
Koc et al. Plant Methods           (2022) 18:30  
https://doi.org/10.1186/s13007-022-00868-0

RESEARCH
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Abstract 

Background: High-throughput plant phenotyping (HTPP) methods have the potential to speed up the crop 
breeding process through the development of cost-effective, rapid and scalable phenotyping methods amenable 
to automation. Crop disease resistance breeding stands to benefit from successful implementation of HTPP meth-
ods, as bypassing the bottleneck posed by traditional visual phenotyping of disease, enables the screening of larger 
and more diverse populations for novel sources of resistance. The aim of this study was to use HTPP data obtained 
through proximal phenotyping to predict yellow rust scores in a large winter wheat field trial.

Results: The results show that 40–42 spectral vegetation indices (SVIs) derived from spectroradiometer data are 
sufficient to predict yellow rust scores using Random Forest (RF) modelling. The SVIs were selected through RF-based 
recursive feature elimination (RFE), and the predicted scores in the resulting models had a prediction accuracy of 
rs = 0.50–0.61 when measuring the correlation between predicted and observed scores. Some of the most important 
spectral features for prediction were the Plant Senescence Reflectance Index (PSRI), Photochemical Reflectance Index 
(PRI), Red-Green Pigment Index (RGI), and Greenness Index (GI).

Conclusions: The proposed HTPP method of combining SVI data from spectral sensors in RF models, has the poten-
tial to be deployed in wheat breeding trials to score yellow rust.

Keywords: High-throughput phenotyping, Plant breeding, Yellow rust, Field phenotyping, Spectral vegetation index, 
Low-cost phenotyping, Winter wheat, Disease resistance
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Introduction
Plant breeding for disease resistance remains an impor-
tant tool in reducing crop yield loss due to pathogens. 
Resistance breeding relies on screening of large popula-
tions under field conditions, with the purpose of identify-
ing superior parents for crossing into progeny, or novel 
genetic sources for resistance. This process typically 
relies on visual disease scoring of hundreds to thousands 
of plots performed by human raters. While the method 

of visual scoring has served plant breeders well, it is a 
time-intensive process, and the quality and reliability of 
the collected visual disease scores is dependent on the 
experience and training of the individual raters. While 
increasing the number of raters alleviates the problem 
of low throughput, the subjectivity of each rater makes it 
difficult to compare and analyze the resulting scores. This 
problem persists even when comparing data from experi-
enced raters [1]. In short, the time-intensive and subjec-
tive nature of visual scoring puts a limit on the scale of 
breeding trials and accuracy of the visual disease scores. 
The research and development of field high-throughput 
plant phenotyping (HTPP) aims to resolve this bottleneck 
and accelerate plant breeding, by enabling rapid, cheap 
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and scalable phenotyping methods [2–4]. There are sev-
eral factors to consider, if a proposed HTPP method is 
to replace the golden standard of visual disease scoring. 
HTPP methods should have an acceptable selection accu-
racy compared to the visual scores. The measurements 
obtained through the method should have an acceptable 
heritability/repeatability across different environments 
and be robust to variation caused by genotypic diversity. 
Finally, any proposed method should strive to be afford-
able and be easy to implement, to facilitate adoption by 
plant breeders [5].

Wheat yellow rust—also called wheat stripe rust—is 
caused by the fungal pathogen Puccinia striiformis f. 
sp. tritici. Yellow rust has been a major wheat disease 
for centuries and even today the massive crop yield loss 
caused by yellow rust in wheat cultivation makes it the 
economically most destructive rust disease [6–8]. The 
disease symptoms include degradation of leaf chloro-
phyll, followed by the formation of stripes of yellow to 
orange urediniospores along the axis of the leaf [6]. To 
date, the most effective way of controlling yellow rust is 
developing resistant cultivars.

