perspective. Therefore, dense ALS 
data is (currently) only reasonable to collect as a sample. This leads to a 
two-phase design of HYB inference that combines the DB and MB 
inferential frameworks, by considering both a first-phase probability 
sample (ALS strips), and a second-phase sample (TLS measurements) 
acquired without requirements on probabilistic principles (Gregoire 
et al., 2016; Holm et al., 2017; McRoberts et al., 2016; Puliti et al., 
2017a; Ståhl et al., 2016, 2011). Uncertainty is quantified by the sum of 
the two additive components, stemming from 1) the DB sampling vari-
ability across the ALS strips, and 2) the use of a model in phase two. 
Using HYB inference increases complexity, but the benefits may include 
increased precision at a lower cost (Puliti et al., 2020, 2017a; Ståhl et al., 
2016). 

The overall aim of this study was to develop, demonstrate, and assess 
a forest inventory based on very-high-resolution laser scanning, using a 
two-phase sampling design under a HYB inference framework. The ef-
ficiency of the approach was assessed by comparing the estimates with 
empirical data for the harvested trees measured by a harvester, and by 
comparing the estimates with a traditional DB inventory relying on field 
sample measurements. Further objectives were to assess the estimation 
accuracy for common forest variables at the stand level: Lorey’s mean 
height (HL), mean diameter (DL), stem volume (VOL), and tree species. 

2. Material 

2.1. Study area 

The entire study area covers approximately 50,000 ha, located at 
62.9◦ N 16.9◦ E in middle Sweden (Fig. 1a and b). A subset consisting of 
ten forest stands (Fig. 1 c, Table 1) covering 207 ha was the primary area 
used in this study. Additionally, a subset of trees within four long strips 
measuring 11 km × 80 m each systematically distributed within the 
study area (Fig. 1 b) was also used to train the tree species model. The 
study area is located in the boreal forest region and is dominated by 
Norway spruce (Picea abies (L.) H. Karst.), Scots pine (Pinus sylvestris L.), 
and birch (Betula spp.), with pine (50%) and spruce (44%) constituting 
94% of the growing stock and birch 6%. In this study, all deciduous 
forest types were approximated as birch forest, since birch constitutes 
86% of the deciduous forest volume in Sweden. For the stands used in 
this study, the average VOL was 235 m3/ha. 

2.2. Field reference data 

The forest in the study area is owned by SCA, a company that is the 
largest private forest owner in both Europe and Sweden (owning about 
9% of Sweden’s forests). In 2019, they carried out an extensive field 
inventory covering about 2% of their entire forest holding. The purpose 
was to obtain an accurate estimate of their entire forest holding, refer-
ence data for modeling, and evaluation data for their previous forest 
management. The ten stands that were used in this study were included 
to enable comparisons with the laser-based predictions, applying the 
same inventory procedure as was used for all forest stands. The ten in-
ventoried stands were sampled with a total of 99 circular plots with a 
dynamic radius (from 6 to 8 m), using a probabilistic sample approach 
with a systematic grid that was consistent within each stand, but inde-
pendent across stands. The radius was fixed for all plots within a stand 
but adjusted between stands to obtain an average of 15 to 20 trees per 
plot. This approach led to an average of 10 plots per stand (7 to 12 
depending on the stand size and shape, see Table 2). To enable com-
parisons with the harvester data, 11 plots were eliminated because they 
were located outside the harvested forest area. The number of plots is 
described in Table 2 as Nplots and Nplots_used. The separate plot averages 
were used to compute the within-stand variance between the plots. 
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Trees with a DBH > 4 cm were always calipered, but trees with a smaller 
DBH were also calipered if they were assumed to provide an economical 
return on investment in the future. A random subsample of trees were 
height-measured using a hypsometer, usually providing at least one 
representative tree per plot. The tree species were recorded, and the plot 
level VOL were computed using established equations valid for the re-
gion (Brandel, 1990). Stand-level estimates were computed as plot av-
erages for each stand, and the tree species proportions were determined 
with respect to VOL. The inventoried properties for each stand are 
presented in Table 2. 

2.3. Harvester data 

Two forest harvesters were used to harvest the ten forest stands to 
obtain reference data that were acquired independently from the field 
inventory and laser data. The two harvesters were JOHN DEERE Model 
1470s built in 2017 and 2018, respectively. The harvested logs were 

analyzed with using StanForD 2010 Harvested Production Presentation 
software (v1.2.20) developed by Skogforsk (Möller et al., 2011), to 
derive the required stem data. The harvester recorded the tree species 
(by visual inspection from the operator) and measured the stem diam-
eter along the trunk at 10 cm intervals. The diameter measurements 
were recorded with an accuracy of 1 mm and are considered the truest 
available data, although the measurements are also affected by, for 
example, harvesting conditions (i.e., frozen conditions during winter vs. 
summer) (Holopainen et al., 2010; Kemmerer and Labelle, 2021; Lu 
et al., 2018; Miettinen et al., 2010; Siipilehto et al., 2016). The harvester 
also measured trunk length to the “top cut,” where the trunk is assumed 

Fig. 1. a) The study area in Sweden, outlined in black with red background. b) The four long systematic flight strips (in orange) covering the study area were only 
used for interpretation of tree species. The shorter flight strips (in red) were covering the stands (outlined in dark green). c) The ten forest stands are outlined in dark 
green, and the flight strips within the stands are red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Table 1 
Properties of the ten forest stands used for evaluation.  

Stand Size [ha] Mean age [yr] Elevation [m] 

S1 35.0 117 357 
S2 9.65 108 384 
S3 13.0 100 360 
S4 36.3 100 403 
S5 25.5 117 382 
S6 2.25 117 350 
S7 29.9 150 303 
S8 23.6 108 355 
S9 14.4 100 333 
S10 17.9 98 341  

Table 2 
Properties for field inventory. The tree species are abbreviated as pine (P), 
spruce (S), and birch (B).  

