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Smartphone app reveals that lynx 
avoid human recreationists on local 
scale, but not home range scale
Neri H. Thorsen1,2*, Richard Bischof2, Jenny Mattisson3, Tim R. Hofmeester4, 
John D. C. Linnell3,5 & John Odden1

Outdoor recreation is increasing and affects habitat use and selection by wildlife. These effects are 
challenging to study, especially for elusive species with large spatial requirements, as it is hard to 
obtain reliable proxies of recreational intensity over extensive areas. Commonly used proxies, such as 
the density of, or distance to, hiking paths, ignore outdoor recreation occurring on other linear feature 
types. Here we utilized crowdsourced data from the Strava training app to obtain a large-scale proxy 
for pedestrian outdoor recreation intensity in southeast Norway. We used the proxy and GPS-tracking 
data from collared Eurasian lynx (Lynx lynx) to investigate how recreation affects habitat selection at 
the home range scale and local scale by lynx during summer. We fitted resource selection functions at 
the two scales using conditional logistic regression. Our analysis revealed that lynx avoided areas of 
recreational activity at the local scale, but not at home range scale. Nonetheless, lynx frequently used 
areas associated with recreation, and to a greater degree at night than during the day. Our results 
suggest that local-scale avoidance of recreation and temporal adjustments of habitat use by lynx 
mitigate the need for a home range-scale response towards recreation. Scale-dependent responses 
and temporal adjustments in habitat use may facilitate coexistence between humans and large 
carnivores.

Large carnivores living in human-dominated landscapes face widespread land-use changes, infrastructure, and 
the presence of humans. The ability of large carnivores to share the landscape with humans will be increas-
ingly challenged, as the human population is  growing1. Land-use changes and human infrastructure impact the 
behaviour, habitat use, and habitat selection of large  carnivores2. Although less conspicuous, outdoor recreation 
constitutes another disturbance pressure on wildlife in the human-dominated landscape. Despite being more 
benign than, for example, hunting and habitat conversion, recreation also affects behaviour, habitat use, and 
habitat  selection3. For some wildlife species the negative impact from recreation is even considered an important 
conservation  issue4 (e.g. Barbary Macaque Macaca sylvanus5 and cheetah Acinonyx jubatus5). Hence, understand-
ing the effects of recreation on wildlife is crucial for mitigating its potential negative impacts at present and in 
the future.

The vast extent and intensity of outdoor recreation is illustrated by an estimate of 8 billion visits solely to 
protected areas per year globally and 4 billion visits per year in Europe  alone6. Outdoor recreation is  rising7 and, 
in combination with increasing  urbanisation8,9, the patterns will likely change in the future, with growing levels 
of outdoor recreation especially around urban areas. These changes will have implications for wildlife. The effects 
of recreation on wildlife have received increased research attention throughout recent  decades10 and a wide 
range of effects of recreation on wildlife has been  documented3. Generally, animals tend to respond to humans 
in the same way they respond to a  predator11. The detection of a human is usually followed by a behavioural and/
or physiological  response12,13. These responses might in turn influence energy budgets, habitat use and fitness. 
Hence, recreation can in the worst case influence population trends and the distribution of  animals3.

Habitat selection, i.e. the disproportional use of a habitat type relative to its availability, can be inferred at 
multiple scales based on how availability is  defined14. Animals may respond to the same habitat feature differently 
based on the scale of habitat  selection15. For instance animals may avoid large patches of habitat that contain many 
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linear features or receive high levels of recreation at the home range-scale16 (cf. 3rd order of habitat  selection14). 
Animals may also avoid specific linear features that are associated with high levels of recreation at a local  scale17,18 
(cf. 4th order of habitat  selection14), even if not avoided at a larger scale. To understand at which scale animals 
respond to recreation is therefore important for coexistence of humans and wildlife, as the ability to respond to 
recreation at the local  scale19 may mitigate disturbance effects at the home range scale.