A number of studies have investigated potential meth-
ods for detecting and quantifying yellow rust and other 
foliar diseases in wheat. One of these studies investigated 
ten widely-used spectral vegetation indices (SVI) to dis-
criminate between rust-infected and healthy wheat leaves 
[9]. The authors found that detection of yellow rust was 
possible using SVIs sensitive towards changes in leaf pig-
ment concentrations, indicating that spectral sensors can 
be used to detect yellow rust under controlled condi-
tions. In the same vein, a different study developed novel 
three-band SVIs for quantifying and detecting yellow rust 
based on the Anthocyanin Reflectance Index (ARI) and 
Photochemical Reflectance Index (PRI) and compared 
those against previously published SVIs [10]. Prediction 
of yellow rust under field conditions has been shown to 
be possible using a hyperspectral imaging sensor on an 
unmanned aerial vehicle (UAV) and a ground-based 
phenotyping platform [11]. The authors used a com-
bined approach of supervised classification of pixels and 
regression, to investigate how well the classifier predic-
tions related to visual scores of yellow rust in individual 
wheat plots. Both the ground-based and UAV approach 
resulted in reporting a high yellow rust prediction accu-
racy. An earlier study [12] evaluated the identification 
of the disease progression stages of another wheat foliar 
disease, Septoria tritici blotch (STB), using sensor phe-
notyping and machine learning under greenhouse con-
ditions. A training and validation set of 10 winter wheat 
genotypes were inoculated with Zymoseptoria tritici sus-
pension and assessed at multiple time points for disease 
severity. A second population counting two cultivars was 

designated as a test set and evaluated for STB. Proximal 
phenotyping of both populations involved collecting data 
on Photosystem II quantum-yield using an active light 
fluorometer, spectral reflectance data (350–1150  nm) 
using a spectroradiometer, and finally leaf temperature 
data with an infrared thermometer. Random forest mod-
els in combination with recursive feature selection were 
successfully used for selecting and evaluating predictors 
for both chlorosis and necrosis [13] developed a prom-
ising time-resolved spectral method for quantifying 
STB severity in winter wheat under field conditions. The 
authors argued that spectral features estimated at single 
time points lack specificity to disease effects across time 
and are not robust to changes in reflectance caused by 
nuisance factors and environmental conditions. The pro-
posed method uses spectral-temporal features based on 
two spectral vegetation indices tracking relative changes 
in spectra over time and achieving a prediction accuracy 
of Pearson’s r = 0.53 for correlation between observed 
and predicted STB severity in a validation population 
of 330 winter wheat genotypes. These studies show that 
detection of foliar diseases in wheat is possible using 
high-throughput phenotyping methods.

The main objectives of this study were to automate dis-
ease scoring of yellow rust in a large plant breeding field 
trial, by combining high-throughput phenotyping data 
from low-cost proximal sensors with machine learning. 
Sensor data obtained from imaging and spectral sensors 
was evaluated for prediction of yellow rust using data 
collected, with the help of a ground-based phenotyping 
platform in two winter wheat populations. The popula-
tions were grown in the winter wheat growing seasons 
2019/2020 and comprised: (1) a diverse panel of Nordic 
and Baltic winter wheat landraces and cultivars and (2) 
advanced winter wheat breeding lines. A random forest 
based approach was used to relate visual disease scores 
to the HTPP data. The performance of the models was 
evaluated by assessing the prediction accuracy within the 
time points at which data was collected.

Materials and methods
Plant material and experimental setup
Winter wheat field trials were conducted in a field in 
Southern Sweden (55°54′34.1′′N 13°09′30.4′′E). The plant 
material in both trials consisted of two winter wheat 
populations sown in the winter wheat growing season 
of 2019/2020: a panel of 211 genotypes including culti-
vars and landraces selected from the Nordic Genebank 
(NordGen), and Baltic and Swedish cultivars (Genebank 
set). The second population (Breeding set) consisted 
of 325 advanced-stage  F5 crosses from an ongoing pri-
vate wheat breeding program (Lantmännen Lantbruk, 
Svalöv, Sweden). Disease and HTPP data were collected 
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in both populations on two dates in July: 2020-07-02 and 
2020-07-09.

Disease assessments
Disease score data for yellow rust was collected by visual 
assessment in both populations by the same rater. The 
severity of diseases was rated as an average score across 
the whole plot, on a scale of 1–9, where 1 and 9 corre-
sponds to 0–10% and 90–100% of the plot covered by 
disease respectively. In this study, we relied on natural 
disease pressure in the populations.

