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Abstract: Monitoring wildland fire burn severity is important for assessing ecological outcomes
of fire and their spatial patterning as well as guiding efforts to mitigate or restore areas where
ecological outcomes are negative. Burn severity mapping products are typically created using
satellite reflectance data but must be calibrated to field data to derive meaning. The composite burn
index (CBI) is the most widely used field-based method used to calibrate satellite-based burn severity
data but important limitations of this approach have yet to be resolved. The objective of this study
was focused on predicting CBI from point cloud and visible-spectrum camera (RGB) metrics derived
from single-scan terrestrial laser scanning (TLS) datasets to determine the viability of TLS data as an
alternative approach to estimating burn severity in the field. In our approach, we considered the
predictive potential of post-scan-only metrics, differenced pre- and post-scan metrics, RGB metrics,
and all three together to predict CBI and evaluated these with candidate algorithms (i.e., linear model,
random forest (RF), and support vector machines (SVM) and two evaluation criteria (R-squared and
root mean square error (RMSE)). In congruence with the strata-based observations used to calculate
CBI, we evaluated the potential approaches at the strata level and at the plot level using 70 TLS and
10 RGB independent variables that we generated from the field data. Machine learning algorithms
successfully predicted total plot CBI and strata-specific CBI; however, the accuracy of predictions
varied among strata by algorithm. RGB variables improved predictions when used in conjunction
with TLS variables, but alone proved a poor predictor of burn severity below the canopy. Although
our study was to predict CBI, our results highlight that TLS-based methods for quantifying burn
severity can be an improvement over CBI in many ways because TLS is repeatable, quantitative,
faster, requires less field-expertise, and is more flexible to phenological variation and biomass change
in the understory where prescribed fire effects are most pronounced. We also point out that TLS
data can also be leveraged to inform other monitoring needs beyond those specific to wildland fire,
representing additional efficiency in using this approach.

Keywords: burn severity; fire effects; machine learning; terrestrial laser scanning

1. Introduction

Wildland fires have varying effects on ecosystems that result from a complicated
interplay between the pre-fire characteristics of the ecosystem such as species composition,
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three-dimensional structure, and topography [1], environmental conditions such as weather
and drought status, and the dynamics of the fire (heat release, residence time, etc. [2]).
Wildland fire managers aim to monitor fire effects both spatially and temporally to quantify
the effectiveness of fuel reduction fire treatments, identify wildfire consequences, guide
responsive post-fire management, justify fuels management needs, and better understand
the ecological roles, patterns, and processes of wildland fire. There is a growing need
to increase the pace and scale of fire effects monitoring in the management community
particularly as prescribed fire programs and wildfire response expand to meet the growing
challenges of fire suppression and ecosystem management.

Because monitoring fire effects directly is often intensive and tedious, there is substan-
tial interest in developing and applying simpler and more efficient observation approaches
from which fire effects can be inferred. The term “burn severity” is often used to describe
some measure of a fire’s effect on an ecosystem, but there are varying arguments about
its precise meaning [3–5]. Bond and Keeley [6] conceptualized “fire severity” as the loss
of or change in organic matter aboveground and belowground while Simard [3] defined
burn severity as the magnitude of significant negative fire impacts on wildland systems.
Lastly, Hardy et al. [7] defined it as the intensity of the fire as it affects the biogeochemi-
cal environment. Overall, burn severity is important for identifying and monitoring fire
impacts, which vary across landscapes and throughout the vertical structure of forests [8],
and guides mitigation or restoration responses to ecologically negative consequences of
fire [9]. However, this abstract term has led to subjective, inconsistent, and often indirect
measurement techniques that need improvement to be considered rigorous and compara-
ble.

Burn severity is often estimated as an index of surface reflectance estimated from
remotely sensed near-infrared (NIR) and shortwave infrared (SWIR) data that are collected
pre- and post-burn then differenced to calculate the change detection index known as the
differenced normalized burn ratio (dNBR [10,11]). Unburned forests are characterized by
higher NIR reflectance in comparison to SWIR while burned areas tend to show higher
SWIR reflectance in comparison to NIR, a signature of bare soil as opposed to photosyntheti-
cally active vegetation [12]. Ignoring the impact of cloud cover, dNBR provides wall-to-wall
coverage as a two-dimensional map of burn severity that can be extremely useful, although
it is important to consider that organic matter loss from fire is only indirectly measured
from spectral reflectance, and canopy cover can easily obscure lower-level changes in vege-
tation [13]. Without field reference data, two-dimensional remotely sensed burn severity
products such as dNBR offer limited insight and dimensionality to fire effects on vegetation
density and structure beneath the canopy [14], where effects are often targeted [15].

To bridge the gap between two-dimensional remote sensing burn severity products
and understory and midstory effects of interest, the ‘composite burn index’ (CBI [11]) has
been employed as the field-based standard reference despite important repeatability and
subjectivity issues with the method [14,16,17]. CBI is generated at the plot level from visual
assessments of fire effects, either in as effects (i.e., first-order effects) or as a long-term
assessment that includes both fire-induced and other post-fire effects (i.e., second-order
effects), in five forest strata: substrates (e.g., soil/rock and detritus), low shrubs and herbs
(e.g., vegetation <1 m tall), tall shrubs and herbs (e.g., vegetation 1–5 m tall), pole size trees,
and tall trees [11]. However, data are subjective relative to interpretation and assumptions
of unmeasured pre-fire conditions by observers and may be biased toward specific strata
due to prior management or forest growth form [14]. For instance, observers using this
method visually “guess” percentages of fuel consumption, greenness, necrosis, and char
following burning, without physical measurements or prior data as to fuel load, structure,
or vegetation conditions which are instead inferred based on vegetation remaining post-fire
and visual cues [11]. These qualitative estimates, which are subject to observer bias, are
then used to index signatures of reflectance; however, similar spectral signatures may
inadvertently lead to a grouping of characteristics that are dissimilar results of a fire. For
instance, a low severity signature in satellite spectral data could hypothetically result either
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where understory severity was actually high but mostly obscured by dense undamaged
canopy foliage, or where understory and overstory severity were actually homogenously
low. The crux of this difference is the fact that fire effects are correlated inconsistently
between forest strata [8].

