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Abstract 

Trees have evolved strategies to fight enemies and survive during their 
million-year history. These strategies have been shaped by natural selection 
and are reflected in their genomes today. Tree planting is a priority for 
governments, but there is a risk that trees selected by humans will lack alleles 
important for disease resistance. Norway spruce (Picea abies) is a 
characteristic species in the Swedish landscape and one of the most important 
trees for the forest industry. Therefore, the overall aim of this thesis was to 
study the genetic variation of resistance traits in Norway spruce to 
Heterobasidion parviporum and Heterobasidion annosum s.s., two fungal 
pathogens causing root and stem rot in conifers.  

In the first two papers, the genomic basis of resistance traits was studied 
with genome-wide association studies (GWAS). Associations between 
single nucleotide polymorphisms (SNPs) and resistance traits led to the 
discovery of several variants, with relatively small effects, associated with 
resistance to each pathogen. Correlation of resistance traits to these two 
species was dependent on the environment but using GWAS pleiotropic 
SNPs associated with resistance to both pathogens were found. Synergistic 
pleiotropic SNPs are genes that could provide multiple disease resistance in 
trees.  

In the third paper, signatures of selection in PaLAR3 were studied. This 
gene is associated with defence against pathogenic fungi in Norway spruce. 
Genomic analyses demonstrated that variation in PaLAR3 has been likely 
maintained by balancing selection in Norway spruce. Moreover, it seems that 
this process started before Norway spruce isolated reproductively from white 
spruce (Picea glauca).  
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In the fourth paper, resistance in the bark was studied in ten Norway 
spruce genotypes varying in susceptibility, inoculated with five 
Heterobasidion isolates varying in virulence. Both host and pathogen 
influenced the length of lesions in the bark. Using differential gene 
expression and co-expression networks, it was shown that Norway spruce 
genotypes with relatively high resistance had a robust response, which 
included the expression of pathogen recognition genes. In contrast, in a more 
susceptible host, the response was dependent on the virulence of the H. 
annosum s.s. isolate.  

Overall, the thesis advances the knowledge on disease resistance in 
Norway spruce. This knowledge will support the Swedish Norway spruce 
breeding program decision making in selecting healthier trees in the future.  

Keywords: genome wide association study (GWAS), pleiotropy, balancing 
selection, gene evolution, quantitative disease resistance, RNA-seq 

Author’s address: Hernán Dario Capador-Barreto, Swedish University of 
Agricultural Sciences, Department of Forest Mycology and Plant Pathology, 
Uppsala, Sweden 
  



Sammanfattning 

Träd har utvecklat strategier för att bekämpa fiender och överleva under 
miljoner år. De här strategierna har formats av det naturliga urvalet och 
återspeglas i deras genom idag. Att plantera skog prioriteras av många 
styrande organ, men det finns en risk att träd som valts ut av människor 
saknar alleler som är viktiga för resistens mot patogener. Gran (Picea abies) 
dominerar i det svenska skogslandskapet och är ett av de viktigaste 
trädslagen för skogsindustrin. Därför var det övergripande syftet med denna 
avhandling att studera den genetiska variationen som kontrollerar 
resistensegenskaper mot Heterobasidion parviporum och Heterobasidion 
annosum s.s., två arter av rotticka som båda orsakar rotröta i gran. 

I avhandlingens två första studier analyserades den genomiska kontrollen 
av resistensegenskaper med genomomfattande associationsstudier (GWAS). 
Associationer mellan resistensegenskaper och 
singelnukleotidpolymorfismer (SNP) ledde till upptäckten av flera loci, med 
relativt små effekter, associerade med resistens mot rotticka. Den statistiska 
korrelationen mellan resistenserna mot de olika rottickearterna berodde på 
miljön testet utfördes i, men via GWAS identifierades flera synergistiska 
pleiotropa loci, dvs gener som kan ge träden resistens mot båda svamparna 
samtidigt.  

I den tredje studien studerades selektionsmönster i PaLAR3, en gen i 
försvaret mot olika skadesvampar i gran. Genomiska analyser visade att 
variation i PaLAR3 i gran sannolikt har upprätthållits genom balanserande 
selektion. Resultaten tyder på att PaLAR3 var under balanserande selektion 
innan gran och vitgran (Picea glauca) isolerades reproduktivt.  

Slutligen studerades resistensen i barken i tio grankloner med olika 
känslighet för rotticka. De inokulerades med fem Heterobasidion-isolat med 
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olika virulens. Resultaten från försöket visar att både gran och rotticka 
påverkar hur långa nekroser som utvecklas i barken. Genuttrycksmönstren 
av gran och rotticka studerades via RNA-sekvensering av prov tagna bredvid 
nekroserna. Analyser av differentiellt uttryckta gener visade att responsen i 
granar med relativt hög mottaglighet beror på svampens virulens medan 
granar med relativt hög resistens hade ett robust svar, inklusive uttryck av 
gener som styr igenkänning av patogenen.  

Arbetet i den här avhandlingen bidrar till förståelsen för resistens mot 
skadesvampar i gran och kan stödja urvalet av robusta träd det svenska 
granförädlingsprogrammet. 

Author’s address: Hernán Dario Capador-Barreto, Swedish University of 
Agricultural Sciences, Department of Department of Forest Mycology and Plant 
Pathology, Uppsala, Sweden 

 
Keywords: genomomfattande associationsstudier (GWAS), pleiotropi, 

balanserande selektion, genevolution, kvantitativ sjukdomsresistens, RNA-
sekvensering 
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The forest cover in Europe has increased in the last decades accompanied 
by a higher frequency of forest disturbances, likely driven by both increased 
wood production and natural events (Senf and Seidl 2020). Because forests 
are important for human wellbeing, production of goods and biodiversity, 
reforestation is a clear strategy for sustainable forest management in Europe. 
Indeed, tree planting is a priority for governments and a recurrent issue in 
the environmental agenda. In fact, the new European Union forest strategy 
includes a pledge to plant more than 3 billion trees by 2030 (European 
Commission 2021).  

 
Tree planting can change the genetic composition of a forest because trees 

are planted in areas they might never reach naturally. Changes in the genetic 
composition occur because different evolutionary forces, that otherwise 
change due to natural processes, are altered. For example, gene flow is 
affected through assisted migration and imports of seeds, mating is affected 
by controlled crosses in breeding programs, as well as selection for desired 
traits (Adams et al. 1992). The balance of these evolutionary forces will 
determine the success of planting and growing the right tree in the right place, 
for the right purpose. Therefore, the study of genetic composition of trees 
used for reforestation, and how this affects their performance in the field is 
a key aspect to achieve the current reforestation goals (Hall, Hallingbäck, & 
Wu, 2016). 
 

Because natural selection has shaped resistance mechanisms in trees for 
millions of years, a risk of reforestation is that the altered genetic 
composition of forests fails to include genes contributing to resilience and 
resistance to pests and diseases. Therefore, the aim of this thesis is to study 

1. Introduction 
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the genetic variation of resistance traits in Norway spruce - a widely planted 
tree species native to European forests - to Heterobasidion annosum s.l., a 
complex of fungal pathogens causing root and stem rot in conifers. This 
approach allows me to take a look in the past and learn how disease resistance 
has evolved in Norway spruce. In the end, knowledge generated in this thesis 
will support the Swedish Norway spruce breeding program decision making 
in selecting healthier trees in the future.  
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2.1 Norway spruce (Picea abies) 

 
Norway spruce (Picea abies (L.) Karst.) is a long-lived coniferous tree 

dominant in boreal forests and in much of Europe. Its distribution ranges 
from the polar tree line in the North to the Ural Mountains in the East and as 
south as to the Carpathian Mountains in Romania (Figure 1).  

 

 
Figure 1 a) Norway spruce trees, Skuleskogens National Park, Sweden. b) Distribution 
map of Norway spruce (Picea abies (L.)H. Karst). Green: native range. Orange: 
introduced areas. Crosses and triangles denote isolated populations (Caudullo et al. 2017) 

 
In Norway spruce, there is evidence for extensive population structure 

throughout its natural distribution, likely reflecting its recent evolutionary 

2. Background 
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history. Currently, it is believed that Norway spruce, just like other plants in 
Europe, went through a strong bottleneck during the last glaciation maxima 
(LGM), about 20.000 years ago (Petit et al. 2003; Clark et al. 2009). During 
the LGM, it is believed that Norway spruce survived in refugia south of the 
Ural mountains, the Balkans and Scandinavia (Tsuda et al. 2016). Thereafter, 
as the global temperature increased, Norway spruce expanded into available 
land in Europe. Then, through mixture between the different refugia and 
adaptation to the local conditions, the current populations are believed to 
have formed (Chen et al. 2019, 2021; Milesi et al. 2019).   

2.1.1 The genus Picea  

 
Just as Norway spruce, trees in the genus Picea are common in northern 

hemisphere ecosystems in Asia and America. The genus is phylogenetically 
complex, with hybridizing zones between species, and phylogenetic trees 
that vary depending on the genes they are based on (Lockwood et al. 2013; 
Ran et al. 2015; Feng et al. 2018; Sullivan et al. 2018). The most recent view 
suggests that species in North America belong to two lineages: lineage IV: 
including P. glauca (White spruce) and Picea sitchensis (Sitka spruce), 
among others, and lineage III, where Picea mariana (Black spruce) belongs 
(Feng et al. 2018). Norway spruce is part of lineage II along with other 
species distributed through Eurasia and is phylogenetically closest to the 
lineage of White spruce (Lineage IV) (Feng et al. 2018).  

 
Studies in Norway spruce and White spruce have led to a general 

consensus that genes in Picea are largely conserved in sequence variation 
and genome organization (Pavy et al. 2013; Bernhardsson et al. 2019), and 
are expected to have low linkage disequilibrium (LD) as a result of high 
recombination rate due to outcrossing (Larsson et al. 2013; Nystedt et al. 
2013), large introns (Nystedt et al. 2013), and an excess of rare alleles 
explained by a current expansion after the LGM both in Europe and America 
(Holliday et al. 2010; Namroud et al. 2010; Larsson et al. 2013). 
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2.1.2 The Norway spruce genome 

The Norway spruce genome was published almost 10 years ago. It has a 
large genome size (19.5 x 109 base pairs (bp)), with a similar number of 
genes to other plants, but large introns, intergenic spaces, and repetitive 
regions (Nystedt et al. 2013). The current assembly of the genome is 
shattered in 10 M scaffolds with a median length of 700 bp, which is worse 
compared to other plant genomes (Sun et al. 2021). 

 
Because the genome is so large and fragmented, an exome-capture 

genotyping method was developed to circumvent these difficulties (Vidalis 
et al. 2018). Exome capture is a cost effective and targeted sequencing 
method based on available genomic information (Clark et al. 2011). For 
Norway spruce, 40,018 synthetic DNA probes were designed based on the 
sequences of 26,219 genes (Vidalis et al. 2018). These probes were then used 
to “capture” selected DNA fragments in given trees to later sequence them 
(Vidalis et al. 2018). The development of this technique allowed the 
genotyping of thousands of trees, which has improved the understanding of 
Norway spruce recent evolutionary history (Chen et al. 2019; Milesi et al. 
2019), the location of gene models in the genome (Bernhardsson et al. 2019), 
and the association of gene models with phenotypic traits (Baison et al. 2019; 
Milesi et al. 2019; Chen et al. 2021). Nonetheless, it is important to mention 
that probes only cover ~39% of the predicted genes (Vidalis et al. 2018), and 
because probes are designed on exons, most variants will be located in 
coding DNA, which will give a partial view of variation in the genome.  

2.2 Norway spruce in Sweden 

Norway spruce is a characteristic species in the Swedish landscape and 
together with Scots pine (Pinus sylvestris) the most important tree for the 
forest industry. For centuries, forests have been utilized in Sweden to sustain 
industrial activities such as mining, iron making, and from the mid-19th 
century sawtimber and pulp, which led to a depletion of forested areas by the 
end of the 19th century (Royal Swedish Academy of Agriculture and Forestry 
2015). Since then, Norway spruce has expanded: in the beginning of the 20th 
century by natural regeneration, but lately due to government policies to 
encourage reforestation and industrialization of the forest practices 
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(Lindbladh et al. 2014; Royal Swedish Academy of Agriculture and Forestry 
2015).  

 
Today in Sweden, 68% of the land is covered by forests, out of which 

84% are production forests (23.5 million of hectares), and Norway spruce 
encompasses 39.7% of the tree cover (Department of Forest Resource 
Management (SLU) 2021). These production forests in Sweden are 
supported by planting of trees and supported by research at universities and 
Skogforsk, the forest research institute of Sweden. In 2013, 216 million 
Norway spruce seedlings were planted. These seedlings were sourced from 
genetically superior trees in seed orchards in Sweden (a result of the Norway 
spruce breeding program), foreign and native forest stands and to a lesser 
degree foreign seed orchards (Haappanen et al. 2015). 

 

Table 1 Origin of sold Norway spruce plants for planting in Sweden in 2013. Adapted 
from (Haappanen et al. 2015) 

Origin (2013) Amount (%) 

Swedish seed orchards 69 

Swedish stands 12 

Foreign stands 13 

Foreign seed orchards 5 

2.2.1 The Swedish Norway spruce breeding program  

 
“The general objectives of the Swedish breeding programmes are to: 
Efficiently improve traits of high economic value; conserve adequate 

genetic variation; and prepare for possible climatic and other changes” 
(Rosvall 2011). 
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Towards the mid-20thcentury, the breeding program for Norway spruce 
started in Sweden. Generally, “plus trees” (or trees with desired traits) were 
selected from commercial stands to establish the initial breeding populations. 
Because Sweden has a cline in temperature and daylight, 22 breeding 
populations have been established (Rosvall 2019). “plus trees” in the 
populations are crossed in a double mate paring design, where each tree is 
mated to two other individuals in the population. These crosses are evaluated 
in field trials (often clonal field trails, where trees are cloned and evaluated 
in different environments), and “breeding values” based on the traits 
measured are used to select candidates that will form the breeding population 
of the next cycle (Rosvall 2011). The best candidates of each population are 
selected to mass seed production in seed orchards.  

 
The 3rd generation of Norway spruce seed orchards in Sweden are divided 

in 14 zones composed of trees from different breeding populations. A seed 
orchard is typically composed of more than 25 clones, and their frequency is 
determined by their breeding values, where the most frequent genotype will 
be the best, according to the breeding objectives (Rosvall and Ståhl 2008). 
The estimates for economic gain in these orchards is expected to vary 
between 16 and 28% (Lindgren et al. 2008).  

 
Since forest trees in Sweden have long rotation times, the interval 

between selection and harvest is long and therefore selection of traits is 
performed with a long-term view (Rosvall 2011). For selecting trees and 
calculating the breeding values, an index is used, where traits are combined 
and given different weights depending on their importance and correlation. 
For Norway spruce, these include growth, survival, wood quality, and 
vitality (Rosvall 2011). In the latter clones are scored in a scale from 0 to 3, 
where 0 = dead individual, 1 = severely damaged individual with low 
survival ability, 2 = moderately damaged individual with rather good 
survival ability, and 3 = healthy individual (personal communication, Torgny 
Persson and Curt Almqvist). Therefore, although resistance to specific pests 
and pathogens has not been implemented in the breeding program yet, a 
diffuse selection for disease resistance can be expected from the vitality 
score. 
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2.3 Root and stem rot caused by Heterobasidion 
annosum s.l. 

 
Heterobasidion annosum s.l. is one of the most studied forest pathogens 

because its conifer hosts are economically important in the Northern 
Hemisphere and the pathogen affects wood production and quality 
(Garbelotto & Gonthier, 2013). In the forest, the disease can spread long 
distances by basidiospores landing in fresh wood (Rishbeth 1951) and by 
short distances through the spread of vegetative mycelia through root 
connections (Stenlid 1985). Once in a tree, the fungus will grow vegetatively 
through the vascular tissues, using necrotrophic abilities to kill host cells.  

 
Infections can be detrimental for the tree since it will consume resources 

and likely affect growth or ultimately (Bendz-Hellgren 1997; Garbelotto and 
Gonthier 2013). Furthermore, windthrow is reported to be more frequent in 
Heterobasidion infected trees (Oliva et al. 2008). Once a tree is dead, 
Heterobasidion can grow saprophytically in the dead tissue and produce 
basidiocarps. Notably, basidiocarps are also produced when the tree is still 
alive (Garbelotto and Gonthier 2013).  

 
H. annosum s.l. is a species complex composed of five different species 

(Niemela and Korhonen 1998). In Sweden, H. annosum s.s. and H. 
parviporum live in sympatry with a geographical overlap in the mid-southern 
area and the ability successfully infect Norway spruce (Korhonen et al. 
1998a) (Figure 2). These species diverged 60 million years ago (Dalman et 
al. 2010) and have partially specialized in different hosts and display somatic 
and sexual incompatibility (Stenlid & Karlsson, 1991). H. annosum s.s. has 
a stronger pathogenic lifestyle and can infect more hosts than H. parviporum 
(Korhonen et al. 1998a; Daniel et al. 1998). H. annousm s.s. is commonly 
found infecting trees in the Pinus genus, where it grows preferably on non- 
heartwood tissues (Oliva et al. 2013) (Figure 3). Conversely, H. parviporum 
has low pathogenicity on Pinus and displays more of a saprotrophic lifestyle, 
where it avoids living tissues in the tree and grows in heartwood within the 
trunk, preferably in Norway spruce (Oliva et al. 2013) 
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Figure 2. Distribution of H. annosum s.s., H. parviporum and Picea abies in Europe. 
Based on (Garbelotto and Gonthier 2013) and (Caudullo et al. 2017).  

 

2.4 The challenge of being a tree: Defence strategies in 
Norway spruce 

Pests and pathogens have a substantial impact on tree populations in 
forest ecosystems, which is evidenced in recent epidemics (Coker et al., 
2019; Ennos, 2015). At the same time, trees have specific life history traits, 
such as long generation time and secondary growth, which pose specific 
challenges when it comes to interaction with pathogens (Loehle 1988; Eyles 
et al. 2010). For instance, trees must cope with the attack of several 
pathogens during their lifetime, and this could sometimes happen at the same 
time, as coinfections in the same or different tissues (Tobias and Guest 2014; 

H. annosum s.s. H. parviporum
Picea abies

Norway spruce
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Ennos 2015). Furthermore, secondary growth, large size and longevity 
demand investment in protection strategies for the stem to ensure longevity 
and reproduction success (Loehle 1988; Krokene 2015).  
 

Given these challenges, Norway spruce has evolved a structured but 
flexible defence strategy, with pre-formed defences organized in different 
tissues that can be induced in response to attack (Figure 3). For example, the 
periderm (or outermost part of the bark, Figure 3) is a preformed defence 
strategy in the stem and roots that is effective against the invasion of diverse 
threats, such as fungi and small insects (Franceschi et al. 2005; Krokene 
2015). If this layer is breached, there are cells prepared with preformed 
defences in the inner bark (Figure 3), which are able to recognize danger and 
induce a stronger response to limit the spread of the pathogen, 
compartmentalize the area and ultimately heal it (Franceschi et al. 2000; 
Solla et al. 2002; Krokene 2015). Even if the inner bark is breached, 
induction of defence can also occur in the sapwood (Krokene, 2015; Oliva et 
al., 2015). For example, a reaction zone (RZ) rich in lignans and with high 
pH is usually formed when pathogens like H. parviporum have already 
reached the core of the tree (heartwood, Figure 3) and spread into the inner 
sapwood (Shain 1971; Oliva et al. 2015; Nagy et al. 2022).  

 
Figure 3. Structured and flexible defence strategy in the stem. Tissue preference by H. 
annosum s.s. and H. parviporum (left) and morphology defence strategy of Norway 
spruce in the stem (right).   
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The induction of a defence response implies that recognition needs to 
occur for it to be triggered. Induction happens within hours after infection 
(Karlsson et al. 2007), and it is expected to occur after the tree recognizes 
molecular patterns: molecules that can be derived from damage of self, such 
as plant cell wall fragments, or molecular patterns in the pathogen, such as 
chitin (Salzer et al. 1997; Boller and Felix 2009). For recognition, plant use 
receptors bound to the cell membrane (typically “receptor like kinases” or 
RLK: proteins with an extracellular receptor domain with Leucin Rich 
Repeats and an intracellular signalling domain), and cytoplasmatic receptors 
(typically, proteins with nucleotide binding domain and Leucin Rich Repeats 
domain: NB-LRR or NLR) which collectively can defined as “R 
genes”(Ellendorff et al. 2009; Thomma et al. 2011). Trees such as Norway 
spruce have expanded and diversified R gene families compared to other 
plants (de Vries et al. 2018; Van Ghelder et al. 2019). Actually it has been 
hypothesized that a high R gene abundance is a characteristic feature of long-
lived trees (Tobias and Guest 2014; Plomion et al. 2018).  
 

2.4.1 The genetics of disease resistance in Norway spruce to 
Heterobasidion root and stem rot 

The genetic component of disease resistance traits in Norway spruce to 
H. parviporum has been studied extensively: with artificial inoculations full-
sib families (Arnerup et al. 2010; Lind et al. 2014; Skrøppa et al. 2015), half-
sib families (Steffenrem et al. 2016; Chen et al. 2018b),  clonal trials 
(Swedjemark and Karlsson 2004) and in naturally occurring infections in 
clone trials after 20 years of establishment (Karlsson and Swedjemark 2006). 
However, the variation in response to H. annosum s.s., which is also present 
in most of Norway spruce distribution in Europe, has been much less studied. 

 
The genetic component of disease resistance in Norway spruce to H. 

parviporum is quantitative (Swedjemark and Stenlid 1997; Karlsson and 
Swedjemark 2006; Arnerup et al. 2010; Chen et al. 2018b), with a variety of 
responses that go from very resistant to very susceptible. Responses in the 
host have been investigated with two phenotypic traits: sapwood growth 
(SWG) and lesion length (LL) (Figure 4). The longitudinal growth of the 
pathogen in the sapwood provides a measure of how well constitutive 
defences and the induced defence in the sapwood can control the spread of 
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the fungus (Figure 3 and Figure 4A&B). On the other hand, LL refers to the 
size of the discernible necrotic tissue closest to the wound or progressing 
infection in the bark and is a measure of how induced defences and wound 
healing responses interact to control the spread of necrotrophic pathogens 
(Figure 3 and Figure 4A&C).  

 

 
Figure 4. Resistance traits to Heterobasidion. A&B) Sapwood growth (SWG): Inoculated 
stem is cut up into 5-mm discs and placed on moist filter paper in Petri dishes. After 
seven days in incubation under humid conditions the presence of Heterobasidion is 
evaluated under the microscope. A&C) Lesion length (LL): length of the discernible 
necrotic tissue in the inner bark.  