Phenocart and digital sensors
HTPP data was collected from a ground-based pheno-
typing platform (phenocart), which was used to move 
a set of sensors over individual wheat plots in the field. 
For more details about the exact dimensions and setup 
of the phenocart, and how the phenocart is used in com-
bination with sensors for phenotyping, please refer to 
Sect. 2.1 in [14].

The sensors used in this study to phenotype the plant 
material can be categorized into two types: imaging and 
spectral sensors. The imaging sensors consisted of two 
consumer-grade digital single- lens reflectance (DSLR) 
cameras (Canon 1300D, Canon, USA). The first camera 
(NDVI camera) was modified (LifePixel Infrared, USA) to 
capture spectral data in the blue, green and near-infrared 
(NIR) range. A modified version of the normalized differ-
ence vegetation index (NDVI) [15] was estimated using 
data from the Blue and NIR bands (BNDVI), according to 
the following formula:

The second camera was left unmodified and was used 
for regular Red–Green–Blue (RGB) image capture. The 
spectral sensors included two Apogee SS-110 Field Spec-
troradiometers (Apogee Instruments, Inc., Logan, Utah, 
USA) used to capture non-imaging hyperspectral data in 
the spectral range of 340–820 nm, with a spectral band 
resolution of 1 nm. The spectral sensors were set up with 
one sensor mounted pointing directly up at the sky at the 
top of the phenocart with a field of view (fov) attachment 
of 180° for measuring incoming radiation. The other sen-
sor was mounted at the front of the phenocart, angled 
45° down towards the canopy at a fov of 15° for meas-
uring the radiation reflected from the wheat canopies. 
Both spectral sensors were synchronized and operated 
in continuous reflectance data capture mode using the 
Apogee SpectroVision software (version 1.03.004, Apo-
gee Instruments, Inc., Logan, Utah, USA). The process of 
synchronizing both spectral sensors involved setting the 
white reference of the canopy-facing spectroradiometer 

BNDVI =
NIR− Blue

NIR+Blue

against an Apogee AS-004 white reflectance standard 
plate (Apogee Instruments, Inc., Logan, Utah, USA). This 
sensor synchronization process was repeated every 40th 
plot in 2020. Each spectral sample was averaged over five 
spectral scans and the integration time of both sensors 
was set depending on prevailing light conditions.

Image data processing
The initial processing of image data from both RGB and 
NDVI cameras was done using the RawTherapee soft-
ware (version 5.6), where the exposure in each image 
was adjusted using RawTherapee’s exposure auto-adjust 
function. The white balance of each image was adjusted 
against the grey card in the images. The center of each 
plot was cropped from each image into a reduced size 
(1000 × 800  px) image. The cropped images from the 
RGB camera were processed into digital green biomass 
estimates by using a previously published pipeline [16]. 
Briefly, this pipeline relies on hue, saturation, and value 
(HSV) thresholding to identify and quantify green veg-
etation in RGB images. The cropped images from the 
NDVI camera were processed into NDVI estimates using 
a custom R script. The R script calculated the NDVI value 
for each pixel in the input image. A single NDVI value 
was estimated for each image by calculating the mean 
NDVI over all pixels in the input image. Only pixels over 
an NDVI threshold of 0.2 were considered when calculat-
ing the mean, to remove any soil or background data.

Spectral data processing
The processing of spectroradiometer data progressed 
in three steps: (1) calculation of canopy spectral reflec-
tance (2) quality control performed on the calculated 
reflectance data and (3) calculation of spectral vegetation 
indices (SVIs). Canopy reflectance was calculated at each 
measured wavelength by using a custom R script to cal-
culate the fraction of reflected radiation according to the 
following equation:

where R is the fraction of reflected spectral radiation, 
Ecanopy and Ereference are the raw digital spectral counts 
obtained from the canopy-facing and upward-facing 
spectroradiometers respectively. Quality controlled 
involved visual assessment of the resulting spectral data 
to remove bad data, such as for example spectral data 
collected from empty wheat plots. The processing of the 
data proceeded using version 1.0.3 of the hsdar R pack-
age [17], the spectra were visually inspected, with the 
result that data from spectral bands outside of the inter-
val of 400–800 nm and inside the interval of 755–771 nm 
were removed due to poor signal-to-noise ratio [18]. 

