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that the primary infection efficiency was lower in 
resistant varieties, suggesting that differences were 
largely due to reduced secondary spread. Despite 
secondary spread being attributed to splash disper-
sal which is exacerbated by wind and rain, the wet-
ter sites of Pila and Victoria in south Luzon tended 
to have lower infection rates than the drier sites in 
central Luzon. Likewise, we found spread in the dry 
season can be substantial and should therefore not be 
ignored. In fact, we found site to be a greater deter-
minant of the number of infection attempts suggest-
ing that other environmental and management factors 
had greater effect on the disease than climate. Pri-
mary infection was characterised by spatially-random 
observations of disease incidence. As the season pro-
gressed, we observed an emerging short-range (1.6 
m–4 m) spatial structure suggesting secondary spread 
was predominantly short-range, particularly where 
the resistant variety was grown.

Keywords Disease incidence · Epidemiological 
modelling · Primary infection · Spatial statistics · 
Spatial structure

Introduction

Bacterial leaf blight caused by Xanthomonas ory-
zae pv. oryzae (Ishiyama, 1922) is one of the most 
important diseases of rice (Choi et al., 1998; Savary 
et  al., 2000a; Savary et  al., 2000b). It is destructive 

Abstract Bacterial blight (X. oryzae pv. oryzae) is 
a serious disease in rice across the world. To better 
control the disease, it is important to understand its 
epidemiology and how key aspects of this (e.g. infec-
tion efficiency, and spatial spread) change according 
to environment (e.g. local site conditions and season), 
management, and in particular, variety resistance. To 
explore this, we analysed data on the disease progress 
on resistant and susceptible varieties of rice grown at 
four sites in the Philippines across five seasons using 
a combination of mechanistic modelling and statisti-
cal analysis. Disease incidence was generally lower in 
the resistant variety. However, we found no evidence 
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to high-yielding varieties in both temperate and tropi-
cal regions, especially in Asia. Early and severe infec-
tions of X. oryzae pv. oryzae can result to more than 
70% yield loss owing to reductions of physiological 
(photosynthetic rate, stomatal conductance to  CO2, 
water use efficiency, and leaf transpiration rate) and 
agronomic components of rice (1000 grain weight 
and percent filled spikelets; Rao and Kauffman, 1977; 
Reddy et  al., 1979; Reddy and Nayak, 1984; Ou, 
1985; Mew et  al., 1993; Kumar et  al., 2013). Infec-
tions at the later booting stage, do not have such a 
significant effect on yield but result in poor quality 
grains and a high proportion of broken kernels.

The disease is polycyclic in nature. It survives 
between seasons on rice stubble and on weeds, 
considered the primary sources of inoculum. Xan-
thomonas oryzae is short-lived outside of its host and 
so does not survive well in the soil and there are con-
tradictory reports of its survival on seed. The patho-
gen infects wounds and water pores in the plant. It 
multiplies in intercellular spaces and bacterial ooze 
is produced on the leaf which can be passed to other 
plants by direct contact of foliage and through irri-
gation water (Mundt et  al., 1999; Cottyn and Mew, 
2004; White and Yang, 2009). Longer-range spread 
is associated with strong winds and typhoons, which 
both disperse inoculum and cause wounds that make 
the plants susceptible in infection (Mundt et  al., 
1999). Lesions that result from infection still occur on 
resistant varieties but to a lesser extent, as the patho-
gen is enveloped by plant polymers making the bacte-
ria unable to colonise the intercellular spaces (Cottyn 
and Mew, 2004).

Previous reports showed that climatic conditions 
(temperature at 25 – 30 °C, strong winds, rainfall, 
and high air humidity) accompanied by inappropri-
ate cultural management (use of susceptible varie-
ties and excessive application of nitrogen) are among 
the major factors that favour the development of the 
disease and epidemic spread (Exconde et  al., 1973; 
Horino et  al., 1982; Reddy and Nayak, 1984; Ou, 
1985; Diekmann and Bogyo, 1992; Savary et  al., 
1995). The use of resistant varieties remains the most 
effective and economical control against bacterial 
leaf blight of rice (Chukwu et  al., 2019). This tech-
nique commonly starts with breeding either through 
conventional or molecular approaches. The resistance 
genes (Xa) widely used in the breeding program for 
bacterial blight resistance were specific to known 