These resistance traits are genetically controlled with moderately high 
heritability values which indicate that there is potential for selection in this 
trait (Karlsson et al. 2008; Arnerup et al. 2010; Skrøppa et al. 2015; 
Steffenrem et al. 2016; Chen et al. 2018b). Additionally, it is encouraging 
for the breeding program that most of the reported traits do not correlate 
strongly with growth or wood quality traits, and therefore are not in conflict 
with the main breeding objectives for Norway spruce (Skrøppa et al. 2015; 
Chen et al. 2018b). 
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Through the advancement of gene sequencing techniques and the release 
of the genome of Norway spruce (Nystedt et al. 2013), quantitative trait loci 
(QTL) have been associated with resistance traits to H parviporum (Lind et 
al. 2014; Mukrimin et al. 2018). The best studied candidate gene is PaLAR3, 
a gene encoding for an enzyme that forms the last step in the synthesis of 
catechin (Hammerbacher et al. 2014). This gene is located on a region in the 
genome associated to SWG (Lind et al. 2014) and individuals carrying the 
PaLAR3B allele have on average of 27% lower pathogen spread in the 
sapwood compared to half-siblings homozygous for the PaLAR3A allele 
(Nemesio-Gorriz et al. 2016) (Figure 5). The transcription factor PaNAC03 
interacts with the promoter of PaLAR3, and differences in the promotor 
sequences, including NAC-binding sites, are thought to be the reason why 
differential expression depends on the plant genotype (Dalman et al. 2017).  

2.4.2 The induced response of Norway spruce to H. annosum s.l. 
 

The induction of disease responses in Norway spruce has been studied 
using chemical and transcriptional methods. Typically, transcriptional 
changes in Norway spruce are characterized by the activation of the 
jasmonate and ethylene hormone signalling (Arnerup et al. 2011, 2013; 
Lundén et al. 2015), and recently the role of hormone abscisic acid has been 
highlighted (Kovalchuk et al. 2019). Even though there are similarities 
between the transcriptional responses to infection with H. annosum s.l., 
wounding , and other non-pathogenic fungi (Arnerup et al. 2011; Pepori et 
al. 2019), it is clear that fungal pathogens can induce distinct transcriptional 
responses in Norway spruce (Hietala et al. 2004; Fossdal et al. 2012; 
Hammerbacher et al. 2014; Chaudhary et al. 2020). For example, genes can 
show induction of expression at the edge of the lesions formed in response 
to H. parviporum compared to only a few cm away (Hietala et al. 2004; 
Arnerup et al. 2013; Chaudhary et al. 2020). Additionally, gene expression 
can also vary depending on the genotype of the trees, just as seen in PaLAR3 
(Nemesio-Gorriz et al. 2016) (Figure 5).  
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Figure 5. (paper III). PaLAR3 allele structure and effect on resistance to H. parviporum. 
PaLAR3 has two allele lineages in Norway spruce defined by one amino acid change 
(N175K) and an indel in the 3’ UTR. Difference in expression levels appear to explain 
difference in resistance in the sapwood. Based on Nemesio-Gorriz and collaborators 
2016 (Nemesio-Gorriz et al., 2016). 

 
In the bark, Norway spruce is equipped with polyphenolic parenchyma 

cells (PP) which are key players for disease resistance, since they are 
normally produced during development (as pre-formed defence) and are 
induced upon attack by pathogens (Nagy et al. 2004; Li et al. 2012; Krokene 
2015). Additionally, Franceschi and collaborators (2000) suggest that PP 
cells are involved in the formation of an induced structural barrier, rich in 
lignin and suberin (Franceschi et al. 2000), analogous to scar tissue in 
humans. In Norway spruce, a successful formation of this barrier - or so 
called lignosuberized zone (LSZ) (Woodward 1992; Solla et al. 2002) - can 
be seen as a later stage in the structured response, where the tree walls away 
the damaged tissue together with the pathogen, leading to eventual exclusion 
and closing of the wound (Franceschi et al. 2000). It has been observed that 
Heterobasidion is able to penetrate through the LSZ, and that formation of 
this structure does not always exclude the pathogen, but there is reportedly 
genetic variation in this response (Solla et al. 2002). The molecular 
mechanisms controlling this process are still largely unknown.  
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2.5 Resistance breeding: a feasible management practice 
for controlling Heterobasidion root and stem rot 

Current forest management strategies increase the incidence of 
Heterobasidion root and stem rot, with forest thinning being undoubtedly a 
major source of infections (Piri and Korhonen 2008), since fresh stumps left 
after harvesting represent an infection gateway (large wounds that have 
breached the structured defence strategy of the tree). Currently, there are 
management practices in place to decrease the extent of infections, such as 
the use of biological control agents or thinning during low spore production 
seasons (Holdenrieder and Greig 1998; Korhonen et al. 1998b). However, 
the problem remains because in areas previously infected with 
Heterobasidion, new trees planted will likely be infected. Alternatives such 
as planting other species such as birch have been suggested (Lygis et al. 
2004), but H. annosum can also infect birch (Piri 2003). Hence, even when 
management practices are in place, Heterobasidion root and stem rot is still 
a large problem for reforestation in suitable forest land. 
 

 Therefore, the use of resistance breeding for Heterobasidion root and 
stem rot is promising strategy, since through planned mating, selection, and 
migration in the breeding program, the genetic composition of the population 
could shift to healthier and more resilient trees that could perform well in 
Heterobasidion infected sites. Furthermore, the development of disease 
resistance in forest trees is advantageous compared to other strategies that 
can be costly, need to be repeatedly used, or are detrimental to the 
environment (Sniezko & Koch, 2017). Although there are successful 
examples of deployment of disease resistance trees in some commercial tree 
plantations in North America (Alfaro et al. 2013; Sniezko et al. 2014), it still 
remains an infrequent practice due to long generation times of trees, 
inconsistent funding from public agencies, and hesitation from stakeholders 
(Buggs 2020).  
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The main objective of this thesis is to understand how genetic variation in 
Norway spruce affects disease resistance, mainly to the two species of H. 
annosum s.l. present in Sweden. The specific objectives were:  

 
• To understand the genetic control of disease resistance traits to 

both species of Heterobasidion annosum s.l. present in Sweden.  
Hypotheses:  

o Norway spruce has variation in its resistance traits to 
Heterobasidion annosum s.s. (paper II) 

o Resistance to Heterobasidion annosum s.s. is correlated to 
resistance to Heterobasidion parviporum (paper II & IV) 

 
• To identify genomic variation correlated with disease resistance 

traits to both species of Heterobasidion present in Sweden. 
Hypotheses:  

o QTLs associated with Heterobasidion parviporum are 
expressed upon inoculation in Norway spruce (paper I) 

o QTLs could explain multiple-disease resistance to 
Heterobasidion annosum s.l. in Norway spruce (paper II) 

 
• To study signals of selection in PaLAR3, a gene associated to 

disease resistance in Norway spruce 
Hypotheses: 

o PaLAR3 has an excess of balanced polymorphisms 
compared to other regions in the Norway spruce genome 
(paper III) 

3. Objectives and Hypotheses 
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o Balanced polymorphisms are not maintained by 
overdominance or local adaptation in PaLAR3 (paper 
III). 

o Shared polymorphisms in LAR3 in Picea species have 
been maintained by balancing selection in Norway spruce 
(paper III). 

 
• To investigate the variation in gene expression between different 

genotypes of Norway spruce in response to different isolates of 
Heterobasidion annosum s.s.  
Hypotheses: 

o Variation in Norway spruce and Heterobasidion annosum 
s.s. affects disease symptoms (paper IV) 

o Norway spruce genotypes respond differently in gene 
expression patterns to Heterobasidion annosum s.l. 
isolates varying in virulence (paper IV) 

 
• To contribute with knowledge to the Norway spruce breeding 

program (paper I – IV)  
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4.1 Plant material and fungal isolates 

In all projects, Norway spruce plant material was provided by Skogforsk, 
an important ally in this project. In paper I & II, mother trees part of the 
southern Norway spruce breeding population were genotyped and their 
progenies phenotyped for resistance to H. parviporum and H. annosum s.s. 
In paper I & IV, grafted saplings originating from a field trial naturally 
infected by H. annosum s.l.(Karlsson and Swedjemark 2006) were used to 
study gene expression in greenhouse trials. For paper III, we obtained seeds 
from Norway spruce and the North American Black spruce (Picea mariana) 
and Sitka spruce (Picea sitchensis), which were planted in field trials in 
Sweden. Additionally, seeds from White spruce (Picea glauca) were 
obtained from the Canada Seed Tree Centre. Finally, we also used branches 
of trees planted in seed orchards owned by Stora Enso to measure disease 
resistance traits in the field.  
 

4.2 Disease resistance phenotyping  

The standard Heterobasidion inoculation and resistance phenotyping was 
used ((Swedjemark et al. 1997), Figure 4). Briefly, fungal isolates were 
grown on Hagem media (Stenlid 1985) for three weeks prior the experiment 
together with 5 mm Norway spruce wood plugs. At inoculation time, bark 
was removed with a 6-mm diameter corkborer and then a wooden plug 

4. Materials and methods 
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colonized by the fungus was placed at the wound and covered with 
Parafilm®. 

 
For paper I & II, inoculations were performed in the main stem of two-

year-old seedlings that were grown outside in a plant nursery. In paper IV, 
inoculations were performed in branches of 5-year-old, grafted saplings 
inside a greenhouse. Additionally, inoculations were also performed in the 
field, in branches of trees standing in three seed orchards in central Sweden: 
Gårdskär (60.6 N, 17.5 W), Nässja (60.2 N, 16.8 W) and Ön (60.2 N, 16.7 
W). Since orchards varied in time of establishment, plants were of different 
age. Genotypes repeated in more than one orchard (n=6) were also inoculated 
with H. Parviporum Rb175 and H. annosum s.s. Sä 16-4. Nine ramets per 
genotype were inoculated at each orchard. One branch per ramet was 
inoculated. Inoculations were divided in three blocks separated by one week 
starting on week 19 (May 2021). Every week, three ramets per genotype were 
inoculated in each seed orchard. At the end of the experiment, branches were 
collected for phenotyping ~10 cm below the infection point to ensure no 
pathogen was left in the trees. 

 
At harvest, LL above and below the edge of the inoculation point was 

measured. SWG was measured according to Arnerup and collaborators 
(2010): The inoculated stem was cut up into 5-mm discs and placed on moist 
filter paper in nine cm Petri dishes together with the original colonized 
wooden plug. To avoid contamination, the stem was cut from the tip to, and 
from the base to the point of inoculation, respectively. After seven days 
incubation under humid conditions, the presence of H. parviporum and H. 
annosum on the discs was determined by observation of characteristic 
conidiophores under a stereo-microscope (Swedjemark et al. 1997; Arnerup 
et al. 2010).  

4.3 DNA and RNA sequencing 

In paper I & II, DNA was sequenced to genotype trees part of the 
southern Sweden breeding population with exome capture probes (Vidalis et 
al. 2018). Sample collection, DNA extraction, read mapping and initial 
variant calling is described in detail by Baison and collaborators (2019) 
(Baison et al. 2019). In paper II, variants were filtered according to 



39 

Bernhardsson et al. (2020) with minor modifications(Bernhardsson et al. 
2020). Briefly, only biallelic single nucleotide polymorphisms (SNPs) within 
the extended probe regions were included. SNPs with depth 6–40, GQ < 15, 
mean depth between 10–30, 20% missing data, minor allele count 1, and a 
p-value= >1e−10 for excess of heterozygosity were retained to avoid 
collapsed reads. Individuals with more than 30% missing variants after 
filtering were excluded from analysis. Missing variants in the remaining 
individuals were imputed with beagle 4.1 (Browning and Browning 2007). 
In paper III, we also used exome-captured sequences from an expanded 
population (compared to paper I and paper II), together with 34 fully re-
sequenced trees (Bernhardsson et al. 2020; Wang et al. 2020) and a Sanger 
sequenced specific DNA region from haploid megagametophytes from four 
Picea species and Pinus sylvestris. In paper IV, we extracted RNA from the 
edge of the lesions in the bark and sequenced it at Sci Life Lab in Uppsala, 
Sweden in an Illumina NovaSeq 6000 system.  

 

4.4 Estimated breeding values (EBV) and heritability 

 
A key aspect of this project was to estimate the genetic component of 

resistance to Heterobasidion in Norway spruce. In paper I & II, mixed 
models were used to estimate the proportion of the variation in the disease 
resistance traits to Heterobasidion that could be explained by the genetic 
identity of the mother trees, using the following model:  

 
𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  𝜇𝜇 + 𝐵𝐵𝑗𝑗 + 𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐹𝐹𝑘𝑘 + 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗 

 
Where 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is each observation on the lth seedling from the kth family in 

the jth block, 𝜇𝜇 is the general mean and 𝐵𝐵𝑗𝑗 is the fixed effect of the jth block. 
The variable 𝐹𝐹𝑘𝑘 is the random effect of the kth family, 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the random 
residual effect and 𝐷𝐷𝑗𝑗𝑘𝑘𝑘𝑘 is a covariate for diameter at inoculation point. Based 
on this model, variance partitioning could be performed, and the proportion 
of variance explained by the genotype, the phenotype and the residual error 
could be estimated. These estimations allowed for calculating narrow sense 
heritability, a measurement of how much of the variation can be explained 
by additive genetics or put simply: how much of the studied trait is inherited 
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by the progenies from their parents. The individual-tree narrow-sense 
heritability was estimated using the equation: 
 

ℎ�𝑖𝑖2 =
𝜎𝜎�𝑎𝑎2

𝜎𝜎�𝑝𝑝2
=

4 × 𝜎𝜎�𝑓𝑓2

𝜎𝜎�𝑓𝑓2 +  𝜎𝜎�𝑒𝑒2
 

where ℎ𝑖𝑖2, 𝜎𝜎�𝑎𝑎2, 𝜎𝜎�𝑓𝑓2 , 𝜎𝜎�𝑒𝑒2, and 𝜎𝜎�𝑝𝑝2 are narrow-sense heritability, additive genetic 
effect, family, residual, and phenotypic variance components, respectively. 

 
Once these models were built, Estimated Breeding Values (EBV) were 

calculated. These are measurements of resistance for the mothers, based on 
the resistance of their progeny. The advantage of using mixed models is that 
the systematic effects captured in the experiment design, such as the effect 
of the environment in different blocks, will be subtracted reflecting a more 
accurate estimate of resistance for the mother tree.  

 

4.5 Genome wide association studies (GWAS) 

 
After EBVs were calculated, associations between EBV and DNA 

sequence variation measured with exome capture was performed. The results 
of these associations are the additive effect of a locus (Fisher 1919), or how 
much the EBV changes for every unit change in the DNA sequence, 
measured as a change from homozygote for one allele (aa), to heterozygote 
(Aa) to homozygote for the other allele (AA). If the effect size = 0, it means 
that the variation in DNA sequence has no effect on the EBV, and therefore 
is not involved in the variation of the trait. For this purpose, LASSO (Least 
absolute shrinkage and selection operator) regressions were used in paper I, 
while in paper II we use single-trait and multi-trait mixed models in 
GEMMA (Zhou and Stephens 2012) for all the variants identified with 
exome-capture sequencing. Principal component analysis (PCA) was used in 
paper I & II to correct for population structure.  
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4.6 Population genomics statistics 

 
In paper III, we studied genomic signatures of selection in Picea. 

Tajimas’ D, nucleotide diversity, allele frequencies, and linkage 
disequilibrium (r2), were calculated with VCFTOOLS (Danecek et al. 2011) 
in the 34 re-sequenced Norway spruce trees. Allele coalescence and time 
since the most recent ancestor was calculated in the 34 re-sequenced 
individuals with ARGweaver (Rasmussen et al. 2014) and BALLET 
(DeGiorgio et al. 2014).  

4.7 Gene expression analyses  

 
Total RNA was isolated according to the protocol by Chang, Puryear, and 

Cairney (1993) (Chang et al. 1993). For paper I, we estimated relative 
expression from the threseshold cycle using the 2ΔΔCT-method (Livak and 
Schmittgen 2001) by using the geometric mean of Phosphoglucomutase 
(Vestman et al. 2011) and elongation factor 1-α (ELF1α) (Arnerup et al. 
2011) to normalize transcript abundance. For paper IV, quality controlled 
and trimmed illumina reads were aligned to the Norway spruce genome (v 
1.0 gene models only) (Nystedt et al. 2013) using STAR default settings 
(Dobin et al. 2013). Unnormalized gene counts from STAR were used as an 
input to perform differential gene expression analysis in DESeq2 (Love et 
al. 2014) and gene co-expression network analysis in WGCNA (Langfelder 
and Horvath 2008) in R (R Core Team 2020).  
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The main objective of this thesis was to understand how genetic variation 
in Norway spruce impacts disease resistance traits. Even though it is known 
that resistance traits in Norway spruce vary in response to H. parviporum, it 
is unknown if resistance in Norway spruce varies in response to different 
member the H. annosum s.l. species complex, which genes contribute to 
variation in these traits, how much they contribute and how they have 
evolved.  

 

5.1 The genetic architecture of disease resistance to 
Heterobasidion 

 
In paper I, we measured disease resistance to H. parviporum Rb175 in 

466 different half-sib families that were part of the Norway spruce breeding 
program and correlated these traits with genomic variation in the mother 
trees to those half-sib families using GWAS.  

 
In paper II, we measured the same resistance traits as in paper I, but this 

time in response to H. annosum s.s. Sä 16-4 in a slightly different population, 
where 226 half-sib families were overlapping with families from paper I, 
which allowed us to compare the genetic component of resistance to both 
species in the H. annosum s.l. species complex. In paper II, we show that 
resistance traits to these two closely related forest pathogens, considered to 
cause the same disease in their host, are not necessarily correlated in Norway 
spruce. When we performed individual GWAS for resistance traits to both 
pathogens separately, we encountered that the SNPs associated with either 

5. Results and discussion  
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pathogen were different, which is not surprising given that the resistance 
traits to H. annosum s.s. and H. parviporum were not correlated.  

 
For both pathogens we found that resistance traits were polygenic, which 

is characteristic of quantitative disease resistance traits. In paper I, we found 
11 SNPs significantly associated with resistance traits to H. parviporum, 
with relatively small contributions to the variation in the phenotype (3-5%). 
In paper II, no variants were significantly associated with the traits, so a 
suggestive threshold of p < 1x10-5 was used. After this threshold, we found 
21 SNPs significantly associated with resistance traits to H., annosum s.s. 
These variants had relatively small contributions to the variation in the 
phenotype (4-6%) and were located in 7 different linkage groups. Therefore, 
our results suggest that the genetic architecture of disease resistance traits to 
H. parviporum and H. annosum s.s. is characterized by several genes with 
small effects, distributed in different locations in the genome. Importantly, 
the exomic probes used cover only ~39% of the predicted gene models in the 
spruce genome (Vidalis et al. 2018). Therefore, this is a likely representative, 
but still only a partial view of the genetic architecture of resistance traits to 
members of the H. annosum s.l. species complex.   
 

5.2 The breadth of resistance in Norway spruce 

An advantageous breeding objective in plants is to have resistance to 
multiple diseases at the same time (Wisser et al. 2011), and examples of this 
phenomenon in crops have been described before (Risterucci et al. 2003; 
Schweizer and Stein 2011; Wiesner-Hanks and Nelson 2016). For trees, this 
is an important trait, since they are expected to face multiple attackers during 
their life span (Tobias and Guest 2014). Specifically for Norway spruce and 
sympatric members of the H. annosum s.l. species complex, the concept of 
multiple-disease resistance is relevant. From a theoretical point of view, the 
nature of disease resistance to multiple pathogens could be based on the 
distance between the genes causing this effect. For example, unlinked genes 
can be effective against different diseases independently and provide 
resistance to multiple diseases in the organism. Also, clusters of linked 
genes, at the same genomic location, can be effective against different 
diseases. Otherwise, this can be observed in individual pleiotropic genes, 
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where the same gene contributes to resistance to multiple diseases (Wisser et 
al. 2011; Wiesner-Hanks and Nelson 2016; Nelson et al. 2018), as observed 
in paper II (see section 5.3). 

 
Resistance to H. parviporum is not correlated to resistance to 

Endoconidiophora polonica (the fungus associated with the bark beetle (Ips 
typographus) (Skrøppa et al., 2015), and as we show in paper II, neither it 
is to H. annosum s.s., suggesting that at the organism level, multiple disease 
resistance is not there, or at least we are not able to detect it yet. Arguably, 
the method of measuring resistance in half-sib families, which was both used 
in (Skrøppa et al. 2015) and in paper I & II could have introduced variation 
that did not allow to see significant correlations. Likewise, another limitation 
of paper II was that the resistance traits were measured in different years 
and the different environment could have influenced the outcome of 
infections leading to a lack of correlation (Capador-Barreto et al. 2021). To 
understand better the cause for the observed results in paper II, I designed 
two additional inoculation experiments with the same fungal isolates: 
experiment #1 in greenhouse conditions (paper IV) and experiment #2, in 
three different seed orchards (in the field). In experiment #1 (paper IV) I 
decided to include H. parviporum Rb175 along with five different H. 
annosum s.s. isolates. There, I tested whether resistance to both pathogens 
was consistent in the same environment (greenhouse), after inoculation in 
ten different clonally propagated Norway spruce hosts. At 21 days post 
inoculation (dpi), there was a significant difference in lesion length between 
the five fungal isolates. Pairwise post-hoc comparisons revealed that this 
difference was between H. annosum s.s. isolates, and H. parviporum Rb175 
was not significantly different from H. annosum s.s. Sä 16-4 in the 
greenhouse, under the same environment (Table 2). Therefore, lesion length 
in the 10 different evaluated clones was the same between these two 
pathogens.  
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Table 2. Differences in lesion length in Norway spruce between four H. annosum s.s. and 
isolates and H. parviporum Rb175 at 21 days post inoculation.   