Large carnivores are now recovering in Europe from past persecution and returning to a human-dominated 
 landscape20. Despite large carnivores being apex predators, humans influence their  behaviour21 and ecosystem 
 function22. Numerous studies have shown behavioural and physiological responses in large carnivores when 
humans directly approach on foot (e.g. brown bears Ursus arctos13,23, black bears Ursus americanus24, wolf Canis 
lupus25 and puma Puma concolor26), but less attention has been paid to how habitat selection and habitat use 
by large carnivores are affected by human recreational activity and not only the infrastructure associated with 
recreation. Recreation can reduce habitat  quality27 and spatial avoidance of suitable habitat due to recreation can 
be functionally equivalent to habitat  loss16,28. Large-scale segregation due to recreation has been documented 
for group-living herbivores in open  landscapes29 and for wolverines (Gulo gulo) in mountain  areas16 due to 
functional habitat loss. However, it is unclear how large carnivores, with large space requirements, respond to 
outdoor recreation over different scales in forested habitats.

The paucity of studies on the effect of recreation on habitat selection by large carnivores thus far is likely in 
part due to the lack of measures of human activity or recreation for the large areas in which these species live. 
Path density or distance to paths have been commonly used as proxies for human  recreation10,30. These proxies 
ignore the fact that different path segments are associated with different levels of recreation and that other linear 
features than paths are also associated with recreation, such as forest roads and public roads. Estimating the level 
of recreation along linear features with, for example, human  counters31 or camera traps requires vast resources 
if it is to be done at a scale relevant for large carnivores. Today, ubiquitous smartphones and smartwatches with 
built-in GPS-loggers have opened up new possibilities to obtain proxies for human activity at large spatial  scales32. 
Users of certain software applications (apps), like the training app Strava (www. strava. com), agree to share their 
spatial locations with the company. For apps with large userbases, such data can provide relative proxies for the 
spatial distribution of recreational  activity33,34. Here we utilize data from the Strava app as a proxy for pedestrian 
outdoor activity (walking, running, or hiking) during summer in southeast Norway and investigate how habitat 
selection and habitat use by Eurasian lynx (Lynx lynx) are influenced by recreation. Furthermore, we included 
density of hiking paths as a proxy for recreation and tested whether lynx responded differently to these two 
proxies of human recreation.

The Scandinavian lynx population has recovered after being hunted to the edge of extirpation in the mid-
twentieth  century35. The population continues to be exposed to extensive legal hunting, and human-caused 
sources of mortality are high (poaching and vehicle collisions in addition to hunting)36. Hence, there is a poten-
tial for strong avoidance of humans in this population. We studied the effect of summer recreation on habitat 
selection by lynx with resource selection functions  (RSF37) at two spatial scales with different availability defini-
tions; within the home range (home range-scale) and within a buffer of 1–2 km around locations used by the 
lynx (local-scale). If the lynx manage to coexist with humans by locally avoiding features with high recreational 
activity, they can still occupy human-dominated landscapes, which will facilitate coexistence compared to a 
total avoidance of humans. Furthermore, we investigated whether habitat selection was influenced by the time 
of day. Lastly, we explored how lynx habitat use of areas associated with recreation changed throughout the day.

Methods
Study area. The study area (approximately 43,000  km2) is located in southeast Norway (centroid coordinate: 
N 59.96982, E 9.693853), in Innlandet, Vestfold og Telemark, Oslo, and Viken counties (Fig. 1). The study area 
includes the most heavily populated areas in Norway, and has an overall human population of 2 million  (www. 
ssb. no). In the southeast part of the study area, the landscape consists of forest fragmented with agricultural land 
and settlements, and a rolling topography. In the northwest, the topography is characterized by steep slopes, val-
ley systems and some agricultural land along the valley floors. Most of the forests are heavily exploited by com-
mercial forest industry and associated clearcut practices. The main tree species are Norway spruce (Picea abies), 
Scots pine (Pinus sylvestris) and birch (Betula sp.). Roe deer (Capreolus capreolus), free-ranging domestic sheep 
(Ovis aries), red deer (Cervus elaphus), and small prey species such as mountain hare (Lepus timidus), tetraonids 
and other birds comprise the diet of the lynx in the  area38,39.