Dataset HL DL Mean 
VOL 
(m3ha− 1) 

Trees 
[m− 1] 

Nplots Nplots_used Tree 
species 
(% P,S, 
B) 

S1 17.5 23.9 264 1326 10 10 42, 51, 6 
S2 21.7 28.3 353 746 10 10 50, 49, 1 
S3 17.4 27.2 188 1336 7 7 68, 27, 5 
S4 18.7 25.5 255 915 11 11 47, 50, 3 
S5 17.9 25.1 287 1130 9 8 27, 68, 5 
S6 12.3 16.9 117 1037 11 7 18, 63, 

18 
S7 15.7 22.5 187 1028 9 7 78, 19, 3 
S8 18.3 24.6 282 1326 12 12 47, 39, 

15 
S9 15.6 21.9 169 752 9 9 56, 32, 

13 
S10 18.0 25.1 226 1180 11 7 63, 27, 

10  
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to be too small to be used. The length of the remaining (cut) part was 
predicted in the software using height functions and the diameter and 
height measurements along the trunk (Kiljunen, 2002; Möller et al., 
2009). The top-cut diameter varies, since it is the leftover part of the 
stems that are bucked to fixed lengths, starting at the butt. 

To have full control of the volumes, we used the harvesters’ mea-
surements of DBH and tree height as input to the same volume functions 
that were used to predict the volume from the laser and field data. All 
ten stands were intended to be clear-cut, but in the end, only nine of the 
stands were more or less completely clear-cut. Stand S3 was commer-
cially thinned, which means that larger trees were left, with rather 
evenly spatially distributed trees. Due to various Swedish regulations, 
forest stands can rarely be entirely clear-cut. The ground conditions in 
some parts of the stand may be too wet to support the weight of a 
harvester, unstocked forest land is usually considered non-productive 
forest, and about 5–15% of the forest must be left as retention zones. 
This caused differences between the amount of forest actually harvested 
and the estimates of the delineated stand as obtained from the field in-
ventory and laser scanning. 

The position of the harvester cabs (Fig. 2) was recorded using a real- 
time kinematic global navigation satellite system (GNSS), model L5 P2 
DUALGNSS, which provides sub-meter accuracy in clear-sky conditions 
(e.g., after harvest), and somewhat lower accuracy below standing trees. 
The harvester head extended 8 m from the cab at most. This would have 
enabled us to estimate the approximated total area covered by the 
harvester. However, it soon became clear that this approach was too 
inaccurate, and the harvested areas were therefore overflown with a 
drone carrying an optical camera after the harvest. This generated ortho- 
photographs with 4 cm pixel resolution, which enabled us to delineate 
the harvested forest areas. To enable an adequate comparison with the 
laser-based predictions, only the intersecting areas were compared at 
the stand level. This had a large impact on the results, especially for the 
commercially thinned stand S3, where we therefore only included the 
harvested trees. 

2.4. Airborne data 

The Riegl LMS-Q680i ALS system was operated from a helicopter. 
The pulse repetition frequency was 400 KHz, and the scanning fre-
quency was 135 Hz. The field of view was 60 degrees, the nominal flight 
speed was 20 km/h, and the altitude was 70 m above ground level. The 
nominal swath width was 90 m, and the nominal point density ranged 
from 490 points/m2 to 654 points/m2, with an average of 593 points/ 
m2. For the 10 forest stands, the flight trajectories were allocated to 
cover all field plots (41 trajectories). The laser scanning of the 10 forest 
stands was performed on November 3, 2019. The four long flight tra-
jectories over the study area (outside of the stands), each with a length of 
approximately 11 km, were allocated systematically to obtain a good 
representation of the overall forest within the study area. The laser 
scanning of the long trajectories was performed on September 23, 2019, 
and it used the same equipment as the scanning of the stands. 

In addition to the laser scanner, the helicopter also carried two 25 
Mpixel cameras (RGB + NIR), directed in the nadir and 45◦ forward 
direction (along the flight trajectory). These images were only used to 
support the manual interpretation of tree species for the reference data. 

2.5. Terrestrial laser scanning data 

TLS was conducted at the location of the field plot centers in order to 
provide estimates of the diameters for a set of sample trees. The Trimble 
TX 8 laser scanner was set in Level 2 mode, with a point spacing of 11.3 
mm at 30 m distance in a hemispherical pattern (field of view 360◦ ×

317◦). Level 2 mode takes 3 min to complete a full scan. The wavelength 
was 1.5 μm. A single scan setup was used, with the scanner in the center 
of the field plot. 

3. Methods 

Section 3.1 describes the inventory design, sections 3.2 and 3.3 
describe the processing of single-tree data, section 3.4 describes the 
classification of tree species using a convolutional neural network, and 
section 3.5 compiles the processed data to connect the two phases. 
Section 3.6 then describes the statistical estimators used to estimate the 
target variables and precision at stand level, and 3.7 covers the evalu-
ation of stand averages from all stands. An overview of the entire study 
design of the laser scanning based inventory is illustrated in Fig. 3. 

3.1. Inventory design 

The field inventory used sample plots that were distributed in a 
systematic grid within each stand (with a random reference point for 
each stand, see 2.3). The two-phase sampling based on laser scanning 
(LS) used a sampling design with ALS strips across the stands, and TLS 
samples within the strips, which for simplicity’s sake were located at the 
same locations as the field plots. This generated straight ALS strips in a 
fixed configuration, with the strips oriented either north-south or east- 
west (Fig. 4). To avoid errors due to large off-nadir incidence angles, 
the part of the swath width used for further analysis was limited to ±25 
m, corresponding to ±20◦, while the entire acquired swath width was 
approximately 90 m. Due to financial reasons, the orientation of the 
flight lines were chosen such that the total flight length was minimized 
yet covered all field plots. In cases where complementary perpendicular 
strips were required, hence intersecting with the others, only one of the 
strips were selected for the overlapping area to maintain an unbiased 
method. The strips were trimmed such that only the parts within stands 
were used. 

3.2. Single-tree processing using ALS 

The ALS data were processed separately for each flight swath. The 
ALS heights above sea level were normalized using the terrain model 

Fig. 2. The GNSS track (in orange) of the harvester for stand S8 (delineated in 
red). Coordinates in SWEREF99TM. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 
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(Axelsson, 1999) to represent above-ground heights, and it was imple-
mented in the software TerraScan (Terrasolid, Finland). For the auto-
matic delineation of tree crowns, we used an algorithm based on density 
models of tree crowns (Holmgren et al., 2022). First, a canopy height 
model (CHM) was created for an approximate height of potential tree 
height positions. This was a raster with a 0.25 m raster cell size, with the 
maximum distance to the ground in each raster cell. The tree crown 
height model was set to the CHM raster cell value. Then, density models 
were used as templates in a watershed segmentation to identify the tree 
crowns. The local maxima defined the probability of the tree locations. 