Pathogen 
isolate 

Mean 
Lesion length 

Standard 
Deviation 

Significance group 

H. annosum s.s. Rb_28-20 4.3 4.6 NA 

H. parviporum Rb175 4.6 5.4 a 

H. annosum s.s. 87087/8 5.4 6.9 a 

H. annosum s.s. Sä 16-4 7.5 8.6 ab 

H. annosum s.s. L12-1 7.6 6.0 b 

 
In the field experiment (#2), I tested if (1) correlation of disease resistance 

traits in the same environment was also true in the field and (2) if different 
environments would affect this correlation (genotype-by-environment 
interactions). To do so, we infected branches in three different Norway 
spruce seed orchards, where the same genotypes were replicated several 
times. First, I confirmed that when measured under the same environment 
(in this case in the same seed orchard), resistance traits between the two 
pathogens tend to be correlated (Figure 6 A&B). This occurred only in two 
of three seed orchards evaluated, so under certain environments these traits 
are not correlated. Interestingly, for SWG some genotypes varied in response 
to H. annosum (698, 931, 887, 1171) depending on the seed orchard, while 
others varied in resistance to both pathogens (2026 and 696) (Figure 6C). For 
LL, the picture is similar, with the exception that genotype 931 varies much 
more for H. parviporum, and 969 does not vary at all for H. annosum (Figure 
6D).  
 



47 

 
Figure 6. Relative resistance H. parviporum and H. annosum s.s. Estimated Breeding 
Values (EBV) in resistance traits to H. annosum s.s. are plotted on the horizontal axis 
and Estimated Breeding Values (EBV) in resistance traits to H. parviporum on the 
vertical axis. The relationship for relative resistance in the sapwood (SWG) is shown in 
figure A&C. and relative resistance in the bark (LL) in figure B&D. Numbers labels refer 
to the genotype ID. Pearson correlations (R2 and P-values, and regression lines) between 
resistance, calculated per orchards are shown (A&B). Dashed lines connect EBV 
between orchards for the same clone (C&D).  

 
To sum up, our results suggest that under the same environment (in the 

greenhouse and in the field) resistance to H. annosum s.s. and H. parviporum 
can be correlated. However, as seen in paper II and in experiment #2, the 
environment plays an important role in this correlation, since it seems that 
under a different environment, resistance can change in magnitude 
depending on the species of H. annosum s.l., the trait measured, and the 
genotype of the tree (Figure 6). Genotype-by-environment interactions in 
disease resistance traits to H. annosum s.l. in Norway spruce should be 
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researched further, especially since genotype-by-environment effects have 
been detected for vitality scores in Scots pine in Sweden (Calleja-Rodriguez 
et al. 2019).  
 

5.3  Novel gene models associated with resistance to 
Heterobasidion 

In paper I we found that two of the variants significantly associated with 
LL were located in two gene models in the same genomic scaffold. These 
two gene models are a good example of the level of fragmentation of the 
Norway spruce genome, since in the initial genome assembly they were 
separated. However, they are actually one single gene that was originally 
isolated from lignin-producing Norway spruce suspension cultures 
(Koutaniemi et al. 2015). Transcriptome analyses suggest that this gene 
(from now on PaLAC5) is associated with the activation of stress associated 
lignin production (Laitinen et al. 2017). We also showed that PaLAC5 was 
induced after inoculation with H. parviporum (paper I), and in response to 
H. annosum s.s. (paper IV). Additionally, we confirmed this pattern by 
inoculating branches of saplings in the greenhouse and observed that 
PaLAC5 was induced specifically by H. parviporum compared to wounding, 
and this induction was localized (Paper I). Hence, it is probable that 
PaLAC5 expression is driven by specific cell types (such as PP, as suggested 
by Franceschi and collaborators (2000) (Franceschi et al. 2000)) in the bark 
adjacent to the inoculation site in response to H. parviporum. The LSZ is 
characterized by deposition of phenolics and suberin, and development of a 
discernible LSZ is crucial in stopping fungal invasions (Bodles et al., 2007; 
Solla, Tomlinson, & Woodward, 2002; Woodward et al., 2007). However, it 
needs to be proved that PaLAC5 is involved in the LSZ formation and if 
genetic variation associated with PaLAC5 influences the formation of the 
LSZ and therefore resistance to H. annosum s.l.  

 
Additionally, in paper II we performed multi-trait associations with 

resistance traits for both H. parviporum and H. annosum s.s. to study if there 
were pleiotropic variants in the genome that could have an effect on both 
pathogens. The SNPs were classified as belonging to two main categories: 
(1) those with the same effect size direction for both pathogens (synergistic 
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pleiotropy) (Figure 7, upper-left and lower-right), and (2) those with opposite 
effect sizes, (antagonistic pleiotropy) (Figure 7, lower-left and upper-right). 
Interestingly, PaLAC5 had a synergistic pleiotropic effect for LL in both 
pathogens. Therefore, this confirms that variation in PaLAC5 is likely to play 
a role in resistance to both members of the H. annosum s.l. species complex. 
Genes with synergistic pleotropic effects are examples of how one single 
gene can provide multiple-disease resistance in trees. For breeding programs, 
these loci could be used as one “stone” to select trees with improved 
resistance against both enemies. In contrast, SNPs with antagonistic 
pleiotropic effects could explain why these pathogens have evolved to 
inhabit different niches when infecting conifers. One example is a 
secoisolariciresinol dehydrogenase-like gene (Figure 7, lower-right 
quadrant), which encodes for an enzyme involved in the production of 
matairesinol (Suzuki and Umezawa 2007). Matairesinol is a characteristic 
lignan synthesized in the reaction zone in the inner sapwood in response to 
infection by H. parviporum (Nagy et al. 2022) which inhibits the activity of 
extracellular enzymes produced by a Heterobasidion isolate in vitro (Popoff 
et al. 1975; Johansson et al. 1976). The role of variation in matairesinol 
synthesis in resistance to these two pathogens in the sapwood is an exciting 
research avenue.  
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Figure 7. (paper II) Effect size of significant SNPs in the multitrait GWAS for estimated 
breeding values (EBVs) for resistance traits (LL, lesion length, SWG, sapwood growth) 
to H. annosum s.s. and H. parviporum. Dark points represent SNPs significant after the 
suggested threshold and the bars behind the standard error. EBVs for LL are in 
logarithmic scale.  
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In paper IV, we used transcriptomics to understand how different 

Norway spruce genotypes respond to different isolates of H. annosum s.s. 
There, we found several nucleotide binding leucin rich repeats genes (NLR) 
that are differentially expressed between genotypes, respond specifically to 
Heterobasidion annosum s.s. in comparison to wounding, and are correlated 
to changes in expression in the pathogen (Figure 8). The NLR protein family 
is a large family of immune receptors in plants with a central role in stress 
tolerance in conifers (Van Ghelder et al. 2019; Weiss et al. 2020; Tamborski 
and Krasileva 2020), and transcripts of these genes have been shown to 
accumulate after abiotic and biotic stress treatments in conifers (Fossdal et 
al. 2012; Kovalchuk et al. 2019; Van Ghelder et al. 2019). Therefore, it is 
possible that some of the NLR which respond specifically to H. annosum 
s.s., and vary between Norway spruce genotypes, allowed the plants to 
recognize the presence of the pathogen and respond with appropriate and 
robust transcriptional programs to control the spread of the pathogen (Poland 
et al. 2009; Delplace et al. 2020). Given that an expansion of NLR genes has 
been proposed as a strategy used by long-lived trees, further research on 
perception of pathogens mediated by NLR is essential for understanding the 
mechanisms behind disease resistance in trees. Furthermore, because NLR 
have been used in resistance crop breeding for many years with varying 
levels of success (McDowell and Woffenden 2003), they have a high 
potential for resistance breeding in forestry.   

5.4 A look in the past: how has natural selection shaped 
variation in resistance traits and genes?  

In nature, many interactions between species are mediated by quantitative 
traits (just like between Norway spruce and H. annosum s.l..) and therefore, 
they are central to understand co-evolution between species (Thompson 
1999). The genome of Norway spruce has been shaped by natural selection 
and adaptation (Wang et al., 2020), and since pests and pathogens are a threat 
for tree survival and fitness, their role in the evolution of the Norway spruce 
genome is likely important, but understudied.  
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5.4.1 Difference in resistance between geographical origins 

In paper II, we use the exome-captured genomic SNPs to attribute the 
progenies of Norway spruce to their geographical origin, which enabled us 
to show that resistance to H. annosum s.s. (but not to H. parviporum) in the 
bark follows a latitudinal cline. This is the first time that a difference between 
tree origins has been observed in the interaction between a conifer and H. 
annosum s.l. Bodles an collaborators (2007) tested this hypothesis in Sitka 
spruce, but did not find an effect (Bodles et al. 2007). Our results suggest 
that resistance to H. annosum s.s. might be locally adaptive or has trade-offs 
with locally adaptive traits (such as phenology or growth rate). Although it 
seems likely that trade-offs are driving the pattern we observe, further 
experiments are needed to confirm this observation. 

 
Both in paper I & II we used kinship and population structure between 

trees to correct for the effect of family relationships and demographic 
processes. This type of corrections are routinely used to lessen the effect of 
demography in the significance of SNPs that are different between 
geographical clusters and involved in the architecture of the trait (Zhao et al. 
2007; Milesi et al. 2019). Then, it is likely that some of the variants that we 
found to be significantly associated with resistance traits will not explain 
differences between geographical origins. In the future, the study of SNPs 
significantly associated with resistance traits and different between 
geographical clusters could enlighten the molecular mechanisms behind the 
pattern we observed.  

5.4.2 Ancient evolution of a disease resistance associated gene in 
Picea 

 
A typical gene in Norway spruce is expected to have low linkage 

disequilibrium (LD), large introns, and an excess of rare alleles due to the 
recent population expansion (Larsson et al. 2013; Nystedt et al. 2013). 
Interestingly, observations in the disease resistance associated gene PaLAR3, 
showed short introns, a considerably long LD block and an unusual allele 
dimorphism (Nemesio Gorriz et al., 2016). These striking features, together 
with the fact that variation in PaLAR3 was originally identified using a SNP 
chip designed for variants in P. glauca (Lind et al. 2014; Nemesio-Gorriz et 
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al. 2016), suggested that PaLAR3 was not evolving neutrally, or at least 
differently to the rest of the genome.  

 
Indeed, in paper III, we demonstrated that PaLAR3 has high Tajima’s D 

values in comparison to the rest of the Norway spruce genome, which 
confirms that this gene has an excess of mid frequency alleles (Figure 8). 
Thereafter, we tested if the balanced SNPs were due to alleles being favoured 
differently across the geographical range of the species and therefore 
appeared to be “in balance” in Norway spruce, or whether heterozygote 
individuals were more frequent (overdominance). In the end, we rejected the 
two last hypotheses: different geographical clusters had even allele 
frequencies and homozygotes for allele A were more common than 
heterozygotes or homozygotes for allele B.  

 
Figure 8. (paper III) Genome-wide estimate of Tajima’s D in the 34 re-sequenced Picea 
abies trees. Blue dotted line represent value for the coding region of PaLAR3 =1.43. Grey 
bars represent the 0.05 quantiles. 
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Because genes under balancing selection are often maintained for a long 
time, variants shared between closely related species are consider a hallmark 
signature of balancing selection (Karasov et al. 2014; Fijarczyk and Babik 
2015). Hence, in paper III we studied variation in LAR3 in three other spruce 
species and calculated the time since most recent common ancestor between 
the two alleles. Shared polymorphisms are frequent in Picea (Feng et al. 
2018), and they have been reported repeatedly in nuclear loci between 
Norway spruce (P. abies) and White spruce (P. glauca) (Bouille and 
Bousquet 2005; Chen et al. 2010). In LAR3, we found shared polymorphisms 
together with an inconsistent phylogeny (Figure 9): LAR3 in Black spruce 
(P. mariana) was the most similar to Norway spruce, but P. glauca and 
Norway spruce shared the largest number of polymorphisms (three in total). 
This variation pattern can be partly explained by the recurrent introgression 
events suggested in Picea (Sullivan et al. 2017; Feng et al. 2018).  

 
Taking into account the estimate since the most recent common ancestor, 

it is likely that allele A is the ancestral state and that allele B appeared about 
1.5 MYA, after the common ancestor of P. abies, P. glauca and P. sitchensis 
diverged from P. mariana. Since then, it is possible these alleles have been 
maintained by balancing selection in P. abies, and likely in P. glauca too, 
where a recent gene duplication has also been reported (Warren et al. 2015). 
However, additional tests are needed to confirm if PgLAR3 is also under 
balancing selection, and if this gene has indeed been maintained in both 
species by balancing selection or by other processes such and incomplete 
lineage sorting, which could also explain the existence of shared 
polymorphisms in Picea (Feng et al. 2018).  
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Figure 9. (Paper III) Phylogenetic tree of LAR3 in Picea. Tree is based on 537 positions 
(excluding indels) spanning introns and exons in LAR3. The percentage of trees in which 
the associated taxa clustered together after 100 bootstraps is shown next to the branches. 
The number of megagametophytes included in each branch is shown in parenthesis next 
to the taxa name, as well as the allele distribution based on the N175K non-synonymous 
substitution. 

 
Because catechin, synthesized by PaLAR3 (an its paralogs) is an effective 

defence strategy against different biotic stressors (Hammerbacher 2011; 
Hammerbacher et al. 2014, 2019; Nemesio-Gorriz et al. 2016), this gene is 
another example of  diffuse disease resistance evolving under balancing 
selection (Huard-Chauveau et al. 2013; Karasov et al. 2014). Genes evolving 
under balancing selection such as PaLAR3 involved in non-specific 
resistance have been described in tomato and Arabidopsis, and their 
mechanisms of evolution is thought to be ruled by trade-offs between growth 
and defence, rather than arms-race dynamics (Huard-Chauveau et al. 2013; 
Karasov et al. 2014).  

 
Indeed, disease resistance is likely costly for plants, especially when it 

involves the synthesis of molecules like catechin, which are carbon rich 
molecules that demand carbon sources (Warren and Mackenzie 2001; Yu et 
al. 2018). For example, in different plant species, individuals with lower 
anthocyanin production (and therefore no flower pigmentation) generally 
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have higher fitness under favourable growing conditions while plants 
producing higher amounts of anthocyanin have a fitness advantage during 
drought stress (Warren and Mackenzie 2001). Thus, it is possible that 
variation in LAR3 has evolved to regulate production of catechin and that 
allelic variation is maintained by trade-offs between growth and defence. 

 

5.5 Regulation of gene expression in response to different 
H. annosum s.s. isolates depends on the host 
genotype. 

Disease symptoms arise from interactions between diverse molecular 
pathways in both host and pathogen in an advantageous environment 
(Delplace et al. 2022). However, it is not known if Norway spruce regulates 
its responses differently depending on the virulence of pathogen isolates, and 
whether this modulation is dependent on the host genotype and disease 
progression. Thus, the overall objective of paper IV was to study if variation 
in virulence in H. annosum s.s. would induce different responses in Norway 
spruce. 

 
To do so, we used transcriptomics to understand how different Norway 

spruce genotypes would respond to different pathogen isolates. In general, 
variation in the host was the main driver of the (LL) extension. Likewise, 
11495 genes (22.5% of the gene models in Norway spruce) were 
differentially expressed between host genotypes. Indeed, we could observe 
differences between the expression patterns in the three hosts we studied: 
The more resistant hosts (8590 and 0427) had a more robust response to all 
pathogen isolates in comparison to wounding, with a few and similar genes 
differentially expressed (Table 3). In contrast, host 1977, which was 
predicted to be relatively susceptible to H. annosum s.l. (Karlsson and 
Swedjemark 2006), allowed the longest lesions at 21 dpi, especially in 
response to H. annosum s.s. Sä16-4 and 87087/8, but less markedly to L12-
1. Likewise, this host had many differentially expressed genes in comparison 
to wounding, which depended on the pathogen isolate (Table 3). Altogether, 
the more resistance hosts had a robust response to all three isolates, while the 
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more susceptible host genotype might differ in more than one component 
resulting in a less robust response to the three pathogen isolates.  

 
 

Table 3 (Paper IV). Number of differentially expressed genes between host and 
pathogen combinations compared to wounding. dpi = days post inoculation. 

 Pathogen (5 dpi)  Pathogen (21 dpi) 

Host Sä16-4 87087/8 L12-1  Sä16-4 87087/8 L12-1 

1977 122 11 8  4320 1550 19 

8590 18 14 66  16 16 12 

0427 39 16 36  45 23 57 

 
Therefore, it is possible that a robust response allowed the more resistant 

clones to restrict the spread of all three H. annosum s.s. isolates. Robustness 
is a characteristic of QDR, where different components with low functional 
redundancy and a decentralized response allow plants to maintain their 
functions against external variation, such as pathogen virulence (Delplace et 
al. 2020). Using gene co-expression network analysis, we identified co-
expression modules that correlated to gene expression in the pathogen, and 
were therefore likely involved in interaction to H. annosum s.s. (Figure 10A). 
The gene models in these modules were enriched in domains associated with 
NLR genes (Figure 10B). In fact, we also observed that most of these genes 
were downregulated in the more susceptible host 1977 in comparison to the 
other hosts. This led us to hypothesize that susceptibility may be related to a 
lack components in the recognition of infection by specific H. annosum s.s. 
isolates. This clearly warrants more detailed investigation in the future.  
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Figure 10 (Paper IV). Gene modules differently expressed between hosts are correlated 
with pathogen gene modules. A) Correlation of host gene expression modules (green) 
and pathogen gene expression (orange). The size of the nodes reflects the size of the 
modules and the thickness of the edges the strength of the correlation between modules. 
B) Correlation between selected modules and traits based on supplementary material 
Figure S8. Weighted Pearson correlation values per combination and Student asymptotic 
p-value in parenthesis are shown, together with the 3 most enriched Pfam domains per 
module. The number of genes per module are in parenthesis after the name of the module. 
Colours from red to blue correspond to the correlation coefficient and grey squares have 
a P value > 0.01.  
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Altogether, the results of this thesis signify a leap in the understanding of 
the genetic variation in disease resistance traits in Norway spruce. 
Furthermore, they contribute to the understanding of the genetic and 
molecular mechanisms of disease resistance in trees and have a potential to 
be applied in the Norway spruce breeding program in Sweden. The main 
conclusions of this thesis are:  

 
• Resistance to H. annosum s.s. and H. parviporum is quantitative, 

under genetic control and associated with variation in some genes 
with involvement in defence responses (paper I & II). 
 

• PaLAC5 is associated to resistance traits against H. annosum s.s. 
and H. parviporum and expressed in the bark adjacent to the 
infection site in response to H. parviporum (paper I & II).   
 

• Correlation of resistance traits in Norway spruce against H. 
annosum s.s. and H. parviporum is dependent on different genetic 
mechanisms of resistance and genotype-by-environment 
interactions (paper II). 
 

• Resistance in bark is significantly affected by the geographic origin 
of the trees following a latitudinal cline to H. annosum s.s., but not 
in H. parviporum (paper II). 
 

6. Conclusions and future perspectives  
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• Resistance traits to H. annosum s.s. and H. parviporum are 
associated with genomic variants with antagonist and synergistic 
pleiotropic effects (paper II). 
 

• PaLAR3 has an excess of mid-frequency variants compared to the 
rest of the Norway spruce genome, which are likely maintained by 
balancing selection and not overdominance or local adaptation 
(paper III). 
 

• PaLAR3A is likely the ancestral state and allele B appeared after the 
common ancestor of Norway spruce and its North American 
congeners P. glauca and P. sitchensis diverged from P. mariana. 
Under this scenario, both alleles would have been maintained by 
balancing selection in P. abies (paper III). 
 

• Variation in both Norway spruce and H. annosum s.s. influence the 
size of the lesions in the bark (paper IV).  
 

• Norway spruce genotypes with relatively high resistance to H. 
annosum s.l. are likely to respond in similar ways to different H. 
annosum s.l. isolates, whereas more susceptible genotypes will 
respond differently depending on the isolate virulence (Paper IV). 
 

• Norway spruce genotypes vary in the expression of NLRs induced 
after infection with H. annosum s.s and these NLRs are correlated 
with gene expression in the pathogen (Paper IV).  

 
 
A clear contribution of this thesis to the Swedish Norway spruce breeding 

program is the association between disease resistance traits and SNPs in 
paper I & II, which can be used in genomic selection models. Genomic 
selection is feasible in trees, with the attractiveness of reducing time in the 
breeding cycle (Resende et al. 2012b). This method could be used for traits 
such as growth (Resende et al. 2012b; Chen et al. 2018a), and resistance to 
insect pests and pathogens (Resende et al. 2012a; Stocks et al. 2019; Lenz et 
al. 2020). Given that breeding for polygenic traits such as growth is feasible 
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with genomic selection in Norway spruce (Chen et al. 2018a), it is likely that 
quantitative disease resistance traits, like resistance to H. annosum s.l. in 
Norway spruce, can also be employed. However, since population- and 
environment-specific genome predictions will drive the application of 
genomic selection in tree breeding (Resende et al. 2012; Chen et al. 2018a), 
the effect sizes of the variants we identified in paper I & II should be 
evaluated under different environments in the future. This is especially 
relevant when it comes to multiple disease resistance, since according to this 
thesis correlation of disease resistance traits can vary depending on the 
environment (paper II and seed orchard inoculations). 

 
Even though genomic selection is an attractive breeding strategy, it might 

take some years before it is fully operational in Sweden. Today, vitality 
scores are considered, and it is therefore reasonable to expect that a 
component of disease resistance is present in the breeding population. 
However, branch inoculations as performed in this thesis can be used to 
survey the disease resistance of “plus trees” in seed orchards. If significantly 
susceptible genotypes are found, their frequency in the orchards could be 
decreased, or they could be replaced with other genotypes. Removing 
susceptible trees from the population could improve the health composition 
of reforestation material in the future. The benefits and costs of such strategy 
should be modelled.  
 

Both in paper II & III, we found evidence that points to the existence of 
trade-offs between disease resistance and other traits, such as phenology. In 
the future, it is essential to understand if trade-offs are present and under 
which conditions they are more explicit.  

 
As I have highlighted above, the effect environment in the control of 

disease resistance traits is an important variable that I did not study 
systematically in this thesis, but its relevance became evident in every 
project. Because the time interval between selection and harvest is so long in 
Sweden and changes in the climate are expected in the coming century, it is 
crucial to understand the effect of future climatic conditions in disease 
resistance traits.   
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The understanding that we have today about the regulation and evolution 
of PaLAR3 (paper III) is the result of many years of work by different 
research groups (Danielsson et al. 2011; Hammerbacher et al. 2014; Lind et 
al. 2014; Nemesio-Gorriz et al. 2016; Dalman et al. 2017; Edesi et al. 2021). 
Throughout this thesis I have identified several gene candidates, which 
function as the foundation stones for future studies to broaden the 
understanding of the molecular regulation and evolution of disease resistance 
in trees like it has occurred with PaLAR3. Examples are PaLAC5 (paper I), 
the gene models containing pleiotropic SNPs (paper II) and the genes 
differentially expressed in paper IV.   
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Throughout their million-year history, trees have evolved strategies to 
fight enemies and survive. These strategies have been shaped by natural 
selection and are reflected in their genes today. Tree planting is a priority for 
governments, but if humans select which trees are planted in a forest, there 
is a risk that trees will lack gene variants important for disease resistance. 
Norway spruce is a characteristic species in the Swedish landscape and one 
of the most important trees for the forest industry. Therefore, the overall aim 
of this thesis was to study the genetic variation of resistance traits in Norway 
spruce to Heterobasidion parviporum and Heterobasidion annosum s.s., two 
fungal pathogens causing root and stem rot in conifers. 