R =

Ecanopy

Ereference
,
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The spectral data remaining after quality control was 
smoothed using a Savitzky–Golay smoothing filter with 
a filter length size of 11 bands and filter order set to third 
order polynomial, using the smoothSpeclib() function 
available in hsdar. The resulting cleaned spectral data was 
processed using hsdar and Specalyzer R packages [19] 
into 119 spectral vegetation indices (SVIs). For a full list 
of SVIs used in this analysis, please refer to [17, 19]. In 
addition to the indices available via hsdar and Specalyzer, 
we included two spectral vegetation indices developed 
for detecting and measuring yellow rust: SVI_YR [20] 
and SVI_PRI_YR [10].

Training and evaluation of machine learning models
The data processing of the sensor data resulted in 119 
HTPP predictors: two image-data based predictors and 
117 SVIs. Automatic PCA-based outlier removal was 
performed as described earlier [19], and any rows with 
missing data were removed from the final data set. This 
yielded 439 and 505 observations for the 2020-07-02 and 
2020-07-09 timepoints respectively. A correlation analy-
sis was conducted in R to explore the linear association 
between these predictor variables and the disease scores 
at each time point. To this end, the Spearman’s correla-
tion coefficient was computed for each predictor in asso-
ciation with the disease scores. Following the correlation 
analysis, the data at each timepoint was split into an 
80/20 training and test data set, where the training data 
was used to perform recursive feature elimination and 
the test set was reserved for the validation of the final 
model trained based on the results of the feature elimi-
nation. Thus, a minimal set of predictors was established 
by performing supervised feature selection by recursive 
feature elimination with random forest (RF) regression, 
by adapting a protocol and associated code by [13]. The 
feature elimination was performed separately for each 
time point and proceeded by stepwise elimination of 
predictors from 119 predictors down to one, repeated 
30 times. In each repeat, the previously defined train-
ing set was further split into an 80/20 training/test set. 
This reduced feature elimination training set was used 
to train random forest models, which were sued to com-
pute variable importance and model performance met-
rics. Variable importance was used to rank the features 
at each step of the elimination, whereas model perfor-
mance was assessed by calculating the root-mean-square 
error (RMSE) of prediction on both the feature elimina-
tion training and test data. This process was repeated 30 
times, where the reduced training/test sets were resa-
mpled at each repeat. RF was used as the base-learner, 
where the number of trees was set to 1000 and ten-fold 
CV was used for model tuning. The elimination pro-
ceeded in one step from 119 variables to 100, from 100 to 

30 by increments of five, and from 30 to 1 by increments 
of one. The resulting feature rankings and model perfor-
mance metrics were averaged across all resamples into 
a robust estimate of variable ranking and model RMSE. 
The number of features in the final model was selected by 
plotting training and test set RMSE against the number 
of features in the feature elimination, the selection was 
made based on lowest test set RMSE and minimal num-
ber of predictors. The R packages caret [21] and ranger 
[22] were used to fit RF regression models for feature 
selection and the following model validation.

The final RF yellow rust prediction models were trained 
on the selected features extracted from the full train-
ing set. Model tuning and selection in caret was per-
formed using ten-fold cross-validation. The predictive 
performance of each model was assessed by predict-
ing yellow rust scores using the test set HTPP data. The 
performance for each model was computed by calculat-
ing RMSE and the Spearman’s rank correlation coeffi-
cient between predicted and observed disease scores. As 
before, the validation was performed separately for each 
time points. The final model validation step was repeated 
by retraining the models the models without including 
the image-based predictors. The purpose of this was to 
assess the contribution of the image-based predictors to 
the model accuracy.

Results
Yellow rust disease score assessments were collected in 
two winter wheat populations together with HTPP data 
from imaging and spectral sensors. A correlation analy-
sis was performed to assess the linear association of the 
HTPP data with the disease score data. RF models were 
trained and evaluated with regards to prediction accu-
racy of yellow rust disease scores at specific timepoints. 
A variable importance analysis was performed to deduce 
which HTPP data and, by extension, which sensors were 
useful in predicting the disease outcome.

