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Abstract
Key message Including additive and additive-by-additive epistasis in a NOIA parametrization did not yield orthogo-
nal partitioning of genetic variances, nevertheless, it improved predictive ability in a leave-one-out cross-validation 
for wheat grain yield.
Abstract Additive-by-additive epistasis is the principal non-additive genetic effect in inbred wheat lines and is potentially 
useful for developing cultivars based on total genetic merit; nevertheless, its practical benefits have been highly debated. 
In this article, we aimed to (i) evaluate the performance of models including additive and additive-by-additive epistatic 
effects for variance components (VC) estimation of grain yield in a wheat-breeding population, and (ii) to investigate 
whether including additive-by-additive epistasis in genomic prediction enhance wheat grain yield predictive ability (PA). 
In total, 2060 sixth-generation  (F6) lines from Nordic Seed A/S breeding company were phenotyped in 21 year-location 
combinations in Denmark, and genotyped using a 15 K-Illumina-BeadChip. Three models were used to estimate VC and 
heritability at plot level: (i) “I-model” (baseline), (ii) “I +  GA-model”, extending I-model with an additive genomic effect, 
and (iii) “I +  GA +  GAA-model”, extending I +  GA-model with an additive-by-additive genomic effects. The I +  GA-model 
and I +  GA +  GAA-model were based on the Natural and Orthogonal Interactions Approach (NOIA) parametrization. The 
I +  GA +  GAA-model failed to achieve orthogonal partition of genetic variances, as revealed by a change in estimated additive 
variance of I +  GA-model when epistasis was included in the I +  GA +  GAA-model. The PA was studied using leave-one-line-
out and leave-one-breeding-cycle-out cross-validations. The I +  GA +  GAA-model increased PA significantly (16.5%) com-
pared to the I +  GA-model in leave-one-line-out cross-validation. However, the improvement due to including epistasis was 
not observed in leave-one-breeding-cycle-out cross-validation. We conclude that epistatic models can be useful to enhance 
predictions of total genetic merit. However, even though we used the NOIA parameterization, the variance partition into 
orthogonal genetic effects was not possible.
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VC  Variance components
WGR   Whole genome regression

Introduction

Genomic selection (GS, Meuwissen et al. 2001) meth-
ods based on whole-genome prediction (WGP) have been 
successfully applied for a variety of quantitative traits of 
agronomic importance in animals and plants (Poland et al. 
2012; Gianola and Rosa 2015; Crossa et al. 2017; Kris-
tensen et al. 2019).

In quantitative genetics, a distinction is made between 
the genomic estimated breeding value (GEBVs, estimated 
additive genetic effects) and the total genetic value (esti-
mated additive plus non-additive genetic effects). Tradi-
tionally, wheat breeders have based the selection of lines 
on phenotypic selection, which can be seen as a measure 
of total genetic value. The better performance of GS over 
phenotypic selection (Crossa et al. 2011; Michel et al. 
2017; Tessema et al. 2020) has led many wheat breed-
ing programs to implement GS, and base the selection of 
lines on the prediction of GEBVs, which in general are 
used to select both breeding lines and commercial varie-
ties. However, the non-additive genetic effects can play a 
relevant role in the determination of complex traits such 
as grain yield (Carlborg and Haley 2004; Mackay 2014). 
Separating additive and non-additive genetic effects can 
be favorable if it contributes to a more accurate estimate 
of both additive and total genetic merit. In this context, 
treating additive and non-additive effects separately can 
result in an improved strategy of selection, allowing to 
select crossing parents based exclusively on the additive 
effect, and develop commercial varieties, based on both 
additive plus non-additive effects.

The non-additive genetic effect can be defined by their 
“biological” meaning, referred to the variations due to 
gene action, or as defined by Fisher (1918), by their “sta-
tistical” meaning, referred to deviations from additivity 
in a statistical model. The non-additive genetic effects 
are classified into epistasis and dominance. Epistasis 
is defined as the interaction between alleles at differ-
ent loci, and it can be divided into pairwise classes: (i) 
additive-by-additive, (ii) additive-by-dominance and (iii) 
dominance-by-dominance, and into higher-order epistatic 
classes involving more than two loci. In wheat breeding, 
commercial cultivars are commonly developed by several 
generations of selfing to create inbred lines. Due to the 
high homozygosity of inbred lines obtained by seed mul-
tiplication via selfing, the epistatic interactions are fixed 
in cultivars and can be kept for future generations used in 
commercial production.

Modelling additive-by-additive effects in genomic pre-
diction (GP) can be restrictive due to the high compu-
tational load caused by the high number of interactions 
between markers if all possible interactions are consid-
ered. Under the assumption of quantitative trait loci (QTL) 
effects coming from the same normal distribution, a math-
ematically equivalent alternative to model epistasis, and 
reduce the computational load, is to use models including 
genomic relationship matrices as covariance structures 
for individuals. Several authors have proposed to extend 
the genomic best linear unbiased prediction (G-BLUP) 
model (Habier et al. 2007; VanRaden 2008) by adding 
non-additive terms (extended best linear unbiased predic-
tion, EG-BLUP). The term “EG-BLUP” refers in the lit-
erature to a model with multiple types of genetics effects 
(additive, dominance, epistatic), in which the coding of 
the marker matrix to calculate the relationship matrices 
can be flexible (Su et al. 2012; Xu 2013; Jiang and Reif 
2015; Martini et al. 2016). Henderson (1985) proposed to 
use the Hadamard product of the pedigree-based additive 
relationship matrix with itself to approximate the addi-
tive-by-additive epistatic matrix. Henderson’s approach 
was later implemented in the genomic framework by Su 
et al. (2012), where the Hadamard product of the addi-
tive genomic relationship matrix was used to build the 
additive-by-additive matrix. The resulting marker-based 
relationship matrix captures deviations due to additive-
by-additive interactions plus dominance when it is present 
(Martini et al. 2016). Marker-based epistatic relationship 
matrices are also proposed to estimate the additive-by-
additive interactions without including the dominance 
effect (Xu 2013; Jiang and Reif 2015; Martini et al. 2016). 
Recently, Vitezica et al. (2017) proposed to use the natural 
and orthogonal interactions (NOIA) approach (Alvarez-
Castro and Carlborg 2007) to model non-additive genetic 
effects in GP. However, as recently reported by Joshi et al. 
(2020), the EG-BLUP and the NOIA are equivalents if the 
marker coding for the EG-BLUP follows VanRaden (2008) 
and only additive and additive-by-additive epistatic effects 
are included in the models.