Alternatively, airborne light detection and ranging (lidar; ALS) has been used to
decompose the two-dimensional dNBR to three-dimensional effects on forest structure
and density and to link pre-fire structure with resultant burn severity [8,18]. However,
ALS typically has a much lower return density (per m2) than terrestrial laser scanning
(TLS) collections (typically 2–5 pts. per m2 vs. 10–20 pts. per m2) and, as a result, does
not provide detailed information about forest structure in lower forest strata where low to
moderate severity fire effects are most prominent. Lower forest strata are most relevant
for low-intensity surface fire regimes [14]. Further, ALS datasets are expensive to collect
at temporal frequencies necessary to effectively monitor prescribed fire or wildfire effects
consistently every year.

TLS excels in collecting structure and density data in understory and midstory strata
where ALS is weakest due to canopy occlusion and can be conducted quickly with minimal
training and no expertise in remote sensing or fire effects and thus offers a potential
alternative to CBI as a consistent, repeatable, field-based approach to creating rich three-
dimensional plot-level datasets of vegetation structure and density [19,20]. Kato et al. [20]
used linear and non-linear regression to compare dNBR data with voxelized TLS data from
burned plots and found that correlations were strongest when using all data (R2 = 0.73–0.75)
but became weaker when data were binned according to CBI correlations with dNBR
(R2 = 0.05–0.63). Alternatively, the Phillip and Levick [21] used linear regression to compare
a new burn severity metric derived from Sentinel 2 C-band Synthetic Aperture Radar data
with binned TLS point data and found consistent yet weak correlations (R2 = 0.23–0.37).
However, to the best of our knowledge, no study has directly attempted to predict CBI from
TLS derived metrics or has leveraged the full potential of information-rich TLS point-clouds
with more sophisticated prediction approaches like machine learning algorithms to predict
burn severity. Due to the benefits of TLS, predicting CBI can be an important step toward
improving field estimation of burn severity in a way that can harmonize with existing
monitoring programs, and predictions from which are likely to be improved with the use
of machine learning.

Beyond the potential to predict burn severity, TLS also offers the complimentary
benefit of also being a forest vegetation inventorying approach and can produce data
that is richer and more dynamic for ecological analyses uses than CBI. TLS data have
been used to estimate canopy characteristics outside of fire applications such as leaf area
index [22], biomass [23,24], and canopy cover [25,26]. TLS collections have also targeted
the mapping and measuring of individual trees [27,28]. More recently, TLS has been
used to map fuels in three dimensions [29] and changes in forest structure following
wildfire [30]. Additionally, because some TLS systems collect spectral reflectance data that
are appended to each return, there is potential to integrate a spectral-reflectance index with
the three-dimensional data for consistent fine-scale burn severity mapping [19,31]. With
costs of TLS units becoming increasingly affordable to the typical forest manager, TLS-
based inventorying and monitoring methods are well poised to revolutionize monitoring
efforts as data extraction and analysis approaches continue to be refined [32].

We conducted a field study at a mixed-severity prescribed fire in New Jersey to evalu-
ate the prediction of CBI using machine learning (ML) regression and metrics derived from
single-return, single-position TLS data. To consider the difference in field opportunities
to evaluate burn severity in prescribed fires and wildfires, we created TLS multitemporal
metrics (e.g., differenced pre- and post-burn TLS) from single-date metrics (e.g., post-burn-
only TLS). We used ML to evaluate the performance of these metrics in predicting CBI and
compare multitemporal and single-date predictions. We provide workflows and processing
TLS data and discuss how this approach may be incorporated into fuels inventorying and
monitoring programs.
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2. Materials and Methods
2.1. Study Area

The New Jersey Pinelands National Reserve (PNR) is a pyrogenic landscape that has
a long history of landscape-scale prescribed burning as a wildfire management strategy.
Upland and lowland forests dominated by pitch pine (Pinus rigida Mill.) characterize
this 440,000-ha landscape and represent the greatest fuel hazard for wildfire management.
Annually, approximately 10,000 ha are treated with prescribed fire in a mix of units that
have been burned frequently and some that have been fire excluded for decades, while
approximately 5000 ha also burn in wildfires [33]. Impacted forests rapidly regenerate via
prolific dormant buds that are protected by bark or soil; however, the removal of biomass
and sprouting regeneration can profoundly and durably create distinctive patterns in the
three-dimensional structure of forest vegetation [18,34].