Phenotypic characterization of disease infection
There was considerable development of natural yellow 
rust infection in both populations starting in the begin-
ning of June. Toward the end of the season, most plots 
in both populations exhibited moderate to high yellow 
rust infection. Plots in the genebank population tended 
towards higher disease severity compared to the breeding 
material (Fig. 1).

Correlation between sensor data and observed data 
of disease scores
A correlation analysis was performed on data from both 
time points of scoring to quantify the linear association 
between the predictor variables obtained from the HTPP 
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data and the observed disease scores. The highest abso-
lute correlation between HTPP predictors and disease 
data reached a value of rabs = 0.43 for data collected at 
2020-07-02, and rabs = 0.43 for 2020-07-09. The distri-
butions of the correlation and the ranking of most cor-
related predictors are shown in Fig.  2. The predictors 
showing the highest correlations with the disease score 
data were SVIs calculated from the spectroradiometer 
reflectance data. Conversely, the data obtained from 
imaging-sensors showed low to none correlation with the 
disease score data (Additional file 1: Table S1).

Feature selection and variable importance
Recursive feature elimination was performed separately 
for the two time points to obtain robust estimates of 
variable importance and to identify an optimal number 
of features for the disease prediction models. The final 
number of predictors for both models were selected by 
selecting for lowest number of predictors in combination 
with lowest test set root mean square error (RMSE). Both 

datasets saw little change in RMSE when decreasing the 
number of features from the 119 original features to 42 
and 40 features for the 2020-07-02 and 2020-07-09 data-
sets respectively (Fig. 3). Whereas decreasing the number 
of features to beyond 42 features led to a steady increase 
in test set RMSE, with a steep increase below 10–12 pre-
dictors for both timepoints.

The selected predictors were similar in the data from 
the two time points (Table 1), with 23 features shared by 
the models at each time point. Among the top 10 pre-
dictors were variations of the photochemical reflectance 
index (PRI), together with the Plant Senescence Reflec-
tance Index (PSRI). Other consistently high ranking 
features were the Red-Green Pigment Index (RGI), Red-
Edge Position Linear Interpolation (REP LE). Top unique 
indices for the 2020-07-02 data included the Structure 
Insensitive Pigment Index (SIPI3), Browning reflectance 
index (BRI), whereas the Simple Ratio Greenness Index 
(GI), Single Band 720 Boochs2 (Boochs2) were unique 
top predictors in the later 2020-07-09 data. For the full 

Fig. 1 Yellow rust disease progression in the experimental populations. a Phenotypic distributions of yellow rust (Puccinia striiformis) severity in two 
winter wheat (Triticum aestivum) population: (Genebank set) A set of 211 genotypes including material from Nordic Genebank, Nordic and Baltic 
cultivars, and (Breeding set) a set of 325 advanced stage breeding F5 crosses. The disease observations were performed at six time points in the 
winter wheat growing season 2019/2020. b Two example images of a Healthy (left) and diseased (right) wheat plot
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feature ranking results, please refer to Additional file  1: 
Table S2.

Accuracy of predicted disease scores
The top HTPP features identified in the recursive fea-
ture elimination and disease observation data were 
integrated in RF regression models at the two time 
points (2020-07-02 and 2020-07-09) to predict yellow 
rust disease scores in the experimental wheat plots. 
The models were evaluated on a test set of data not 
used in the feature elimination, where the performance 
of the models was assessed by computing the RMSE 

of prediction and correlation between predicted and 
observed disease scores. This resulted in an estimate of 
the prediction accuracy of 0.50 and 0.61 for the 2020-
07-02 and 2020-07-09 RF models respectively. A linear 
trend between observed and predicted disease scores 
was revealed by the plotting the predictions (Fig.  4). 
The models showed higher separation in their predicted 
scores when looking at the extreme ends of observed 
scores. Predictions of intermediate scores showed low 
separation compared to extreme scores. Removing the 
more complex image-based predictors from the mod-
els resulted in no major change in prediction accuracy 
when validated on the test set (Fig. 5).