The dominance genetic effect has also been investigated 
in GS for wheat breeding. Dominance is defined as the 
effects of allelic interaction within loci (Fisher 1918), and 
it has been particularly relevant for the heterotic effect in 
hybrid wheat populations (Zhao et al. 2015; Jiang et al. 
2017). Jiang et al. (2017) found a heterotic effect for grain 
yield in a hybrid population of winter wheat derived from 
crosses among diverse elite parents. In their study, the 
hybrids outperformed the mid-parents by 10% on average. 
The relevance of accounting for dominance in prediction 
models has also been investigated in simulation studies, 
reporting an increase in the prediction accuracy for popu-
lations presenting a dominance effect when dominance 
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was accounted for in prediction models (Wellmann and 
Bennewitz 2012). However, for inbred wheat lines, the 
dominance effects are very low to negligible due to their 
reduced heterozygosity, and the epistasis is, therefore, the 
only relevant non-additive genetic effect.

The lack of independence between loci, and having 
linked markers instead of causative mutations may affect 
the orthogonal partition of genetic effects into independent 
statistical components and lead to problems in the estimation 
of genetic variances (Zeng et al. 2005; Wang and Zeng 2006; 
Hill and Mäki‐Tanila 2015; Vitezica et al. 2017). The lack of 
orthogonality between genetic effects can be evidenced by 
estimates that are affected when an additional genetic term 
is included in the model (Papoulis and Pillai 2002; Vitezica 
et al. 2017; Joshi et al. 2020). Nevertheless, several authors 
have reported that including epistasis in genetic models 
can be useful to enhance prediction and selection (Hu et al. 
2011; He et al. 2016; Martini et al. 2017). On the other hand, 
different results have been reported by other authors, Jarquín 
et al. (2014) found that including epistasis did not improve 
PA, and Lorenzana and Bernardo (2009) even found a nega-
tive effect of including epistasis in PA.

In this study, we use a large set of winter wheat breeding 
lines, phenotyped for grain yield in multiple environments 
and in multiple years. Our study had two specific objectives:

 (i) To evaluate the performance of models including 
additive and additive-by-additive epistatic effects 
for variance component estimation for grain yield.

 (ii) To investigate the predictive ability (PA) of such 
models for prediction of advanced breeding lines.

Materials and methods

Experimental data

The plant material consisted of 2060 sixth-generation  (F6) 
winter wheat lines (T. aestivum L.) developed by the breed-
ing company Nordic Seed A/S. The data were collected from 
seven breeding cycles from 2013 to 2019, each including 
around 330 lines evaluated in three locations in Denmark 
(DK): Odder (Central DK), Holeby (South DK) and Skive 
(North DK). The  F6 lines of each breeding cycle originated 
from approximately 60 parental line-crosses, followed by 
five generations of selfing, including creating single seed 
descent (SSD) lines in generation  F4. The breeding cycles 
from 2013 to 2016 were evaluated in two consecutive 
years (cycle 1: 2013–2014, cycle 2: 2014–2015, cycle 3: 
2015–2016, cycle 4: 2016–2017), and the cycles coming 
from 2017 to 2019 were evaluated in one year only (cycle 5: 
2017, cycle 6: 2018, cycle 7: 2019). The field trials consisted 
of 15 blocks of 46 line plots of 8.25  m2 per year × location 

combination. Each block had two replicates of 21  F6 lines 
and two checks randomly assigned. The experimental condi-
tions within the year × location subsets were homogeneous 
for the trials (e.g., sowing time, application of treatments, 
assessment time). The quantitative trait analyzed in this 
study was the yield measured as kg per plot (8.25  m2).

Genotyping

DNA extractions from the plant material were based on a 
modified CTAB method (Rogers and Bendich 1985). The 
genotyping was carried out using a 15 K Illumina Infin-
ium iSelect HD Custom Genotyping BeadChip technology 
(Wang et al. 2014). For the quality control, the SNPs with 
minor allele frequency (MAF) lower than 5% and with a call 
rate < 0.90 were removed. Missing genotypes were imputed 
with mean value (∼1.3% of missing values imputed). In 
total, 10,688 SNPs passed the quality control.

Statistical models

This study compared three different models. Firstly, a base-
line mixed model without genomic information (I-model, 
Eq. 1), including fixed and random effects, was used as 
the starting point for the construction of the other mod-
els (Cericola et al. 2017; Tsai et al. 2020). Secondly, the 
I +  GA-model (Eq. 2) was used to extend the I-model with 
an additive genomic effect according to the NOIA para-
metrization proposed by Alvarez-Castro and Carlborg 
(2007) and later extended to GP by Vitezica et al. (2017). 
Third, the I +  GA +  GAA-model (Eq. 4) was used to extend 
the I +  GA-model by adding a pairwise additive-by-additive 
epistatic terms according to the NOIA parametrization.