This study focused on a burn unit located in Wharton State Forest in southeastern
Burlington County, New Jersey within the PNR. Overstory vegetation was dominated by
pitch pine (Pinus rigida Mill.) and included infrequent subdominant post oaks (Quercus
stellate Wangenh.), while blackjack oak (Quercus marilandica Muenchh.), suppressed or
immature pitch pine, and immature post oak occupied the midstory. A mix of ericaceous
shrubs (Vaccinium, Gaylussacia species primarily), laurels (Kalmia latifolia L. and angustifolia
Kalm.), and shrub form oaks (Q. marilandica Muenchh. and ilicifolia Wangenh.) comprised
the understory. Canopy height varied significantly across the unit between areas of a
unique genetic provenance of pitch pine that exhibits short stature and exceptionally poor
form [35–37]. The area was treated with mixed intensity prescribed fire in February 2021
but had not burned since June of 1939 or earlier.

2.2. Field Data Collection

Forty-three plots were randomly selected with the criteria that plots be at least 400 m
apart from each other and 100 m from roads to facilitate separation of plots and prevent
potential edge effects (Figure 1). Plots were marked in the field prior to burning, at which
time pre-burn scans were collected with a BLK360 TLS (Leica Geosystems, Heerbrugg,
Switzerland) following [19] as single return, single scans. GPS points at plot center with
>2 m accuracy were collected at each plot using a Trimble GeoExplorer 6000 paired to a
Tornado receiver (Trimble Inc., Sunnyvale, CA, USA). These data were collected during the
dormant season in this region when foliage of deciduous shrubs was senescenced, between
25 February and 3 March 2021, or 3–9 days prior to burning.

The unit was then burned by the New Jersey Forest Fire Service on 6 March 2021.
Post-burn scans were also collected as single return scans, between 15 and 22 March 2021,
or 9–16 days after burning and still within the dormant season. Post-burn composite burn
index (CBI) data were collected at plots within a 10 m radius shortly thereafter between
22 and 26 March 2021 (16–20 days post-burn) using the CBI field sheet provided in [11].
As per [11] this effort to collect CBI data reflects the objective of conducting an ‘initial
assessment’ to identify first-order fire effects (i.e., chemical or physical changes relating to
combustion processes) immediately following fire, in contrast to an ‘extended assessment’
that would be designed to observe first- and second-order fire effects (i.e., those that may
occur later such as compositional change). In our assessment, half of the metrics pertaining
to understory vegetation characteristics (i.e., foliage) were unavailable for observation
during the dormant season for deciduous species present in plots and were thus omitted
from observation in all plots. Basic tree data including species, height, and diameter were
collected between 14 April and 5 August 2021. Tallied field data for each plot were then
summarized to strata level ‘burn index’ results and then combined via averaging to develop
plot-level CBI results as per the CBI method [11].
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Figure 1. (a) Study area and field plots. (b) Location of study area in southern NJ, USA. Imagery from the National Agri-
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Figure 1. (a) Study area and field plots. (b) Location of study area in southern NJ, USA. Imagery from the National Agriculture
Imagery Program (NAIP).

2.3. TLS Processing and Metric Generation

For each plot, both the pre- and post-fire single return, single-scan TLS datasets in e57
format were separately processed to derive summary metrics using the R [38] open-source
data science environment and language and the lidR package [39]. First, points occurring
within 10 m of the laser scanner were extracted to approximate the area in which CBI
data were collected. Next, segmentation algorithms were used to remove trees from the
point cloud and create two separate datasets, all returns and all non-tree returns, using the
methods described by de Conto et al. [40]. The goal was to summarize the point cloud with
and without trees present. Next, ground classification was applied to differentiate ground
returns from all other returns using the cloth simulation function (CSF) as implemented in
the lidR and the RCSF [41] packages. CSF classifies ground returns by modeling a rigid
cloth surface defined by interconnected nodes within an inverted three-dimensional space
(i.e., the point cloud is inverted, and the cloth surface is modeled above the points). This
surface and its associated nodes are used to extract ground return points such that the
cloth surface meets defined constraints of rigidness [42]. In this study, specifically, our
process involved smoothing the surface to account for steep slopes with a threshold of 0.5
to specify the maximum distance from a cloth to potential ground returns and a distance of
0.5 between nodes in the cloth. Rigidness was maintained at the default value of 1 to allow
for the modeling of rugged terrain and the time step was set to 0.65, which relates to how
gravity is simulated in the model.

Once the ground classification was performed, lidR was used to normalize the point
cloud to convert the elevation measurements to height above ground. This first required
a triangulated irregular network (TIN) to be created from the classified ground returns
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followed by a rasterization of this surface to create a digital terrain model (DTM) of bare
earth surface elevations. The ground elevation measurements from the DTM surface were
then subtracted from the returns occurring above them.

All metrics were calculated from the classified and normalized point clouds. In order
to calculate metrics that more closely aligned with the subcomponent forest strata of the
CBI the point cloud was stratified as defined in Table 1. Similar to [20], we stratified point
cloud data into 4 bins representative of forest subcomponent strata (i.e., substrate (L1),
herbs and low shrubs (L2), tall shrubs (L3), and pole-size to tall trees (L4)); however, our
bin definitions differed marginally from [20] to match those of CBI ([11]; Table 1). Next,
summary statistics were calculated for all returns, ground returns, and not ground returns
separated into the four height strata. The original CBI intermediate and tall tree categories
were combined to a single tree group (L4).

Table 1. Height bins and stratifications used in study.