The density models were generated based on 78 manually delineated 
tree crowns. We arbitrarily selected 12 Scots pine trees, 51 Norway 
spruce trees, and 15 deciduous trees for the training. The trees were 

normalized for height, and then we created one template for each tree 
species by averaging the available trees of that species. 

The variables derived from the ALS data within each crown polygon 
included percentiles of the height distribution (10, 20, …, 80, 90, 95, 
and 100), tree crown width, average height, standard deviation of 
heights, total number of points, height-to-crown-base, crown height, 
and mean intensity. 

3.3. Single-tree processing using TLS 

The first-phase flight strips were sampled with TLS scans at the same 
locations as the field plots to obtain single-tree estimates of DBH that 
were used to predict the DBH for all tree segments in the ALS data 
(further described in the section 3.5). The algorithm used to estimate the 
stem profiles of the trees from a 3D point cloud was that presented in 
Olofsson and Holmgren (2016). The algorithm first isolates the points 
that belong to the stems and then models the stem profiles as a number 
of connected, stacked cylinders. To get a continuous stem curve, the 
diameters along the stem were interpolated between the separate cyl-
inders. DBH was estimated at 1.3 m above the ground using the 
smoothed interpolated stem curve. 

The errors of the estimated stem diameters were approximately 1 cm 
RMSE, according to the study by Olofsson and Holmgren (2016). For an 
efficient computation of the large TLS dataset, the tree properties were 
estimated using the resources at the High Performance Computing 
Center North (HPC2N). Details about the algorithm are further 
described in Olofsson and Holmgren (2017, 2016). 

3.4. Classification of tree species using a convolutional neural network 

Tree species were predicted using a convolutional neural network 
(CNN) for the trees that were segmented in the ALS data, as an extension 
of the work by Wiklander (2020). As input, the 3D point cloud segments 
of trees were projected on to the Z axis, rotated from the XZ to the YZ 
plane at 0◦, 30◦, 60◦, and 90◦, providing four 2D images in total (e.g., 
Figs. 5 b, c, d). Testing indicated no significant improvement by adding 
additional projections, although processing time increased. The CNN 
model parameters were estimated using 2723 visually interpreted tree 
segments that were located within the study area but outside the stands 
to be estimated. In the following subsections, the steps involved to 
configure and train the CNN are described in detail. 

3.4.1. Annotation and pre-processing of airborne data 
A reference dataset was required to estimate the CNN model 

Fig. 3. Flowchart illustrating an overview of the entire laser scanning study design.  

Fig. 4. The ALS sampled strips intersecting the systematically distributed field 
plots for stand S8. Coordinates in SWEREF99TM. 
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parameters. This dataset was generated using manual visual interpre-
tation of 2723 tree segments that had been automatically segmented in 
the ALS data. In addition to the laser scanner, the helicopter carried two 
cameras directed in the nadir and 45◦ forward directions (along the 
flight trajectory). This enabled a back-projection of the 3D point cloud 
for each individual tree segment to its representation in the 2D images 
(Figs. 5 e, f), to support the interpretation of tree species. The 2D pro-
jections of the point clouds were truncated below 0.75 m and above 32 
m to restrict the image size, and the images were stored at a dimension of 
153 × 699 pixels (width x height). This image size was subjectively 
chosen as a tradeoff between workable size, information loss, and pre-
diction performance. The pixel values were first assigned the number of 
projected laser points within the pixel and then normalized by dividing 
by the maximum pixel value in the image. However, this “density” in-
formation did not improve the CNN classification. Therefore, images 
with mere zero or one values (none or at least one projected laser return) 
were ultimately used as input for the CNN. 

Initially, 2016 trees from the four long strips were interpreted 
(selected as a uniform sample across species and used in Wiklander 
(2020)). These were clear tree segments with only a single tree in each of 
them, for which Wiklander showed a high classification accuracy (98%). 
However, the operational setting included “dirty” tree segments as well: 
e.g., ones that contained more than one tree or that had branches from 
neighboring trees overlapping the primary tree segment. This disrupted 
the classification, and therefore we complemented the interpretation 
with 707 additional random trees from the acquisition of the ten stands 
(so as to also match possible differences in acquisition properties) to 
enable an “Other” class. This helped us overcome false classifications of 
bad (noisy) segments, which is commonly referred to as an out-of- 
distribution problem (DeVries and Taylor, 2018; Gupta and Gupta, 

2019; Ren et al., 2019; Zisselman and Tamar, 2020). It occurs, e.g., when 
a CNN is trained to classify cats and dogs and when provided an image of 
an airplane it returns not cat or dog but “none-of-these” as the outcome. 
The general aim of the manual interpretation was to obtain approxi-
mately equal classes of the tree species and include trees from all ages 
(although the 10 stands consisted of mainly mature forest). For our 
study, it did not appear necessary to put as many trees in the “Other”- 
class as in the species classes. However, this is a current research topic at 
the frontier of deep learning, which extends beyond the scope of this 
paper. In total, the 2723 trees (Table 3) were projected in four di-
rections, providing a reference dataset of 10,892 labeled trees that were 
used for the modeling. 

3.4.2. Convolutional neural network 
In order to configure a suitable CNN, which was implemented in 

TensorFlow 2.1 and Keras 2.4.3 under Python 3.7, some initial tests 
were done for the commonly known networks VGG, ResNet, LeNet, and 
a custom Conv-Pool-Conv-Pool network. Based on the initial test per-
formance, Resnet (He et al., 2016) and LeNet-5 (Lecun et al., 1998) were 
selected as base architecture for further testing. The selected ResNet 
architecture is known as Resnet20 v1, which provided a depth of 20 
layers. For the LeNet architecture, we used Hyperas (a Keras wrapper 
that allows automatic numerical testing of various parameters) to sweep 
four suitable hyperparameters: number of channels of the convolutional 
layers, number of layer sequences, dropout rates, and number of neurons 
in the dense layers. Based on the validation accuracy, the best values for 
each hyperparameter were chosen and used for the final configuration of 
the network, which had seven layers; of these, four were convolutional 
and three were fully connected dense layers. The test validation showed 
a similar performance (93%) for both the ResNet and LeNet architec-
tures. However, this was still a within-distribution performance metric, 
which in case of the LeNet architecture did not correlate with the stand- 
level data from the harvester. We therefore decided to use only the 
ResNet20 architecture as the final CNN solution, and the stand-level 
results are presented in the Result section. The training was carried 
out using a batch size of 16, since larger batches caused GPU memory 
problems on the Nvidia Geforce 1660 Ti graphics card. During training, 
20% of the data was randomly sampled and used for validation at each 
iteration, and 10% of the trees (n = 272) were completely set aside as 
independent test data. 