I‑model (Baseline)

The baseline model (Eq.  1) was developed considering 
the main sources of variability affecting the experimental 
data and included them as fixed or random effects, and we 
referred to as “I-model” hereinafter since it uses an identity 
covariance matrix for the line effects. A similar model has 
also been presented in earlier studies working with a set of 
data from Nordic Seed A/S (Cericola et al. 2017; Tsai et al. 
2020). The I-model was defined as:

where y is the vector of observed phenotypes; � is the design 
matrix for fixed effects; b is the vector of fixed trial effects 
nested within year, location and breeding cycle; �1 and �2 
are design matrices of random effects; l is a vector of line 
effect with l ∼ N

(
0, I�2

l

)
 , where I is an identity matrix and 

(1)y = Xb + Z1l + Z2f +

9∑
i=1

Zi+2s + e
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�2
l
 is the variance due to uncorrelated line effects; f  is a vec-

tor of line by environment interaction (lines-by-year-loca-
tion) with f ∼ N

(
0, I�2

f

)
 , where �2

f
 is the variance due to 

uncorrelated line by environment effects; s is a vector of 
spatial effect with s ∼ N

(
0, I�2

s

)
 , where �2

s
 is the spatial 

effect variance. The spatial effect contains the X and Y coor-
dinate of the target plot and the eight surrounding plots 
(n = 9), for plots located in the border, virtual plots were 
added to guarantee all plots have n = 9 in order to account 
for border effects (Supplementary material Fig. 1S). There-
fore, the spatial effect on an individual plot is the sum of 
effects with the square centered on the plot itself plus the 
effects of eight surrounding plots with a square centered on 
those plots; e is a vector of random residuals with 
e ∼ N

(
0, I�2

e

)
 , where �2

e
 is the residual variance. All random 

effects were assumed to be independent.
Note that the genetic term in the I-model is miss-specified 

since the model assumes all lines to be unrelated. There-
fore, it may lead to a biased estimation of the total genetic 
variance.

I + GA‑model

The “I +  GA-model” (Eq. 2) was the second model used, and 
it includes an additive genomic relationship matrix based on 
the NOIA parametrization as covariance structure to define 
the additive genetic effects. The I +  GA-model was defined 
as:

where � , �
�
 , b , l , f  , s , and e are the same as described in 

the I-model (Eq. 1); g is a vector of additive genomic breed-
ing values with g ∼ N

(
0,�

����
�2
g

)
 , where �2

g
 is the 

genomic additive genetic variance and �
����

 is a genomic 
relationship matrix constructed based on Vitezica et al. 
(2017):

where Ha is an n rows (number of lines) x m columns (num-
ber of markers) matrix containing the additive coefficients 
as:

(2)y = Xb + Z1l + Z3g + Z2f +

9∑
i=1

Zi+3s + e

(3)GNOIA =
HaH

�
a

tr
(
HaH

�
a

)
∕n

and hai is a row vector for the ith individual with m col-
umns. For individual 1 with marker j = 1,.., m, the element 
ha1j is equal to:

where pAa and paa are the genotypic frequencies for the 
genotypes Aa and aa in locus A. The term tr

(
HaH

�
a

)
∕n is 

the trace for the HaH
′
a
 matrix, which standardize GNOIA to a 

variance equal to one.

I + GA + GAA‑model

Our last model, extend I +  GA-model by including an addi-
tive-by-additive epistatic term using a genomic relationship 
matrix based on NOIA parametrization (Alvarez-Castro and 
Carlborg 2007; Vitezica et al. 2017) as covariance structures. 
The I +  GA +  GAA-model was defined as:

where � , �
�
 , b , l , f  , s , g , and e are the same as described 

in the I-model (Eq.  1) and I +  GA-model (Eq.  2); h is 
a vector of epistatic genomic values for the lines with 
h ∼ N

(
0,HNOIA�

2
h

)
 , where �2

h
 is the genomic epistatic 

variance and HNOIA is the epistatic relationship matrix con-
structed based on Vitezica et al. (2017):

where the ⊙ operator represents the Hadamard product 
between matrices, and the term tr

(
GNOIA ⊙ GNOIA

)
∕n is 

the trace for the GNOIA ⊙ GNOIA matrix, which standardize 
HNOIA to a variance one.

As explained in the introduction, the model following 
NOIA parametrization is equivalent to a EG-BLUP model fol-
lowing VanRaden (2008) coding since in the current scenario, 
only additive and additive-by-additive effects are considered in 
the models, and no dominance effect is present in the popula-
tion (Joshi et al. 2020).

Ha =

⎛
⎜⎜⎜⎜⎜⎝

hai
.

.

.

han

⎞
⎟⎟⎟⎟⎟⎠

ha1j =

⎧
⎪⎨⎪⎩

−
�
pAa − 2paa

�
−
�
1 − pAa − 2paa

�
−
�
2 − pAa − 2paa

� for genotypes

⎧
⎪⎨⎪⎩

AA

Aa

aa

(4)y = Xb + Z1l + Z3g + Z4h + Z2f +

9∑
i=1

Zi+4s + e

(5)HNOIA =
GNOIA ⊙ GNOIA

tr
(
GNOIA ⊙ GNOIA

)
∕n
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Variance components and heritability

The estimation of variance components (VC) was performed 
using the Average Information Restricted Maximum Likeli-
hood (AI-REML) algorithm in the DMU software (Madsen 
and Jensen 2013). The phenotypic variance of the plot ( �2

P
 ) 

for the I +  GA-model (Eq. 2) was calculated as:

where �̂�2
l
 is the estimated variance of the line that cannot be 

attributed to the markers; �̂�2
g
 is the genomic estimated addi-

tive variance; �̂�2
f
 is the line by environmental estimated vari-

ance; 9�̂�2
s
 is the estimated spatial variance for an individual 

plot ( ̂𝜎2
s
 ) multiplied by nine, which is the total number of 

plots considered as random effect for each observation; �̂�2
e
 is 

the estimated variance of residuals. Narrow-sense (Eq. 7) 
and broad-sense (Eq.  8) plot heritabilities for the 
I +  GA-model (Eq. 2) were estimated as:

Additionally, for the I +  GA +  GAA-model (Eq. 4), the esti-
mated epistatic variance ( ̂𝜎2

h
 ) was considered in the calcula-

tion of broad-sense heritability and total phenotypic variance 
( ̂𝜎2

P
 ) for this model. For the I-model, only the broad-sense 

heritability was calculated. The total genetic variance for 
each model ( ̂𝜎2

G
 ) was defined as �̂�2

l
 for the I-model, �̂�2

l
 + �̂�2

g
 for 

I +  GA-model, and �̂�2
l
 + �̂�2

g
 + �̂�2

h
 for the I +  GA +  GAA-model.