races of the pathogen. Of the Xa genes identified from 
the wild and cultivated rice accessions, race-specific 
Xa4, xa5, xa13, and Xa21 have been incorporated 
into modern rice varieties (Singh et  al., 2001; Khan 
et al., 2014; Pradhan et al., 2015). The development 
and use of modern molecular breeding techniques 
has fast-tracked gene discovery and has shortened the 
generation of elite rice lines with novel Xa genes for 
varietal release from 8-9 years to 3-4 years (Dossa 
et al., 2015). This means that real-time deployment of 
resistant varieties with various combinations of resist-
ance genes can be customized through gene rotation 
or mixture in a single genetic background.

Strategic deployment of bacterial blight-resistant 
varieties is a sustainable way of achieving long-last-
ing and stable resistance, in ways that limit the selec-
tion of virulent population that may eventually lead to 
an outbreak. Several studies have shown the effective-
ness of Xa genes and deployment methods in slowing 
down bacterial blight epidemics in the field. Reddy 
and Nayak (1984) noted a significant reduction of 
bacterial blight severity in a field planted with a mix-
ture of resistant and susceptible genotypes. Ahmed 
et al. (1997) found a lower disease severity and inci-
dence on a rice genotype with combinations of Xa 
genes, particularly Xa4/xa5 pyramid, than the single 
most effective gene deployed singly. Moreover, Xa7 
effectively reduced bacterial blight epidemics in the 
field even with the presence of Xoo population viru-
lent to the target resistance gene (Ona et al., 1998).

While several studies have demonstrated the 
effectiveness of Xa genes in slowing down bacterial 
blight epidemics in the field, the dynamics of bacte-
rial blight development and the processes affecting 
rates of epidemic development among varieties with 
resistance genes were not explored. In this study, we 
set out to compare the effect of resistance genes on 
the epidemiology of rice bacterial leaf blight and 
how these might be affected by site and season. To do 
this, we gathered data on the bacterial blight progress 
(measured as infection incidence) in field trials from 
four sites in the Philippines (two in central Luzon and 
two in southern Luzon) across five consecutive plant-
ing seasons. We fitted a model of the disease dynam-
ics to the data and also used statistical analyses to 
determine the key factors that affect the dynamics of 
the epidemic. Our objective was to determine to what 
extent the resistance genes affected the disease inci-
dence, primary and secondary infection efficiency, 
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and the spatial spread of the disease. Additionally, we 
wanted to determine whether differences between the 
lines were more affected by site or season.

Materials and Methods

Field experiments

Four monitoring sites for X. oryzae pv. oryzae 
were established in the Philippines. Two sites were 
located in the municipalities of Pila (14°13’21”N 
121°21’9”E) and Victoria (14°11’6”N 121°20’48”E) 
in the Laguna province. The other two sites were in 
the Nueva Ecija province, in the barangays of Malay-
antoc  in the Santo Domingo municipality and Mali-
gaya  in the city of  Muñoz (located at 15°40’26”N, 
120°53’36”E, and 15°40’35”N, 120°52’47”E, respec-
tively; Fig.  1). Xanthomonas oryzae pv. oryzae dis-
ease had been previously observed at all four of the 
experimental sites. Monitoring experiments were 

conducted for three wet seasons from 2016 to 2018 
and two dry seasons in 2017 and 2018. There were six 
plots at each site. Three were planted with a suscepti-
ble line (IR24) and three a pyramided line carrying 
three Xa resistance genes Xa4+xa5+Xa21 (IRBB57). 
A total of 400 hills were grown in each plot (40 x 10 
hills) with a 20 cm x 20 cm spacing between hills. 
Resistant and susceptible plots were alternately posi-
tioned across the site, with a 20 cm gap between 
plots, resulting in fields consisting of 40 x 60 hills. 
Transplanting was done using 21-day old seedlings 
with three seedlings per hill. In the Nueva Ecija sites 
a total rate of 72.8 kg N  ha-1, in the form of complete 
fertilizer (14-14-14) was applied in all plots. In the 
Laguna sites, a total rate of 27.6 kg N  ha-1 fertilizer 
was applied, in the form of urea (46-0-0). The dose 
at this site was relatively low because a high rate had 
been applied to these fields in the previous cropping 
season. All plots were irrigated after transplanting.