Fig. 2 Correlation analysis between predictors and YR scores. Spearman’s correlation analysis between yellow rust disease scores and model 
predictor variables derived from high-throughput phenotyping (HTPP) data collected at two dates under field conditions. a, b Distributions of 
strength of association between HTPP predictors and disease scores measured in absolute correlation values. c, d Top 15 predictors ranked in 
descending order from top to bottom by their absolute correlation value with observed disease scores
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Discussion
Diseases remain a major yield-limiting factor in wheat 
cultivation. Thus, breeding for disease resistance remains 
an important goal in breeding programs, as it remains 
the most sustainable and cost-effective way of disease 
control. HTPP methods are then proposed to accelerate 
the genetic gain achieved in breeding trials. Direct bene-
fits of introducing HTPP methods include increasing the 
accuracy of selection through less subjective and more 
repeatable measurements, while indirect benefits include 
reducing costs associated with phenotyping, which opens 
the path for allocating more resources to increasing the 
size of breeding programs [23]. In this vein, we aimed 
to develop a method to enable rapid, low-cost screening 
of two diseases in wheat breeding trials, by integrating 
proximal sensor data with visual disease score data col-
lected under field conditions.

Low‑cost field‑based prediction of yellow rust
The correlation analysis (Fig. 2) revealed that the individ-
ual predictors derived from the field HTPP data show low 
to moderate correlation with the observed disease data. 
This suggests that there are predictor variables in our 
data which might be used to predict yellow rust scores. 
This was indeed confirmed when integrating the HTPP 
and disease data in machine learning models. Using 
our approach, which combines low-cost sensors with 
machine learning, we were able to predict yellow rust dis-
ease scores at specific time points with an average predic-
tion accuracy of 0.50–0.61 when using a cross-validation 
approach (Fig.  4). This prediction accuracy presents a 
positive linear correlation of observed and predicted 
disease scores, which suggests that our approach shows 
some success in field-based prediction of yellow rust. 
However, both models show considerable systematic 

error, where on average low scores are overestimated and 
high scores are underestimated. Furthermore, the preci-
sion of the predicted values is low. The accuracy and pre-
cision of the predictions could perhaps be improved by 
incorporating spectral data from further into the infrared 
spectrum (700–1000  nm). For example, a SVI has been 
previously proposed to measure yellow rust in mid-late 
stage wheat [10] which relies on spectral data obtained at 
860 nm, which is outside of the spectral range at which 
the spectroradiometer used in this study operates. Fur-
ther improvement could come in form of replacing or 
combining the visual scores, used as ground truth data 
in this study, with more objective digital methods to esti-
mate disease infection, such as destructive sampling and 
image analysis of diseased leaves, as was done in a similar 
study of field-based prediction of STB [13]. In that study, 
the authors reported a prediction accuracy of r = 0.53 
when validating their proposed model in an independent 
test set. The drawback to obtaining disease score data this 
way, however, is that such a method would be more labor-
intensive compared to visual scoring. A similar study 
aiming to predict yellow rust in field conditions reported 
prediction accuracies of r = 0.84 using a ground-based 
hyperspectral-camera based approach [11]. While this is 
a higher prediction accuracy, hyperspectral imaging sen-
sors are more expensive and more challenging in terms of 
data analysis, compared to our low-cost approach.

Evaluation of sensors for prediction
The final step of the analysis was assessing the variable 
importance in the RF models trained on the complete 
data sets. The most important predictors were all SVIs 
sensitive towards changes in leaf pigments (Table 1), such 
as the plant senescence reflectance index (PSRI) which is 
designed to track the senescence progress in leaf tissue 
[24] and photochemical reflectance index (PRI) which is 

Fig. 3 Recursive feature elimination of predictors. Results of recursive feature elimination in two datasets of yellow rust disease scores and 
high-throughput phenotyping data collected under field conditions. The dashed vertical lines indicate the selected optimal number of model 
predictors based on training (blue) and test set (red) Root Mean Square Error (RMSE), the grey dashed line indicates the number of features selected 
for the final model. a Disease score and HTPP data collected on 2020-07-02 (N = 351), b Disease and HTPP data collected on 2020-07-09 (N = 404)
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sensitive to changes in xanthophyll pigments in leaf tissue 
and is used to changes in photosynthetic performance 