3.5. Combining single-tree properties from phase 1 (ALS) and 2 (TLS) 

The practical implications of linking single-tree data from the two 
phases and compiling all information included co-registration and 
modeling of the variables. The tree properties (DBH, VOL, and tree 
species) were predicted and classified for the ALS trees using linear 
regression models, established regionally valid models (Brandel, 1990), 
and CNNs, respectively. The TLS provided very precise 3D re-
constructions of the plots, but they were missing the global orientation. 
Therefore, the TLS dataset was co-registered to the ALS dataset using 
Olofsson et al.’s (2008) position image method. Approximately 55% of 
the TLS-detected trees were linked to an ALS-detected tree (Fig. 6), 
which, however, was sufficient to create a robust model of DBH. It was 
most commonly the larger, dominant trees that were successfully linked 
(average DBH of 19.7 cm, compared to an average DBH of 10.4 cm for 

Fig. 5. a) Ortho-projection (not used in the CNN), b-d) Example of projected 
images of a spruce tree, used as input in the CNN, e, f) Aerial images as support 
for the visual interpretation of tree species. 

Table 3 
Summary of the visually interpreted trees.  

Species Trees 

Pine 691 
Spruce 847 
Deciduous 1022 
Other 163 
Total 2723  
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the unlinked trees). 
The matching algorithm used the tree lists from TLS and ALS, where 

the tree positions and tree properties were co-registered, using cross 
correlation of the position images. Then, the algorithm linked the trees 
with the smallest treetop distances. To take into account the fact that 
single-scan TLS data have shaded sectors that are obscured from the 
scanner, non-visible areas were masked from the tree position images by 
using only the trees that were identified in both the TLS and ALS data-
sets. This step provided accurately oriented trees in the global co-
ordinates (same as ALS), with DBH estimated from TLS. 

For each stand, all trees of each species that were identified in both 
the TLS and ALS data were used to estimate model parameters with 
robust multiple linear regression, using the MASS R-package and the 
default Huber variance estimator (Huber, 1981). The regression model 
was used to predict DBH on all segmented trees, and it had the form of 
(1), 

ln(DBH) = α0 + α1X1 +…+ αpXp (1)  

where the parameters [α0,αp] for the p attributes Xi, i ∈ [1,p] were the 
following statistical metrics computed from the ALS point clouds for the 
single-tree segments: height percentile 50, 80, 100, and mean intensity. 
If fewer than 30 trees were available for a species in a stand, the pa-
rameters were estimated from all trees from the stand, and only the 
height percentiles were used. Since the dependent variable DBH was 
transformed using the natural logarithm, a correction for logarithmic 
bias was applied, by adding s2/2 to (1) before taking the inverse trans-
form of the prediction, s2 being the residual variance from (1) (Finney, 
1941). VOL was predicted using established volume functions valid for 
northern Sweden (Brandel, 1990), with DBH, tree height, and tree 
species as explanatory variables. 

Tree species was predicted for each tree segment using the trained 
CNN (see 3.4). Approximately half of the tree segments were assigned a 

tree species, and the remaining were assigned “Other.” Since the tree 
species was required for each segment in order to use the volume 
functions, the “Other” segments were assigned a tree species randomly, 
with a probability proportional to the distribution of the successfully 
classified tree species. 

3.6. Stand estimations 

This section describes how the stand averages and precisions were 
estimated. 

3.6.1. Design-based inference using the field samples 
For the DB estimation, we assumed simple random sampling without 

replacement, although the variance estimator is known to be biased and 
conservative under systematic sampling. Assuming a sample of n field 
plots of the same size with equal-probability, the mean (μ̂YFIELD

) is given 
by the estimator (Gregoire and Valentine, 2008, p. 52): 

μ̂YFIELD =
1
n
∑n

i=1
yi (2)  

where yi is the field reference (e.g., volume or diameter) for the ith field 
plot (i = 1…n). 

The DB variance of ̂μYFIELD 
was computed using the variance estimator 

for simple random sampling without replacement as 

V̂ar
(
μ̂YFIELD

)
=

1
n
s2
YFIELD (3)  

where sYFIELD
2 is the sample variance. 

3.6.2. Two-phase hybrid inference using ALS strips 
For the LS approach, the population mean (μ̂YLS

) was estimated with 
different estimators for the different variables. Lorey’s mean height and 
diameter, HL and DL, were computed by weighing with the basal area. 
The stand estimates were then obtained by summation over all trees 
identified in the strips in each stand. 

μ̂YLS Lorey
=

∑Ma

j=1
yjtj

∑Ma

j=1
tj

(4)  

where yj and tj denote the reference value (e.g., HL) and the basal area of 
tree j, respectively, and Ma denotes the total number of segmented trees 
in all the strips in the stand. 

To estimate the stand averages of VOL, we used a ratio-to-size esti-
mator, as the size of the strips varied depending on the stand shape. As 
described by Kaiser (1983), the probability that a tree (whose treetop is 
within the strip) is sampled is proportional to the size of the strip, 
including in the case of random strip lengths. Following Stehman and 
Salzer (2000), the total volume Tk for each strip k was calculated by 
summing the reference values ŷj (now tree volume) predicted with the 
regional functions (see 3.5) for all trees Mk in the strip: 

T̂ k =
∑Mk

j=1
ŷj (5) 

Then, the mean (μ̂YLS,VOL
) was estimated as 

μ̂YLS,VOL =
∑Mc

k=1 T̂ k
∑Mc

k=1ak
(6)  

where ak denotes the total area of strip k, and Mc denotes the total 
number of strips in the stand. 