Natural infection of X. oryzae pv. oryzae on rice 
plants was monitored starting at the late tillering 

Fig. 1  The location of 
experimental sites. The 
two sites in the Laguna 
province are located in 
the municipalities of Pila 
(14°13’21”N, 121°21’9”E) 
and Victoria (14°11’6”N, 
121°20’48”E). The two 
sites in the Nueva Ecija 
province are located in the 
barangays of Malayan-
toc in the Santo Domingo 
municipality (15°40’26”N, 
120°53’36”E) and Mali-
gaya in the city of Muñoz 
(15°40’35”N, 120°52’47”E)
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stage (approx. 50-60 days after sowing). After the 
disease incidence was observed, assessments were 
done weekly until plants became too senescent to reli-
ably distinguish X. oryzae pv. oryzae lesions. Disease 
incidence of every hill was recorded and expressed as 
the number of tillers that were infected per hill (2,400 
hills per site).

Analysis with epidemiological models

An epidemiological model simulating the number of 
infected tillers (I) was fitted to data from both resist-
ant (R) and susceptible (S) varieties simultaneously. 
The model is given by

where İ(t) is the rate of change in the number of 
infected tillers in each plot; t is the days after trans-
plant (DAT); a represents the rate of infection from 
primary inoculum; ε represents the decay rate of the 
primary inoculum’s efficiency due to the combined 
factors of the rate of decay of the free-living bacte-
ria and the reduction in susceptibility of the rice plant 
as it matures post-transplant (e.g. due to heightened 
susceptibility at transplant due to transplant damage); 
τ is the approximate time when symptoms first show 
at a monitoring site; and, rS represents the secondary 
disease transmission rate, i.e. the rate that tillers get 
infected due to plant-to-plant spread. Process-based 
epidemiological models, such as this one, have been 
extensively used to model various plant pathosystems 
(see Jeger et  al. (2018) and references therein). We 
allowed for parameters a and r to be variety-specific 
as we expect differences in the infection efficiencies 

(1)
İR(t − 𝜏) = aR e(−𝜀 (t−𝜏)) + rRS IS(t − 𝜏),

İS(t − 𝜏) = aS e
(−𝜀 (t−𝜏)) + rS IS(t − 𝜏),

of the pathogen infecting the resistant and suscepti-
ble rice varieties. It is biologically plausible that there 
will be no effect of variety on ε and τ and so to be 
parsimonious with the model parameters used, we 
kept these parameters consistent across varieties. The 
model describes how newly infected tillers may come 
from one of two sources: primary and secondary 
inoculum. We model new infections to the resistant 
and susceptible variety caused due to primary inocu-
lum with the terms aR  e−ε(t − τ) and aS  e−ε(t − τ), respec-
tively. If ε, rRS and rS are set to zero, then the model 
reduces to a linear model with slope aR or aS and 
intercept −aRτ or −aSτ for the resistant or susceptible 
varieties, respectively. When the decay rate ε > 0, the 
model begins with a linear increase in infections from 
primary inoculum but eventually decreases until the 
primary inoculum is exhausted and no new infections 
occur. The secondary spread of the disease, which is 
described by the terms rRS IS(t − τ) and rS IS(t − τ) for 
the resistant and susceptible varieties, respectively, 
result in exponential growth of the number of infec-
tions. As described above, although the pathogen can 
cause visible lesions on the leaves of resistant vari-
eties these lesions tend to be small, indicating lower 
bacterial numbers and reduced ability to become a 
source of secondary infection (Webb et  al., 2010). 
Therefore, we assume that secondary spread from 
the resistant variety is negligible, and so the resist-
ant counterpart to rS, rR, is not included in the model. 
Instead, we include the possibility that the resistant 
plots may be infected by secondary spread from the 
susceptible plots that neighbour them at a rate, rRS. 
These parameters are summarised in Table  1. This 
model therefore comprises a combination of three 
types of behaviour (linear, linear with decay and 

Table 1  Table 
summarising the parameters 
of the model

Symbol Description Unit

İS, İR Rate of change in the number of infected tillers in the susceptible and 
resistant plots, respectively.