Animal capture and GPS-data. From 2008 to 2014, 25 lynx (11 females and 14 males) were captured in 
foot snares or wooden box traps and equipped with GPS-collars following a pre-established  protocol40. All cap-
ture and handling procedures were approved by the Norwegian Experimental Animal Ethics Committee (permit 
numbers 2012/206992, 2010/161554, 2010/161563, 08/127430, 07/81885, 07/7883). This study was conducted 
in compliance with the ARRIVE guidelines, and all our methods were performed in accordance with relevant 
guidelines and regulations. In this study, we only analysed data from adult lynx in years when they were settled 
in a home range. GPS-collars were programmed to take between 1–19 GPS-locations per day. Fix schedules var-
ied across individuals and alternated between intensive predation study periods and less intensive monitoring 
 periods39. As the aim of this study was to explore how recreation affects habitat selection by resident lynx during 
the snow-free period, we included observations from  1st May to  31st October during all all years. To increase 
the robustness of the analyses, we only included combinations of lynx individuals and years (i.e. lynx-years) 
with ≥ 200 GPS-locations. This resulted in a final dataset of 13 611 GPS-locations for 22 lynx-years from 20 indi-
vidual lynx (8 females and 12 males). Two  females were included during two years each.

http://www.strava.com
http://www.ssb.no
http://www.ssb.no
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Recreation. We used crowdsourced human mobility data from Strava as a proxy for recreation. Strava is 
an app for smartphones and smartwatches, used primarily to record and upload georeferenced human training 
activities (hereafter referred to as “activity event”). Activity events can also be uploaded directly to the Strava 
webpage. Strava stores this data and processed version of it and can be accessed from Strava Metro. To maintain 
anonymity and conform with privacy regulations, access is limited to data processed by Strava through removal 
of personal identifiers and spatial and/temporal aggregation (Fig. 2). The processing involves linking individual 
activity events to nearby linear features (paths, roads etc.) in OpenStreetMap (OSM, www. opens treet map. org). 
Hence, in the absence of OSM linear features close to an activity event (or parts of it), that event (or parts of it) 
is not included in the aggregated version of the dataset (Fig. 2). Further, to conform with privacy legislations, 
linear features with less than three unique users are removed and the number of activity events are rounded up 
to the nearest multiple of five. Based on our initial inspections of the Strava data, pedestrian activity (walking, 
running, hiking etc.) appeared to extend further into the forest compared to biking. Hence, we decided to focus 
our analysis only on pedestrian activities. We used Strava activities from pedestrians at a temporal resolution 
of one year, i.e., data where the timespan for at least three unique Strava users on a linear feature was a year, to 
maximise the spatial coverage. We included Strava data from 2016 to 2019 and summed this over all years to 
result in a single static covariate. A more detailed description of how we processed the Strava data can be found 
in Supplementary material S1 and Figure S1.

We also used the density of hiking paths as a proxy for recreation to facilitate comparison of a more traditional 
method with the Strava data. We obtained data on hiking paths from the OSM (key = highway and value = track 
and path) using the osmdata  package41 in R (version 4.0.342). To derive our proxies for recreation, we divided 
our study area into a grid of 50 × 50 m (a compromise between computational time and highest possible resolu-
tion). For hiking paths, we calculated the line lengths of hiking paths inside each grid cell. For the Strava data, 
we summed up all the pedestrian activity inside each grid cell. We refer to this covariate as the Strava index. 
The value of this index in a given grid cell can be viewed as the total number of activity events taking place on 
all linear features within that grid cell during the entire period when the Strava data were collected. The Strava 
index accounts for different levels of human activity associated with all types of linear features (not only hiking 
paths) inside a grid cell, while the hiking path density is only a measure of the length of the hiking path inside a 
grid cell and does not account for the level of associated human activity.

Resource selection functions at two scales. We used resource selection functions  (RSF37) to estimate 
habitat selection by lynx. RSF depends upon a use-available design, where locations used by GPS-collared lynx 

Figure 1.  Location of the study area (coloured region) and GPS-locations of lynx (black and pink dots). The 
study area was delineated by drawing an 18-km buffer around all lynx GPS-locations. The figure was created 
using the R package tmap (version 3.2, https:// cran.r- proje ct. org/ web/ packa ges/ tmap/ index. html).