Stratification Definition

Ground Points classified as ground
Not Ground Points not classified as ground

L1 Substrate (height > 0.001 m & height ≤ 0.3 m)
L2 Herbs and low shrubs (height > 0.3 m & height ≤ 1 m)
L3 Tall shrubs (height > 1 m & height ≤ 3 m)
L4 Pole-size trees and tall trees (height > 3 m)

Table 2 summarizes the features calculated. For ground-classified points, we simply
calculated the number of ground returns and the percentage of all returns that were
classified as ground. For all returns classified as not ground, we calculated total number,
percent of total returns, and a variety of summary statistics for the height, or z, data
including mean, median, standard deviation, entropy, vertical complexity index (VCI),
skewness, kurtosis, percent of returns above the mean height, percent of returns occurring
2 m or higher above the ground, percentiles of z, and cumulative percent of returns above
specified heights. Entropy is a measure of height diversity and was calculated using height
bins of 0.25 m after Shannon [43]. VCI is a normalization of entropy and was calculated
after [44]. In order to summarize the three-channel, visible camera (RGB) data, which
were collected with the integrated camera and subsequently associated with each point
return in the resulting point cloud in the original output files, we calculated the triangular
greenness index (TGI [45]; see Equation (1)) and the visible atmospherically resistant index
(VARI [46]; see Equation (2)), which are both vegetation indices that rely only on the visible
spectral bands. We only used the RGB values associated with the point returns and did not
make use of raster-based representations of the data. Although the camera data were not
calibrated and the digital number values could not be converted to an estimate of spectral
reflectance, we still included these metrics as a means to include spectral information in
the regression models to complement point cloud-derived structural information. For each
height bin, L1 through L4, we calculated the total number of returns; percent of not ground
returns; mean, median, standard deviation, entropy, and the VCI from the z data; and TGI
and VARI from the RGB data.

TGI = (Green− 0.39)× (Red− 0.61)× Blue (1)

VARI =
(Green− Red)

(Green + Red− Blue)
(2)
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Table 2. Predictor variables generated from TLS data.

Strata Sensor Variable Abbreviation Count

Ground TLS
Number of returns grnd_cnt 1

Percent of total returns grd_per 1

Not
Ground

TLS

Number of returns ngrnd_cnt 1
Percent of total returns ngrnd_per 1

Mean of z 1 ngrnd_mn 1
Median of z ngrnd_md 1

Standard deviation of z ngrnd_std 1
Entropy of z ngrnd_ent 1

Vertical complexity index (VCI) of z ngrnd_vci 1
Skewness of z ngrnd_skw 1
Kurtosis of z ngrnd_kur 1

Percent above mean z ngrnd_amn 1
Percent more than 2 m above ground ngrnd_a2m 1

Maximum not ground z ngrnd_max 1
z percentiles for not ground 2 ngrnd_px 19

Percent of points below height 3 ngrnd_bhx 9

RGB
Triangular greenness index (TGI) ngrnd_tgi 1

Visible atmospherically resistant index (VARI) ngrnd_vari 1

Not
Ground in
L1, L2, L3,

L4

TLS

Number of total not ground returns in strata lx_cnt 4 4
Percent of total not ground returns in strata lx_per 4

Mean of z lx_mn 4
Median of z lx_md 4

Standard deviation of z lx_std 4
Entropy of z lx_ent 4

Vertical Complexity Index (VCI) of z lx_vci 4

RGB
Triangular greenness index (TGI) lx_tgi 4

Visible atmospherically resistant index (VARI) lx_vari 4
1 z = elevation in m. 2 The following percentiles of z were calculated: 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%,
45%, 50%, 55%, 60%, 65%, 79%, 75%, 80%, 85%, 90%, and 95%. Example abbreviation: ngrnd_p50. 3 The following
heights were used: 1, 2, 3, 4, 5, 6, 7, 8, and 9 m. Example abbreviation: ngrnd_bh5. 4 x is replaced with level (for
example, l1_cnt).

A total of 80 metrics were calculated for each plot from the pre- and post-burn data
separately. We then differenced each variable by subtracting the post-burn metrics from
the pre-burn metrics to obtain differences.

2.4. Predictive Modeling and Assessment

Once the metric sets were generated and pre- and post-burn differences were cal-
culated, multiple linear regression and machine learning were implemented to make
predictions of CBI. All metrics were used to predict total CBI, as calculated from the entire
point cloud without the trees removed. For the four components of CBI, only variables
calculated from the associated strata, L1 through L4, were used. For predicting substrate
(L1), herbaceous and small shrubs (L2), and tall shrubs (L3) CBI, metrics obtained from
the point cloud with trees removed were used. For intermediate to large trees (L4) metrics
were calculated with the trees included.

Due to the large number of predictor variables in comparison to the number of plots
for predicting total CBI, we implemented a variable reduction method to select important
variables. Specifically, we used the Boruta method as implemented by the Boruta package
in R [47]. The Boruta method attempts to determine what features are relevant to the
predictive task, as opposed to selecting a minimal optimal set of variables, as is common
in other RF-based recursive feature elimination methods. It is a wrapper method that
uses variable importance, as calculated by the RF algorithm, to assess the relevance of
features relative to randomly generated “shadow variables”. The result is a distribution of
Z-scores for each variable and a categorization of features as “important”, “unimportant”,



Remote Sens. 2021, 13, 4168 8 of 22

or “tentatively important” [47,48]. In this study, we maintained all variables that were
identified as “important”.