Cross‑validation schemes and model validation

The PA ( rĝ,p ) of the models was evaluated using two cross-
validation (CV) schemes: (i) leave-one-line-out (LOO), and 
(ii) leave-one-breeding-cycle-out (LSO) CVs. The LOO CV 
scheme was used to get the PA with the largest reference 
population possible and investigate the potential perfor-
mance of the genetic models on PA. The LOO strategy was 
performed by masking the phenotype of a single line and 
using the remaining lines to predict the GEBV and the 
Genomic Estimated Epistatic Value (GEEV) of the masked 
line. This methodology was repeated n-times (n = no. of 
lines = 2060) until all lines were predicted. The LSO CV was 
used to measure the PA of genetic models in conditions 
closer to those observed in wheat breeding programs. For 
LSO the phenotypes from a breeding cycle were masked, 
and the information from the remaining breeding cycles was 
used to predict the genetic values. This process was repeated 
n-times (n = no. of breeding cycles = 7) until all breeding 
cycles were predicted. The PA was calculated as the Pearson 

(6)�̂�2
P
= �̂�2

l
+ �̂�2

g
+ �̂�2

f
+ 9�̂�2

s
+ �̂�2

e

(7)ĥ2 = �̂�2
g
∕�̂�2

P

(8)Ĥ2 =
(
�̂�2
l
+ �̂�2

g

)
∕�̂�2

P

correlation between the vector of all predictions and the lines 
averages after correcting for the fixed effects. The predicted 
values were the additive predicted values (predicted GEBVs) 
for the I +  GA-model and I +  GA +  GAA-model, and the addi-
tive (predicted GEBVs) plus epistatic (predicted GEEVs) 
values for the I +  GA +  GAA-model. The fixed effects were 
estimated in a model using the complete phenotypic infor-
mation. The line averages were computed first subtracting 
the estimates of the fixed effects from each plot observation 
and then averaging the values of the lines without fixed 
effect across year-locations and repetitions. To contrast the 
PA for models in the LOO CV scenario, an ordinary non-
parametric bootstrap with replacement based on a sample 
size equal to n = 2060 (full sample size), and 10,000 repli-
cates was performed. In each bootstrap replication, the PA 
was recorded until reaching 10,000 bootstrap-based PAs, and 
the standard error of PAs was obtained. The bootstrap pro-
cedure was per formed for  I  +  GA-model  and 
I +  GA +  GAA-model, and a two-tailed paired t-test was used 
to contrast the bootstrap PAs from both models (significance 
threshold set at 0.01). The relative difference (RD) in PA 
between prediction for the additive genetic effect using 
I +  GA-model (GEBVs) and total genetic effect using 
I +  GA +  GAA-model (GEBVs + GEEVs) was estimated as: 
RD =

I+GA+GAA-modelrĝ,p−I+GA-modelrĝ,p
I+GA-modelrĝ,p

 . The maximum potential 

PA was calculated for the I +  GA-model and for the GEBVs 
of the I +  GA +  GAA-model as: 

√
nh2∕

(
1 + (n − 1)h2

)
 , where 

n is the average number of lines repetitions, and for the 
GEBVs + GEEVs of the I +  GA +  GAA-model using the same 
equation but with the proportion of total variance explained 
by additive plus epistatic effects instead of h2.

The statistics for bias ( �wp ) and variance inflation ( bw,p ) 
in the predicted genetic values were estimated according to 
the LR method (Legarra and Reverter 2018). The �wp was 
calculated as �wp = E

(
ûp − ûw

)
 ; where ûp represents the 

mean of the genomic estimated values with “partial” (sub-
script p) information (predictions for all genotypes from 
CVs when their own phenotypes were masked, e.g., 2060 
“partial” dataset of one line and seven “partial” dataset of 
one breeding cycle were generated for LOO and LSO CVs, 
respectively), and ûw represents the mean of the genomic 
estimated values with “whole” (subscript w) information 
(estimations with complete phenotypic information for all 
genotypes). The statistics �wp has an expected value of 0 
when the estimations are unbiased. The bw,p was calculated 
as the regression of estimated values obtained with whole 
information (subscript w) on the estimated with partial infor-
mation (subscript p), bw,p =

cov(ûw,ûp)
var(ûp)

 . The statistic bw,p has 

an expectation E
(
bw,p

)
= 1 when there is no under- or over-

dispersion in the predictions. Additionally, the Pearson cor-
relation was used to compare predictions between models, 
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where the correlation between the estimated values with 
whole information for the I +  GA-model and the 
I +  GA +  GAA-model ( �I+GA-modelGEBV ,I+GAA+GAA-modelGEBV and 
�I+GA-modelGEBV ,I+GA+GAA-modelGEEV ) was calculated.

Results

Phenotyping and genotyping

The descriptive statistics for grain yield are presented in 
Table 1. The average yield was 8.71 kg of grain for an 
8.25  m2 plot, ranging from 3.85 to 12.35 kg/8.25  m2, and the 

coefficient of variation was 11.27% when using the simple 
SD of all observations.