http://www.openstreetmap.org
https://cran.r-project.org/web/packages/tmap/index.html
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are compared to locations not used but considered as available (“null model”). For each used GPS-location, we 
randomly sampled 30 available locations (excluding open water). Based on our sensitivity  analysis43 the choice of 
30 available locations per used location appeared to be sufficient (see Figure S2–S3). We had two different avail-
ability definitions (Fig. 3). For the home range-scale habitat selection we sampled available locations inside the 
home range. Home ranges were estimated with the Brownian bridge kernel  method44 with the kernelbb function 
in the adehabitathr  package45 in R. We used the 95% isopleths. For the local-scale we sampled available locations 
inside a buffer with the mean step lengths (distance between two consecutive GPS-locations) of the individual 
as radius from the used GPS-location (Table S1). We then fitted conditional logistic regression to obtain the 
RSFs by using the coxph function in the survival  package46 in R. The response was whether a location was used 
(1) or available (0). Conditional logistic regression relies on a matched design, where groups of observations are 
matched with given grouping IDs. For the home range-scale we matched used and available locations by includ-
ing the lynx-year ID as strata (not to be confused with the Strava index) and for the local-scale we used an unique 
identifier for the buffer as the strata. This ensured that used locations in a home range were only compared to 
available locations sampled from the same home range, and also that the used location in a buffer was only 
compared to the available locations in the same buffer. Furthermore, we included the lynx-year ID as a cluster 
variable in the models to obtain robust standard error estimates for the  coefficients47,48. We interpreted robust 
confidence intervals overlapping 0 as a lack of evidence for either avoidance or selection.

Covariates. Based on findings previously reported for  lynx30,49–51, we considered the following covariates: 
slope, agricultural land (hereafter referred to as fields), forest, forest roads, public roads, and houses. In addition, 
we also considered the Strava index and hiking path density as proxies for recreation. Spatial data on fields and 
forest were obtained from an open access land cover map  (AR5052, 1:50,000); and vector data on public roads, 
forest roads and houses from the Norwegian Mapping Authority (www. geono rge. no). We defined a house as a 
building approved as a residential building for the entire year. This excludes recreational cabins, which are asso-
ciated with a variable degree of human activity. Slope was calculated with the terrain function (based on the 8 
nearest neighbouring raster cells) in the raster package in  R53, based on a digital elevation model with 50 m reso-
lution from the Norwegian Mapping Authority (www. geono rge. no). All covariates were rasterized to a 50 × 50 m 
resolution (see Table   S2 for simple summary of the covariates).

Figure 2.  Schematic presentation of the recreation data provided by Strava. The grey linear features to the 
left represent the linear features in the OpenStreetMap (OSM). The dotted lines represent the track left by two 
Strava-users, where the blue is from a user running outside linear features and the red is from a user running 
on linear features. The activity event from the blue user cannot be snapped to linear features in OSM and is 
removed during processing. The map to the top right represents a network of linear features and associated 
Strava activity events. The legend shows how many activity events are associated with the different paths (note 
that they are rounded to nearest multiple of 5). The map in the bottom right represents the same network after 
the number of Strava activity events for every linear feature in each grid cell have been counted.

http://www.geonorge.no
http://www.geonorge.no
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We prepared the covariates differently for the home range- and local-scale (see Table S2), to account for the 
different definitions of available habitat. For the home range-scale analysis we calculated the density of houses, 
forest roads and public roads, the proportion of forest, and the proportion of fields in a buffer of 1 km radius 
around each cell (50 × 50 m). For hiking path density we calculated the sum of all cells in a buffer of 1 km radius 
around the focal cell, while for the Strava index and slope we used the mean. We denote the hiking path density, 
Strava index, and slope with the subscript 1000 (e.g., Strava  index1000) to separate them from the covariates with 
similar names used for the local-scale. For the local-scale analysis we used distance to house, distance to forest 
road, distance to public road and distance to field, instead of density or proportion metrics. We included forest 
as a binary variable (1 = forest and 0 = not forest). For the Strava index and hiking path density we calculated the 
mean (Strava index) or sum (hiking path) of the covariate in the four closest neighbouring cells and the focal 
cell. This ensured that the hiking path density and Strava index extended at least 50 m outside the linear feature 
they were associated with. For slope on the local-scale we used the original calculation as previously described. 
We denote the Strava index, hiking path density and slope used for the local-scale analysis with the subscript 50 
(e.g., Strava  index50) to separate them from the covariates used in the home range-scale analysis. In addition, we 
also considered day vs. night as a covariate in models at the local-scale. Night was defined as the time between 
sunset and sunrise, obtained by the sunriset function in R-package  maptools54. We standardized all the continu-
ous covariates by subtracting the mean and dividing by the standard deviation of all used and available locations 
prior to fitting the models. The distance to feature covariates were log-transformed, to make the effect of the 
covariate decrease with the distance from the feature (we added 1 m to all distances prior to log-transformation).