An approximated variance (Ståhl et al., 2011) of the estimators in (4) 
and (6) is 

Fig. 6. Illustration of linkages at one plot location. The trees detected in the 
TLS data were linked to trees detected in the ALS data using a cross-correlation 
algorithm. The solid red circles are co-registered, linked tree locations between 
the two datasets. The solid gray circles are TLS-detected trees that were not 
linked. The size of the circles is proportional to the DBH of each tree. The large 
gray circle is the 10 m radius region used to search for trees to link. The light 
gray polygons are the tree crowns segmented in the ALS data. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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V̂ar
(
μ̂YLS

)
= s2

YLS +
∑p

d=1

∑p

e=1
Ĉov(α̂d, α̂e)T̂

′

d T̂
′

e (7)  

where the first term represents variability due to the first-phase sam-
pling and the second term represents the model error due to the un-
certainty of the parameter estimates. 

Following the notation in Ståhl et al. (2011), p is the number of 
model parameters, Ĉov(α̂d, α̂e) is the estimated covariance between the 

model parameter estimates, and T̂
′

d T̂
′

e are the estimated average values 
of the first order partial derivatives of the function used to predict the 
target variable. In this study, the estimation of uncertainty due to the 
model parameters was only relevant (non-zero) for the estimation of 
DBH. Height was a pure laser measurement in the first phase, without 
any function involved, and for the estimation of VOL, we used the same 
regression function for both the harvester reference values and those 
predicted from the field data and LS data. This means that the possible 
effect of uncertainty in the volume model parameters will affect both the 
reference and predicted values in a like manner and cancel out. 

The first-phase sampling variability can be estimated as corre-
sponding to Stehman and Salzer (2000, Eq. 3) or Gregoire and Valentine 
(2008, Eq. 6.14): 

s2
YLS =

(
1 −

a
A

)∑Mc
k=1

(
T̂ k − μ̂Y LSak

)2

Mca2(Mc − 1)
(8)  

where a represents the area covered by the strips, A represent the total 
area of the population (stand), and a is the mean strip area. 

3.7. Evaluation strategy 

We quantified the mean accuracy of the respective inventory 
approach via the metrics root-mean-square-error (RMSE) and bias, when 
compared with stand averages in the reference data (generally measured 
by the harvester). Additionally, we estimated the mean precision using 
the standard error (SE). The metrics were also expressed as percentages 
relative to the mean estimates. 

To provide an estimate of mean bias, the estimated stand means (μ̂Yl
) 

from field data or LS data were compared with the reference values 
μYfrom the harvester, and the mean population bias for the Md stands 
was estimated as. 

B̂ =
1
Md

∑Md

l=1

(
μ̂Yl − μYl

)
(9) 

The HYB inference framework is not unbiased since it relies on a 
correctly specified model in the second phase. Since the stands were 
completely harvested and measured, we could empirically estimate the 
model bias for the HYB inference in the regions covered by both ALS and 
the harvester. This was accomplished by using Eq. 9, but limiting the 
comparison to only those trees that were harvested within the flight 
strips, hence eliminating the sample variance component. This gave an 
empirical estimate of the mean systematic deviation using HYB infer-
ence. Since the field plots were small, with inaccurate positions (5–10 m 
accuracy), it was not meaningful trying to correspondingly estimate the 
bias for those. 

The RMSE was estimated as 

̂RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
Md

∑Md

l=1

(
μ̂Yl − μYl

)2
√

(10)  

using the same notations as before. 
The SE was calculated as the square root of the variance: 

ŜE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

V̂ar(μ̂Y)
√

(11) 

The mean SE for all Md stands was estimated as 

ŜE =
1
Md

∑Md

l=1
ŜE (12)  

4. Results 

4.1. Stand-level accuracy 

The ALS-based stand estimates were generally more accurate than 
the field inventoried estimates (Table 4 and Figs. 7). In many applica-
tions, VOL is considered the most important variable, due to its strong 
relation with forest value, but also due to the amount of stored carbon. 
When using LS, the uncertainty expressed as mean bias and RMSE of 
VOL were rather low (2.5% and 7.2%, respectively, Table 4). The pos-
itive bias indicates that possibly missed trees would be small and sup-
pressed and did not have any significant impact on the overall VOL 
estimates. The field-based VOL estimates were also positively biased 
(1.8%), but with a higher RMSE (17%), which can also be noticed in the 
larger spread about the 1:1 line in Fig. 7 b. 

The LS-based estimates of HL were showing a small negative bias 
(− 3.3%) and lower RMSE (4.6%) than those obtained from the field 
inventory (− 7.2% bias and 8.3% RMSE). The height estimates from ALS 
were obtained as direct height measurements in the first phase using the 
dense ALS data. Thus, it is likely that some laser points should reflect the 
treetops accurately. The systematic underestimation of height could 
therefore be due to inaccurate measurements of the harvester, which 
varies with the cutting height of the stump and only measures the tree to 
the last cut on the trunk. This means that the last 2–3 m are never 
measured but only estimated, which could be one potential cause for this 
bias. 

The results, in relative terms, were similar for the estimates of DL, 
where bias and RMSE were − 3.5% and 6.0%, respectively, for the LS 
data and − 4.3% and 7.7%, respectively, for the field samples. 

The empirically estimated model bias of the HYB inference frame-
work indicated the lowest bias (in relative terms) for the volume esti-
mates, 4.00 m3/ha (1.68%). The corresponding bias for HL and DL was 
− 0.720 m (− 3.74%), and − 11.2 mm (− 4.31%), respectively. A low bias 
is important since the HYB inferential framework is not unbiased per se. 
A small misspecification of the model could accumulate and cause sig-
nificant errors when aggregated. 

When the ALS-based estimates were evaluated using the field sam-
ples as reference (Table 5), the RMSE of VOL (Fig. 8) increased from 
7.2% to 18.6%, while the bias decreased slightly from 2.47% to 0.68%. 
The RMSE of HL increased correspondingly, from 4.63% to 8.94%, while 
the RMSE of DL is the only variable that resulted in a lower RMSE, 
dropping from 5.99% to 4.09%. This indicates that using field data as a 
reference when evaluating forest RS estimates can constitute a signifi-
cant error source that inflates the reported RS accuracy, especially when 
the field data are based on a sample. This has been noted earlier by 
Persson and Ståhl (2020). 

4.2. Precision of inferential frameworks 

The precisions of the two inventory systems (field and LS, under the 
DB or HYB inferential frameworks) are presented in Tables 6, 7, and 8. 

Table 4 
Accuracy for mean stand predictions based on laser scanning and field plots, 
respectively.  