[tillers  day-1]

IS Number of infected tillers in the susceptible plot. [tillers]
t Days after transplant. [day]
τ Approximate time of first symptoms. [day]
aS, aR Rate of infection from primary inoculum. [tillers  day-1]
ε Decay rate of the primary inoculum’s efficiency. [day-1]
rS Rate of infection of susceptible variety from infected susceptible tillers. [day-1]
rRS Rate of infection of resistant variety from infected susceptible tillers. [day-1]
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exponential) relating the number of infected tillers 
over time.

At the end of the observational period there is 
a drop in the counts of infected tillers in the data 
(Fig. 2 & 3). This is because diseased tillers are no 
longer distinguishable from senesced leaves. These 
points were therefore not considered in the model 

fitting. The model was fitted to the data using non-
linear least squares. Parameters with zero estimates 
were removed from the model and the reduced 
model was refitted. In cases where the model fitting 
did not converge, we further reduced the number of 
parameters of the model by systematically fitting 
the model with one of the parameters removed, the 

Fig. 2  The total number of rice tillers per plot infected by 
Xanthomonas oryzae pv. oryzae. The plots were located at 
Pila and Victoria in the Laguna province. Two varieties were 
grown, one resistant to the disease the other susceptible. The 

points show the observations and the line the model fitted to 
the data represented by the grey points. Black points show data 
not used to fit the model

Eur J Plant Pathol (2022) 163:1–17 5
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reduced model with the best standard error was then 
selected. We used these statistics in t-tests to deter-
mine whether each parameter was significantly dif-
ferent from zero. We analysed these results to make 
deductions about the epidemiology of X. oryzae pv. 
oryzae.

Analysis with statistical models

To reveal the factors that make significant differences 
in the amount of infection, we fitted Linear Mixed 
effects Models (LMMs) to the data using the Gen-
stat statistical software package (VSN International, 

Fig. 3  The total number of rice tillers per plot infected by 
Xanthomonas oryzae pv. oryzae. The plots were located at 
Malayantoc and Maligaya in the Nueva Ecija province. Two 
varieties were grown, one resistant to the disease the other 

susceptible. The points show the observations and the line the 
model fitted to the data represented by the grey points. Black 
points show data not used to fit the model

Eur J Plant Pathol (2022) 163:1–176
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2019) to total incidence (I(t)) calculated by summing 
the total number of infected tillers in each plot, result-
ing in three replicate measurements per treatment. We 
considered the factors Susceptibility of the crop (with 
levels susceptible or resistant), Observation number, 
Season (with levels wet or dry) and Site (with levels 
Pila, Victoria, Malayantoc and Maligaya) as fixed 
effects, and Site/Year/Season/Treatment/Observa-
tion/Replicate as a random effect. We selected terms 
using backwards elimination according to the largest 
p-value given by F-tests. The final predictive model 
was chosen when all remaining terms gave significant 
values (P≤0.05) when dropped from the model.

To derive information about spatial structure of 
the disease and how it changes with crop, season, and 
location, we fitted variograms to the data on infected 
tillers across the resistant and susceptible plots for 
each observation date. The variogram is a tool in spa-
tial statistics that quantifies the spatial dependence 
in a variable of interest. While it has been widely 
used in soil science and ecology (Webster and Oli-
ver, 2007; San Martin et  al., 2018), it has also been 
used in plant pathology (Van de Lande and Zadoks, 
1999; Bedimo et al., 2007; Nkeng et al., 2017). The 
variogram is defined as the function that links the 
expected squared difference of a variable between any 
two places in a field

where Z(x) and Z(x + h) are random variables at 
positions x and x + h separated by the vector h for all 
h. It characterizes quantitatively the spatial depend-
ence in the variable (Webster and Oliver, 2007). 
The variogram can be estimated by the method of 
moments

where z(xi) and z(xi + h) are the counts in quad-
rats centred at xi and xi + h separated by the vector 
h and m(h) is the number of paired comparisons at 
that separation. By changing h we obtain an ordered 
series describing the way the variance changes with 
the changing separation.