Candidate models and model selection. We considered four different candidate models for the home 
range-scale and eight different models for the local-scale analysis (see Table  1). The simplest model (“core 
model”) contained parameters that have previously been shown to be important for habitat selection by lynx. For 
both scales, we tested whether including recreation covariates improved our core model by adding the density of 
hiking paths (“path model”), the Strava index (“Strava model”) or both the density of hiking paths and the Strava 
index (“full model”). In the core model for the home range-scale we included the quadratic term of the propor-
tion of forest as the results of Bouyer et al.51 suggested selection for an optimum less than 100% forest cover. 
In addition, we tested if local-scale habitat selection was influenced by time of day by including an interaction 
with night (true/false) for slope and forest as Filla, et al.30 showed that lynx select gentler slopes and spend more 
time in open habitats during the night. Given the diurnal activity of humans, we also included an interaction 
with night for the following human related covariates: distance to public and forest roads, hiking path  density50, 
and the Strava  index50. We did not include a main effect of night in the model as this variable was constant for 
any given stratum (single used location and associated sample of available locations) and could therefore not 
be meaningfully evaluated. We used Akaike’s Information Criterion  (AIC55) to rank models with the strongest 
support, and based inferences on models ≤ 2 delta AIC of the top ranked  model56. We interpreted that including 

Figure 3.  Illustration of the different scales and availability definitions. For the home range-scale analysis (left 
map) we sampled 30 available locations per used location inside the home range of the lynx (for illustration 
purposes we used a ratio of 1:1 in the left map). While for the local-scale analysis (right map) we sampled 
30 available locations inside a buffer with the radius equal to the mean step length (distance between two 
consecutive locations) of the lynx (for illustration purposes we removed two buffers and their corresponding 
points in the right map). The figure was created using the R package tmap (version 3.2, https:// cran.r- proje ct. 
org/ web/ packa ges/ tmap/ index. html).

https://cran.r-project.org/web/packages/tmap/index.html
https://cran.r-project.org/web/packages/tmap/index.html
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recreational activity improved our models when either the full-, Strava-, or path model ranked highest or ≤ 2 
delta AIC off the top-ranked model.

Time dependent habitat use of areas associated with Strava use. In addition to habitat selection, 
we explored how the habitat use of areas associated with the Strava  index50 changed throughout the day. This was 
done by fitting a generalized additive mixed model  (GAMM57) to only the GPS locations used by the lynx. As 
response, we used the GPS-locations of the lynx and coded them as 1 if the location had Strava activity (Strava 
 index50 > 0) and 0 if not. We used a binomial distribution with a logit link to model the response. The predictors 
included hour of the day with a cyclic spline as a smoothing term and lynx ID as a random intercept. We used 
the gamm function in mgcv  package58 in R to fit the model. The time of day was corrected for differences in day 
length using two anchors (one at sunrise and one at sunset) and the average  method59 in the activity  package60 
in R.

Results
Mean human density within lynx home ranges was 26  km-2 (range: 4.8–166  km-2). On average, 12% (range: 
0.8–31%) of the used GPS-locations per lynx, and 16% (range: 5.7–37%) of lynx home range areas, were located 
in grid cells with Strava  index50 > 0. Corresponding values for Strava  index1000 > 0 were 82% (range: 40–99.5%) 
of the used GPS-locations per lynx and 79% (46–98%) of their home range area.

Of the Strava activity events inside the lynx home ranges, 58% were located in forest, 24% occurred in built-up 
areas (urban, sub-urban, small towns etc.), 11% on fields, and 5% in alpine areas (open areas above the forest). 
Inside the lynx home ranges, roads were the linear features that had the highest levels of activity events, with 
hiking paths receiving fewer activity events (Figure S4).