Dataset Variable Bias RMSE 

ALS vs. Harvester VOL (m3/ha) 5.83 (2.47%) 17.1 (7.24%) 
Field vs. Harvester VOL (m3/ha) 4.20 (1.78%) 40.7 (17.2%) 
ALS vs. Harvester HL (m) − 0.62 (− 3.26%) 0.88 (4.63%) 
Field vs. Harvester HL (m) − 1.37 (− 7.18%) 1.59 (8.30%) 
ALS vs. Harvester DL (mm) − 8.94 (− 3.46%) 15.5 (5.99%) 
Field vs. Harvester DL (mm) − 11.2 (− 4.32%) 19.8 (7.65%)  
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Fig. 7. Scatterplots of estimates from either laser or field data vs. harvester. a) ALS vs harvester, VOL. b) Field vs. harvester, VOL. c) ALS vs. harvester, HL. d) Field vs. 
harvester, HL. e) ALS vs. harvester, DL. f) Field vs. harvester, DL. 

Table 5 
Accuracy for mean stand predictions when compared with field data.  

Dataset Variable Bias RMSE 

ALS vs. Field VOL (m3/ha) 1.63 (0.68%) 44.7 (18.6%) 
ALS vs. Field HL (m) 1.37 (7.74%) 1.59 (8.94%) 
ALS vs. Field DL (mm) 2.23 (0.90%) 10.1 (4.09%)  
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Fig. 8. Scatterplot of laser vs. field data estimates, VOL.  

Table 6 
Mean SE from all stands for the inventory methods. Bias was estimated from the 
harvested trees within the flight strips.  

Dataset Inference Variable ŜE  

LS HYB VOL (m3/ha) 15.6 (6.62%) 
Field DB VOL (m3/ha) 40.3 (17.0%) 
LS HYB HL (m) 0.657 (3.43%) 
Field DB HL (m) 1.24 (6.47%) 
LS HYB DL (mm) 15.5 (6.02%) 
Field DB DL (mm) 20.6 (7.97%)  

Table 7 
Precision of VOL estimates (m3/ha) expressed as the SE for each stand. Vari-
ability due to uncertainty in the model parameters were not possible to estimate 
for LS VOL, and therefore these values only contain the sample variances. Stand 
S6 was completely covered by the ALS strips and therefore the sampling error 
was zero.  

Stand ŜEField  ŜELS  

S1 34.0 (15.4%) 17.7 (8.06%) 
S2 52.7 (13.2%) 23.4 (5.85%) 
S3 38.5 (33.6%) 8.49 (7.41%) 
S4 25.7 (9.53%) 15.6 (5.77%) 
S5 68.7 (24.4%) 13.0 (4.61%) 
S6 31.1 (20.2%) 0 
S7 36.7 (24.6%) 15.3 (10.2%) 
S8 38.5 (12.7%) 15.2 (5.02%) 
S9 29.5 (14.3%) 15.3 (7.42%) 
S10 27.4 (10.4%) 22.0 (8.39%)  
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Using LS, the mean SE for VOL was 6.7%, and with the field samples, the 
mean SE was 17% (Table 6). The SEs for the stand VOL estimates were 
consistently 23 m3/ha or lower, which corresponded to a SE of 10.2% at 
most (Table 7). The same VOL model was used for both the LS estimates 
and the harvester references, and the model error component in (7) was 
therefore cancelling out to zero. The SEs for height were 3.4% and 6.4% 
when estimated from LS and field data, respectively. The precision of the 
LS diameter estimates are interesting since they are the only estimates 
completely involving all parts of the HYB inferential framework. ŜELS 
therefore contains both the sampling variance and the model error (7). 
The variance proportion of the total variance due to uncertainty in the 
model parameters is listed in the rightmost column. It varied between 
10.8% and 100%; the extreme case (100%) appeared for stand S6, which 
was entirely covered by the flight strips and the only variance compo-
nent was therefore due to the use of a model. 

4.3. Tree species 

The tree species could be classified for about half of the trees, and the 
remaining trees were assigned to the “Other” class. This seemed to be 
sufficient for accurately estimating the proportions at the stand level. In 
Fig. 9, the stand averages per tree species are illustrated. The corre-
sponding quantified values are listed in Table 9. In relative terms, the 

RMSE and bias were low for pine and spruce (9–14% RMSE) and higher 
for birch (63% RMSE). The apparently large errors for birch trees are 
somewhat misleading, since their proportions of the overall stand VOL 
were low. The corresponding accuracies, when estimated from field 
plots, showed a similar order of bias, while the RMSEs were higher (26% 
to 68%). 

5. Discussion 

In this study, a two-phase sampling approach relying on HYB infer-
ence was empirically validated for an inventory of ten forest stands. This 
study found that strip samples of dense ALS data combined with TLS 
samples were suitable for generating accurate stand-estimates of VOL, 
HL, DL and tree species. It furthermore found that this inventory method 
decreased the uncertainties of estimates at the stand level significantly 
compared to traditional field sampling methods. The RMSE of the esti-
mated VOL decreased more than 50% compared to the field inventory. 
Furthermore, it was found that when the estimates based on ALS were 
compared to the field estimates, the apparent ALS accuracy was heavily 
affected and limited by the accuracy of the field estimates. The dense 
laser data enabled us to work at the single-tree level. The use of a 
harvester to collect validation data provided full control of all harvested 
trees, which contributed to the good results. Furthermore, the proposed 
method is not dependent on laborious manual field measurements. 

Estimates of VOL from single-tree methods have previously been 
reported to have an accuracy in the range of 13% to 17% in Scandina-
vian forest conditions, while accuracy for HL and DL has commonly been 
reported to be in the range of 8% to 10% and 16% to 20%, respectively 
(Breidenbach et al., 2010; Peuhkurinen et al., 2011). In this context, our 
results appear promising. Two factors contributing to the improved re-
sults were the dense LS data and the more accurate validation data, due 

Table 8 
Precision of DBH estimates (mm) expressed as SE for each stand. Variability due 
to uncertainty in the model parameters is given as a percentage of the total 
variance. Stand S6 was completely covered with the ALS strips, and therefore the 
sampling error is 0, and the SE consisted only of the model parameter 
uncertainty.  