Three separate regression techniques were applied: multiple linear regression, random
forest (RF) regression, and support vector machine (SVM) regression. Many methods
are available to make predictions of continuous measures. We included multiple linear
regression since this is a traditional, standard, and interpretable method that is often used as
a benchmark for comparing or assessing other algorithms [49]. RF and SVM were explored
since they are well established and operationalized and have been shown to generally
provide strong performance for a wide variety of predictive modeling tasks. These methods
have been widely adopted in the field of remote sensing and have even been integrated
into commercial software packages, such as ArcGIS Pro [50–53]. Linear regression predicts
the dependent variable, CBI in this case, using all independent variables and an ordinary
least square fitting method. This results in the prediction of a y-intercept and coefficient for
each predictor variable. Multiple linear regression assumes linear relationships between
the dependent variable and all predictor variables, normal distribution of the dependent
variable and model residuals, no or little multicollinearity between predictor variables,
no spatial autocorrelation, and homoscedasticity (i.e., no changes in the variability in the
model residuals with changes in the dependent variable) [49].

The RF algorithm is based on decision trees. Decision trees use binary partitioning of
the input data to create more homogenous subsets. Recursive binary partitioning results
in a series of decision rules, which can be used to make predictions of categorical or
continuous variables. RF expands upon single decision trees by (1) incorporating many
decision trees as an ensemble, (2) allowing only a subset of predictor variables to be
available for determining a splitting rule at each node, and (3) using only a subset of the
available training samples to produce each tree in the ensemble. The subset of training
samples used in each tree is selected using bootstrapping, or random sampling with
replacement. The goal is to generate a set of weak classifiers that are collectively strong due
to reductions in correlation between the trees. RF has been shown to be robust to complex,
noisy data and a large feature space [51,52,54].

SVM is a kernel-based method that attempts to determine the optimal hyperplane
in a multidimensional feature space. This optimal boundary is defined based on the best
or maximum separation or margin. Training samples nearest to the margins are used to
define the hyperplane, as opposed to all examples, and these samples are termed support
vectors. Since linear relationships may not exist in the original feature space, the problem
can be projected to a higher-dimensional space using a kernel function where patterns may
be more linear. This is known as the kernel trick [49,55–57]. In this study, we used the
radial basis function (RBF) kernel.

All three regression methods were implemented using the caret [58] package in R.
Model hyperparameters were optimized using a grid search and five-fold cross validation
where the data are randomly split into five folds. Since only 43 plots were available, we
used five folds as opposed to the more traditional ten folds to increase the number of
samples assigned to each fold. Models are then generated using four folds, while the
remaining fold is withheld for assessment. This process is repeated until each of the five
folds have been withheld for assessment. For RF, the number of variables available for
splitting at each node, or mtry, parameter was optimized. For SVM, the cost parameter
(C) was optimized. The caret package acts as a wrapper for executing learning methods
from other packages. Multiple linear regression uses the stats package [38], RF uses the
randomForest package [59], and SVM uses the kernlab package [60].

Due to the limited number of plots, we did not withhold a dataset to validate the
models. Instead, we used the results from the five-fold cross validation. Since the assess-
ment is based only on the withheld data in each fold, this yields an assessment that is not
impacted by overfitting [49]. Here, we report the highest average RMSE (Equation (3)) and
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R-squared (Equation (4)) calculated from the withheld folds during the hyperparameter
optimization.

RMSE =
√∑(y− ˆ

y)2 (3)

R2 = (1− Residual Sum o f Squares)/(Total Sum o f Squares) (4)

3. Results
3.1. Field Data

Basal area of plots ranged from 9 to 25 m2/ha with stems per ha ranging from 541
to 3280, encompassing the ranges observed in other studies on this landscape [61–64].
Average diameter at breast height (DBH) in plots ranged from 8.1 to 19.1 cm and average
stem height ranged from 4.5 m (e.g., areas dominated by dwarf pitch pine) to 11.2 m (see
Appendix A for plot-level biometric summaries). Over 99% of trees were living prior to the
burn.

3.2. Variable Importance

Figure 2 shows the distribution of Z-scores, which provide an estimate of variable
importance, generated using the Boruta method [10] for estimating total CBI. Given the
small number of training samples and due to the stochastic nature of RF, variability
in importance estimates is expected [65–68]. For comparison, Figure 3 shows variable
importance estimated using the default RF importance estimation method, which is based
on the mean increase in mean square error (MSE) when the predictor variable of interest
is randomly permutated while all other variables are maintained [54]. In order to assess
variability in the importance estimates, 500 separate RF models were generated to obtain
mean and median measures for each variable along with standard deviations, shown in
the figure using error bars. The variable order in Figure 3 is the same as in Figure 2 for
comparison. Although the order of importance is not the same between the Boruta and
standard RF importance estimation methods, similar patterns are observed, and several
variables are highlighted as consistently important. It should be noted that traditional
RF-based variable importance estimates are generally interpreted as marginal importance,
or an assessment of variable importance not impacted by other variables in the feature
space [54,65–68].

Using the Boruta method, several variables were noted to be of importance. The top
six ranked variables were as follows (ρ = Spearman’s rho): l4_cnt (ρ = −0.87), ngrd_per
(ρ = −0.91), grd_per (ρ = 0.91), ngrd_cnt (ρ = −0.92), l4_mn (ρ = −0.64), and grnd_p95
(ρ = −0.64). Spearman’s rho, which is based on ranks, was provided as a metric of
correlation between total CBI and these specific predictor variables since we were interested
in correlation in general as opposed to linear correlation. The relationships between total
CBI and each of these variables are shown in Figure 4, which generally suggest strong
correlations with total CBI. For predicting total CBI specifically, variables calculated using
the entire set of not ground returns and those calculated using just not ground returns in
L4 tended to show higher importance in the model than variables calculated using not
ground returns in the other three strata. This suggests that CBI for trees has a larger impact
or contribution on overall CBI than the substrate, herbaceous and small shrubs, and large
shrubs strata.