Home range-scale habitat selection. The four candidate models differed only moderately from each 
other in terms of AIC (Table S4). The model including hiking paths ranked highest, but the full model was 
within 2 ΔAIC. We therefore present the results from the full model. In addition, the direction of effects (when 
included) was similar in both models.

We did not detect evidence that hiking path  density1000 or Strava  index1000 significantly influenced habitat 
selection at the home range-scale (Fig. 4, P value 0.502 and 0.483, respectively). Lynx selection increased with 
steeper slope  (slope1000, P value < 2*10–16), higher proportion of fields (P value 2.56*10–4), higher forest road 
density (P value 3.74*10–4), lower house density (P value 3.96*10–4) and they selected forest cover with an opti-
mum around 77% forest (see Fig. 6A, P value 0.458 and 4.86*10–6 for first and second order term, respectively). 
We did not find evidence that public road density significantly influenced habitat selection by lynx at the home 
range-scale (P value 0.153).

Local-scale habitat selection. The full model including interaction with time of day emerged as the top 
model for local-scale habitat selection (Table S4) and was clearly the most supported model. Models including 
“night” and/or the Strava index performed better than those without. Lynx avoidance increased with higher 
Strava  index50 during both day (P value 9.51*10–4) and night (P value 0.017, Fig. 5). The effect of hiking path 
 density50 was not significant (P value 0.079 and 0.920 for day and night, respectively), regardless of the time of 
day, although there was a trend towards avoidance during the day.

Lynx selection decreased with distance to fields (Fig. 6B P value 0.001). We did not detect an effect of dis-
tance to house on local-scale habitat selection (P value 0.063). Lynx selection increased with steeper slope (P 
value day < 2*10–16 and night < 2*10–16) and in forest (P value day: 1.63*10–6 and night: 3.61*10–4), but this effect 
was weaker during the night. During the day, lynx selection increased with distance from public roads (avoid-
ance, P value 3.95*10–4) but showed no response to forest roads (P value 0.195), whereas at night, lynx selection 
decreased with distance to forest roads (selection for, P value 1.17*10–4) but showed no response to public roads 
(P value 0.318).

Table 1.  Candidate models for home range-scale and local-scale habitat selection Refer to Table S2 and S3 to 
see how the covariates were prepared for the different scales. The night interaction was only considered at the 
local-scale.

Model Model specification home range-scale Model specification local-scale

Core Slope1000 + forest cover + (forest cover)2 + field cover + forest road density + public 
road density + house density

Slope50 + forest (dummy variable) + distance to fields + distance to house + distance 
to forest road + distance to public road

Path Core + hiking path  density1000 Core + hiking path  density50

Strava Core + Strava  index1000 Core + Strava  index50

Full Core + hiking path  density1000 + Strava  index1000 Core + hiking path  density50 + Strava  index50

Core_ night Distance to fields + distance to house +  slope50 : night + forest : night + distance to 
forest road : night + distance to public roads : night

Path_night Core_night + hiking path  density50 : night

Strava_night Core_night + Strava  index50: night

Full_night Core_night + hiking path  density50 : night Strava  index50 : night
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Time dependent habitat use of areas associated with the Strava  index50. Despite lynx selection 
decreasing with the Strava  index50 at the local-scale both during day and night, lynx still used areas with a Strava 
 index50 > 0. The GAMM revealed a time-dependent use of these areas (Fig. 7). The proportion of lynx locations 
having a Strava  index50 higher than 0 was lowest during the day, from around 08:00 to 16:00 when predicted 

Figure 4.  Selection coefficients for home range-scale habitat selection. Point estimates and 95% confidence 
intervals based on the robust standard errors for the home range-scale RSF models. Red colours indicate 
negative value of the estimate (i.e. avoidance) and blue colours indicate positive values of the estimate (i.e. 
selection). Stars indicate significant estimates at the alpha level of 0.05.