In the first two papers, we studied associations between variation in the 
genomes of the trees and their resistance to both fungal pathogens. Through 
these associations, we discovered several loci with relatively small influence 
associated with resistance to each pathogen. This finding is important to 
understand how many genes and how much each of them contributes to 
disease resistance in the host. Correlation between resistance traits against 
these two pathogens was dependent on the environment they were measured. 
Additionally, we found loci associated with resistance against both 
pathogens. These loci are examples of genes providing resistance to more 
than one pathogen in trees.  

In the third paper, we investigated signatures of natural selection in 
PaLAR3. This gene is associated with resistance to different enemies in 
Norway spruce. Analyses of this gene demonstrated that variation in PaLAR3 
has been maintained by balancing selection in Norway spruce. Genes 
evolving under balancing selection usually have few alleles at even 
frequencies and are stable for a long time. Indeed, it seems that this process 
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started before Norway spruce isolated from the North American white spruce 
(Picea glauca).  

Lastly, in the fourth paper, we studied resistance in the bark in ten Norway 
spruce genotypes varying in resistance, inoculated with five Heterobasidion 
isolates varying in their aggressiveness. Both host and pathogen influenced 
the size of the lesions in the bark. We analyzed how much genes were 
expressed in Norway spruce in response to the pathogen to show that Norway 
spruce genotypes with relatively high resistance had a consistent reaction in 
response to different pathogens. The consistent response included the 
expression of genes involved in recognition of the pathogen. In contrast, in 
a more susceptible host, the response depended on the aggressiveness of the 
pathogen.  

Overall, the thesis advances the knowledge on disease resistance in 
Norway spruce. This knowledge will support the Swedish Norway spruce 
breeding program decision making in selecting healthier trees in the future. 
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Träd har utvecklat strategier för att bekämpa fiender och överleva under 
miljoner år. De här strategierna har formats av det naturliga urvalet och 
återspeglas i deras gener idag. Att plantera skog prioriteras av många 
styrande organ, men det finns en risk att träd som valts ut av människor 
saknar alleler som är viktiga för resistens mot patogener. Men om människan 
väljer ut vilka träd som planteras i en skog baserat på enbart tillväxt finns det 
en risk att träden i skogen saknar gener eller alleler som är viktiga för trädens 
förmåga att försvara sig mot sjukdomar, s.k. sjukdomsresistens. Gran 
dominerar i det svenska skogslandskapet och är ett av de viktigaste 
trädslagen för skogsindustrin. Därför var det övergripande syftet med denna 
avhandling att studera den genetiska variationen som kontrollerar 
resistensegenskaper mot Heterobasidion parviporum och Heterobasidion 
annosum s.s., två arter av rotticka som båda orsakar rotröta i gran.  

Först studerade vi det statistiska sambandet mellan genetisk variation i 
granar och deras uppmätta resistens mot de båda arterna av rotticka. Med 
statistiska associationsmetoder identifierade vi flera, hittills okända, alleler 
av gener i gran associerade med resistens mot de olika arterna av rotticka. 
Varje genvariant bidrar relativt lite till resistensnivån men tillsammans kan 
de ge bättre resistens mot rotticka. Den statistiska korrelationen mellan 
resistenserna mot de olika rottickearterna berodde på miljön testet utfördes i, 
men analyserna identifierade ändå flera genvarianter som associerar med 
resistens mot båda arterna av rotticka, dvs gener som kan ge träden resistens 
mot flera sjukdomar. 

I den tredje studien studerades selektionsmönster i PaLAR3. Den här 
genen är associerad med försvar mot olika skadesvampar i gran. Genomiska 
analyser visade att variation i PaLAR3 i gran sannolikt har upprätthållits 
genom balanserande selektion. Att en gen är under balanserande selektion 
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betyder att den har förhållandevis få alleler med relativt jämna (balanserade) 
frekvenser som är stabila under lång tid. Resultaten tyder på att PaLAR3 var 
under balanserande selektion innan gran och den nordamerikanska vitgranen 
separerade från varandra och blev olika arter.   

Slutligen studerades resistens i barken i tio kloner av gran med varierande 
resistens. De inokulerades (smittades) med fem rottickeisolat som varierar i 
hur aggressiva de är när de infekterar träd. Både granklonen och 
rottickeisolatet påverkade hur stora nekroser som bildas i barken. Vi 
jämförde hur aktiva olika gener var i barken i granklonerna och 
rottickeisolaten i det här försöket. Det visade att grankloner med relativt hög 
resistens reagerade på ett robust sätt, bland annat med hög aktivitet av gener 
involverade i igenkänning av patogener. Däremot berodde genaktiviteterna i 
den mer mottagliga granklonen på hur stora nekroser rottickan orsakade.  

Den här avhandlingen ökar kunskaperna om sjukdomsresistens i gran. 
Kunskaperna kommer att stödja det svenska granförädlingsprogrammet i 
arbetet med att välja bättre träd för framtiden. 
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Abstract

It is important to improve the understanding of the interactions between the trees

and pathogens and integrate this knowledge about disease resistance into tree

breeding programs. The conifer Norway spruce (Picea abies) is an important species

for the forest industry in Europe. Its major pathogen is Heterobasidion parviporum,

causing stem and root rot.

In this study, we identified 11 Norway spruce QTLs (Quantitative trait loci) that cor-

relate with variation in resistance to H. parviporum in a population of 466 trees by

association genetics. Individual QTLs explained between 2.1 and 5.2% of the pheno-

typic variance. The expression of candidate genes associated with the QTLs was

analysed in silico and in response to H. parviporum hypothesizing that (a) candidate

genes linked to control of fungal sapwood growth are more commonly expressed in

sapwood, and; (b) candidate genes associated with induced defences are respond to

H. parviporum inoculation. The Norway spruce laccase PaLAC5 associated with con-

trol of lesion length development is likely to be involved in the induced defences.

Expression analyses showed that PaLAC5 responds specifically and strongly in close

proximity to the H. parviporum inoculation. Thus, PaLAC5 may be associated with the

lignosuberized boundary zone formation in bark adjacent to the inoculation site.

K E YWORD S

genome-wide association study (GWAS), lignosuberized boundary zone, mitochondrion,

sapwood, secretory and endosomal trafficking pathways, suberin, TOM40

1 | INTRODUCTION

The importance of trees and forests for sustaining terrestrial life and

biodiversity can probably not be exaggerated (Petit & Hampe, 2006).J Baison, K Lundén and L Zhou These authors contributed equally.
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Pathogen and pest attacks on trees negatively impact the health and

biodiversity of native forest ecosystems as well as forest plantations,

which can have large economic, ecological and societal consequences

(Cubbage, Pye, Holmes, & Wagner, 2000; Garbelotto &

Gonthier, 2013; Pautasso, Schlegel, & Holdenrieder, 2015; Wood-

ward, Stenlid, Karjalainen, & Hüttermann, 1998). Therefore, it is

important to increase the understanding of interactions between the

tree and a pathogen in order to incorporate traits that confer to

increased resistance into forest tree breeding programs.

Norway spruce [Picea abies (L.) Karst.] is economically impor-

tant for the forest industry in Europe. Its major pathogens are fungi

in the species complex Heterobasidion annosum sensu lato (s.l.),

which causes stem and root rot in Norway spruce and several other

conifer tree species (Garbelotto & Gonthier, 2013; Woodward

et al., 1998). Under natural conditions, airborne spores of

H. annosum s.l. can infect stumps created after harvesting and thin-

ning operations. Once the stump is infected, surrounding trees or

stumps can be infected by secondary spread when H. annosum

s.l. mycelium enters neighbouring trees through root grafts and

contacts (Oliva, Bendz-Hellgren, & Stenlid, 2011; Redfern &

Stenlid, 1998). In Norway spruce, resistance to the spruce-infecting

congener Heterobasidion parviporum is quantitative in its nature

(Arnerup, Swedjemark, Elfstrand, Karlsson, & Stenlid, 2010; Chen

et al., 2018; Karlsson & Swedjemark, 2006; Steffenrem, Solheim, &

Skrøppa, 2016), and classical interval mapping-based quantitative

trait locus (QTL) analysis for resistance to H. parviporum identified

13 QTL linked to host resistance (Lind et al., 2014). PaLAR3, on the

QTLs associated with control of fungal spread in the sapwood, has

been validated and the function of the variation at the locus

described (Nemesio-Gorriz et al., 2016).

A feature that Norway spruce has in common with all tree species

is that a large fraction of the biomass is invested in the sapwood in

the trunk (Petit & Hampe, 2006). The primary function of the sap-

wood is to transport water and nutrients to the crown and it is domi-

nated by dead cells that have a limited capacity to respond to biotic or

abiotic stress (Johansson & Theander, 1974; Oliva et al., 2015;

Shain, 1971). To protect the sapwood, the trunk of a tree is clad in an

impermeable barrier, bark. The term “bark” commonly refers to all tis-

sues external to the vascular cambium of trees. The outer bark is

highly suberized and lignified, making it extremely resistant to

mechanical and chemical degradation. Only a few pathogenic microor-

ganisms are capable of directly penetrating the outer bark (Lindberg &

Johansson, 1991). Therefore, a common mode of entry for fungi that

cause stem cankers and decays is via mechanical wounds, exposing

the cortex, secondary phloem tissues or the xylem (Woodward &

Pocock, 1996). The speed at which the tree is able to seal off the tis-

sues exposed by wounding with wound periderm is critical in avoiding

damaging infections and subsequent loss of water transport capacity.

The process to heal the bark begins with rapid necrosis of cells closest

to the wound or progressing infection. It then continues with

programmed death of cells adjacent to the necrosis, forming the

lignosuberized boundary zone (LSZ), and de-differentiation of cells

next to the LSZ followed by differentiation of the wound periderm

(Bodles, Beckett, & Woodward, 2007; Mullick, 1977; Woodward,

Bianchi, Bodles, Beckett, & Michelozzi, 2007).

The trait control of lesion length extension (LL, with reported her-

itability values of 0.14–0.33) is measured as the size of the discernible

necrosis cells closest to the wound or progressing infection (Arnerup,

Lind, Olson, Stenlid, & Elfstrand, 2011; Chen et al., 2018; Steffenrem

et al., 2016). It could be argued that LL provides a measure of how the

induced defences and wound healing responses interact to control

the spread of the necrotrophic pathogen (Arnerup et al., 2011; Chen

et al., 2018; Danielsson et al., 2011; Lind et al., 2014; Steffenrem

et al., 2016). The trait control of fungal spread in the sapwood (fungal

sapwood growth, SWG) can be considered to provide a measure of

how well the combination of constitutive defences and the induced

defence responses in the parenchymatic cells can control the spread

of H. parviporum in the exposed sapwood (Johansson & Stenlid, 1985;

Oliva et al., 2015). The narrow-sense heritability of SWG has been

estimated to vary between 0.11 and 0.42 depending on the material

studied (e.g., experimental cross, natural population) (Arnerup

et al., 2010; Chen et al., 2018).

To date, the main focus of practical breeding in Norway spruce

has been on climatic adaptation, growth and wood quality traits

(Skrøppa, Solheim, & Steffenrem, 2015). In contrast, breeding for

replantation material with improved resistance to H.annosum s.s. and

H. parviporum is an overlooked objective because of limited informa-

tion about genetic variation in resistance to these pathogens and the

lack of reliable selection techniques (Skrøppa et al., 2015). There are,

however, clearly sufficient phenotypic and genetic variation for resis-

tance to H. parviporum in Norway spruce to allow for breeding

(Arnerup et al., 2010; Chen et al., 2018; Karlsson &

Swedjemark, 2006; Steffenrem et al., 2016), and no adverse correla-

tions between resistance to H. parviporum and growth or wood prop-

erties traits (Chen et al., 2018; Steffenrem et al., 2016). Hence, the

selection for H. parviporum resistance in breeding programmes could

lead to considerable gain without compromising other breeding

achievements (Chen et al., 2018).

To gain a deeper understanding of the heritability and genetic

architecture of, for example, disease resistance traits, including the

number, location, effect and nature of the loci involved, quantitative

and molecular genetic approaches can be used to analyse the relation-

ships between DNA polymorphism and phenotypic variation

(Bartholomé et al., 2016; Neale & Savolainen, 2004). The two main

approaches to detect QTLs: Interval mapping (IM) in experimental

crosses or linkage disequilibrium (LD) mapping, commonly known as

genome-wide association studies (GWAS) (Neale & Savolainen, 2004).

GWAS, relying on historical recombination in the mapping population,

overcomes the limited resolution of IM in experimental crosses

(Baison et al., 2019; Neale & Savolainen, 2004). If enough markers can

be analysed, this should be especially advantageous in conifers that

have particularly short average distances of maintained LD, often

even confined within genes (Namroud, Guillet-Claude, Mackay,

Isabel, & Bousquet, 2010). The effects of LD are also influenced by

the extreme physical distances separating genes in conifers (Nystedt

et al., 2013).
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It is likely that the Norway spruce genome harbours additional,

yet undetected loci, to the 13 QTLs already identified by (Lind

et al., 2014) controlling resistance to H. parviporum (Chen et al., 2018;

Hall, Hallingbäck, & Wu, 2016). Identification of further loci would

support the initiation of a breeding programme for the resistance to

the pathogen in Norway spruce and, just as importantly, improve the

understanding of the interactions between trees and necrotrophic

pathogens. The short maintained LD and the polygenic nature of the

traits controlling resistance suggest that GWAS could be a powerful

method to identify further QTL regions associated with H. parviporum

resistance in Norway spruce. Consequently, in this study, we aimed to

identify Norway spruce loci that correlate with variation in resistance

to H. parviporum in a population of 466 Norway spruce trees by

GWAS. We identified candidate genes associated with the QTLs and

analysed the expression patterns of the candidate genes in response

to H. parviporum hypothesizing that (a) candidate genes linked to the

SWG trait would be expressed in sapwood while candidate genes

linked to LL are expressed in more peripheral tissues, and;

(b) candidate genes that are part of the induced defence are induced

in response to H. parviporum inoculation.

2 | MATERIALS AND METHODS

2.1 | Phenotyping of resistance traits in the
progeny of 466 Norway spruce mother trees

We used the currently available largest Norway spruce resistance

phenotyping dataset to perform the GWAS. The material, inoculation

method and genetic analyses are described in detail in (Chen

et al., 2018). On average ten 2-year-old, open-pollinated progenies

derived from 466 tested plus trees in the Swedish breeding popula-

tion were inoculated with H. parviporum Niemelä & Korhonen strain

Rb175. A wooden dowel colonized by H. parviporum was fixated at a

wound on the stem of the plant with Parafilm. The inoculated plants

were kept under ambient light and temperature in the forest tree

nursery and harvested 21 days post-inoculation. The induced defence

responses (LL) in the phloem and inner bark were estimated by mea-

suring the discernible lesion spread upwards and downwards from the

edge of the inoculation point on the inside of the bark. SWG was esti-

mated using established protocols (Arnerup et al., 2010; Stenlid &

Swedjemark, 1988) (Table 1). The seedlings were cut up into five mm

discs and placed on moist filter papers in Petri dishes. Plates were

incubated in darkness under moist conditions at 21�C for 1 week to

induce conidia formation. Thereafter, the presence or absence of

H. parviporum conidia on each individual disc was determined under a

stereomicroscope. For each seedling, the sum of the discs where con-

idia were observed multiplied by 5 (mm) was noted as SWG. Plates

where no conidia could be observed on the discs, the inoculation

point and on the inoculation plug, and that showed total lesion length

of 2 mm or shorter, were treated as inoculation failures and were dis-

carded (Lind et al., 2014). Chen et al. (2018) reported narrow-sense

heritability values of 0.33 and 0.42, respectively, for LL and SWG and

moderate phenotypic (0.48) and genetic (0.47) correlations between

LL and SWG in this material.

2.2 | Norway spruce genotyping and SNP
annotation

Dormant buds were collected from each of the mother trees. Total

genomic DNA was extracted from the buds, using the Qiagen Plant

DNA extraction kit (Qiagen, Hilden, Germany), and the DNA was

quantified using the Qubit® ds DNA Broad Range (BR) Assay Kit

(Oregon, USA). The generation and evaluation of exome capture for

Norway spruce are described elsewhere (Vidalis et al., 2018).

Sequence capture on the mother tree DNA was performed using

40,018 previously evaluated diploid probes (Baison et al., 2019;

Vidalis et al., 2018). Probe design and sequence capture were done by

RAPiD Genomics (Gainesville, FL, USA). In brief, Illumina sequencing

compatible libraries were amplified with 14 cycles of PCR and the

probes were then hybridized to a pool comprising 500 ng of eight

equimolarly combined libraries following Agilent's SureSelect Target

Enrichment System (Agilent Technologies). These enriched libraries

were then sequenced to an average depth of 15x using an Illumina

HiSeq 2,500 (San Diego, USA) on the 2 × 100 bp sequencing mode.

Read mapping and initial variant calling as well as the recalibration

of the quality of SNP calling were then applied to filter the raw vari-

ants, described in detail in Baison et al. (2019). In brief, the variant

calling was made using GATK HaplotypeCaller v.3.6 as per the best

practices protocol (Auwera et al., 2013) in gVCF output format. To

increase accuracy, hard filters in the form of minor allele frequency

(MAF) and “missingness” of <0.05 and >20%, respectively, were then

performed on the final dataset.

3 | GWAS

The LASSO model as described by Li et al. (2014) was applied to the

H. parviporum resistance trait data for the detection of QTLs.

TABLE 1 Summary statistics of the phenotype data used in the
trait-marker association study (Details can be found in Chen
et al. (2018))

Inoculation study Acron. Unit Na Mean

Diameterb D mm 4,628 4.0

Lesion lengthc LL mm 4,547 7.6

Fungal growthd FG/SWG mm 4,554 32.5

Vitalitye Vitality Classes 4,376 1.9

aN: total number of progenies with valid recording of the trait.
bDiameter of the progenies at the inoculation site.
cLength of the necrotic lesion in the phloem and inner bark.
dFungal growth in the sapwood of the progenies.
eVitality of the progenies where score 1 was given to fully vital and worst

score 3 was given to plants showing a pronounced loss of vitality.
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The LASSO model:

min
α0,α jð Þ

1
2n

Xn
i=1

yi−αo−
XP
j=1

xy−α j

 !2

+ λ
XP
j=1

α j, ð1Þ

where yi is the estimated breeding values (EBV) of an individual

i (i = 1,…,n; n is the total number of individuals) for each trait, α0 is the

population mean parameter, xij is the genotypic value of individual

i and marker j coded as 0, 1 and 2 for three marker genotypes AA, AB

and BB, respectively, αj is the effect of marker j (i = 1,…,n; n is the total

number of markers) and λ (>0) is a shrinkage tuning parameter. A fun-

damental idea of LASSO is to utilize the penalty function to shrink the

SNP effects towards zero, and only keep a small number of important

SNPs that are highly associated with the trait in the model. The stabil-

ity selection probability (SSP) of each SNP being selected to the model

was applied as a way to control the false discovery rate and determine

significant SNPs (H. Gao et al., 2014; Li & Sillanpää, 2015). For a

marker to be declared significant, an SSP inclusion ratio (Frequency)

was used with an inclusion frequency of all traits. This frequency

inferred that the expected number of falsely selected markers was

less than one, according to the formula of Bühlmann, Kalisch, and

Meier (2014). Population structure was accounted for in all analyses

by including principal components based on the genotype data as

covariates into the model (Baison et al., 2019). An adaptive LASSO

approach (Baison et al., 2019; Zou, 2006) was used to determine the

percentage of phenotypic variance (PVE) (H2
QT) of all the QTLs. The

analyses were all performed in RStudio (Team, 2015).

3.1 | Identification of candidate genes associated
with the QTLs

To assess putative functionality of SNPs with significant associations,

a gene enrichment analysis of putative genes and their associated

orthologs was performed against the P. abies v1.0 genome (http://

congenie.org), collecting PFAM and GO term annotations and Populus

and Arabidopsis orthologues. The position of the detected QTLs in

Norway spruce genome was estimated by searching an ultra-dense

genetic map (Bernhardsson et al., 2019) for markers derived from the

same probes as the SNP markers holding the QTLs, identified based

on tblastn sequence homology for the SNP array sequences in the

Lind et al. (2014) study, as described by (Bernhardsson et al., 2019).

Information on the expression pattern of the putative candidate

genes associated with the QTL, in the Norway spruce clone Z4006

(the clone sequenced in Nystedt et al. (2013)) and in wood, were col-

lected from three sources. Firstly, expression data were downloaded

from the publicly available P.abies exAtlas (https://www.congenie.org)

and NorWood v1.0 (http://norwood.congenie.org) databases, respec-

tively. Both these databases are comprised of expression profiles from

approximately 50-year-old ramets of the genotype “Z4006.” Then, we

examined an RNAseq study of bark and phloem samples harvested at

seven dpi proximal (0–5 mm from the wound) and distal to the

inoculation site (10–15 mm away from the wound) from two Norway

spruce genotypes (S21K0220126 and S21K0220184) inoculated with

H. parviporum (Chaudhary et al., submitted manuscript). In brief, two-

year-old branches on clones of S21K0220126 and S21K0220184

were inoculated and sampled as described above using wounding as a

control. A total RNA from three biological replicates of each clone per

treatment were sequenced on the Illumina HiSeq 2500 at the

SNP&SEQ Technology Platform (SciLifeLab, Uppsala). Quality filtering

was done using Nesoni 0.97 (http://www.vicbioinformatics.com/

nesoni-cookbook/index.html#). Differential gene expression was iden-

tified using the Tophat-cufflinks pipeline (Trapnell et al., 2012, 2014;

Trapnell et al., 2013) and the “P. abies v1.0-all-cds.fna” gene catalogue

as a reference (Chaudhary et al., submitted manuscript).

3.2 | Branch inoculation with H. parviporum

We performed an inoculation experiment on six-year-old grafted

cuttings of the Norway spruce genotype S21K7820222. Branches

on healthy-looking potted plants were inoculated with wooden

dowels colonized by H. parviporum Rb175 fixated to a wound on a

two-year-old branch with Parafilm. Control treatment branches

were wounded and covered with Parafilm. The inoculated plants

kept at ambient light and temperature conditions in a greenhouse.