3.3. Model Performance

Figure 5 shows the RMSE and R-squared metrics estimated from the withheld folds
for each prediction by strata for each algorithm. Generally, the machine learning methods
outperformed multiple linear regression based on both metrics. Or, RMSE tended to be
lower and R-squared higher for the SVM and RF models. We attribute this to the ability of
these algorithms to model more complex, non-linear patterns and relationships within the
feature space. Generally, RF outperformed SVM in the calculations.
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Generally, total plot CBI and CBI for trees was predicted more accurately than CBI
for the other strata. This makes sense for the substrate and herbaceous layers since the
majority of the provided variables relate to distribution of the z measurements, which is
less meaningful for these strata. The lower predictive performance for shrubs was more
surprising. This could be related to occlusion of shrub features by tree trunks or due to the
characteristics of the fire.
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It should be noted that due to the stochastic nature of the RF algorithm, results and
predictive performance may vary between model runs. This can be especially true when
using a small training set [49,54]. In order to assess the consistency of the RF predictions,
we trained 50 separate models for each vegetation layer or CBI strata. The results of this
experiment are shown in Figure 6. Generally, model performance was consistent, especially
for strata that were predicted with higher accuracies (i.e., trees and total CBI). However,
due to this variability, the relative performance between RF and SVM may vary.

Other than overall accuracy and predictive performance, it is also important to con-
sider the suitability of modeling techniques for specific tasks. In this study in particular, it
was important to assess assumptions of multiple linear regression. We made use of diag-
nostic tests and visualizations made available by the car package in R [69] and specifically
investigated the total CBI prediction using the variable subset suggested by Boruta. Visual
assessment with a Q-Q plot suggested normality of model residuals and minimal issues
of skewness or kurtosis while the Score Test for Non-Constant Error Variance suggested
no issues associated with homogeneity of variance (p-value = 0.289). Partial residual plots
showed some non-linear relationships between total CBI and specific variables. The largest
issue is related to multicollinearity between many of the predictor variables. In summary,
given the complexity of the feature space, nonlinear relationships, and multicollinearity
between predictor variables, we argue that multiple linear regression is not an optimal
method for this task. So, other than just consistently lower predictive performance in
comparison to RF and SVM, violation of model assumption further supports the use of
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nonparametric machine learning for this task. If multiple linear regression is desired,
perhaps to obtain more interpretable results, some preprocessing would be required.
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It should also be noted that machine learning methods do require some specific
considerations. For example, a large number of predictor variables and a small number
of training samples can result in overfitting in some cases. Additionally, imbalanced
training data for classification problems can result in poor predictive performance for the
rarer classes while training samples that do not capture the full variability or range of a
continuous dependent variable may result in poorer predictions due to extrapolation errors.
For RF specifically, it has been shown that measures of importance can be misleading
when predictor variables are highly correlated or variables are measured on different
scales or have a different number of levels, in the case of categorical variables. Although
model predictive performance may not be greatly impacted by collinearity, such issues
can complicate variable importance assessment and make model interpretation more
difficult [49,51,53,54,65–68,70,71].

Figure 7 compares different subsets of features for predicting each strata and total
plot CBI. Generally, the best performance was obtained using all predictor variables or
just those derived from the TLS data. Using just the camera-derived variables of TGI and
VARI generally yielded poor results. Using just the metrics from the post-burn data, as
opposed to the difference, yielded slightly reduced performance, but also outperformed
the camera-only models.
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4. Discussion

Our study provides a replicable workflow and numerous variables relating to forest
structure and true color RGB values that can be used as alternative criteria for refencing
burn severity (e.g., dNBR or other indices) consistently in any landscape for both prescribed
fire and wildfire. The TLS approach presented is beneficial in that it is fast (~4 min to
scan), consistent, repeatable, provides a far more detailed depiction of forest conditions
than CBI, is relatively inexpensive with regard to the cost of current forest monitoring
programs, and data can also be used to inventory fuels with greater richness and speed
than traditional inventorying methods [19]. In contrast to the typical 23 indirectly observed
variables that are integrated into CBI calculations, the 70 TLS-based variables and 10 RGB-
based variables presented in this study demonstrate how our approach can be used to
characterize forest structure and spectral conditions. Further, we demonstrate how machine
learning can greatly improve predictions that integrate many predictor variables, compared
to the more traditional multiple linear regression. These methods were able to model
more complex relationships and patterns in the data in comparison to linear regression.
Overall, including all available predictor variables did not improve the prediction of
total plot CBI in comparison to just using the TLS-derived measures when using the RF
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algorithm (Figure 4); however, at the strata level, fit was best when predictions were made
with the SVM algorithm. The RGB data improved predictions in some but not all cases
(Figure 7), but alone poorly predicted total plot CBI. Compared to previous studies that
have attempted to predict plot-level or strata-specific burn severity from TLS data with
poor to moderate results (R2 = 0.05–0.75 [20,21]), our approach produced substantially
stronger results (R2 = 0.70–0.94, Figure 7). Our study differed in that it leveraged the
richness of TLS datasets by generating far more variables related to vegetation structure
heterogeneity and then utilized machine learning to generate predictions. The predictions
generated in this study also differed in their incorporation of RGB variables which are
linked to non-structural vegetation effects (i.e., charring, necrosis of vegetation).