Figure 5.  Selection coefficients for local-scale habitat selection. The point estimates and 95% confidence 
intervals based on the robust standard errors for the local-scale RSF models. Red colours indicate negative value 
of the estimate and blue colours indicate positive values of the estimate. D2 is an abbreviation for “distance to”, 
all “distance to” features have been log-transformed to make the effect decrease with large distances. Note that 
a positive estimate for distance to feature indicates avoidance (selecting for areas farther away for the feature). 
Stars indicate significant estimates at the alpha level of 0.05.
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Figure 6.  Predicted relative selection probability for each covariate for the home range-scale (A) and local-
scale (B) habitat selection and their 95 % confidence interval. The range of the covariates (x-axes) is their 2.5 
and 97.5% percentiles. Probabilities above the dashed horizontal line indicate selection and probabilities below 
indicate avoidance, relative to the “reference cell”. The reference cell, which all probabilities are relative to, is a 
cell where all the covariates are at their mean (due to the standardization prior to model fitting), and is not the 
same for home range-scale and local-scale habitat selection.
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proportion was in the range of 0.06 to 0.07. From 16:00 to 00:00 the proportion increased and reached a peak of 
0.14 around 01:00, after the peak the proportion declined until 08:00.

Discussion
Our study revealed that lynx exhibit local-scale avoidance of areas with high levels of recreation in summer. 
Interestingly, while this effect was pronounced at the local-scale habitat selection, we did not detect any effect of 
recreation on home range-scale habitat selection. These results suggest that lynx are capable of adjusting their 
habitat selection and temporally adjusting their habitat use to recreation in a way that allows them to occupy 
human-dominated landscapes. This study also illustrates the added value presented by crowdsourced human 
mobility data as a reliable proxy for human activity in ecological studies, and the importance of accounting for 
the level of recreation associated with linear features of all types.

Accounting for the intensity of recreational use is important when studying the impact of recreation on wild-
life, as the level of recreation can affect the animals’  responses17. The high level of recreational activity observed 
on other linear features than hiking paths suggests that using hiking paths as proxies for summer recreation fails 
to cover the entire spectrum of recreation. The inclusion of the crowdsourced human mobility data in our study 
revealed new details about the habitat selection and habitat use of lynx, similar to a recent study on brown bears 
(Ursus arctos) in  Italy33. Lynx appeared to be relatively tolerant towards recreation, as we detected comparatively 
high use of the areas associated with the Strava  index50 (11% of the used locations had values higher than 0). 
Due to the lack of avoidance at the home range-scale, lynx do not seem reluctant to occupy the same areas that 
humans use for recreation, but they do avoid the immediate surroundings of linear features associated with high 
levels of recreation (local-scale avoidance).

Previous studies have investigated the effect of recreation on home range-scale habitat selection and habitat 
use of large carnivores. These studies have reported selection for areas with nonmotorized winter recreation by 
Canada lynx (Lynx canadensis)61,62, avoidance of areas with higher intensity of winter recreation (both motor-
ized and non-motorized) by  wolverines16, avoidance of areas with higher recreational intensity by brown  bears33 
and daybed selection for areas assumed to receive less recreational activity by  lynx63. In this study, we did not 
detect any spatial avoidance of hiking path density nor Strava  index1000 (in a 1 km buffer) by lynx at the home 
range-scale habitat selection. Lynx have been reported to have relatively short flight initiation distances in forests, 
with a median distance at 50  m64. Hence, a substantial reduction in the need to initiate a flight response is likely 
achieved by local-scale avoidance of areas with high recreation levels at local-scale habitat selection. This local-
scale avoidance might mitigate the need to exhibit larger scale avoidance; instead of avoiding a large forest area 

Figure 7.  Prediction (black line) from the generalized additive mixed model (GAMM) with GPS-locations 
as a response, coded 1 if they were located in a grid cell with Strava  index50 > 0 and 0 if not. The y-axis shows 
the proportion of locations used by lynx that were associated with recreation. Hour of the day was included 
as an explanatory variable and lynxID as a random effect on the intercept. The shaded area represent the 95% 
confidence interval around the prediction. Black dots indicate the proportion of GPS-locations in grid cells 
with Strava  index50 > 0 during a given hour; only hours with more than 100 GPS-locations are shown. All times 
have been corrected for differences in day lengths with two anchors (sunrise and sunset). Sunrise and sunset are 
shown as vertical dotted lines.
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associated with high levels of recreation, lynx can still use it and can reduce the risk of encountering humans by 
local-scale avoidance of recreationists and temporal adjustments of habitat use.