At 7 days post-inoculation (dpi), bark surrounding the wounds and

inoculation sites were cut into two sections and samples were col-

lected at the inoculation site 0–5 mm around the wound and distal

to the inoculation site 10–15 mm from the wound. The bark sam-

ples were frozen separately in liquid nitrogen and stored at −80�C

until further use.

3.3 | Quantitative PCR analysis of expression
patterns in response to H. parviporum inoculation

The total RNA was isolated according to the protocol by Chang,

Puryear, and Cairney (1993). To eliminate genomic DNA contamina-

tion, samples were treated with DNase I (Sigma-Aldrich) according to

the manufacturer's instructions. RNA integrity and quantity were

analysed by using the Agilent RNA 6000 Nano kit (Agilent Technolo-

gies Inc.). The 1 μg of total RNA was reverse transcribed to cDNA

with the iScript cDNA Synthesis Kit (Bio-Rad) in a total reaction vol-

ume of 20 μl according to the manufacturer's instructions, followed

by a two-fold dilution of the cDNA and storage at − 20�C.

Quantitative PCR (qPCR) reactions were performed with the

SsoFast™ EvaGreen® Supermix (Bio-Rad) according to the instructions

in the manual, using 0.3 μM of each primer (Table S1 in Data S1) and

Norway spruce cDNA equivalent to 25 ng of total RNA. The qPCRs

were carried out in an iQ5™ Multicolor Real-Time PCR Detection Sys-

tem thermocycler (Bio-Rad) using a program with a 30 s initial dena-

turation step at 95�C, followed by 40 cycles of 5 s denaturation at

95�C and 10 s at 60�C. Melt curve analyses were used to validate the

amplicon. Four biological replicates were used per treatment and two
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technical repetitions per standard, sample and negative control

were run.

The relative expression was calculated from threshold cycle

(Ct) values using the 2ΔΔCT-method (Livak & Schmittgen, 2001) by

using the geometric mean of Phosphoglucomutase (Vestman

et al., 2011) and elongation factor 1-α (ELF1α) (Arnerup et al., 2011) to

normalize transcript abundance. The gene expression experiments

were performed with four biological and two technical replicates.

One-way ANOVA with Dunns Post-test (GraphPad Prism 5.0) was

used to detect differences in expression levels between treatments.

4 | RESULTS

4.1 | Trait association mapping identifies novel
QTLs for resistance to H. parviporum

From an average of 1.5 million paired end sequence reads per individ-

ual, 197,399 high confidence SNPs from 23,837 probes were identi-

fied. The majority of the SNPs were missense (61%) and silent (36%),

the highest percentage being either upstream or downstream variants

(68% total).

Employing a Stability Selection Probability (SSP) on the estimated

breeding values (EBVs) for SWG and LL of the offspring on the

466 trees, we identified six SNPs with significant associations for

SWG and five SNPs associating with LL (Table 2). The QTLs for con-

trol of sapwood growth of H. parviporum (SWG) explained similar frac-

tions of the observed phenotypic variation (H2
QTL) 2.4 to 5.2%

(Table 2). The five QTLs for control of the LL development in bark

explained between 2.1 and 4.4% of the observed phenotypic variation

(Table 2).

To investigate if the identified QTLs are independent from previ-

ously identified QTLs for resistance to the same isolate of

H. parviporum using IM (Lind et al., 2014), we searched an ultra-dense

genetic map (Bernhardsson et al., 2019) for the probes the SNP

markers originated from. This allowed us to estimate the position of

the detected QTLs and the original IM-based QTLs in the Norway

spruce genome. We could estimate the position in the Norway spruce

genome for six of the SNPs/probes (Table S2.I and Figure S2.II in Data

S1). All of the identified SNPs/probes were positioned >30 cM away

from the original IM-based QTLs in the genetic map. Given that the

maintained LD is estimated to only 109 bp across all the tagged geno-

mic sequences in this study (Table S2 in Data S1), it is likely that they

are independent. The SNP MA_53835_9763, associating with the trait

SWG, presented a potential exception as the probe MA_14663 is

positioned 4 cM away from MA_53835 in the map (Bernhardsson

et al., 2019). The probe MA_14663 corresponds to the SNP array

sequence for an IM-based QTL for infection prevention (Lind

et al., 2014; Chaudhary et al., submitted manuscript).

On the scaffolds holding the SNPs associated with the resistance

traits, a total of 14 gene models were identified, including 11 high- or

medium-quality Norway spruce gene models (Table 3). On the scaf-

folds holding more than one gene model, the SNPs were positioned in

MA_5978g0020, MA_25569g0020 and MA_97119g0010. Seven of

the candidate genes associated with SWG QTLs and seven with LL

(Tables 2 and 3). PFAM and GO term annotations and Populus and

Arabidopsis orthologues were collected from P. abies v1.0 genome

portal (Table 3). These metrics suggested that the gene models

MA_97119g0010 and MA_97119g0020, found on the scaffold

harbouring the SNP MA_97119_12277, indeed represented one gene.

BlastN searches against the NCBI database essentially confirmed this

suggestion as both gene models match JX500691.1 (Picea abies

TABLE 2 Significant association in the GWA study

Phenotypea QTL SNPb Allelec SNP featured Frequencye PVE (%)f

SWG_tot 8675 MA_5978_21,011 T/C Missense 0.71 4.83

26756 MA_17884_58584 A/G Upstream variant 0.72 3.41

54184 MA_53072_3732 G/A Synonymous 0.551 2.88

54695 MA_53835_9763 G/A Upstream variant 0.567 2.40

56105 MA_56128_7752 C/A Upstream variant 0.545 5.21

71928 MA_84091_11329 C/A Upstream variant 0.534 2.23

LL_tot 21105 MA_14352_27165 G/A Missense variant 0.603 3.82

27795 MA_18316_3165 G/T Upstream variant 0.618 2.11

31060 MA_19645_22184 C/T Missense 0.682 2.73

37057 MA_25569_28091 T/C Upstream variant 0.667 2.77

81488 MA_97119_12277 T/C Upstream variant 0.742 4.39

aPhenotype specifies the trait upon which the marker associate.
bSNP: The SNP name was composed of the contig (MA_number) and SNP position on contig. For example, the first SNP MA_5978_21011 was located on

contig MA_5978 at position 21011 bp.
cAllele indicates the biallelic SNP.
dSNP feature allelic variation associated with the SNP.
eFrequency, stability selection probability inclusion ratios for markers declared significant.
fPVE, phenotypic variance explained, only values larger than 1.0% are displayed.
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TABLE 3 Candidate Norway spruce gene models associated with the QTL markers

SNPa Candidate geneb Description (Blast2Go)c PFAM-Description/GO termd

Orthologs populus/

Arabidopsise

MA_5978_21,011 MA_5978g0010 Phenylcoumaran benzylic ether

reductase

PF00106-short chain dehydrogenase, Potri.009G118100.1/

AT1G75280.1PF01073-3-beta hydroxysteroid

dehydrogenase/isomerase family

PF01118-Semialdehyde dehydrogenase,

NAD binding domain,

PF01370-NAD-dependent epimerase/

dehydratase family,

PF02719-Polysaccharide biosynthesis

protein,

PF03435-Saccharopine dehydrogenase,

PF03807-NADP oxidoreductase

coenzyme F420-dependent,

PF05368-NmrA-like family,

PF07993-Male sterility protein,

PF08659-KR domain,

PF13460-NADH(P)-binding

MA_5978g0020 Nuclear factor 1 A-type isoform

2

PF06219-Protein of unknown function

(DUF1005)

Potri.013G071000.3/

AT5G17640.1

MA_17884_58584 MA_17884g0010 Mitochondrial import receptor

subunit TOM40-1

PF01459-Eukaryotic porin Potri.007G000200.1/

AT3G20000.1

MA_53072_3732 MA_53072g0010

MA_53835_9763 MA_53835g0010 Probable tocopherol O-

chloroplastic

PF01209-ubiE/COQ5 methyltransferase

family,

Potri.013G077000.1

AT1G64970.1

PF01728-FtsJ-like methyltransferase,

PF02353-Mycolic acid cyclopropane

synthetase,

PF03059-Nicotianamine synthase

protein,

PF05175-Methyltransferase small

domain,

PF05891-AdoMet dependent proline

di-methyltransferase,

PF07021-Methionine biosynthesis

protein MetW,

PF08003-Protein of unknown function

(DUF1698),

PF08241-Methyltransferase domain,

PF08242-Methyltransferase domain,

PF12847-Methyltransferase domain,

PF13489-Methyltransferase domain,

PF13578-Methyltransferase domain,

PF13649-Methyltransferase domain,

PF13659-Methyltransferase domain,

PF13679-Methyltransferase domain,

PF13847-Methyltransferase domain

MA_56128_7752 MA_56128g0010 Potri.006G130600.1

MA_84091_11329 MA_84091g0010

MA_14352_27165 MA_14352g0010 Transcription factor bHLH118 PF00010-Helix–loop–helix
DNA-binding domain

Potri.015G134300.1/

AT4G25400.1
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laccase LAC5a) with E = 4*10−135 and E = 0 and 99.62 and 99.71%

identity, respectively. This laccase, PaLAC5, was originally isolated

from lignin-forming Norway spruce suspension cultures. Apart from

MA_97119, two other QTL holding scaffolds (MA_5978 and

MA_25569) harboured more than one gene model (Table 3). Both of

these scaffolds appear to hold two different gene models as judged

by the PFAM annotations and Populus or Arabidopsis orthologs

(Table 3). MA_5978g0010 appears to encode a phenylcoumaran ben-

zylic ether reductase (PCBER) with similarity to PicglPPR21 (Porth,

Hamberger, White, & Ritland, 2011). The gene model

MA_14352g0010 may belong to the basic helix–loop–helix (bHLH)

DNA-binding superfamily since the PFAM-ID PF00010 (Helix–loop–

helix DNA-binding domain) is associated with the gene model. The

candidate gene MA_18316g0010 is associated with PF03398 (regula-

tor of Vps4 activity in the MVB pathway), indicating that this gene

too may be involved in regulatory activities. The gene model

MA_53835g0010 appears to encode a protein with methyltransferase

capacities based on its PFAM annotation and its Arabidopsis

orthologue (Table 3), and based on its PFAM annotation (PF01459)

and the annotation of the Arabidopsis orthologue, AT3G20000.1

(Table 3) which encodes β-barrel protein, TOM40, forming channels in

the outer mitochondrial membranes, it is likely that the candidate

gene MA_17884g0010 encodes a Norway spruce TOM40-like

protein.

4.2 | A majority of the candidate genes associated
with SWG are expressed in stem and wood forming
tissues

To gain a better understanding of the functionality of the candidate

genes, we assessed the expression in silico using available resources

such as NorWood and P. abies exATLAS databases. It predicted that

the candidate genes linked to SWG would more commonly be

expressed in sapwood than genes linked to LL. Only seven candidate

genes (MA_5978g0010, MA_5978g0020, MA_17884g0010,

MA_53835g0010, MA_56128g0010, MA_18316g0010 and

MA_25569g0020) were expressed in any of the libraries in NorWood

(Figure 1). Of the expressed candidate genes, five were linked to

SWG. This indicated a trend (Chi-square = 3.233, p = .07) where can-

didate genes linked to the SWG QTLs were expressed more often in

wood compared to candidate genes linked to LL.

NorWood is a database of transcript abundances in high spatial

resolution section series throughout the cambial and woody tissues of

Norway spruce (Jokipii-Lukkari et al., 2017). Three of the five candi-

date genes associated with control of SWG (MA_5978g0010,

MA_5978g0020 and MA_17884g0010) showed the highest transcript

TABLE 3 (Continued)

SNPa Candidate geneb Description (Blast2Go)c PFAM-Description/GO termd

Orthologs populus/

Arabidopsise

MA_18316_3165 MA_18316g0010 IST1 homologue PF03398-Regulator of Vps4 activity in

the MVB pathway

Potri.019G087400.1/

AT1G34220.2

MA_19645_22184 MA_19645g0010

MA_25569_28091 MA_25569g0010 GO:0005618-cell wall, Potri.002G054900.1/

AT1G03230.1GO:0016020-membrane,

GO:0044444-cytoplasmic part

MA_25569g0020 Potri.001G266500.1

MA_97119_12277 MA_97119g0010 Laccase PF07732-Multicopper oxidase Potri.019G124300.1 /

AT2G30210.1

MA_97119g0020 Laccase 12 PF00394-Multicopper oxidase, Potri.010G183500.1 /

AT5G05390.1PF07731-Multicopper oxidase

aSNP: The SNP name was composed of the contig (MA_number) and SNP position on contig.
bCandidate gene.
cDescription (Blast2Go).
dPFAM-Description or GO terms when PFAM descriptions were missing.
ePopulus/Arabidopsis orthologs identified in the P. abies v1.0 genome portal.

F IGURE 1 Relative expression levels of candidate genes
associated to H. parviporum resistance QTLs through different stages
of xylem development including cambium and expanding early wood
(cambium), secondary cell wall-forming xylem (SCW), first dead early
wood cells (Early wood) and the previous year's latewood (late wood).
Data collected from NorWood v1.0 (http://norwood.congenie.org)
database, T1-T3 represent the expression level in each of the three
analysed trees (Jokipii-Lukkari et al., 2017). The bar to the left
indicates the relative expression level of the candidate gene in the
heat map
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levels in the cambial region. MA_56128g0010, also associated with

SWG, appeared to be more active in the expanding early wood and

secondary cell wall-forming tissues (Figure 1). One of the two candi-

date genes associated with the LL extension in the phloem and inner

bark that were detected in the NorWood libraries, MA_25569g0020

showed very high activity in the samples collected at the visual

appearance of dead early wood cells and in latewood (Figure 1). The

inspection of the expression patterns in the P. abies exATLAS indi-

cated that all candidate genes but MA_84091g0010 and

MA_19645g0010 were expressed in at least one tissue of the clone

Z4006 (Figure S3 in Data S1). Apart from the candidate genes that

were also detected in the NorWood database, several candidate

genes (MA_14352g0010, MA_25569g0010, MA_97119g0010 and

MA_97119g0020) associated with LL were found to be expressed in

samples derived from stem tissues (Figure S3 in Data S1).

4.3 | The transcriptional responses to
H. parviporum inoculation identifies candidates
responding specifically to the pathogen

If the candidate gene models associated with QTLs contribute to the con-

trol of the H. parviporum infection, they may be involved in either the con-

stitutive or induced defence in the tissue (or both) (Arnerup et al., 2011;

Danielsson et al., 2011; Oliva et al., 2015). Assuming that genes associated

with the induced defences respond to inoculation with the pathogen, it is

relevant to assess the candidate genes expression pattern in response to

H. parviporum (Arnerup et al., 2011; Danielsson et al., 2011; Oliva

et al., 2015). We used an RNASeq study of transcriptional responses in

bark and phloem response to wounding and H. parviporum inoculation

(Chaudhary et al., submitted manuscript). Five candidate genes showed

constitutive expression at seven dpi irrespective of the treatment:

MA_5978g0020, MA_17884g0010, MA_53835g0010, MA_56128g0010

and MA_25569g0020 (Figure 2). Most of these showed moderate expres-

sion levels, but MA_17884g0010 expression was relatively high in all sam-

ples. Four gene models associated with LL were differentially expressed at

seven dpi: MA_14352g0010, MA_18316g0010, MA_97119g0010 and

MA_97119g0020 (Figure 2). Interestingly, the two candidate gene models,

(MA_97119g0010 and MA_97119g0020, i.e., PaLAC5) that showed the

largest induction in response to the inoculation treatment compared to

the wounding control proximal to the inoculation site, were not induced

but rather downregulated distally at seven dpi (Figure 2). To validate the

transcriptional responses estimated from the RNAseq data, we set up a

separate inoculation experiment in a single Norway spruce genotype for

qPCR validation of the expression patterns at seven dpi. The qPCR verified

the transcriptional regulation patterns between H. parviporum inoculation

and wounding treatment for most genes (Figures 2 and 3). This included

the absence of a transcriptional activity of the candidate genes

MA_53072g0010, MA_84091g0010, MA_19645g0010 and

MA_25569g0010. The repression of the putative bHLH transcription fac-

tor MA_14352g0010 in response to H. parviporum was not detected in

the qPCR experiment. The qPCR did confirm that PaLAC5

(MA_97119g0010 and MA_97119g0020) is strongly and specifically

upregulated in close proximity to the H. parviporum inoculation site

(Figure 3d). Two of the candidate genes linked to the SWG QTLs with

detected expression in the Norwood database, MA_17884g0010 and

MA_53835g0010, were shown to be induced in response to

H. parviporum compared to the control (Figure 3f,g). None of the tested

candidate genes, including MA_17884g0010 and MA_53835g0010, were

differentially expressed between H. parviporum inoculation and wounding

in sapwood in early interactions (Table S4 and Method Section in

Data S1).

5 | DISCUSSION

5.1 | Twelve distinct QTLs for resistance to
H. parviporum identified by GWAS

In this study, the GWAS identified 11 significant associations across

the two traits for H. parviporum resistance. QTLs for LL and SWG

traits detected in the GWAS explained similar fractions of the

observed phenotypic variation, as in the IM-based QTL study by Lind

et al. (2014). However, the narrow-sense heritability of the pheno-

typic traits was considerably higher among the 466 Norway spruce

half-sib families than in the single family used in the IM-based QTL

study, 0.42 compared to 0.11 for SWG (Arnerup et al., 2010; Chen

et al., 2018; Lind et al., 2014). The fact that the Norway spruce

genome v 1.0 assembly was highly fragmented comprising >10 million

scaffolds over 500 bp (Bernhardsson et al., 2019; Nystedt et al., 2013)

made it difficult to evaluate how the QTLs identified by GWAS relate

to the previously identified QTLs (Lind et al., 2014), or to each other.

However, the newly published ultra-dense genetic map (Bernhardsson

et al., 2019) showed that five of the QTLs were independent from the

other QTL regions as they were found in different linkage groups.

Only one of the QTL regions that was identified in the linkage map

F IGURE 2 Expression profile of candidate genes for

H. parviporum resistance in response to H. parviporum inoculation and
wounding at seven dpi proximally (0–5 mm from the inoculation site)
and distally (10–15 mm from the inoculation site) in the clones
S21K0220126 and S21K0220184 (Chaudhary submitted MS).
Asterisks indicate significant different expression levels between the
inoculation treatment and the wounding control in Cuffdiff. The bar to
the left indicates the FPKM values associated with the gene model
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may possibly coincide with a previously identified resistance QTLs

(Lind et al., 2014). The SNP MA_53835_9763 is positioned within

4 cM from a probe in the confidence region for the trait infection pre-

vention (IP) on LG 11 (Lind et al., 2014; Chaudhary et al., submitted

manuscript). Thus, the possibility that these markers target the same

genomic region cannot be excluded, although it is not very likely given

the short LD. Overall, the GWAS returned 11 new potential markers

for resistance to H. parviporum in Norway spruce that could be used

to aid selection in breeding programmes.

5.2 | Candidate genes have orthologues whose
genetic variation is associated with the control of the
responses to multiple stresses

Three of the candidate genes identified in the GWAS,

MA_17884g0010, MA_5978g0020 and MA_18316g0010, have Ara-

bidopsis orthologues AT3G20000.1, AT5G17640.1 and

AT1G34220.2, respectively. These orthologues hold QTLs for

responses to multiple stresses (Kawa et al., 2016; Thoen et al., 2017).

F IGURE 3 Expression profile of
candidate genes for H. parviporum
resistance in response to H. parviporum
inoculation (Hp) and wounding (W) at
seven dpi proximally (0–5 mm from the
inoculation site, indicated by the letter
“A” in, e.g., the treatment “Hp_A”) and
distally (10–15 mm from the inoculation
site, indicated by the letter “C”) in the

Norway spruce clone S21K7820222 as
detected by qPCR. Candidates a–d are
associated with the trait LL and candidate
genes e–g with trait the SWG. The
floating bars in the graphs indicate min
and max values, the line indicates mean,
and different letters over the bars in the
graph indicate significant differences in
the statistical analyses (N = 4)
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The candidate gene MA_18316g0010 was associated with control of

lesion length in the inner bark and it was upregulated in response to

H. parviporum inoculation compared to wounding alone, both proxi-

mally and distally. The Arabidopsis orthologue AT1G34220.2 encodes

IST1-LIKE1 (ISTL1), a protein predicted to be the Arabidopsis homo-

logue of yeast IST (Buono et al., 2016). ISTL1 is a regulator of the mul-

tivesicular bodies (MVB) pathway in which ubiquitinated and

endocytically internalized membrane proteins are degraded (C. Gao,

Zhuang, Shen, & Jiang, 2017). ISTL1, in interaction with LIP5 (LYST

INTERACTING PROTEIN 5, AT4G26750), is essential for normal plant

growth and repression of spontaneous cell death (Buono et al., 2016).

The fungus H. parviporum is a necrotrophic pathogen and upon infec-

tion or inoculation in trees, it will create necrotic lesions in the phloem

to gain access to the sapwood (Johansson & Stenlid, 1985; Lindberg &

Johansson, 1991). It is, therefore, tempting to propose that the

MA_18316g0010 protein fulfils the same role in the control of the cell

death process as the ISTL1/LIP5 complex, MA_18316g0010 was

upregulated in response to H. parviporum inoculation to repress cell

death, a mechanism that must be integral to the LL trait. It would be

interesting to test if the variation at MA_18316_3156 leads to differ-

ential accumulation of the transcript in response to H. parviporum.

The Arabidopsis orthologue to MA_17884g0010, AT3G20000.1,

encodes translocase of the outer mitochondrial membrane

40, TOM40. AtTOM40 is in LD with a QTL (Ch3:6968031) identified

in a multi-trait QTL mixed models GWAS using the responses to a set

of 30 biotic and abiotic stresses in 196 accessions of Arabidopsis

(Thoen et al., 2017). TOM40 protein is the central channel forming

units of the TOM complex (Hill et al., 1998). The TOM complex and

the mitochondrial outer membrane play a central role in the interac-

tion between the mitochondrion and the cytosol. It mediates the

import of preproteins, the passage of small molecules and the trans-

duction of signals between cellular compartments (Duncan, van der

Merwe, Daley, & Whelan, 2013). Consequently, it is perhaps not

unexpected that genetic variation associated with MA_17884g0010

and TOM40 may influence plants responses to stress, or that

MA_17884g0010 shows a ubiquitous expression in the surveyed Nor-

way spruce tissues, with a slight upregulation in metabolically very

active tissues (eg the cambium) and in response to H. parviporum

inoculation.