[25]. Other top predictors related to changes in leaf pig-
ments were the Red-Green Pigment Index (RGI) [26], 

Table 1 HTPP features selected through recursive feature elimination to predict YR Features marked in bold are unique to the 
timepoint

Variable names highlighted in bold letters denote predictors unqiuely selected through feature elimination at that timepoint

Model trained on data collected on 2020‑07‑02 Model trained on data collected on 2020‑07‑09

Model feature Average rank across all 
resamples

Standard 
deviation

Model feature Average rank across all 
resamples

Standard 
deviation

PSRI 3.10 2.62 RGI 1.40 0.81

PRI2 3.27 2.35 GI 3.40 3.17

SIPI3 4.63 3.36 PSRI 4.87 2.76

PRI 5.43 4.12 NRI 5.87 4.12

REP_LE 5.53 3.34 Boochs2 6.87 2.49

RGI 5.77 1.89 DPI 7.00 4.17

BRI 10.77 4.44 REP_LE 8.63 4.12

SR9 14.00 6.72 SR10 10.30 4.23

Vogelmann3 17.10 6.82 PRI 12.30 4.69

PRI norm 17.53 9.55 PRI2 13.10 5.36

LRDSI2 18.87 10.83 Datt5 13.27 10.05

PRI (YR Zheng) 20.97 10.97 DWSI4 14.60 8.32

DD 22.07 16.16 CI 15.03 8.93

DPI 22.27 9.50 Vogelmann3 15.40 5.20

ARI 22.57 5.85 SPVI 17.07 8.66

mSR705 22.93 12.24 ARI2 19.43 6.52

SIPI2 25.63 14.27 PRI (YR Zheng) 20.07 6.76

mND705 25.67 14.20 Boochs 20.57 8.70

MTCI 25.77 15.49 NDVI3 21.43 9.62

SR7 26.77 15.03 PRI_norm 22.30 5.07

D1 27.23 12.15 NPQI 22.77 9.13

mSR 27.77 19.16 SR5 25.13 9.02

NIR Camera BNDVI 29.20 11.86 Carter5 28.33 10.49

mNDVI 31.27 15.72 RGB_Biomass 29.23 9.48

MSAVI 31.63 19.99 DD 30.43 16.17

SR8 32.23 13.74 EVI 32.97 10.13

SIPI 32.27 16.97 MCARI2 33.43 13.59

PhRI 32.30 12.07 NPCI 35.50 12.56

BGI 32.73 12.66 DDn 35.67 10.10

NDVI3 32.97 17.46 SRPI 35.67 11.28

OSAVI 33.13 15.26 ClAInt 36.07 13.96

ARI2 33.67 11.50 Sum_Dr2 36.17 15.92

DWSI4 33.80 17.01 Gitelson 36.63 11.03

mREIP 34.27 10.68 SIPI2 37.17 15.58

CI 36.47 12.66 mREIP 38.23 8.80

REP_Li 36.67 11.06 Datt3 38.47 13.72

MCARI2_OSAVI2 37.67 19.27 SR8 38.57 8.62

SAVI 38.07 15.66 mSR 38.60 16.38

Carter 38.17 13.72 SR9 38.87 11.15

SR10 38.47 13.58 MCARI2_OSAVI2 39.07 12.98

Gitelson 38.70 14.70

NPCI 39.60 14.79
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Normalized Photochemical Reflectance Index (PRI_
Norm) [27], Normalized-Difference (570/539) Pho-
tochemical Reflectance Index (PRI2) [28], Red-edge 
position linear extrapolation (Rep LE) [29], Greenness 
Index (GI) [30], Double Peak Index (DPI) [31], Boochs2 
[32], and Vogelmann3 [33]. The high importance of indi-
ces related to changes in leaf pigments and chlorophyll 
fluorescence is in line with the effects of yellow rust 

infection on the leaf. These effects include the degrada-
tion of chlorophyll, which leads a reduced photosynthetic 
efficiency. In addition, the disease symptoms progress 
into the formation of yellow carotenoid-rich stripes of 
spores, which give the yellow rust disease its name. Our 
results mirror an earlier study [9] which found that the 
PRI, anthocyanin reflectance index (ARI), PSRI and other 
indices related to changes in leaf pigment concentrations 