Stand ŜEField  ŜELS  Variance proportion model error 

S1 20.3 (9.22%) 20.9 (9.52%) 12.9% 
S2 12.3 (3.07%) 8.65 (2.16%) 46.5% 
S3 32.2 (28.1%) 29.8 (26.0%) 10.8% 
S4 10.0 (3.70%) 12.1 (4.47%) 20.0% 
S5 19.0 (6.76%) 18.1 (6.41%) 29.9% 
S6 21.4 (13.9%) 5.22 (3.38%) 100% 
S7 12.9 (8.62%) 15.8 (10.6%) 37.7% 
S8 13.7 (4.54%) 9.40 (3.10%) 62.7% 
S9 32.3 (15.6%) 11.5 (5.55%) 91.2% 
S10 17.8 (6.80%) 6.96 (2.65%) 74.5%  

Fig. 9. a) The laser-predicted VOL per tree species at the stand level. b) The field-estimated VOL per tree species at the stand level.  

Table 9 
Evaluation of VOL per tree species at the stand level.  

Dataset Method Variable Bias (m3/ha) RMSE (m3/ha) 

Pine LS VOL (m3/ha) − 1.20 (− 1.06%) 10.6 (9.28%) 
Spruce LS VOL (m3/ha) 1.44 (1.34%) 15.4 (14.3%) 
Birch LS VOL (m3/ha) − 5.59 (37.2%) 9.42 (62.7%) 
Pine Field VOL (m3/ha) 2.67 (2.34%) 40.9 (36.0%) 
Spruce Field VOL (m3/ha) − 4.03 (− 3.74%) 27.4 (25.5%) 
Birch Field VOL (m3/ha) 1.58 (10.5%) 10.3 (68.3%)  

H.J. Persson et al.                                                                                                                                                                                                                              



Remote Sensing of Environment 271 (2022) 112909

11

to the use of harvester measurements. The harvester enabled a complete 
inventory of all trees with accurate DBH and height measurements, 
although the limited positional accuracy of the harvester head required 
manual delineation of the harvested areas. Single-tree methods may be 
prone to systematic errors if not handled carefully. Our approach was 
based on sample trees from each stand, with DBH estimated from TLS 
being linked to dense ALS data. The small mean bias of all variables at 
validation indicates that the use of sample trees from each stand is an 
option to reduce model-related systematic errors. For operational set-
tings, sample trees from all stands are not feasible, and the impact of 
using generic models valid for an entire region should be further 
investigated. 

Accurate estimates of tree species proportions or single-tree classi-
fications based on RS have previously been considered too inaccurate to 
be useful for Swedish forestry practitioners. The tree-level predictions 
and tree species identification made it possible to predict tree-specific 
stem volumes with low estimation errors in forest stands with a 
mixture of tree species as well (Fig. 9, Table 9, primarily coniferous 
species). In the context of forest inventories in Scandinavia, the classi-
fication of tree species is most important in terms of volume and 
aggregated at the stand level. The laser-based estimates were consider-
ably more accurate than those based on field samples. This is encour-
aging, since tree species has long been reported to be one of the most 
important variables to map, although efficient methods to do so have 
been limited (Kangas et al., 2018). CNNs have been increasingly used for 
classifying tree species, although practical challenges remain, including 
requirements for sufficient reference data (we used 2723 trees projected 
from four directions, corresponding to 10,892 sample trees) and the 
desired repeatability in research applications (deep learning is not 
deterministic in its nature (Morin and Willetts, 2020)). 

One limitation with the harvester data in the current study was 
positioning, which was only provided for the harvester cab and not for 
the harvester head (and hence single trees). This caused uncertainties 
related to delineating the harvested area, which affected the area-based 
estimates (e.g., VOL/ha). Visual post-interpretation of drone images was 
probably less accurate than what could be obtained from accurate GNSS 
sensors mounted on the harvester head. Furthermore, retention trees 
and other trees that were not harvested could have been automatically 
filtered out. Accurate positioning of the harvester head requires accurate 
sensors of the boom tip position combined with accurate GNSS posi-
tioning of the cabin. With this, a more thorough study of the accuracy of 
the cab position and corresponding single-tree locations could be ach-
ieved (Hauglin et al., 2017, 2018; Noordermeer et al., 2021). 

Different types of multi-phase sampling methods have been proposed 
over the years, seeking to balance accuracy and costs. When wall-to-wall 
data are available, (which can be obtained at higher quality for smaller 
areas), MB approaches are typically preferred. For example, Hauglin 
et al. (2014) predicted Norway spruce crown biomass using ALS data 
trained with reference data from a TLS. They reported a slight 
improvement (32% accuracy) compared to training the model with field 
plots (35%). Multi-phase sampling is, due to the nature of sampling, 
therefore most suited for large areas, where wall-to-wall auxiliary data 
are not feasible. An ALS and field-based two-phase sampling at the 
regional level in Norway was demonstrated by Gobakken et al. (2012). 
They investigated a MB and a model-assisted approach, finding that the 
MB provided the best results, with an RMSE between 15% and 45% of 
above-ground biomass for different biomass classes. They also reported 
that the model error, expressed as percentage of the total variance, 
ranged between 11% and 78% using the MB approach. Puliti et al. 
(2017a, 2017b) have also proposed various combinations of one- and 
two-phase approaches, combining field plots with auxiliary data from 
drones or ALS, both on smaller forest properties and at larger scales. 
They demonstrated how a HYB inference approach with a sample of 
auxiliary drone data could be more than four times as efficient compared 
to using a traditional probability field sample when used for a large-scale 
inventory. The RMSE of 44 m3/ha for the drone HYB inference approach 

corresponded to about 17% of the mean volume estimated from field 
samples. 