Our results highlight important challenges of observing burn severity linked to plant
phenology that have yet to be reconciled in existing methods or the method we have
tested. CBI field observations are heavily reliant on color proportions in the burned
environment (e.g., green foliage, yellow/brown foliage, and char) to infer vegetation
damage or mortality; however, these observations can be challenging to infer during leaf-off
conditions immediately after fires in the dormant season. In our study area, the understory
and mid-story compositions were primarily deciduous and were dormant during our study
and corresponded with poor strata-specific predictions of CBI; however, the overstory was
evergreen and in that strata predictions from RGB were substantially better (Figure 6). RGB
data may be more useful for initial burn severity assessments following growing season
fires or for extended assessments of dormant season burn severity during the growing
season (i.e., after vegetation has seeded or resprouted). Similarly, CBI may also be a more
useful for extended assessments when fire effects of dormant season burns are difficult to
assess until vegetation has leafed out in the spring, although managers may not always
have the flexibility to wait many months before assessing the impacts of their burns. These
phenological considerations are particularly important for managers and researchers in
regions such as the eastern US where the majority of prescribed burning occurs in the
dormant season, or when comparing severity of fires that occurred across both leaf-on and
leaf-off conditions.

Other studies have shown that ALS can identify important structural variation in fire
effects from both prescribed fires and wildfires and that dNBR is highly correlated with
structural change in the forest [8,18]. However, this study and previous works highlight
that despite correlations between total plot CBI and dNBR, total plot CBI is a poor reference
for understory fire effects because of its bias towards the canopy and focus on observation
variables that poorly reflect physical change in the understory. We also highlight that
CBI is performed after the fire, where the observer makes assumptions about the pre-fire
vegetation conditions. As such, CBI only considers the post-fire state and as such, is not a
true change detection method. This has limited capacity to rigorously infer physical change
on vegetation from fire. Development of a TLS-based field approach could replace the CBI
method for validation of dNBR mapping products and provide a more robust reference of
fire effects in the forest, especially during low-to-moderate severity fires where fire effects
are focused on the understory.

Our study had shortcomings that can be considered in the planning of future studies
to maximize the usefulness of data and reduce confounding factors. First, we point out that
we exported our TLS data in e57 format and then converted that data to laz format on the
basis that it required less storage space than other formats and aligned with our existing
workflows. However, since conducting this study, it has been learned that e57 format
permanently truncates important non-return data collected by the BLK360, reducing the
richness of the data and weakening the user’s ability to interpret potential relationships
with field observations of vegetation [32]. Alternatively, we suggest future users consider
following Stovall and Atkins’ recommendation of exporting data in ptx format, which
preserves the complete dataset of both return and non-return information [32]. There
are also additional inherent challenges associated with using RGB data that may have
affected our results and should be considered in future studies. Inconsistencies in lighting
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across plots during the 360-degree data collection are impossible to avoid and thus variable
shading may be a confounding factor that reduces predictive power of these variables. As
previously stated, the RGB data in our study were uncalibrated; however, digital image
calibration processes using color calibration panels or discs has improved interpretation or
characterization of vegetation for other purposes (e.g., fine-scale analyses of agricultural
field crop foliar conditions) and may be useful for improving burn severity prediction with
360-degree RGB imagery in the future [72,73]. It should be noted that these approaches
require calibration panels or discs to be placed in the scene during image capture, which
we did not do, and thus post hoc calibration of RGB data in this study was not possible.

Monitoring of prescribed fire and wildfire effects is a critical component of deter-
mining management needs and evaluating the ecological and fuel effects of management
treatments and responses. Forest resource managers typically use remotely sensed data and
indices of burn severity as an alternative to directly observing fire effects. Wall-to-wall re-
mote sensing of burn severity typically provides two-dimensional maps that can indirectly
measure loss of organic matter from fire when calibrated with field data, but alone are of
insufficient resolution to predict change throughout the canopy profile [8]. However, the
primary method for observing burn severity in the field (i.e., CBI) has multiple documented
weaknesses that have yet to be improved upon, especially for below canopy biomass. These
weaknesses are rooted in the indirect nature of observations of forest biomass change.

TLS and associated RGB data can be very useful for quantifying forest structure and
its change, but also can be challenging to use. There is complexity in merging multiple-
TLS and RGB scan collections due to different sensor positions, identification of similar
features in complex vegetation, issues of occlusion when only single-return data are used.
We avoided these issues by collecting single scans at each plot before and after burning,
and by utilizing point cloud summary information rather than differencing point clouds
themselves. Despite the occlusion issues that can arise from using single return TLS
units, multiple return TLS data can also present challenges to the user if outputs do not
differentiate first returns from other returns because assessing the probability of returns
encountering vegetation becomes intractable. Similarly, the spherical probability pattern of
TLS pulses encountering vegetation is a challenging factor of 360-degree data acquisitions
that can complicate interpretation analyses that are dependent on the density of soft
features (e.g., foliage) rather than the presence or absence of hard features (e.g., the walls of
buildings), yet have remained largely overlooked. This challenge contrasts with the use of
ALS data or more simplistic upward facing TLS units where data where the directionality of
data sampling is uniform and thus the probability of laser pulses encountering vegetation
is easier to interpret. Referencing the RGB data to the point measurements, errors in tree
removal necessary for objectively analyzing understory and midstory vegetation, ground
classification and normalization methods, and lack of metadata for some cheaper sensors
are additional challenges that need to be considered when using our approach to estimate
burn severity.