A total of 10,688 SNPs passed the quality control filters 
and were used to build the genomic relationship matrices. 
According to the heat map and the principal component 
analysis of the G-matrix (Fig. 1), there was no clear sepa-
ration of breeding cycles. However, there was a trend that 
lines coming from the first four breeding cycles were more 
separated by the first principal component from lines com-
ing from last three breeding cycles. The first and second 
principal components together explained 52.8% of the total 
variance (40.4 and 12.4% of the variance for first and second 
principal component, respectively) showing that there are 
strong relationships between the lines included in the study. 
The observed level of heterozygosity of the lines had an 

Table 1  Descriptive statistics 
for the yield of F6 wheat 
breeding lines

*Units of measure: kg grain/8.25  m2; No.: number; SD: standard deviation; Min: Minimum; Max: Maxi-
mum

Breeding cycle No. of lines No. of plots Average (SD)* Min. value* Max. value* Coefficient of 
variation (%)

1 325 4080 8.77 (0.76) 5.28 11.17 8.67
2 325 3408 8.66 (0.79) 3.85 11.00 9.10
3 245 2862 8.65 (1.16) 4.68 11.46 13.35
4 336 3360 8.28 (1.09) 4.99 11.65 13.19
5 159 954 9.14 (0.99) 6.10 11.33 11.03
6 358 1789 8.59 (0.46) 7.06 10.25 5.36
7 312 2491 9.35 (1.06) 6.04 12.36 12.40
Total 2060 18,525 8.71 (0.98) 3.85 12.35 11.27

Fig. 1  Genomic relationship between the 2060  F6 lines from 2013 to 
2019 breeding cycles. a Heat map of G-matrix, red colors represents 
more related individuals and yellow colors less related. b Principal 
component analysis (PCA) of G-matrix. The colors of the PCA repre-

sent the different breeding cycles to which the lines correspond. The 
variances explained by PCA1 and PCA2 are 40.4 and 12.4%, respec-
tively (color figure online)
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average value of 2.70% as expected after five generations 
of selfing.

Variance components and heritability

Three models differing in how the genetic components 
were treated (Eqs. 1, 2, and, 4) were used to estimate VC 
and the narrow-sense and broad-sense plot heritabilities 
(Table 2). The estimates for total phenotypic ( ̂𝜎2

P
 ) and error 

variance ( ̂𝜎2
e
 ) were similar for all models. The highest 

variance was attributed to the genotype-by-environment 
interaction, which explained around 40% of the total vari-
ability. The estimated total genetic variance ( ̂𝜎2

G
 ) was larg-

est when the I +  GA-model (0.104) or I +  GA +  GAA-model 
(0.098) were used, followed by the baseline model with 
the lowest value (0.089). The models using genomic infor-
mation captured around 15% more �̂�2

G
 compared to the 

baseline model.

The partition of total genetic variance �̂�2
G

 esti-
mated by the different models is shown in Fig. 2. For 
the I +  GA-model, the estimated additive variance ( ̂𝜎2

g
 ) 

was approximately half of the total genetic variance �̂�2
G

 
(48.8%). The partition of the estimated variances for the 
I +  GA +  GAA-model changed considerably compared to the 
I +  GA-model. The estimate of additive genetic variances 
( ̂𝜎2

g
 for I +  GA +  GAA-model) was reduced to approximately 

20%, and the estimated epistatic variances ( ̂𝜎2
h
 ) represented 

65.4% of the total genetic variance �̂�2
G

 . Note that the inclu-
sion of an epistatic term captured much of what had pre-
viously been part of the estimated line and additive vari-
ances in the I +  GA-model. The reduction in the additive 
variance when the epistatic effect is included in the model 
can be seen as a signal of lack of orthogonality between 
the additive and additive-by-additive genetic effects.

The  H2 estimate was slightly different for the genomic 
models I +  GA-model (0.31) and I +  GA +  GAA-model (0.30), 
and in both cases, it was higher than the I-model (0.28), 

Table 2  Estimation of variance component, narrow-sense, and broad-sense plot heritabilities

*The narrow-sense heritability  (h2) was estimated only for the I +  GA-model, due to the lack of orthogonality of genetic components,  h2 was not 
representative for the I +  GA +  GAA-model. �2

Line
 : variance not captured by markers; �2

Additive
 : additive variance; �2

Epistatic
 : epistatic variance; �2

Spatial
 : 

spatial variance; �2

LxE
 : line by environment interaction variance; �2

error
 : error variance;  H2: broad-sense heritability. The values between parenthe-

ses are the standard errors (SE) of the estimates

Models �2

Line
�2

Additive
�2

Epistatic
�2

Spatial
�2

GxE
�2

error
Plot herit-
abilities

h2* H2

I-model 0.089 (0.004) – – 0.043 (0.002) 0.131 (0.003) 0.057 (0.001) – 0.28
I +  GA-model 0.053 (0.004) 0.051 (0.007) – 0.044 (0.002) 0.131 (0.003) 0.057 (0.001) 0.15 0.31
I +  GA +  GAA-model 0.014 (0.005) 0.020 (0.006) 0.064 (0.008) 0.044 (0.002) 0.131 (0.003) 0.057 (0.001) – 0.30

Fig. 2  Percentage of genetic variances (blue: �2

Line
 , green: �2

Additive
 , 

yellow:�2

Epistatic
 ) captured by the different models. a Genetic variance 

estimated for the I-model; the variance of the line ( �2

Line
 ) represents a 

combination of additive plus non-additive variances. b Genetic vari-
ances estimated for I +  GA-model; �2

Line
 represents the non-additive 

variance plus the additive variance not captured by SNPs, �2

Additive
 

represents the additive variance captured by SNPs. c The genetic 

variances estimated for the I +  GA +  GAA-model. Under an orthogonal 
partition of variances into genetic components, �2

Line
 is expected to 

reflect the additive and non-additive variance that was not captured by 
SNPs, and �2

Additive
 and, �2

Epistatic
 are expected to represent the additive 

and the pairwise additive-by-additive epistatic variance captured by 
SNPs, respectively (color figure online)
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which did not include genomic information. The narrow-
sense heritability estimated  (h2) for the I +  GA-model on the 
plot level had a value of 0.15. For the I +  GA +  GAA-model, 
 h2 was not estimated because the estimation of additive vari-
ance may be especially affected due to the lack of orthogo-
nality among genetic effects when the epistatic genetic effect 
is considered in the model.