5.3 | Candidate genes linked to SWG QTLs are
more commonly expressed in wood

Despite the economic and ecological importance of conifers, we know

surprisingly little about the genetic basis of resistance to decay patho-

gens compared to canker-forming pathogens in conifers (Kinloch,

Sniezko, & Dupper, 2003; Liu et al., 2017; Sniezko, Smith, Liu, &

Hamelin, 2014). Examining the regions under selection in response to

given pathogens or stressors, identifying and testing candidate genes,

can lead to better understanding of the interaction between the host

and the pathogen (Liu et al., 2017; Martin, Rönnberg-Wästljung, Ste-

nlid, & Samils, 2016; Nemesio-Gorriz et al., 2016; Thoen et al., 2017).

Under the expectation that candidate genes linked to the control of

SWG are involved in processes shaping the cell wall or in production

of, for example, specialized metabolites in wood (Oliva et al., 2015;

Popoff, Theander, & Johansson, 1975; Stenlid & Johansson, 1987), we

predicted that the expression of the candidate genes linked to SWG

QTLs should be more commonly detected in the wood-forming tis-

sues than the genes linked to the LL QTLs. A trend for this was

observed in the NorWood database (Jokipii-Lukkari et al., 2017),

although a larger number of QTLs and candidate genes for both traits

studied would probably have been needed to gain conclusive evi-

dence. It is, however, important to point out that none of the QTLs

identified for SWG, or LL, coincide with the 52 QTLs for important

wood quality traits in Norway spruce reported by Baison et al. (2019).

An observation that is fully in agreement with the absence of signifi-

cant correlations between wood quality, or growth, traits and resis-

tance to H. parviporum in this material (Chen et al., 2018), suggesting

that the detected SWG QTLs may be associated to distinct defence-

related processes. Several of the expressed candidate genes showed

their highest transcriptional activity in the cambium and expanding

early wood libraries. The candidate gene MA_25569g0020, associated

with LL, showed increased transcriptional activity during visual

appearance of dead early wood cells in the sapwood. The transcript is

also specifically expressed in the phloem in the autumn/winter

(Jokipii-Lukkari et al., 2018), but it was not induced by H. parviporum

inoculation. This points to that the role of MA_25569g0020 in resis-

tance may be associated to the constitutive defence.

5.4 | The Norway spruce laccase PaLAC5 responds
specifically to H. parviporum inoculation

Two candidate genes associated with the LL trait in bark,

MA_53835g0010 and PaLAC5, are likely to be members of the

induced defence to H. parviporum. The Norway spruce laccase gene

PaLAC5 (MA_97119g0010 and MA_97119g0020) was originally iso-

lated from lignin-producing Norway spruce suspension cultures

(Koutaniemi, Malmberg, Simola, Teeri, & Kärkönen, 2015), and trans-

criptome analyses of these lignin-producing Norway spruce suspen-

sion cultures under different conditions suggest that PaLAC5 is

associated with the activation of stress associated lignin production

(Laitinen et al., 2017). PaLAC5 has a very specific spatial expression

pattern in response to H. parviporum inoculation. It is strongly, and

specifically, upregulated proximally to the H. parviporum inoculation

site but not regulated 10 mm away from the developing necrotic

lesion or in response to the wounding control. In contrast to the

induction of PaLAC5 in stress associated lignin production conditions

in vitro, the transcriptional activity of PaLAC5 is very low in sapwood

(Blokhina et al., 2019; Jokipii-Lukkari et al., 2017; Laitinen

et al., 2017). Therefore, PaLAC5 is not likely to be associated with lig-

nifying tracheids or ray parenchyma cells indicating that the induction

of PaLAC5 expression under lignin-forming conditions in the cell cul-

tures is stress-associated and not directly connected to lignification

processes in wood (Blokhina et al., 2019; Jokipii-Lukkari et al., 2017;
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Laitinen et al., 2017). However, if PaLAC5 would be responding to

stress in general, it would likely have had an expression pattern similar

to many other studied defense genes, which often show upregulation

in proximal to both mechanical wounding sites and to inoculation

points (Arnerup et al., 2011; Danielsson et al., 2011; Ralph

et al., 2006). Instead, it showed a distinct expression pattern. Thus, it

is probable that PaLAC5 expression is associated with specific cell

types or processes such as the formation of the LSZ in the bark adja-

cent to the inoculation site. The LSZ is characterized by deposition of

phenolics and suberin, and an early development of a discernible LSZ

is crucial in stopping fungal invasions (Bodles et al., 2007; Lindberg &

Johansson, 1991; Solla, Tomlinson, & Woodward, 2002; Woodward

et al., 2007). Recently, it was suggested that specific isoforms of per-

oxidase and laccases may be involved in cross-linking aromatics to

form lignin-like polyphenolics in the suberin in bark (Rains, Molina, &

Gardiyehewa de Silva, 2017). The expression pattern of PaLAC5

responding to H. parviporum and lignin-forming conditions (Laitinen

et al., 2017) clearly makes it an interesting candidate for such a role. It

remains to be seen if PaLAC5, indeed, is involved in the LSZ formation

and if genetic variation associated with PaLAC5 influences the forma-

tion of the LSZ.

6 | CONCLUSIONS

Our large sample sizes and a relatively high number of markers

allowed us to link traits to SNPs with GWAS and to identify candidate

genes associated with the QTLs. These candidate genes present new

insights into the interaction between Norway spruce and

H. parviporum, such as a putative involvement of the secretory and

endosomal trafficking pathways and the laccase PaLAC5, in the control

of lesion extension in the inner bark or the potential role of mitochon-

drial protein import and biogenesis in controlling H. parviporum spread

in the sapwood.
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Supplementary table S1. QPCR primers used in the study 

Primer Sequence Reference
PaLAC5F CCCATTCTTCCAGCCTACAA
PaLAC5R GAGTCCAAGTCCGATGGTGT
PhosphoglucomutaseF AATGCAGTTGAAGCCATTCC Vestman et al 2011
PhosphoglucomutaseR CCAGTGCCGAAACTCTCTTC Vestman et al 2011
ELF1αF TAGTCCCTCACAGCAAAACGA Arnerup et al 2011
ELF1αR TTAAGAATGGAGATGCCGGGTTTGT Arnerup et al 2011
MA_14352g0010F TCTGTCGGTTCAGGTGTTCA
MA_14352g0010R CACAACTTCAAGCCCACCTT
MA_17884g0010F ATGCTTGTGGGACGGATACT
MA_17884g0010R TTGAACATCCCCTGAGAGAAA
MA_18316g0010F CTTCACAAGCTGTGCCAGAA
MA_18316g0010R TGAGAGAGGGCGGTAGAGAA
MA_19645g0010F AGAGGCTGAGTGGGATTTCA
MA_19645g0010R TGGGGGAGGAATAACAACAA
MA_25569g0010F CATCGCAATCAACCAAAAGA
MA_25569g0010R CATCGAAGCAAGCATCAAAA
MA_25569g0020F ATCGTCTCGATGTCGCTCTT
MA_25569g0020R TGTTTTCAAGGGATGCAACA
MA_53072g0010F GATTTGCATCTCGTTGTGGA
MA_53072g0010R TCCATTGTTGTGATGCTCGT
MA_53835g0010F GGTGCATTATTCCTGCCATT
MA_53835g0010R GGAGGTCGTAGAATCCGTGA
MA_56128g0010F CCATCCTCATGGAAAGGAAA
MA_56128g0010R GAACACTGAGCATCCAAGCA
MA_5978g0010F TCAAGAGGTTTTTGCCGTCT
MA_5978g0010R CCTGCGAATTTTTGCTTTGT
MA_5978g0020F TTAGGGAGTAGCGAGCCTGA
MA_5978g0020R TGAAAATTGGTTGCCTCACA
MA_84091g0010F CATCTGGTCCCTTGCTCACT
MA_84091g0010R AGAACTTCGCTTGCCTTTGA  

 

 

 

 

 

 

 

 



Supplementary table S2.I. Position of QTLs in the Norway spruce genome and LD estimation 

Phenotypea QTL SNPb LGc cMd IM QTLe 

SWG 

8675 MA_5978_21011 4 270.6  

26756 MA_17884_58584 5 282.6  

54184 MA_53072_3732 8 186.0  
54695 MA_53835_9763 10 214.7 MA_14663 (IM QTL) 

at 218.8 cM 
 56105 MA_56128_7752 N/A   

 71928 MA_84091_11329 N/A   

LL 

21105 MA_14352_27165 N/A   

27795 MA_18316_3165 5 81.9  

31060 MA_19645_22184 N/A   

37057 MA_25569_28091 9 92.2  

81488 MA_97119_12277 N/A     
 aPhenotype, specify the trait upon which the marker bSNP: The SNP name was composed of the 
contig (MA_number) and SNP position on the contig. For detailed explanation see table 2; c LG group 
in which SNPs from the contigs probe(s) are positioned in the genetic map (Bernhardsson et al 2019)  
feature allelic variation associated with the SNP; d position of the marker in the linkage group in 
centiMorgans (cM) , and e position of the IM QLT in the linkage group in centiMorgans (cM).  

  



Supplementary Figure S2.II. Decay of linkage disequilibrium (LD) across all the tagged genomic 
sequences (a), the majority being exonic regions. The squared correlation coefficient between loci 
(r2) is plotted against distance in base pairs, separating loci; (b) decay of LD with distance across 13 
with significant associations to resistance traits and, (c) decay of LD across contig MA_17884, that 
has a significant association for SWG_tot, on which two probes were captured. 

 

 

 

 

 



Supplementary Figure S3. Expression of the candidate genes in various tissues in the Norway spruce. 

 

Expression of the candidate genes associated with SWG and LL QTLs in various tissues in the Norway 
spruce (clone Z4006, data collected from the P. abies exATLAS v 1.0) The bar to the left indicate the 
expression values associated with the gene model 

Supplementary 

Supplementary Table S4. Expression in sapwood  measured by qPCR of H. parviporum resistance 
candidate genes in response to H. parviporum inoculation  and wounding  at seven dpi adjacent to 
the inoculation site in the Norway spruce clone S21K7820222. None of the candidate genes were 
differentially expressed between treatments. 

 

a mean relative expression levels with standard deviation in brackets  (N = 2-3). 
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MA_56128g0010 0.9 (+/- 0.1) 1.4 (+/- 1.2) 
MA_53835g0010 1.2 (+/- 0.3) 0.9 (+/- 0.4) 
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PaLAC5 0.9 (+/- 0.9) 1.8 (+/-1.3) 



Methods 

The inoculation experiment in S21K7820222 is described in the main text.  At seven days post-

inoculation (dpi), when the surrounding bark were collected the sapwood 0-5 mm away from the 

inoculation site were also collected and frozen separately in liquid nitrogen and stored at −80◦C until 

further use.  RNA extraction cDNA synthesized and qPCR  were carried out as described in the main 

text except that three biological and two technical replicates were used for qPCR.  

 

 





ΙI





Molecular Ecology. 2021;00:1–15.	﻿�   | 1wileyonlinelibrary.com/journal/mec

1  |  INTRODUC TION

Trees are long lived organisms that withstand the attack of a wide 
range of pathogens that often occur simultaneously (Tobias & Guest, 

2014). Therefore, these organisms have evolved a layered and tune-
able defence strategy, which includes pre-formed physical barriers, 
pathogen and damage recognition, signal transduction, production 
of metabolites and compartmentalization of damaged areas (Bonello 
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Abstract
Trees must cope with the attack of multiple pathogens, often simultaneously during 
their long lifespan. Ironically, the genetic and molecular mechanisms controlling this 
process are poorly understood. The objective of this study was to compare the ge-
netic component of resistance in Norway spruce to Heterobasidion annosum s.s. and its 
sympatric congener Heterobasidion parviporum. Heterobasidion root- and stem-rot is 
a major disease of Norway spruce caused by members of the Heterobasidion annosum 
species complex. Resistance to both pathogens was measured using artificial inocula-
tions in half-sib families of Norway spruce trees originating from central to northern 
Europe. The genetic component of resistance was analysed using 63,760 genome-
wide exome-capture sequenced SNPs and multitrait genome-wide associations. No 
correlation was found for resistance to the two pathogens; however, associations 
were found between genomic variants and resistance traits with synergic or antago-
nist pleiotropic effects to both pathogens. Additionally, a latitudinal cline in resistance 
in the bark to H. annosum s.s. was found; trees from southern latitudes, with a later 
bud-set and thicker stem diameter, allowed longer lesions, but this was not the case 
for H. parviporum. In summary, this study detects genomic variants with pleiotropic 
effects which explain multiple disease resistance from a genic level and could be use-
ful for selection of resistant trees to both pathogens. Furthermore, it highlights the 
need for additional research to understand the evolution of resistance traits to multi-
ple pathogens in trees.

K E Y W O R D S
cline, disease resistance, genome-wide association study, Picea abies, pleiotropy, root-rot
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et al., 2006; Ennos, 2015; Franceschi et al., 2005; Kovalchuk et al., 
2013; Nemesio-Gorriz et al., 2016; Oliva et al., 2015; Solla et al., 
2002). Although the understanding of major genes conferring dis-
ease resistance to single diseases in plants has advanced, the genetic 
and molecular mechanisms controlling quantitative disease resis-
tance traits and its effectiveness against multiple attackers remains 
scarce, particularly in trees (Abdullah et al., 2017; Chen et al., 2018; 
Corwin & Kliebenstein, 2017; Ismael et al., 2020; Weiss et al., 2020).

Quantitative resistance traits have a continuous distribution of 
phenotypes from susceptible to resistant and are controlled by quan-
titative trait loci (QTL) - multiple loci with small to moderate effects 
(Corwin & Kliebenstein, 2017; Nelson et al., 2018). Quantitative dis-
ease resistance is assumed to be nonstrain specific and therefore 
durable (Ismael et al., 2020; Nelson et al., 2018; Wiesner-hanks & 
Nelson, 2016), however it is not always effective against different 
pathogens (Corwin & Kliebenstein, 2017). The nature of disease re-
sistance to multiple pathogens could theoretically be explained from 
an organism level to a single gene level (Wiesner-hanks & Nelson, 
2016). At the organism level, individuals can be resistant to multi-
ple diseases because different unlinked QTLs present in an organ-
ism's genome are effective against different diseases independently 
(Risterucci et al., 2003; Wiesner-hanks & Nelson, 2016). At the genic 
level, multiple disease resistance could arise through the linkage of 
clusters of loci effective against single diseases (Schweizer & Stein, 
2011) or by individual pleiotropic genes, where the same gene con-
fers resistance to multiple diseases (Nelson et al., 2018; Wiesner-
hanks & Nelson, 2016; Wisser et al., 2011).

The mapping and identification of QTLs is typically done through 
linkage mapping studies or genome-wide associations studies (GWAS) 
(Nelson et al., 2018). To guarantee the success of these experiments, 
they must be performed with high precision and comparable infec-
tion systems between pathogens, which is particularly challenging in 
forest systems (Ismael et al., 2020; Quesada et al., 2010). In recent 
years the knowledge of conifer genomics has improved vastly, which 
has allowed for more detailed studies on the genomic architecture of 
disease resistance traits (Elfstrand et al. 2020; Lind et al., 2014; Weiss 
et al., 2020). Within conifers, a well-studied pathosystem that allows 
for precise phenotyping is stem- and root-rot caused by members of 
the Heterobasidion annosum s.l species complex (Bodles et al., 2007; 
Chen et al., 2018; Dalman et al., 2013; Lind et al., 2014; Mukrimin 
et al., 2018; Skrøppa et al., 2015; Steffenrem et al., 2016).

Speciation in the Heterobasidion annosum s.l species complex 
began with a split between the ancestor of the pine-infecting species 
H. annosum s.s. and H. irregulare, and the ancestor of the nonpine-
infecting species H. parviporum, H. abietinum, and H. occidentale 
(Chen et al., 2015; Dalman et al., 2010). Species in the complex gen-
erally display sexual and somatic incompatibility and have different 
host ranges (Garbelotto & Gonthier, 2013). H. parviporum and H. an-
nosum s.s., however, readily infect Norway spruce and share much of 
the Norway spruce distribution on the European continent (Figure 
S1; Chen et al., 2015; Dalman et al., 2010; Garbelotto & Gonthier, 
2013; Niemela & Korhonen, 1998).

Norway spruce (Picea abies L. Karst) is a dominant conifer in 
boreal forests in Europe with a vast current population size (Wang 

et al., 2020). The sequencing of the Norway spruce genome and 
subsequent work has allowed the description of the species’ evolu-
tionary history and population structure (Chen et al., 2019; Nystedt 
et al., 2013; Wang et al., 2020). Norway spruce is divided into three 
main domains, probably as a result of refugia through glaciation pe-
riods: a northern (Fennoscandian) domain ranging from Norway in 
the west to central Russia and two other domains in the Alps and 
Carpathians, with signs of main domain admixture—probably linked 
to recent expansion following the last glaciation period (Chen et al., 
2019; Li, 2020; Tsuda et al. 2016). Recent studies have described the 
genetics of wood properties, growth, phenology traits (Baison et al., 
2019; Milesi et al., 2019) and resistance to H. parviporum (Chen et al., 
2018; Elfstrand et al. 2020).

Resistance to H. parviporum in Norway spruce is heritable (Chen 
et al., 2018; Lind et al., 2014; Steffenrem et al., 2016) and is char-
acterized by many genes with relatively small effects on resistance 
(Elfstrand et al. 2020). One QTL in PaLAR3, a gene involved in the syn-
thesis of catechin and linked to H. parviporum resistance in Norway 
spruce, is known to respond to other stressors such as H. annosum 
s.s., the blue-stain fungus Endoconiophora polonica, and mechan-
ical wounding (Danielsson et al., 2011; Hammerbacher et al., 2014; 
Nemesio-Gorriz et al., 2016). Therefore, we hypothesised that quan-
titative resistance to H. parviporum could provide multiple-disease 
resistance to other members of the H. annosum s.l. species complex. 
In this study we measured disease resistance traits to H. annosum s.s. 
and H. parviporum in a well-characterized Norway spruce population 
part of the Swedish Norway spruce breeding programme (Baison et al., 
2019; Chen et al., 2018, 2019; Lind et al., 2014; Milesi et al., 2019). 
The programme is a result of phenotypic selection of trees across 
Europe based on growth, survival, stem quality and vitality, resulting 
in the inclusion of seven recognized Norway spruce genetic clusters in 
the current breeding population (Chen et al., 2019; Haappanen et al. 
2015; Milesi et al., 2019). We formulated the specific hypotheses that 
(i) Norway spruce has variation in its resistance traits to H. annosum 
s.s., (ii) resistance to H. annosum s.s. is correlated to resistance to H. 
parviporum, and (iii) QTLs could explain multiple-disease resistance in 
Norway spruce. To test these hypotheses, we studied resistance traits 
in 400 Norway spruce half-sib families following inoculation with H. 
annosum s.s. using quantitative genetics and genome-wide association 
methods (GWAS). Furthermore, we compared additive genetic resis-
tance in half-sib families phenotyped for both H. annosum s.s and H. 
parviporum and identified potential multiple disease resistance QTLs 
with pleiotropic effects using multitrait GWAS.

2  |  MATERIAL S AND METHODS

2.1  |  Plant material

A total of 400 open pollinated half-sib families from members of 
the founder population of the Swedish Norway spruce breeding 
programme were sown in 2016 (18 seedlings/family). After the first 
growth season, seedlings were randomised into a complete block 
design with three replications (Figure 1a), where each family was 



    |  3CAPADOR-BARRETO et al.

planted in 4-tree row-plots in plastic trays consisting of 24 separate 
0.124 L plastic pots. The seedlings were grown for another season in 
Skogforsk's experimental nursery at Ekebo, Sweden (55°56′53.1″N 
13°6′52.2″E) and subjected to standard watering and fertilisation. 
No fungicides were used during cultivation.

2.2  |  Artificial inoculations and phenotyping

Artificial inoculations were performed as described in Chen 
et al. (2018) with H. annosum s.s. Sä 16-4. The fungus was grown 
on Hagem's media plates for three weeks prior the experiment to-
gether with 5 mm P. abies wood plugs. Immediately prior to inocula-
tion, bark was removed with a 6-mm diameter cork borer at 10 cm 
from the base of the seedling. A wooden plug colonised by H. an-
nosum s.s. was then placed at the wound and covered with Parafilm 
(Chen et al., 2018). Ambient light and temperature conditions were 
maintained for 21 days, after which plants were harvested (from 20 
August 2018 onwards).

Upon harvest, the diameter at the point of inoculation (D) was 
recorded and the lesion length (LL) above and below the edge of 
the inoculation point on the inner side of the bark was measured. 

Sapwood growth of the fungus (SWG) was measured according 
to Arnerup and collaborators (2010): The inoculated stem was cut 
up into 5-mm discs and placed on moist filter paper in 9 cm Petri 
dishes together with the original colonised wooden plug. To avoid 
contamination, the stem was cut from the tip to, and the base to the 
point of inoculation, respectively. After seven days incubation under 
humid conditions, the presence of H. annosum s.s. on the discs was 
determined by observation of characteristic conidiophores under a 
stereomicroscope (Arnerup et al., 2010; Swedjemark et al., 1997).

Time of bud-set of seedlings following the first growing season, 
from mid-October to mid-November 2017, was recorded twice per 
week, with “1” and “0” representing the presence and absence of a 
visible bud, respectively.

Out of the 400 half-sib families phenotyped for H. annosum s.s., 
269 were previously phenotyped for the same resistance traits to H. 
parviporum and reported by Chen et al. (2018).