The combined use of ALS and TLS has also been demonstrated in 
previous studies, although rarely in a combined multi-phase approach as 
we propose. Lindberg et al. (2012) used a method for automatic linking 
of trees detected in TLS data with trees detected in ALS data, and then 
used the TLS data as reference data to estimate parameters for regression 
models. The tree-level regression models were used for predictions of 
DBH using metrics from ALS data, and the predictions were nearly as 
accurate as when using reference data consisting of manual measure-
ments. Other studies that combined ALS and TLS include Kankare et al. 
(2015), who investigated how TLS and ALS data could be combined to 
estimate diameter distributions in a Finnish forest. The overall RMSE 
was 37 mm, and they reported lower accuracies for denser forests. 
Bazezew et al. (2018) investigated how ALS and TLS could be used to 
delineate trees and estimate DBH, tree height, and above-ground 
biomass in tropical forests in Malaysia. Giannetti et al. (2018) assessed 
the potential of combining ALS and TLS data in a complex mixed 
Mediterranean forest to estimate different tree attributes. They reported 
an RMSE for tree diameter estimates of 11 to 13 mm when using point 
clouds from TLS or handheld LS. They did not combine the ALS and TLS 
data to predict TLS metrics on trees based only on ALS, and their results 
are therefore not comparable to ours. The performance and conditions 
have changed due to technical developments of the sensors since the 
earliest studies that were carried out in this field, which compared and 
assessed tree estimates from ALS and TLS (Hilker et al., 2010; Hosoi 
et al., 2010; Lovell et al., 2003) or LS with field measurements (Wezyk 
et al., 2007). Current research may suggest an improved design for the 
second phase in the future, e.g., by replacing the TLS plots with mobile 
laser scanning transects (Forsman et al., 2016; Hyyppä et al., 2020; Liu 
et al., 2021). 

We did not evaluate stocking (number of trees/ha) specifically in this 
study, but since VOL was estimated as a summation of single trees, our 
findings nevertheless indicate that most tree segments were correctly 
captured. Future studies should investigate to what degree suppressed 
trees may also be identified in the dense ALS data. However, manual 
field measurements with known tree positions are needed for validation 
of tree detection in order to derive both commission and omission errors. 
The stocking was high in the ten validation stands, with >1000 trees/ha 
in seven of the stands, despite the maturity of the forests, which can be 
explained by an abundance of trees in lower canopy layers. In this study, 
we only used TLS with one viewpoint for each field plot, which was 
efficient for the collection of sample trees in various forest types. 
However, the TLS procedure used resulted in sectors that were screened 
from the scanner’s viewpoint. Thus, the stem number for the data used 
for training remained unknown, which made it unfeasible to apply a 
semi-individual approach, as proposed by Breidenbach et al., 2010. In 
future work, multi-scan TLS or mobile laser scanning could be used in 
order to cover all parts of the plots used in the training phase. 

The precision of the VOL estimates using LS was generally high, with 
relative values of 10% and lower (Table 7). The error related to the 
estimated variance contribution due to using a TLS-based model was 
compared with the estimated total variance for the DBH estimates, 
where the latter also included sampling errors. The proportion 
accounted for by model errors ranged between 10.8% and 100%, which 
is a large variation, but which is in line with or a bit lower than previous 
research in a similar context (McRoberts et al., 2016; Puliti et al., 
2017a). Often, the model proportion decreases as the study area in-
creases (Breidenbach et al., 2014; Holm et al., 2017; Ståhl et al., 2014). 

The deep learning model for classifying tree species was first trained 
on interpreted trees only from the four longer strips within the study 
area (within a previous work (Wiklander, 2020)). However, these trees 
were noise-free and often not representative of the applied cases. 
Furthermore, these strips were acquired six weeks prior to when the 
stands were laser scanned. Therefore, this model performed poorly when 
applied to the strips covering the stands (which were investigated in the 

H.J. Persson et al.                                                                                                                                                                                                                              



Remote Sensing of Environment 271 (2022) 112909

12

current study). Thus, a set of additional trees (both clean and noisy, but 
located outside of the investigated stands) were interpreted and added to 
the modeling from the latter acquisition (which covered the stands). 
This stabilized the model’s performance considerably. It is important to 
further investigate the generalization of deep learning models in future 
studies since they require larger training datasets, and the same model 
would therefore preferably be useful and correct in a wider context. 

The ten forest stands were all relatively homogenous in terms of age 
and forest type, and it would be beneficial in future research to include a 
wider range of forest. Nevertheless, older forests that are ready to be 
harvested are the most important for foresters to be able to estimate 
accurately, and it was not possible to obtain harvested tree data from 
other forest age classes. 

The complexity of the method proposed in this study may hinder 
operational applications. However, the annotation of training data for 
the tree species can be performed in many ways, and the method is 
suitable to do with a harvester as soon as accurate positioning of the 
harvester head becomes available. It may also be re-used in other 
studies, i.e., new applications could build upon our annotated dataset. 
Furthermore, if the tree species is not important, this part of the pro-
cedure can be entirely left out. The linking of trees across the two phases 
(ALS and TLS) is necessary for the demonstrated approach, but using 
regional models for the height/diameter relationship could possibly 
eliminate this need. Regional models may be sufficient in many cases, 
and this would further reduce costs and manual work. 

In this work, we compared a new approach, which is based on 
automatic measurements of trees, with manual field measurements from 
an operational forest inventory. The manual field inventory is currently 
used by forestry companies in Sweden to sample a representative subset 
of all their forest stands in order to have data to support strategic de-
cisions. The same approach can also be used in other kinds of in-
ventories: for example, national forest inventories. Several variables 
cannot be estimated from RS data. However, variables correlated with 
canopy structure could be estimated with higher efficiency in our study 
using a two-phase sampling approach. 

6. Conclusions 

This study demonstrates a complete forest inventory system, suitable 
for larger scales, which is based only on very-high-resolution laser 
scanning. It was used to estimate forest volume, diameter, and height 
and to classify tree species. Six conclusions can be drawn from the study. 
First, the dense LS-based inventory provided more accurate stand esti-
mates than field-based and past laser-based demonstrations. Second, the 
combined use of LS and deep learning was successful in determining tree 
species. Third, although deep learning provided an accurate determi-
nation of tree species, it was necessary to include sample trees (with 
noise) from the acquisition of the target population to enable a suc-
cessful transferability. One note is that the non-deterministic nature of 
deep learning made it difficult to troubleshoot the deep learning–based 
species classifications. Fourth, the use of a two-phase design with HYB 
inference (with sample trees whose diameter was measured with TLS) 
appears feasible for this type of forest inventory. Fifth, access to single 
trees measured by a harvester increased the quality of the validation 
data and reduced the sampling-related uncertainty. The sixth and last 
conclusion is that field-measured plot data were not sufficiently accurate 
to validate the LS-based estimates generated in this study. 

The demonstrated LS-based inventory appears feasible for gener-
ating estimates at the stand level and furthermore shows potential for 
generating estimates at the regional or larger scales. The need for sample 
trees and local tree species models should be further investigated to 
address suitability at other scales. 
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