Genomic prediction

The PA between the lines averages after correcting for 
fixed effects and the predicted genetic values ( rĝ,p ) was 
evaluated for the proposed models using LOO and LSO 
CV schemes (Fig. 3). The I-model was not included in 
this section because such a model has no PA in CVs due 
to the model assumptions of independence between lines.

In the LOO CV, the highest PA was observed for pre-
diction of total genetic merit (additive plus epistatic 
genetic effects), combining the predictions for the addi-
tive effect (GEBVs) plus the predictions for the epistatic 
effect (GEEVs) from the I +  GA +  GAA-model (PA = 0.45). 
The theoretical maximum PA was also the highest for 
the I +  GA +  GAA-model when additive plus epistatic 

predictions were combined (green bars in Fig. 3). The 
PA of the I +  GA +  GAA-model for total genetic merit 
(PA = 0.45) was contrasted to the PA of the I +  GA-model 
for the additive effect (PA = 0.39), and it was significantly 
different in a two-tailed paired t-test (significance thresh-
old set at 0.01), showing an increase of 16.5% in PA for 
the I +  GA +  GAA-model. For the LSO CV scheme, the 
highest PA between predicted genetic values and cor-
rected phenotypes was reached when the GEBVs from the 
I +  GA-model were used, PA = 0.20, while the PA using 
the GEBVs plus GEEVs from I +  GA +  GAA-model was 
0.19. Nevertheless, the difference in PA between models 
for LSO CV was not significant in a two-tailed paired t 
test (significance threshold set at 0.01).

Model validation

The regression coefficient ( bw,p ), used as a test of variance 
inflation in the predicted genetic effects, was measured as the 
slope of the regression between observed and predicted val-
ues (Fig. 4). In the LOO CV, the bw,p did not present signifi-
cant under- or over-dispersion since it had values around 1 
for both models (Fig. 4a–c). The GEBVs from I +  GA-model 

Fig. 3  Barplot of predictive abilities for I +  GA-model and 
I +  GA +  GAA-model in leave-one-line-out (LOO) and leave-one-
breeding-cycle-out (LSO) cross-validations based on bootstrap distri-
bution, r = 10,000. ADD: predicted additive values (GEBVs), EPI: 
predicted epistatic values (GEEVs), ADD + EPI: sum of ADD and 
EPI. Green lines are the theoretical maximum predictive ability (PA). 

The maximum PA for the I +  GA-model and for the ADD of 
I +  GA +  GAA-model were calculated as: 

√
nh2∕

(
1 + (n − 1)h2

)
 , 

where n is the average number of lines repetitions; the maximum PA 
for ADD + EPI of I +  GA +  GAA-model was calculated using the pro-
portion of total variance explained by additive plus epistatic effects 
instead of h2 (color figure online)
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and I +  GA +  GAA-model had a bw,p value of 0.99, while the 
GEEVs presented a value of 1.04. The bw,p was also esti-
mated for the combination of I +  GA +  GAA-model predic-
tions (GEBVs + GEEVs, data not displayed in the plot), 
which presented an intermediate value of 1.02. In the LSO 
CV, the bw,p statistic indicates over-dispersion (inflation) for 
predicted values since it had values below 1 (Fig. 4d–f). The 
GEBVs from I +  GA-model and I +  GA +  GAA-model had bw,p 
values of 0.85 and 0.91, respectively, while the GEEVs from 
the I +  GA +  GAA-model had a lower bw,p value of 0.70. The 

bw,p for the combination of I +  GA +  GAA-model predictions 
(GEBVs + GEEVs, data not displayed in the plot) presented 
an intermediate value of 0.78.

The bias in prediction of genetic values ( �wp ) was ana-
lyzed following the LR method (Table 3). For both LOO 
and LSO CVs, all the predictions showed a �wp close to 
0 for I +  GA-model and I +  GA +  GAA-model, which reflects 
unbiased estimation for all cases.

Fig. 4  Slope of regression ( bw,p ) among observed and predicted 
genetic values for I +  GA-model and I +  GA +  GAA-model in leave-
one-line-out (LOO) cross-validation (a–c) and leave-one-breeding-
cycle-out (LSO) cross-validation (d–f). The yellow lines represent the 
line for regression of observed on predicted genetic values. The blue 

lines represent a reference regression line with intercept 0 and slope 
1. ADD: predicted additive values (GEBVs), EPI: predicted epistatic 
values (GEEVs). The numeric values into each plot represent the 
coefficient of regression ( bw,p ) for each case (color figure online)

Table 3  Estimated bias ( �
wp

 ) 
for predictions of I +  GA-model 
and I +  GA +  GAA-model

ADD: predicted additive values (GEBV), EPI: predicted epistatic values (GEEV)

Model Model Genetic effect Bias ( �wp)

Leave-one-line-out
cross-validation

I +  GA-model ADD 0.0005
I +  GA +  GAA-model ADD 0.0004

EPI 0.0013
Leave-one-breeding-cycle-out
cross-validation

I +  GA-model ADD  − 0.0108
I +  GA +  GAA-model ADD  − 0.0045

EPI  − 0.0123
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Correlation between G‑BLUP and NOIA predictions

The additive and epistatic predictions using complete 
phenotypic information for the I +  GA-model and the 
I +  GA +  GAA-model were compared using Pearson’s 
correlation ( �G-BLUPwNOIAw

 ). The correlation for GEBVs 
between I +  GA-model and I +  GA +  GAA-model had a high 
value of 0.94, while the correlation between GEBVs from 
I +  GA-model and GEEVs from I +  GA +  GAA-model had 
a lower value of 0.65. It was also reflected in the ranking 
of the best lines for the different genetic effects, where 
7 of the 10 lines with highest GEBVs were common for 
predictions of I +  GA-model and I +  GA +  GAA-model, 
but when GEBV from I +  GA-model and GEEV from 
I +  GA +  GAA-model were compared, only 3 of 10 lines 
were common.