2.3  |  Statistical analyses

Measured traits were checked for recording errors and normality. 
From a total of 5,924 observations, those with SWG =0 and no 

F I G U R E  1  Experiment set up. (a) 
Genotyping and phenotyping. Mother 
trees were genotyped and SNPs were 
filtered. Thereafter tree origin prediction 
and GWAS was performed. Half-sib 
families from the genotyped mother trees 
where phenotyped in three different 
blocks. These values were used to 
calculate EBVs, which in turn were used 
to calculate genetic correlations and the 
GWAS. (b) The half-sib families were 
phenotyped for resistance traits against H. 
annosum s.s. (N = 400) and H. parviporum 
(N = 501). The families phenotyped for 
both pathogens (N = 269) were used 
to calculate genetic correlations. Due 
to genotype filtering based in SNPs 
missingness, only a subset of mother trees 
met the cutoff and was used for origin 
assignment and GWAS

Block

1

3

2

Mother trees

Mother treesHalf-sib families

Southern Sweden Breeding Population

Half-sib families

Bud-setBud-set

EBVs

GWAS

GWAS
Origin assignment

LL SWG

Genotyping 

Origin assingment

Genetic correlations

400

131 232

501 330 381
H. annosum H. parviporum H. annosum H. parviporum

269 110 161220

Genetic correlations
Phenotyping 
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(b)
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conidiophores observed at either the point of inoculation or the in-
oculation plug were excluded from analyses (N = 235). Due to exper-
imental errors progenies from the first block, with more than 75% of 
the seedlings scoring SWG =0, were also excluded (N = 69 observa-
tions). Resistance traits to H. parviporum phenotyped by Chen et al. 
(2018) were reanalysed in accordance with our criteria to remove 
bias. As LL showed a significant deviation from a normal distribution, 
the data was log-transformed, and a 0.5 constant was added to each 
value. Variance and covariance components for each trait were esti-
mated using ASReml-R 4 (Butler et al., 2007) and the following linear 
mixed model was fitted for each trait individually:

Where yijkl is each observation on the lth seedling from the kth family 
in the jth block, � is the general mean and Bi is the fixed effect of the 
jth block. The variable Fk is the random effect of the kth family, eijkl is 
the random residual effect and Dijkl is a covariate for diameter at in-
oculation point. Wald tests were used to estimate the significance of 
fixed factors. Estimated breeding values (EBVs) for each family were 
defined as the coefficients of the random effect. Genetic correlation 
between traits was assessed by testing the association between EBVs 
using Pearson's product moment correlation in R.

The individual-tree narrow-sense heritability for each trait was 
estimated using the equation:

where h2
i
,�̂2

a
, �̂2

f
,�̂2

e
, and �̂2

p
 are narrow-sense heritability, additive ge-

netic effect, family, residual, and phenotypic variance components, 
respectively.

Time of bud-set was fitted in a nested logistic mixed model as 
follows:

Where yijklm is each observation on the lth seedling, at the mth week, 
from the kth family in the jth block where “1” corresponds to presence 
and “0” to absence of buds in the seedling, � is the general mean and 
Biis the fixed effect of the jth block. The variable Fkm is the random 
effect of the repeated measurements for the kth family and Gmk is the 
random effect of the mth week within the kth family, with a first order 
auto regressive variance assumption and eijklm is the random residual 
effect. EBVs for each family were defined as the coefficients of the 
random effect of Fk.

2.4  |  SNP identification

Mother trees to the half-sib families were genotyped using 40,018 
probes to cover intragenic regions in 26,219 P. abies gene models 
(Vidalis et al., 2018). DNA extraction, sequencing, and initial variant 

calling is described elsewhere (Baison et al., 2019; Bernhardsson 
et al., 2020).

Variants were filtered according to Bernhardsson 
et al. (2020) with minor modifications. Briefly, only biallelic 
SNPs within the extended probe regions were included with 
QualbyDepth  >  2.0, FisherStrand  <  60.0, RMSMappingQuality 
(MQ)  >  40, MappingQualityRankSumTest (MQRankSum)  >  −12.5, 
ReadPosRankSumTest (ReadPosRankSum)  >  –8.0, StrandOddsRatio 
(SOR) < 3.0 using vcftools (Danecek et al., 2011). SNPs with depth 6–
40, GQ < 15, mean depth between 10–30, 20% missing data, minor 
allele count 1, and a p-value = >1e−10 for excess of heterozygosity 
were retained to avoid collapsed reads. Individuals with more than 
30% missing variants after filtering were excluded from analysis. 
Missing variants in the remaining individuals were imputed with beagle 
4.1 (Browning & Browning, 2007).

2.5  |  Mother trees origin assignment

The ancestral origin of mother trees was assessed following Chen et al. 
(2019) based on genotype similarity to individuals with known origin 
collected across P. abies natural range. Coordinates of the first five 
principle components of P. abies trees, from a sample population of 
2572 (Li, 2020), with documented geographic origins and representa-
tive of the seven main genetic clusters were used as a training set in 
a “Random Forest” regression model (“randomForest” v4.6-14 pack-
age [Liaw & Wiener, 2002], r software v.3.3.1). The coordinates of the 
first five components of unknown individuals were then used to as-
sign each mother tree to a given genetic cluster. The procedure was 
repeated 200 times with 8,000 iterations to estimate the accuracy of 
each assignment. Assignment of mother trees to a genetic cluster was 
determined to be true when the same allocation was repeated on more 
than 98% of occasions.

2.6  |  SNP phenotype associations

Genome wide associations using different data sets were performed. 
For H. annosum s.s., 330 mother trees were included after filtering for 
genotyping quality and relatedness (see above; Figure 1b). In order 
to perform multitrait GWAS between resistance traits to both H. an-
nosum s.s. and H. parviporum we used the 220 overlapping mother 
trees between the population phenotyped for H. annosum s.s. resist-
ance in this study and the population used in Chen et al. (2018) and 
Elfstrand et al. (2020). Associations were tested with GEMMA (Zhou 
& Stephens, 2012, 2014). EBVs calculated with ASreml R-4 (Butler 
et al., 2007) were used as the phenotype for each trait and kinship 
was accounted for with a standardized kinship matrix calculated in 
gemma (Zhou & Stephens, 2012, 2014). Principal component analysis 
(PCA) was computed with plink 1.9 (Chang et al., 2015) and used to 
identify and remove mother trees that were either too different or 
had very close family relationships with one another. Additionally, to 
account for population structure, three to four principal components 

yijkl = � + Bi + Dijkl+Fk + eijkl

ĥ
2

i
=

�̂
2

a

�̂
2

p

=

4 × �̂
2

f

�̂
2

f
+ �̂

2

e

logit
(

yijklm
)

= � + Bi+Fk + Gmk+eijklm
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were used as covariates depending on the subset of samples. Only 
SNPs with a minor allele frequency (MAF) > 0.05 were used for the 
associations (63,760 SNPs for H. annosum s.s., 63,372 for H. parvipo-
rum and 63,606 for the overlap). The tested model was:

Where y is a matrix of n × d traits, W a matrix of c × d covariates (fixed 
effects), � is a matrix of the corresponding coefficients, x is an n -vector 
of the SNP genotypes, � is a d vector of effet sizes for the d phenotypes, 
U is an n × d matrix of the random effects and � is an n × d matrix of 
errors (Zhou & Stephens, 2012, 2014). Wald association tests were 
performed for each analysis testing the alternate hypothesis � ≠ 0. In 
order to correct for multiple comparisons, False discovery rate (FDR) 
and Bonferroni, corrections were calculated with R. Since very few 
markers were significant following multiple comparisons correction, a 
suggestive significance threshold of 1x10−5 (equivalent to the to 99.9 
percentile) was used to identify candidate genes. The proportion of 
phenotypic variance explained by the SNP (PVE) was calculated ac-
cording to (Shim et al., 2015).

The multitrait combinations were selected based on hypothe-
sized relationships between traits, namely LL and SWG, within the 
experiment (different traits for the same pathogen) and between 
pathogens (same trait for different pathogens).

2.7  |  Gene model identification

snpEff 4 (default parameters, Cingolani et al., 2012) was used to as-
sess the putative function of the candidate SNPs. Ensembl general 
feature format (GFF, gene sets) information was utilised to build the 
P. abies snpEff database. Gene annotations were obtained from the 
P. abies v1.0  genome hosted at ConGenIE (http://conge​nie.org/). 
The position of the variants in Norway spruce genome was retrieved 
from the latest genetic map (Bernhardsson et al., 2019).

3  |  RESULTS

3.1  |  Resistance to H. annosum s.s. is not correlated 
to resistance to H. parviporum in Norway spruce

Resistance to H. annosum s.s. was variable in Norway spruce half-
sib families with individual plant values for LL (lesion length in inner 
bark) ranging from 0 to 21 mm with a mean of 3.5 mm, and values 
of SWG (sapwood growth) ranging from 0 to 80 mm with a mean 
of 15.4 m (N = 5924). The block effect was significant in the mixed 
model for both traits, as well as the diameter at inoculation point, 
which had a significant positive effect on both LL and SWG (Table 1). 
Narrow sense heritability estimates (h2) were 0.49 for LL and 0.69 
for SWG (Table 1) and a positive correlation between traits was ob-
served (Table 2).

Out of the 400 half-sib families phenotyped with H. annosum 
s.s., 226 were previously scored for the same resistance traits to 
H. parviporum and reported in Chen et al. (2018) (Figure 1b). Traits 
measured by Chen et al. (2018) with H. parviporum, and reanalysed 
here show generally larger individual plant values for LL and SWG 
than those for H. annosum s.s. (LL ranged between 0 and 104 mm 
and SWG between 0 and 85 mm with means of 7.6 and 32.6, re-
spectively). Heritability values however, were lower: 0.28 for LL 
and 0.44 for SWG for all the half-sib families phenotyped by Chen 
et al. (2018). Block and diameter at inoculation point were signif-
icant in the mixed model (Table 1). Correlation of the resistance 
traits in response to H. annosum s.s. and H. parviporum inocula-
tions was low and nonsignificant (0.06 for LL and 0.08 for SWG; 
Table 2).

To test if there was a geographic effect on resistance, the an-
cestral origin of mother trees (i.e., before they were introduced in 
the Swedish breeding programme) was inferred based on genotype 
similarity to trees of known origin. One tree was assigned to the 
Carpathian domain, 156 to the Alpine domain, 55 to central Europe, 
27 to north Poland, 21 to Russian-Baltic region, 63 to Central and 

y = W� + x� + u + �

df �̂
2

a
�̂
2

e
�̂
2

p
h2 P(D)

H. annosum s.s. LL 4994 0.09 0.17 0.19 0.49 <2.20 e−16

SWG 4994 100.93 135.21 160.45 0.63 4.69 e−09

Budset 31330 16.04 3.28 19.33 0.83 –

H. parviporum LL 4536 0.16 0.51 0.55 0.28 2.01 e−11

SWG 4536 102.73 208.31 233.99 0.44 <2.20 e−16

Notes: df: Degrees of freedom; �̂2
a
: additive genetic variance; �̂2

e
: environmental variance; �̂2

p
: 

phenotypic variance; h2: narrow sense heritability; P(D): Wald test p-value for diameter in the 
mixed model.

TA B L E  1  Variance and heritability for 
lesion length (LL), sapwood growth (SWG) 
and Bud-set

TA B L E  2  Genetic correlations for lesion length (LL) and sapwood growth (SWG) between H. annosum s.s. and H. parviporum in the 269 
families analysed in interaction with both pathogens

Trait combination Genetic correlation df t p-value

H. annosum s.s. LL × H. annosum s.s. SWG 0.40 392 8.75 <2.2e−16

H. parviporum LL × H. parviporum SWG 0.49 453 12.09 <2.2e−16

H. annosum s.s. LL × H. parviporum LL 0.06 262 0.99 .32

H. annosum s.s. SWG × H. parviporum SWG 0.08 262 1.32 .18
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Southern Sweden genetic cluster and one to the Fennoscandian 
domain; six trees were unassigned to a specific cluster due to 
their highly mixed genetic background. The two trees belonging to 
Fennoscandian and Romanian clusters were removed prior to mak-
ing comparisons. Breeding values for LL in trees infected with H. 
annosum s.s. were significantly different between the southernmost 
and northernmost clusters following a latitudinal cline (Figure 2), but 
that was not the case for SWG or any other phenotypes in H. parvi-
porum (Figure S2). Likewise, breeding values for timing of bud-set 
were significantly correlated with those for LL after infection with H. 
annosum s.s. (r = 0.154, t = –3.34, df = 396, p = .008), both following 
a latitudinal gradient.

3.2  |  QTLs associated to H. annosum 
s.s. are novel and different from QTLs associated to 
H. parviporum

Genome-wide associations were performed using 63,760 SNPs from 
mothers of half-sib families and EBVs for LL and SWG calculated in 
half-sib families in response to artificial inoculations with H. annosum 
s.s. The distribution of the significance level of associations between 
the SNPs and EBVs (Figure S3) together with the PVE (Table 3) show 
that the resistance traits are probably polygenic, with several sig-
nificant variants having small effects on the traits. After correction 

for multiple comparisons, no SNPs were significantly associated with 
either trait. Nonetheless, a suggestive threshold of p < 1 × 10−5 was 
used to identify the most significant variants associated with LL and 
SWG individually and together in a multitrait model. 13 SNPs asso-
ciated with H. annosum s.s. resistance traits were found when ana-
lysed individually (eight for LL and six to SWG, Table 3) and 12 SNPs 
when the LL and SWG traits were analysed together in a multitrait 
model, from which 4 SNPs where exclusively found in the multitrait 
analysis (Table 3). Only eight markers could be placed in the linkage 
map and these were distributed in seven different linkage groups 
(Figure S4). Interestingly, two of the SNPs detected specifically in 
the multitrait model appear to be involved in plant hormone signal-
ling. MA_27152:21720 is positioned in a putative orthologue of 
AtRAE1, a negative regulator of abscisic acid (ABA) in Arabidopsis (Li 
et al., 2018) and MA_64875:14168 in an orthologue of an enzyme 
involved in the last step of T-zeatin biosynthesis (Kiba et al., 2013). 
Furthermore, one SNP (MA_99821:7939) was found within a gene 
annotated as an “ethylene responsive transcription factor” (Table 3). 
A closer inspection of the gene model MA_99821g0010 shows that 
the gene indeed is a more likely orthologue of Cytokinin response 
factor 2 (AtCRF2) in Arabidopsis. Several SNPs in Pentatricopeptide 
repeat protein- and Tetraspanin genes were also detected (Table 3). 
No QTLs were found to be associated with resistance to H. parvi-
porum in this, or previous studies (Elfstrand et al. 2020; Mukrimin 
et al., 2018).

F I G U R E  2  Effect of tree origin on 
estimated breeding values (EBVs) for 
resistance traits against H. annosum s.s. 
Horizontal bars represent mean and 
standard error. Half-sib families are 
grouped according to the predicted origin 
of their mother, sorted from southern 
latitudes (green, right-most) to northern 
latitudes (purple, left-most). ALP, Alpine; 
CEE, Central Europe; NPL, North Poland; 
Rus_Bal, Russian Baltic; C_SE, Central 
and South Sweden. EBVs for LL are in 
logarithmic scale. Letters represent 
significant differences according to a 
pairwise t test (p < .005)
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3.3  |  Multitrait GWAS identifies loci with 
pleiotropic effects on resistance in Norway spruce

In order to test if loci have pleiotropic effects on the same trait for 
resistance to both pathogens, a multitrait GWAS was performed in 
220 half-sib families. Considering the same significance threshold as 
above (p < 1.10−5), 12 SNPs were found to be associated with LL and 
7 with SWG (Figure 3; Table 4). We then investigated correlations in 
allele effect sizes by plotting the effect sizes of all SNPs for resist-
ance to H. parviporum as a function of their respective effect sizes in 
resistance to H. annosum s.s. (Figure 3). The SNPs were classified as 
belonging to two main categories (i) those with the same effect size 
direction for both pathogens (synergistic pleiotropy) (Figure 3, upper-
left and lower-right; Table 4); and (ii) those with opposite effect sizes, 
(antagonist pleiotropy) (Figure 3 lower-left and upper-right). For in-
stance, MA_97119:12145 in the PaLAC5 gene has synergistic pleio-
tropic effect for LL to both pathogens (Figure 3b; Table 4). Two loci 
with SNP variants positively associated with SWG after inoculation H. 
annosum s.s. but negatively associated after inoculation with H. parv-
iporum are SNPs in an LRR-kinase receptor (MA_404302:2414) and 
a secoisolariciresinol dehydrogenase-like gene (MA_57399:6360) 
(Figure 3a). Additionally, MA_10427923:1055 (FATTY ACID EXPORT 
chloroplastic-like isoform x2) (Figure 3a, lower left quadrant) has a 
positive pleiotropic effect and is co-located within 10 centimorgans 
(cM) from two different SNPs found to be significant in individual 
GWAS for SWG for both pathogens (Figure S4; Table S2).

4  |  DISCUSSION

4.1  |  Resistance to H. annosum s.s. is 
under genetic control, but not correlated to 
resistance to H. parviporum in Norway spruce

Resistance traits to H. annosum s.s. were found to be quantitative, 
heritable, and under strong genetic control with high narrow-sense 
heritability estimates (0.49 for LL and 0.69 for SWG). The narrow-
sense heritability values obtained in this study are high and in line 
with previous studies for resistance against H. parviporum (Arnerup 
et al., 2010; Chen et al., 2018; Karlsson & Swedjemark, 2006; 
Skrøppa et al., 2015; Swedjemark & Karlsson, 2004). Contrary to 
our expectations, resistance traits to H. annosum s.s. were not sig-
nificantly correlated to the same resistance traits to H. parviporum 
based on the 269 half-sib families phenotyped after artificial inocu-
lations with both pathogens (Table 2). This could be explained by 
differences in the pathogens’ life strategy (Garbelotto & Gonthier, 
2013; Hu et al., 2020; Oliva et al., 2011, 2013), and by the ability 
of H. annosum s.s. to infect Pinus, using mechanisms that could also 
be effective when infecting Picea (Dalman et al., 2013), but which 
are absent in H. parviporum. Alternatively, different environmental 
variables during the years the two experiments were conducted 
could have introduced variation that we cannot account for in our 
experimental design. For example, in Quercus robur resistance traits 

to Erysiphe alphitoides measured over different years were poorly 
correlated as well (Bartholomé et al., 2020). Consequently, the ob-
served quantitative resistance to H. annosum s.s. and H. parviporum is 
likely to be dependent on both the environment in which infections 
take place and the genetic variation in resistance, which may have 
evolved independently to both Heterobasidion species.

The LL in response to H. annosum s.s. inoculation was signifi-
cantly different in different genetic clusters of Norway spruce and 
followed a latitudinal cline; with mother trees from the Alpine do-
main having the longest lesions and trees from Southern and cen-
tral Sweden being the most resistant in response to H. annosum s.s. 
(Figure 1), but not to H. parviporum (Figure S2). This is, to the best of 
our knowledge, the first time that a difference between tree origins 
has been observed in the interaction between a conifer and H. anno-
sum s.l. (Bodles et al., 2007), although provenance effects on disease 
resistance have been reported for other forest pathogens (Hamilton 
et al., 2013; Perry et al., 2016). Moreira et al. (2014) observed that 
the level of constitutive defence in pines increases in species from 
higher latitudes and colder environments and is negatively cor-
related with early plant growth (Moreira et al., 2014). In Norway 
spruce quantitative traits such as growth and spring phenology fol-
low environmental gradients in Europe (Milesi et al., 2019) and the 
LL in response to H. annosum s.s. was positively correlated to the 
timing of bud-set and negatively correlated with diameter at the in-
oculation point, indicating that trees with later bud-set enabled the 
growth of longer lesions than trees which terminated their growth 
early and had thinner stems. Thus, it is possible that growth rhythm 
displayed by plants from higher latitudes with an earlier termination 
of growth allows for a better defence response in the bark to H. an-
nosum s.s. than the faster growing plants from southern origins. It 
is worth noting that resistance traits in Norway spruce to H. parvi-
porum are also correlated to the diameter at the inoculation point 
(Chen et al., 2018), but no significant difference between Norway 
spruce genetic clusters was observed in this interaction (Figure S2). 
This is possibly influenced by the fungi´s respective tissue prefer-
ences, as H. annosum s.s. grows preferentially in the cambium and 
phloem tissues, while H. parviporum is concentrated in the sapwood 
and heartwood tissues (Hu et al., 2020; Oliva et al., 2011). An inter-
action located in the cambium and phloem tissues would be more 
susceptible to seasonal changes in fluxes, as shown previously in 
Norway spruce (Krokene et al., 2012).

4.2  |  Novel gene models associated with resistance 
traits against H. annosum s.s.

Novel QTLs associated with resistance traits to H. annosum s.s. were 
found, four of which were exclusively found using multitrait asso-
ciations (Figure 3; Table 3). Recent use of multitrait GWAS in plant 
systems have proved useful in increasing the discovery power and un-
derstand the genetic make-up of complex traits such as response to 
stressors or leaf morphology (Chhetri et al., 2019; Thoen et al., 2017). 
One advantage of this method is that the analysis of different traits 
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together can lead to the identification of gene models that have a 
common effect on traits, and therefore play a central role in their reg-
ulation. Indeed, this was observed in Arabidopsis, where QTLs associ-
ated with multiple stressors were often involved in hormone signalling 
processes (Thoen et al., 2017). The GWAS of H. annosum s.s. resist-
ance traits identified three Norway spruce orthologues of genes in 
angiosperm ABA and cytokinin hormone signalling pathways: AtRAE1, 
a negative regulator ABA in Arabidopsis (Li et al., 2018); a cytochrome 
P450 involved in the last step of the T- zeatin biosynthesis (Kiba et al., 
2013), and AtCRF2 (Cutcliffe et al., 2011). Most transcriptomic studies 

in response to Heterobasidion in Norway spruce have suggested that 
jasmonate is the main hormonal pathway activated (Arnerup et al., 
2011, 2013; Lundén et al., 2015), but recently the role of ABA has 
been highlighted (Kovalchuk et al., 2019). Because of the quantitative 
and potentially polygenic nature of the resistance traits in Norway 
spruce, it is likely that hormonal cross-talking takes place in the tissues 
in order to deploy a successful defence response.

Interestingly, other groups of SNPs in gene models associated 
with H. annosum s.s. point to a possible small RNA-mediated defence 
strategy in Norway spruce. Previously, it has been shown that a large 

F I G U R E  3  Effect size of significant 
SNPs in the multitrait GWAS for 
estimated breeding values (EBVs) for 
resistance traits (LL, lesion length, SWG, 
sapwood growth) to H. annosum s.s. and H. 
parviporum. Dark points represent SNPs 
significant after the suggested threshold 
and the bars behind the standard error. 
EBVs for LL are in logarithmic scale
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number of small interfering RNAs in Norway spruce are related to 
nucleotide-binding site-leucine-rich repeat-type resistance genes 
(Källman et al., 2013). Here, we found a SNP in an argonaute1-like 
gene model associated to LL in both pathogens (Figure 3). This gene 
model is the orthologue of Argonaute1 in Arabidopsis, which is known 
to modulate defence responses against bacterial and fungal patho-
gens by utilising endogenous small RNAs (Ellendorff et al., 2009; 
Katiyar-Agarwal et al., 2006). Interestingly this regulatory pathway 
is also utilised by pathogens like Botrytis cinerea, which use their 
own small RNAs via Argonaute1 to silence specific pathways in the 
host to establish successful infections (Weiberg et al., 2013). Given 
that pentatricopeptide repeat proteins and tetraspanins are also 
involved in RNA-mediated defence in Arabidopsis (Cai et al., 2018; 
Katiyar-Agarwal et al., 2006; Park et al., 2014) it is possible that can-
didate genes belonging to these groups, which were highlighted in 
this study, are involved in RNA mediated defence in Norway spruce 
against H. annosum s.s.