This study demonstrated how TLS and RGB data can be used to quantify burn severity
following a dormant season fire in a pitch-pine dominated forest; however, future research
that builds on this by conducting similar studies in forests of other species compositions
and during growing season (e.g., leaf-on) conditions will be extremely informative for
expanding the use of this approach among managers and researchers. Similarly, research
that explores the spherical influence of scan patterns on TLS data probability distributions
would improve the validation and interpretation of TLS-based results, whether for burn
severity estimation or other purposes (e.g., vegetation structure monitoring). Addition-
ally, future research can utilize the structural and reflectance variables presented in the
manuscript to predict dNBR and investigate the potential for TLS and RGB-based burn
severity data to replace CBI. This would be extremely beneficial in enhancing manager
capacity to monitor fire treatment and utilize monitoring data to inform management and
can be incorporated with TLS-based fuels monitoring strategies [19,29].
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5. Conclusions

Our study demonstrated the use of terrestrial laser scanner data in the New Jersey PNR
to characterize the forest structure before and after burns to create metrics of change based
on loss of organic matter to estimate burn severity. The results of this work indicate that
this approach is fast, consistent, and repeatable. In addition, it requires little field expertise
or training, and data can also be used to inventory fuels with additional calibration in ways
that meet the requirements of new physics-based fire behavior simulators.

Comparison of data analysis algorithms showed that the random forests machine
learning algorithm provided substantially better results than a multiple linear regression
approach, but also highlighted inconsistencies in the correlation between CBI data and
loss of organic matter between forest strata. Canopy CBI and TLS burn severity had the
highest correlation, while tall shrubs had the weakest despite being closest to the scanner
and therefore less occluded than other layers. This result suggests future research should
investigate replacing or modifying CBI with a TLS approach that is demonstrably more
consistent and tractable.

These results have important implications for forest resource managers. The oppor-
tunity to increase the quality and pace of burn severity observations and integrate with
inventorying and modeling needs documented here could contribute to the updating of
field-based fuels and fire effects monitoring to better meet current needs of forest resource
managers. Similarly, these results demonstrate the potential for this approach to define
burn severity at prescribed burns in terms of metrics based on loss in organic matter in
specific strata, which are more informative than strata-specific CBI metrics. These results
also highlight the advantage of incorporating computational skills like machine learning
into wildland fire management, particularly in low to moderate severity fires or frequently
burned systems where fire effects are generally found beneath the canopy.
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Appendix A

Table A1. Summary of Biometric Data for Field Plots.

Basal Area
(m2/ha)

Stems/ha
(n) DBH (cm; Mean ± 1SD) Height (m; Mean ± 1SD)

9.7 828 9.4 ± 8.3 4.6 ± 2.9
15.1 2452 8.2 ± 3.4 4.5 ± 1.6
17.0 2834 8.1 ± 3.5 4.5 ± 1.6
17.6 2420 8.8 ± 3.8 4.8 ± 2.0
18.3 2580 8.7 ± 3.9 4.6 ± 2.0
19.4 2548 9.2 ± 3.5 4.9 ± 1.8
19.5 541 19.1 ± 10.0 11.2 ± 4.6
20.8 987 14.7 ± 7.5 7.5 ± 4.2
22.2 1274 12.7 ± 7.9 7.7 ± 4.1
22.6 1083 13.6 ± 9.1 8.7 ± 4.9
22.8 2197 10.4 ± 5.0 6.5 ± 3.1
23.7 2357 10.5 ± 4.2 6.4 ± 2.3
23.9 1210 13.5 ± 8.3 7.6 ± 4.4
23.9 3280 8.8 ± 3.9 5.2 ± 2.1
24.7 1592 12.1 ± 7.2 8.2 ± 4.5
24.9 1146 13.4 ± 10.0 8.7 ± 5.5
25.0 987 15.1 ± 9.9 8.1 ± 5.1
26.3 1146 14.1 ± 9.9 8.7 ± 6.2
26.7 1975 11.7 ± 6.0 7.4 ± 3.5
26.7 1051 14.6 ± 10.6 9.2 ± 6.1
26.8 1497 13.8 ± 6.3 8.4 ± 3.6
26.9 2452 10.3 ± 5.9 6.9 ± 3.3
27.0 1943 12.1 ± 5.6 7.2 ± 3.1
27.6 1178 14.5 ± 9.5 9.2 ± 5.4
27.9 1879 11.9 ± 6.9 8.1 ± 4.3
28.0 987 16.9 ± 8.9 10.3 ± 4.5
28.1 1783 12.6 ± 6.5 9.0 ± 4.7
28.7 1274 14.6 ± 8.7 10.2 ± 4.9
29.6 1051 17.0 ± 8.5 9.7 ± 4.5
30.2 1274 13.9 ± 10.6 8.2 ± 4.9
30.3 2229 11.7 ± 6.3 7.4 ± 3.7
30.3 1083 14.8 ± 11.9 9.3 ± 6.5
30.4 1401 13.7 ± 9.5 9.4 ± 5.4
30.9 1943 12.8 ± 6.3 8.3 ± 3.3
31.6 1752 13.1 ± 7.6 8.0 ± 4.3
32.0 1815 13.2 ± 7.2 8.8 ± 4.2
32.0 1975 12.2 ± 7.7 7.8 ± 4.4
32.2 1401 15.1 ± 8.1 10.6 ± 4.2
32.3 1656 14.1 ± 7.2 9.9 ± 4.0
32.6 1178 17.5 ± 6.9 13.2 ± 4.2
33.6 2070 12.7 ± 6.9 7.8 ± 4.1
33.8 1656 14.4 ± 7.3 9.0 ± 4.1
35.1 1783 14.0 ± 7.6 9.6 ± 4.7
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