Discussion

In this study, we investigated the performance of the NOIA 
parametrization (I +  GA-model and I +  GA +  GAA-model) in 
the estimation of VC for a set of advanced wheat breeding 
lines from the commercial breeding company Nordic Seed 
A/S. The I +  GA +  GAA-model was not able to achieve an 
orthogonal estimation of genetic variance components as 
revealed by the difference of the estimated additive vari-
ance between I +  GA-model and I +  GA +  GAA-model. We 
also investigated the PA for the developed models in two 
CVs schemes: (i) leave-one-line-out and (ii) leave-one-
breeding-cycle-out. We observed a significant increase of 
16.5% (P-value < 0.01) in the PA for the LOO CV when 
I +  GA +  GAA-model was used to predict total genetic merit 
compared to I +  GA-model predictions. However, the 
improvement for including epistasis was not observed in 
the LSO CV, where no significant differences between PA 
from I +  GA-model and I +  GA +  GAA-model were observed.

Variance components

The partition of genetic variance through the NOIA 
parametrization led to problems of non-orthogonal-
ity of genetic effects. The clearest signal of lack of 
orthogonality was observed in the difference of the 
estimated additive variance between I +  GA-model and 
I +  GA +  GAA-model. When the epistatic effect was present 
in the I +  GA +  GAA-model, it caused a considerable reduc-
tion in the additive variance (58.4% of reduction) com-
pared to the I +  GA-model estimation. The non-orthogonal 
partition of genetic variances can most likely be caused 
as result of a mix between lack of independence of causal 
effect, lack of independence of markers (both influenced 

by LD), and for having linked markers instead of causative 
mutations (Wang and Zeng 2006; Hill and Mäki‐Tanila 
2015; Vitezica et al. 2017). The lack of orthogonality of 
genetic effects can be also evidenced in the high nega-
tive correlation (−0.36) among additive and additive-by-
additive epistatic variance component estimates for the 
I +  GA +  GAA-model. For an orthogonal partition of vari-
ance into genetic components, the correlation between 
the variance component estimates is expected to be close 
to 0 (correlation of zero indicates independence between 
model effects). These results have also been consistent 
with the simulation study performed by Vitezica et al. 
(2017), where they tested the performance of the NOIA 
parametrization for an LD simulated population, and con-
cluded that VC were wrongly estimated. In our study, neg-
ative correlations among genetic variance estimates were 
also observed between the line and additive effect for the 
I +  GA-model (−0.44) and line and epistatic effects for the 
I +  GA +  GAA-model (−0.74). These trends are expected 
since the line (l) effect in the I-model can be seen as a mix 
of additive and non-additive effects. Therefore, when the 
additive effect is included in the I +  GA-model, it takes the 
proportion of additive variance explained by SNPs. Then, 
the line covariance of l in the I +  GA-model can be inter-
preted as an estimate of remaining non-additive effects 
which can be partially captured by the epistatic effect in 
the I +  GA +  GAA-model.

Narrow and broad‑sense heritability

The interpretation of the  h2 is strongly related to the orthog-
onality of the estimated genetic variances. When additive 
and non-additive genetic effects are considered in genomic 
models, the lack of orthogonality affects the estimation of  h2. 
Due to this issue, we analyzed  h2 only for the I +  GA-model, 
which does not include the definition of a genomic epistatic 
term. Note that in our study, we have approached the her-
itability calculations considering the line effect ( l  ) in the 
models. This approach was used in order to have control for 
the genetic factors (additive and non-additive) that are not 
captured by the markers in the genomic terms. The  h2 esti-
mated using the I +  GA-model was 0.15, representing around 
half of the total genetic variation, and  H2 was 0.31 to 0.30 
for I +  GA-model and I +  GA +  GAA-model, respectively. The 
difference between  h2 and  H2 is given by non-additive vari-
ance and by remaining additive variance not captured by the 
markers (e.g., due to imperfect LD between markers and 
QTLs). The sizable difference between  h2 and  H2 may sug-
gest a significant non-additive effect for wheat grain yield 
in the analyzed population, which also agrees with prior 
expert-knowledge from the breeding company.
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Genomic predictive ability

The PAs estimated as the correlation between the line 
averages after correcting for fixed effects and the predicted 
values of the I +  GA-model and the I +  GA +  GAA-model 
were estimated for the LOO and LSO CV schemes. Note 
that while the LOO CV is useful for model comparison 
and investigating the potential PA of genetic models, this 
scheme provides higher PAs than expected for breeding 
situations (Shao 1993; Kohavi 1995); conversely, the LSO 
CV better reflects the conditions in a breeding scenario 
where new lines must be predicted before phenotypes are 
obtained. In the LOO CV, the PA for I +  GA +  GAA-model 
combining the predictions for the additive effect (GEBVs) 
plus the predictions for the epistatic effect (GEEVs) out-
performed the I +  GA-model PA using GEBVs with a 
significant (P-value: 0.01) increase of 16.5%. However, 
the improvement in PA for including epistasis was not 
observed when the LSO CV was used. The differences in 
the performance of models in the LOO and LSO CVs indi-
cates a strong influence of relationships among individuals 
from the reference and validation population over the PA, 
as close relatives like full sibs are excluded in the LSO 
scenario. A possible explanation for the effect of genetic 
relationships on the performance of epistatic predictions 
could be related to the fact that the additive-by-additive 
effect is the result of a pairwise interaction, and it is more 
likely that the pairs involved in the interaction are present 
in close relatives as usually happen in the LOO CV but not 
in the LSO CV. Another factor that could be affecting the 
predictive performance is a weak LD for the additive-by-
additive effects; while for the additive effect of a gene, the 
LD depends on the genetic distance between the gene and 
the linked marker, for the epistatic effect of a pair of genes, 
the LD depends on the product of the genetic distance 
between each gene of the pair and their linked markers, 
which may result in poorer predictive performance when 
relationship in reference population are lower.