4.3  |  Multitrait GWAS identifies pleiotropic QTLs 
associated with H. annosum s.s. and H. parviporum

Given that the resistance traits to H. annosum and H. parviporum 
had no correlation, it is not surprising that the SNPs associated 

with either pathogen in the univariate analysis were different 
(Table S1). It is worth mentioning that the exonic probes used 
cover only ~39% of the predicted gene models in the spruce 
genome (Vidalis et al., 2018) and that assembly of the genome 
is highly fragmented (Bernhardsson et al., 2019; Nystedt et al., 
2013). There could therefore, be significant variation associated 
to loci that are not observed in this study. Nonetheless, multi-
trait GWAS was used here to identify SNPs associated with re-
sistance traits to both pathogens. A number of SNPs had effects 
that contributed to resistance traits to both H. annosum and H. 
parviporum, resulting in a synergistic pleiotropic effect (Figure 3). 
Interesting examples are the three different SNPs located within 
10 cM in linkage group 3 (Figure S4; Table S2). Two of these SNPs 
were found independently in the univariate GWAS for SWG for 
both pathogens and one other in the multitrait model for SWG 
(Figure 3, “FATTY ACID EXPORT chloroplastic-like isoform X2”). 
It is possible that genetic variation in the region linked to this QTL 
drives the positive pleiotropic effect we observe and could there-
fore be an example of multiple disease resistance conferred by in-
dividual genes clustered in the genome. Similarly, a SNP in PaLAC5 
with a synergistic pleiotropic effect on LL to both pathogens 
(Figure 3, lower-left quadrant), encodes a stress induced laccase 
(Koutaniemi et al., 2015; Laitinen et al., 2017) which is associated 
with resistance to H. parviporum (Elfstrand et al. 2020). This gene 

TA B L E  4  SNPs associated to the same traits (lesion length (LL) and sapwood growth (SWG)) in both H.annosum s.s. and H. parviporum

Trait Position Substitution
Allele 
frequency Variant Description

LL MA_10243484_2131 T/G 0.106 Upstream gene variant Aluminum-activated malate transporter 9

LL MA_10428147_25653 C/T 0.086 Upstream gene variant Conserved oligomeric Golgi complex subunit 2

LL MA_10432585_12933 T/C 0.333 Upstream gene variant Elicitor-responsive 1-like

LL MA_10435193_11103 G/A 0.063 Missense variant Unknown

LL MA_10435979_27030 C/T 0.423 Missense variant Calcium uniporter mitochondrial-like

LL MA_18424_36662 A/G 0.063 Missense variant Unknown

LL MA_18424_37546 G/T 0.061 Missense variant Unknown

LL MA_18547_38950 A/G 0.07 Synonymous variant Argonaute 1-like

LL MA_2971_22606 G/A 0.063 Synonymous variant aldehyde oxidase GLOX-like

LL MA_922824_4364 T/C 0.113 Upstream gene variant SRG1-like

LL MA_97119_12145 C/A 0.077 Upstream gene variant PaLAC5

LL MA_9987602_612 A/G 0.375 Downstream gene 
variant

Nuclear export mediator factor Nemf

SWG MA_10427923_1055 C/T 0.196 Missense variant Fatty acid export chloroplastic-like isoform X2

SWG MA_10432243_9511 T/C 0.13 Upstream gene variant Splicing factor SF3a60 homologue

SWG MA_138196_4550 A/T 0.077 Downstream gene 
variant

Tripeptidyl-peptidase 2-like isoform X1

SWG MA_404302_2414 A/C 0.066 Upstream gene variant Probable LRR receptor-like serine threonine- 
kinase At1g56140

SWG MA_57399_6360 T/C 0.056 Missense variant Secoisolariciresinol dehydrogenase-like

SWG MA_736502_3531 A/C 0.457 Upstream gene variant Pyrophosphate--fructose 6-phosphate 
1-phosphotransferase subunit alpha

SWG MA_8778565_5315 A/G 0.255 Synonymous variant Clathrin assembly

SWG MA_8778565_5321 T/C 0.255 Synonymous variant Clathrin assembly
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is specifically and differentially expressed in tissues after infec-
tion by H. parviporum, and is likely to be involved in the forma-
tion of the ligno-suberized boundary zone (Elfstrand et al. 2020). 
Ligno-suberized boundary zone formation is a common feature of 
angiosperm and gymnosperm trees in response to a wide range of 
pathogens (Pearce, 1996; Woodward, 1992), which is in line with 
the synergistic pleiotropic effect observed in PaLAC5. Therefore, 
these results indicate that disease resistance to these two patho-
gens exists at genic level.

Another group of SNPs had the opposite effect for the same 
trait to the two pathogens (antagonist pleiotropy). Among the 
gene models harbouring such variants are an LRR-kinase receptor 
(MA_404302_2414) which is positively associated with resistance 
to H. annosum but negatively associated with resistance to H. parvi-
porum (Figure 3, lower-right quadrant). LRR receptors with kinase 
functions are important components of both innate immunity and 
effector-triggered immunity in plants (Nürnberger & Kemmerling, 
2006; Zhao et al., 2009). This particular LRR receptor harbours a 
conserved Malectin domain which is known to determine nonhost 
resistance in barley to powdery mildew strains adapted to wheat 
(Rajaraman et al., 2016). It is therefore possible that this LRR re-
ceptor recognises specific molecular patterns in only one of the 
pathogens leading to a successful defence response. Likewise, a 
secoisolariciresinol dehydrogenase-like gene (Figure 3, lower-right 
quadrant), which encodes for an enzyme involved in the produc-
tion of matairesinol (Suzuki & Umezawa, 2007) had a negative 
pleiotropic effect. Lignans, such as matairesinol, have been shown 
to inhibit the activity of extracellular enzymes produced by a H. 
annosum s.l. isolate in vitro (Johansson et al., 1976; Popoff et al., 
1975). In summary, SNPs associated to resistance traits to both 
pathogens can also have antagonistic pleiotropic effects on the 
infection outcome.

4.4  |  Implications for disease resistance breeding in 
Norway spruce to Heterobasidion root- and stem-rot

Understanding the genetic architecture of tree resistance traits is 
an important task, as it will facilitate the development of resistance 
breeding strategies and ultimately ensure the success of refor-
estation programmes in the future (Buggs, 2020; Hall et al., 2016; 
Sniezko & Koch, 2017). H. annosum s.l. remains as one of the most 
devastating forest pathogens in the northern hemisphere and im-
proved resistance to this species complex would be a desirable 
trait in breeding programmes (Garbelotto & Gonthier, 2013). Our 
results show that in areas where H. parviporum and H. annosum s.s. 
exist in sympatry, resistance to both species must be considered in 
prospective breeding programmes. Interestingly, we were able to 
show that some SNPs have a synergic pleiotropic effect, and selec-
tion based on these markers could be a useful strategy in breed-
ing for resistance to both pathogens simultaneously. Furthermore, 
the significant variation in resistance to H. annosum s.s. with the 
predicted geographical origin of the mother trees indicates that 

disease resistance should be further studied in the ongoing as-
sisted migration of Norway spruce trees.

5  |  CONCLUSIONS

Here, we have used quantitative genetics together with exome-
capture genomic data to understand the genetics behind resistance 
in Norway spruce to two closely related forest pathogens. The re-
sults show that resistance to H. annosum s.s. is quantitative, under 
strong genetic control and associated with variation in genes with 
known involvement in defence responses. Interestingly, we demon-
strate that resistance traits in Norway spruce against H. annosum s.s. 
and H. parviporum have no correlation and are most probably the 
result of different underlying genetic mechanisms of resistance and/
or genotype-environment interactions. Additionally, we show that 
resistance in bark is significantly affected by the geographic origin 
of the trees following a latitudinal cline in H. annosum s.s., but not in 
H. parviporum.

Furthermore, we found that these uncorrelated traits are asso-
ciated with genomic variation in gene models with antagonist and 
synergic pleiotropic effects which are potentially involved in disease 
resistance, such as an PaLAC5, an LRR-kinase receptor and a secoisola-
riciresinol dehydrogenase. The QTLs with a synergic pleiotropic effect 
are an example of multiple disease resistance at the genic level and 
are of special interest as they could be utilised to select for trees 
with higher resistance to multiple pathogens. On the other hand, 
markers with an antagonistic pleiotropic effect could explain why 
these pathogens have evolved to inhabit different niches when in-
fecting conifers. Finally, the results of this study highlight the need 
for further research to understand the plasticity of resistance traits 
in response to different pathogens under different environments – a 
key aspect in the success of reforestation programmes.
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Table S1  SNPs associated to every trait individually and together in the multi-trait model.    

Trait  Position Allel
e 

Allele 
frequenc
y 

P 
value 

SNP 
feature 

Gene description 

Ha bivariate MA_10428968_128
45 

T/C 0.114 9.06E
-05 

upstream 
gene 
variant 

phosphoenolpyruvate 
phosphate translocator 
chloroplastic 

Ha bivariate MA_172610_8287 G/T 0.05 9.37E
-05 

upstream 
gene 
variant 

expansin A10 

Ha bivariate MA_27152_21720 A/G 0.071 3.23E
-05 

upstream 
gene 
variant 

RAE1 

Ha bivariate MA_64875_14168 G/T 0.147 9.25E
-05 

upstream 
gene 
variant 

cytokinin hydroxylase-
like 

Ha LL MA_10426244_148
99 

A/G 0.064 9.83E
-05 

downstrea
m gene 
variant 

soluble inorganic 
pyrophosphatase 
chloroplastic-like 

Ha LL MA_10433173_979
6 

A/C 0.067 3.48E
-05 

non-
synonymo
us variant 

pentatricopeptide 
repeat-containing 
chloroplastic 

Ha LL MA_18641_10534 C/T 0.356 6.56E
-05 

synonymo
us variant 

unknown 

Ha LL, Ha 
bivariate 

MA_38687_10189 T/C 0.362 7.74E
-06 

non-
synonymo
us variant 

pentatricopeptide 
repeat-containing 
mitochondrial-like 

Ha LL, Ha 
bivariate 

MA_38687_8846 G/A 0.364 9.57E
-06 

synonymo
us variant 

pentatricopeptide 
repeat-containing 
mitochondrial-like 

Ha LL, Ha 
bivariate 

MA_38687_8852 C/G 0.364 9.57E
-06 

synonymo
us variant 

pentatricopeptide 
repeat-containing 
mitochondrial-like 

Ha LL, Ha 
bivariate 

MA_38687_8951 C/T 0.365 6.07E
-06 

synonymo
us variant 

pentatricopeptide 
repeat-containing 
mitochondrial-like 

Ha LL,Ha 
bivariate 

MA_10426146_614
1 

G/C 0.224 3.15E
-05 

downstrea
m gene 
variant 

tetraspanin-18-like 
isoform X2 

Ha SWG MA_100805_9561 A/G 0.086 5.64E
-05 

synonymo
us variant 

subtilisin-like protease 

Ha SWG MA_10436386_126
09 

C/T 0.423 5.52E
-05 

upstream 
gene 

villin-3 isoform X1 
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variant 
Ha SWG MA_99821_7939 A/G 0.148 3.83E

-05 
synonymo
us variant 

ethylene-responsive 
transcription factor CRF2 

Ha SWG, Ha 
bivariate 

MA_10293670_199
0 

C/G 0.064 3.74E
-06 

upstream 
gene 
variant 

unknown 

Ha SWG, Ha 
bivariate 

MA_10426146_606
2 

C/T 0.058 2.14E
-05 

synonymo
us variant 

tetraspanin-18-like 
isoform X2 

Ha SWG, Ha 
bivariate, 
SWG 
Bivariate 

MA_10432243_951
1 

T/C 0.13 5.44E
-06 

upstream 
gene 
variant 

splicing factor SF3a60 
homolog 

Hp bivariate MA_10434138_170
36 

T/A 0.476 5.80E
-05 

synonymo
us variant 

Drug metabolite 
transporter 

Hp bivariate MA_190532_5339 A/G 0.203 5.54E
-05 

synonymo
us variant 

unknown 

Hp bivariate MA_9987602_529 T/C 0.387 4.07E
-05 

downstrea
m gene 
variant 

nuclear export mediator 
factor Nemf 

Hp bivariate MA_9987602_581 C/T 0.43 4.35E
-05 

downstrea
m gene 
variant 

nuclear export mediator 
factor Nemf 

Hp 
bivariate, LL 
bivariate 

MA_9987602_612 A/G 0.375 3.68E
-05 

downstrea
m gene 
variant 

nuclear export mediator 
factor Nemf 

Hp 
bivariate, 
SWG 
Bivariate 

MA_404302_2414 A/C 0.066 5.56E
-05 

upstream 
gene 
variant 

probable LRR receptor-
like serine threonine- 
kinase At1g56140 

Hp LL MA_10434825_225
1 

C/A 0.117 3.73E
-05 

upstream 
gene 
variant 

peroxidase 25 

Hp LL MA_10434825_232
6 

G/A 0.121 7.54E
-05 

upstream 
gene 
variant 

peroxidase 25 

Hp LL MA_10436325_500
7 

T/G 0.151 8.72E
-05 

upstream 
gene 
variant 

nucleobase-ascorbate 
transporter 12 

Hp LL MA_9106_21377 A/T 0.26 4.64E
-05 

non-
synonymo
us variant 

polyamine oxidase 1 

Hp LL MA_9989575_4597 T/C 0.058 4.98E
-05 

synonymo
us variant 

unknown 

Hp LL, Hp MA_14333_31191 T/C 0.126 2.95E synonymo NRT1 PTR FAMILY -like 
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bivariate -05 us variant 
Hp LL, Hp 
bivariate 

MA_14333_31287 T/C 0.126 2.95E
-05 

synonymo
us variant 

NRT1 PTR FAMILY -like 

Hp LL, Hp 
bivariate 

MA_497147_4409 G/A 0.454 2.13E
-05 

non-
synonymo
us variant 

Blue copper oxidase  

Hp LL, Hp 
bivariate 

MA_8829511_1045 C/T 0.052 9.45E
-05 

synonymo
us variant 

U-box domain-containing 
33-like isoform X1 

Hp SWG MA_13984_30658 A/G 0.331 4.89E
-05 

upstream 
gene 
variant 

uncharacterized protein 
LOC109792139 

Hp SWG MA_209838_1878 G/A 0.202 4.75E
-05 

non-
synonymo
us variant 

unknown 

Hp SWG MA_9483804_3085 C/A 0.118 8.01E
-05 

stop lost transcription factor 
MYB34-like 

Hp SWG, Hp 
bivariate 

MA_3214_3952 G/A 0.264 3.20E
-05 

upstream 
gene 
variant 

unknown 

Hp SWG, Hp 
bivariate 

MA_427213_6299 T/C 0.063 1.09E
-05 

non-
synonymo
us variant 

2-methylene-furan-3-one 
reductase-like 

Hp SWG, Hp 
bivariate 

MA_5480022_1363 T/C 0.064 6.12E
-05 

non-
synonymo
us variant 

glutathione S-transferase 

Hp SWG, Hp 
bivariate 

MA_84091_11168 G/T 0.463 8.25E
-05 

upstream 
gene 
variant 

unknown 

Hp SWG, Hp 
bivariate 

MA_84091_11215 G/C 0.471 9.72E
-05 

upstream 
gene 
variant 

unknown 

LL bivariate MA_10243484_213
1 

T/G 0.106 8.18E
-05 

upstream 
gene 
variant 

aluminum-activated 
malate transporter 9 

LL bivariate MA_10435193_111
03 

G/A 0.063 9.55E
-05 

non-
synonymo
us variant 

unknown 

LL bivariate MA_18424_36662 A/G 0.063 2.32E
-05 

non-
synonymo
us variant 

unknown 

LL bivariate MA_18424_37546 G/T 0.061 8.92E
-05 

non-
synonymo
us variant 

unknown 

LL bivariate MA_18547_38950 A/G 0.07 5.91E synonymo argonaute 1-like 



 
 

5 
 

-05 us variant 
LL bivariate MA_2971_22606 G/A 0.063 7.36E

-05 
synonymo
us variant 

aldehyde oxidase GLOX-
like 

LL bivariate MA_97119_12145 C/A 0.077 9.41E
-05 

upstream 
gene 
variant 

laccase 

LL bivariate, 
Multivariate 

MA_10428147_256
53 

C/T 0.086 1.83E
-05 

upstream 
gene 
variant 

conserved oligomeric 
Golgi complex subunit 2 

LL bivariate, 
Multivariate 

MA_10432585_129
33 

T/C 0.333 8.20E
-06 

upstream 
gene 
variant 

elicitor-responsive 1-like 

LL bivariate, 
Multivariate 

MA_10435979_270
30 

C/T 0.423 5.08E
-05 

non-
synonymo
us variant 

calcium uniporter 
mitochondrial-like 

LL bivariate, 
Multivariate 

MA_922824_4364 T/C 0.113 3.85E
-07 

upstream 
gene 
variant 

SRG1-like 

Multivariate MA_10427963_439
39 

A/G 0.162 7.81E
-05 

upstream 
gene 
variant 

ATP synthase subunit 
mitochondrial-like 

Multivariate MA_10428951_639 A/T 0.227 6.08E
-05 

synonymo
us variant 

cytochrome DM13 and 
DOMON domain-
containing At5g54830 

Multivariate MA_10428951_789 C/A 0.227 6.08E
-05 

non-
synonymo
us variant 

cytochrome DM13 and 
DOMON domain-
containing At5g54830 

Multivariate MA_10430342_241
6 

C/T 0.133 4.38E
-05 

upstream 
gene 
variant 

unknown 

Multivariate MA_126037_5976 T/G 0.259 5.66E
-05 

synonymo
us variant 

pentatricopeptide 
repeat-containing 
mitochondrial 

Multivariate MA_9424008_2490 G/A 0.306 4.54E
-05 

non-
synonymo
us variant 

unknown 

SWG 
Bivariate 

MA_138196_4550 A/T 0.077 3.51E
-05 

downstrea
m gene 
variant 

tripeptidyl-peptidase 2-
like isoform X1 

SWG 
Bivariate 

MA_8778565_5315 A/G 0.255 7.63E
-05 

synonymo
us variant 

clathrin assembly 

SWG 
Bivariate 

MA_8778565_5321 T/C 0.255 7.63E
-05 

synonymo
us variant 

clathrin assembly 

SWG MA_10427923_105 C/T 0.196 2.28E non- FATTY ACID EXPORT 
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Bivariate, 
Multivariate 

5 -05 synonymo
us variant 

chloroplastic-like isoform 
X2 

SWG 
Bivariate, 
Multivariate 

MA_57399_6360 T/C 0.056 1.27E
-05 

non-
synonymo
us variant 

secoisolariciresinol 
dehydrogenase-like 

SWG 
Bivariate, 
Multivariate 

MA_736502_3531 A/C 0.457 4.29E
-05 

upstream 
gene 
variant 

pyrophosphate--fructose 
6-phosphate 1-
phosphotransferase 
subunit alpha 
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Table S2 Location of scaffolds bearing significant SNP’s in the linkage map for all traits. 

 

LG 
Position 
(cM) Scaffold Trait  

1 317.5 MA_64875 Ha_LL_SWG 
2 255.4 MA_922824 bi_LL, multi 
3 153.86 MA_99821 Ha_SWG 
3 156 MA_3214 Hp_SWG, Hp_LL_SWG 
3 163.84 MA_10427923 biSWG 
4 4.75 MA_10432585 bi_LL, multi 
4 159.19 MA_10435193 bi_LL 
4 178.48 MA_9483804 Hp_SWG 
5 2.64 MA_427213 Hp_SWG, Hp_LL_SWG 
5 191.45 MA_10435979 bi_LL, multi 
6 2.88 MA_10436325 Hp_LL 
6 56.83 MA_13984 Hp_SWG 
6 158.5 MA_10427963 multi 
6 161.7 MA_5480022 Hp_SWG, Hp_LL_SWG 

6 233.21 MA_10432243 
Ha_SWG, Ha_LL_SWG, 
bi_SWG 

7 88.02 MA_10426244 Ha_LL 
7 113.66 MA_10428951 multi 
7 153.91 MA_8778565 biSWG 
7 230.41 MA_172610 Ha_LL_SWG 
8 259.04 MA_10428968 HaLL_SWG 
8 261.15 MA_9987602 bi_LL, HP_LL_SWG 
9 3.79 MA_57399 biSWG 
9 126.62 MA_8829511 Hp_LL, Hp_LL_SWG 

11 35.74 MA_10428147 bi_LL 
11 171.73 MA_18641 Ha_LL, Ha_LL_SWG 
12 151.07 MA_100805 Ha_SWG 
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Fig. S1 Pathogen distribution and tree origin assignment. Yellow area corresponds to H. annosum s.s., 

red to Heterobasidion parviporum, and orange to the overlap between them. Circles represent the 

number of trees assigned to each cluster: ROM (Romanian), ALP (Alpine), CEE (Central Europe), NPL 

(North Poland), Rus_Bal (Russian Baltic), C_SE (Central and South Sweden), NFE (Fennoescandian).  
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Fig. S2 Effect of tree origin on estimated breeding values (EBVs) for resistance traits against H. 

parviporum . Horizontal bars represent mean and standard error. Half-sib families are grouped 

according to the predicted origin of their mother, sorted from southern latitudes (green, right-most) to 

northern latitudes (purple, left-most): ALP (Alpine), CEE (Central Europe), NPL (North Poland), Rus_Bal 

(Russian Baltic), C_SE (Central and South Sweden). EBVs for LL are in logarithmic scale.  
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Fig. S3 QQ-plots for the univariate GWAs for LL (Lesion length) and SWG (Sapwood growth) for both 

H. annosum s.s. (upper row) and H. parviporum (lower row). The red line is the one to one quantile, 

line and the grey area is the 95% confidence intervals around it. Blue points represent the significant 

SNPs after the suggested significance threshold.  
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Fig. S4 Manhattan plots for univariate GWAs according to the latest linkage map (Bernhardsson et al., 

2019). a) LL (Lesion length) and b) SWG (Sapwood growth) for both H. annosum s.s. (upper row) (yellow 

dots) and H. parviporum (lower row) (red dots).  SNPs that have not been mapped to the latest map are 

shown in the “scaffolds” field randomly. Horizontal dashed line represents the suggested significance 

threshold   
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