Fig. 4 Relation between predicted and observed yellow rust scores based on spectral and image-based predictors. Predicted yellow rust scores 
from spectral reflectance and image-based predictor data in an independent test set. The dashed line represents the 1:1 line. a Disease and HTPP 
data collected on 2020-07-02 (N = 88), b disease and HTPP data collected on 2020-07-09 (N = 78)

Fig. 5 Relation between predicted and observed yellow rust scores using only spectral predictors. Predicted yellow rust scores using only spectral 
reflectance data in an independent test set. The dashed line represents the 1:1 line. a Disease and HTPP data collected on 2020-07-02 (N = 88), b 
disease and HTPP data collected on 2020-07-09 (N = 78)
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could be used to detect yellow rust-infected leaves in 
wheat under controlled conditions. Similarly, a different 
study [10] conducted a field experiment investigating 15 
previously published indices and their ability to detect 
yellow rust, in addition to two modified versions of the 
PRI and ARI indices. The authors found that the modi-
fied three-band PRI and ARI indices were sufficient to 
detect and measure yellow rust in early-mid growth and 
mid-late stages respectively. Another study investigated 
the potential of individual indices to be used for indirect 
measurements of yellow rust disease severity, and found 
that PRI, GI were among the better performing indices 
[34]. PRI also figures in patented methods for predict-
ing yellow rust in wheat crops [35]. The three-band PRI 
(PRI_YR) index ranked 12th and 17th respectively in the 
ranking produced by the recursive feature elimination 
(Table  1), suggesting that it might be used for predict-
ing yellow rust in late-stage winter wheat in combina-
tion with other SVIs. The ARI-based index, developed 
in the same study as above, for detection and measuring 
of yellow rust in late-stage winter wheat was not used in 
this study, as our spectroradiometer did not make meas-
urements in the spectral bands required to estimate the 
index. In contrast, the predictor ranking revealed that the 
previously developed Yellow Rust Index [20] did not rank 
among the selected predictors, suggesting it has limited 
use in predicting yellow rust scores in late/stage winter 
wheat. The predictors selected in the final models based 
on the RFE included the digital green biomass estimates 
(RGB Biomass) and NDVI estimates (NIR BNDVI) from 
the imaging sensors, although not among the top pre-
dictors. The relatively low importance of NDVI could be 
explained by its lack of specificity when detecting stress. 
Furthermore, it should be added that the data processing 
of the imaging data is more time-intensive and labori-
ous compared to working with the spectral data. To fur-
ther investigate whether these image-based predictors 
were worth the effort, the final prediction models were 
retrained excluding them. The resulting models were 
evaluated on the independent test set where no major 
decrease in prediction accuracy was observed (Fig.  5). 
While this does not disqualify the imaging sensors per se, 
it does suggest their use needs rethinking for them to be 
a worthwhile addition in proximal phenotyping of yellow 
rust. For example, a future study could investigate replac-
ing the green biomass estimates from the RGB camera 
with detecting and quantifying rust lesions on diseased 
leaves in the top-down images. One approach to accom-
plish this could be to use deep learning-based models, 
such as convolutional neural networks, to extract dis-
ease severity metrics from the image data. However, this 
would require a much larger image dataset in the order 
of 10,000 images compared to the datasets utilized in this 

study, which count around 400–500 images per time-
point [36].

Conclusion
The results published in this study suggest that spec-
tral sensors can be used in combination with machine 
learning to rapidly predict yellow rust scores late in the 
wheat growing season with a moderate prediction accu-
racy. Improvements to the collection of disease data 
can help raise the accuracy and precision of the pre-
dictions. A suggestion for future work is to investigate 
using more objective analysis methods for collecting 
the disease data, such as sampling and image-analysis of 
diseased leaves, with the aim of improving the quality 
of the disease data over subjective visual assessments. 
Furthermore, a follow-up study could be conducted 
with an appropriate experimental field design, with the 
aim to investigate the performance of our method in 
its intended application of gathering data for selections 
in un-phenotyped wheat populations, and whether the 
predicted scores can be used in a genetic analysis of 
disease resistance.
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