During the day, local-scale avoidance of recreation likely reflects a selection of resting sites away from areas 
with high recreational use, which has also been reported for lynx in southern-Europe63. We found that lynx 
avoidance of areas with higher Strava  index50 persisted throughout the night, at times when lynx are most 
 active65 and humans are not. A lack of temporal adjustment in habitat selection towards areas associated with 
recreation (non-motorized and motorized recreation during winter) has also been reported for Canada  lynx61. 
However, our results show that lynx, despite locally avoiding areas associated with higher levels of recreation, 
used areas associated with recreation quite often. Especially at night, when habitat use of Strava  index50 was 
twice as high than during the day, showing some temporal adaptations towards recreation. Higher habitat use 
of areas associated with the Strava  index50 could be explained by cost-effective transportation, as linear features 
have been shown to facilitate movement for other  carnivores15,66.

Lynx in our study area occupy a human-dominated landscape and are thus capable of adjusting to human 
 infrastructure67 and, as our results suggest, also recreation. The level of recreation in our study area might not be 
high enough to force lynx to adjust their habitat selection at larger scales. Nonetheless, our study area contains 
one of the most heavily used recreational areas in the immediate proximity of the capital of Norway (Oslo), and 
lynx still used this area. Additionally, the Scandinavian lynx population has been, and still is, subject to strong 
selection pressure to avoid humans due to hunting and  poaching35,36. In this context, a lack of avoidance at the 
home range-scale habitat selection suggests that an area needs to receive substantially high levels of recreation 
before lynx start to avoid it at large scale, and that the other spatial and behavioural adaptations are sufficient. 
Our study area is forested, with abundant hiding cover and widespread access to rugged terrain and/or boul-
ders. Dense horizontal cover has been shown to reduce the flight initiation distance for  lynx64 and other large 
 carnivores12. Hence, the effect of recreation might be less pronounced in forested landscapes with access to cover.

Strava data have proven useful in previous studies, and high correlations with ground truth data have been 
reported from cities in  Norway68, the  UK69, the  USA70 and  Australia71 as well as in rural areas in  Austria34 and 
in  Italy33. As our Strava index is an index of pedestrian recreation and the app is not used by everyone engaging 
in recreational activities in a defined area, true recreational activity is bound to be higher. For example, Venter, 
et al.68 found the ratio between the Strava data and human counters to range between 1:30 and 1:40 in Oslo, 
Norway, meaning that for each person using the Strava app there are an additional 30 to 40 people on the same 
track or road during the same time period. However, as long as Strava users are not using different areas than 
non-Strava users, this proxy for human activity should reliably represent relative recreational activity in our study 
area. We believe spatially crowdsourced data on human mobility or activity can open a range of new possibilities 
for wildlife research and inform management in the future. In cases like ours, with a study area of approximately 
43,000  km2, crowdsourced data is currently the most feasible, and maybe the only, option for deriving a proxy for 
human activity across the whole area. The temporal mismatch (in years) between the collection of the lynx data 
and the Strava data have likely not impacted our results. For this mismatch to have an impact on our results, it 
has to be a drastic change in recreation patterns between the two periods. We argue that this is unlikely because 
there was a high correlation among the different years in the yearly Strava data from the period it was collected 
(Figure S1). However, there are other limitations of the data, e.g. the privacy legislations (minimum 3 unique 
users on a segment to be reported) impede the use of high resolution temporal Strava data (e.g. activity counts 
per hour or day) in areas receiving few activity events per temporal unit.

Conclusions. This study gives an example of the added-value from the application of crowdsourced human 
mobility data for ecological studies. Our results suggest that lynx reduce their direct interaction with pedestrian 
recreationists through local-scale avoidance and temporal adjustments in habitat use. The consequences of rec-
reation for lynx in Norway are therefore likely minor as the impact of recreation appears to be spatially restricted 
to the immediate surroundings of linear features in which the recreation occurs. We believe the levels of recrea-
tion in our study area are not high enough to impede lynx from sharing the landscape with humans. Instead, 
spatial avoidance at local-scales and temporal adjustments in habitat use may facilitate coexistence between 
humans and large carnivores.

Data availability
Data used in this analysis are available from the corresponding author upon request.
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