In the literature, the value of including epistasis in GP 
has been population dependent and has varied among stud-
ies. While in some studies the PA increased (Heslot et al. 
2012; He et al. 2016), in others, it changed very little (Jar-
quín et al. 2014) or even decreased (Lorenzana and Bernardo 
2009). Increases in PA ranging from 4 to 25% have been 
found for random folds CV (fivefold or tenfold) when shift-
ing from additive to additive plus epistatic effects models 
in wheat (Crossa et al. 2010; Heslot et al. 2012; Jiang and 
Reif 2015; He et al. 2016), which agrees with the range of 
improvement found in our study for the LOO CV. Recently, 
Schrauf et al. (2020) found a better PA for non-additive 
models even when non-additive variance was expected to 
be low. They attributed this improvement to a better capacity 
of epistatic models to capture additive variance (of causal 

loci) associated with non-additive apparent effects (on mark-
ers) at low marker densities (“Phantom epistasis”). These 
authors have warned on the risk of over-interpretation of 
the biologically functional meaning of estimated statistical 
parameters. While a straightforward biological interpretation 
is to relate the highest PA of epistatic models to an underly-
ing genetic architecture of substantial additive-by-additive 
epistasis, it could also reflect “Phantom epistasis” due to 
incomplete LD due to low marker density. Contrasting these 
results, Lorenzana and Bernardo (2009) using a fivefold CV 
found a poorer performance for predictions when the model 
accounted for additivity and epistasis in comparison with 
a model accounting only for additivity. The discrepancies 
among the results found may be explained by differences 
in marker density, the level of additive-by-additive epista-
sis among the evaluated populations. Forneris et al. (2017) 
explored the effect of including epistasis in the evaluation 
model (knowing the causal mutations), and they reported 
that including epistasis in the models when there was none 
led to lower prediction accuracies.

Beyond the discussion of whether the improvement in PA 
comes from a real reflection of additive-by-additive epista-
sis or from apparent epistasis, this does not undervalue the 
potential of epistatic models to improve GS. Therefore, the 
statistical advantage of improving GS is recognized and the 
use is encouraged. In addition, the expert knowledge about 
the genetic architecture of the trait as well as the type of 
population and species may be relevant factors to determine 
the potential of including epistasis in GS.

Inflation of variance and bias

The test for variance inflation in the predicted genetic effects, 
calculated as the regression of estimated values with whole 
information on estimated with partial information ( bw,p ), led 
to regression coefficients close to 1 for the LOO CV, which 
means that none of the proposed models had a significant 
under- or over-dispersion in their predictions. Note that the 
LOO CV represents an optimal scenario due to the use of 
the largest possible reference population for predictions, and 
therefore, under- or over-dispersion in predictions of genetic 
values is in general not observed. In the LSO, values of bw,p 
lower than 1 were observed for predictions of both genetic 
effects (GEBVs and GEEVs), indicating over-dispersion of 
genomic predicted values. Particularly, predictions of epi-
static values (GEEVs) for the I +  GA +  GAA-model had the 
lowest bw,p value ( bw,p = 0.70), suggesting that the epistatic 
predictions were more sensitive to the lack of information 
in the reference population. The bias ( �wp ) of predictions 
had coefficients close to 0 for GEBVs and GEEVs in both 
CVs utilized; it indicates that unbiased genomic values were 
reached for all proposed models.
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Correlation between G‑BLUP and NOIA estimates

We found that Pearson’s correlation between GEBVs from 
I +  GA-model and I +  GA +  GAA-model was high (0.94) com-
pared to the correlation between GEBVs and genomic esti-
mated epistatic values (0.65). Accordingly, differences were 
also evidenced in a change of ranking between lines with 
superior additive value (based on GEBVs) and lines with 
superior total genetic value (based on GEBVs plus genomic 
estimated epistatic values), indicating that the use of 
I +  GA +  GAA-model to predict lines with higher total genetic 
value led to a different selection of candidate lines than using 
the I +  GA-model. These differences could be exploited by 
addressing the selection of crossing parents based on the 
I +  GA-model predictions and commercial varieties based on 
the I +  GA +  GAA-model predictions.

As reflected by the LOO CV, the current study confirms 
the potential of increasing the PA for total genetic merit by 
including epistasis in GS models. Importantly, the differ-
ences found for I +  GA-model and I +  GA +  GAA-model must 
not be interpreted as exclusive for the NOIA parametrization 
since other codings such as for EG-BLUP based on Su et al. 
(2012) or Martini et al. (2016) are equivalent in the cur-
rent scenario (Joshi et al. 2020). Further studies are required 
to: (i) investigate the influence of genetic relationships on 
the performance of epistatic predictions and develop CVs 
schemes that allow to capitalize the benefit of epistatic 
models in wheat breeding programs, (ii) develop breeding 
programs that consider more elaborate mating schemes in 
order to improve the genetic relationships between breeding 
cycles, and (iii) develop a GP model in which the inclusion 
of pairwise interaction effects has minimal impact on the 
estimates of additive effects and their variance.

Conclusions

In this research, we found that the orthogonal partition of 
genetic variances into additive and additive-by-additive 
epistatic effects was not possible. Nevertheless, includ-
ing additive-by-additive epistasis in a genomic prediction 
model increased predictive ability for total genetic merit 
significantly (16.5%) compared to an additive genomic-
based model in a leave-one-line-out cross-validation. The 
advantage of including epistasis in predictive ability was 
not observed for a leave-one-breeding-cycle-out cross-val-
idation. Further studies are required to: (i) investigate the 
influence of genetic relationships on the performance of epi-
static predictions and develop CVs schemes that allow to 
capitalize the benefit of epistatic models in wheat breeding 
programs, (ii) develop breeding programs that consider more 
elaborate mating schemes in order to improve the genetic 
relationships between breeding cycles, and (iii) develop a GP 

model in which the inclusion of pairwise interaction effects 
has minimal impact on the estimates of additive effects and 
their variance.
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