For each set of data, a variogram model was fit-
ted (where possible) using maximum likelihood. 
For that purpose, we used the likfit directive from 

(2)� (�) =
1

2
E
[

{Z(�) − Z(� + �)}2
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the geoR package (Ribeiro Jr et  al., 2020) of the 
R statistical software (R Core Team, 2020). Here 
we fit a linear mixed model where the fixed effects 
describe any trend in the data (i.e. the spatial coor-
dinates are the fixed effect variables in the model) 
and the random spatially correlated component is 
described with a variogram function. There are few 
permissible simple models for variograms because 
the variogram must be such that it cannot return 
negative variances. In technical terms the model 
must be conditional negative semi-definite (see 
Webster and Oliver, 2007). Typically one might 
test various permissible models to see which fitted 
the best. Because our aim was to compare model 
parameters across sites and seasons, after some pre-
liminary testing, we chose to use the exponential 
model in all cases. This model is defined

where C0 quantifies the spatially uncorrelated vari-
ance, known as the nugget, C1 quantifies the spatially 
correlated part of the sill (or the a priori variance 
defined C0 + C1 ). The variogram may reach the sill 
at a finite lag distance known as the range which is 
approximated by 3d in the exponential model.

First we looked for any evidence of trend across 
the plots in the data by testing to see if adding a lin-
ear fixed effect into the model made a significant 
improvement (p<0.05). Any evidence of spatial trend 
would suggest that there were some larger scale effect 
making one area of the plot more susceptible to dis-
ease than another, for example it may show the effect 
of irrigation channels. We compared the best fitting 
spatial model (i.e. either the one with or without trend 
as determined in the previous step) to a model with-
out a spatially correlated random component using 
the Akaike Information Criterion (AIC). If the data 
shows little or no spatial component then this implies 
that the infections are no-more than random, suggest-
ing either limited secondary infection or that the sec-
ondary infection is not localised.

We then investigated to see if we could elucidate 
any general patterns in spatial structure according 
to crop susceptability, date or site. For this we fitted 
LMM to the magnitude of spatial structure  (C1) and 
range (estimated as 3d, see Webster and Oliver, 2007) 
as a function of the factors described above (i.e. Sus-
ceptibility of the crop, Observation number, Season 

(4)�(h) = C0 + C1

{

1 − exp
(

−
h

d

)}

,
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and Site as fixed effects and Site/Year/Season/Treat-
ment/Observation as a random effect).

Results

Spatially-resolved plots of the data are available in 
Fig. S1 – S18 in Online Resource 1. Table 2 reports 
the maximum number of infected tillers found at a 
site averaged across each variety’s three replicates. 
Environmental factors that were believed to affect the 
disease development of X. oryzae pv. oryzae, such as 
temperature, relative humidity, and rainfall, were also 
recorded along with the transplanting date.

Analysis with Epidemiological Models

The model fitted well to each of the sets of data 
(Fig.  2 & 3). The parameter estimates of the fit-
ted models and the estimate’s significance levels are 
given in Table 3.

There was no clear effect of site on the significance 
of aR and aS. While significant values of aR and aS 
were found in both seasons, they were mostly found 

in the wet season (Table 3). The only trial where aR 
and aS were found to be significantly greater than 
zero during the dry season was at Maligaya in 2017. 
These estimates were very high, much higher than 
that found in the significant estimates from the wet 
seasons, but as these are our only estimates of pri-
mary inoculum in the dry season it is not clear if this 
is typical for the season. Tests were also performed to 
assess if the aR were significantly less than the aS. In 
nearly all cases, no significant difference was found 
between the two. A significant reduction in the resist-
ant variety was only found at Pila during the 2017 wet 
season. At Maligaya during the 2016 wet season aR 
was significantly greater than aS, however.

Both rS and rRS were found to be significantly dif-
ferent from zero in many of the cases regardless of 
site or season. Our estimates of rS were 51% higher on 
average in the dry season than in the wet season, this 
is largely due to the very high estimate at Malayantoc 
during the 2018 dry season. Estimates of rRS were also 
higher, by 67%, on average. This was again due to a 
high estimate at Malayantoc during the 2018 dry sea-
son. These high estimates are due to the jump in infec-
tion that was observed in the final week of sampling.

Table 2  The date of transplant, weather data and the maximum weekly-averaged infection count for each site-year-season

Season Site Transplant 
Date (dd/mm)

Total Rain-
fall (mm)

Average 
Temp. (°C)

Average 
Wind (m/s)

Relative
Humidity (%)

Max Weekly-Mean 
Infection Count 
(tillers)

2016 Wet Pila 03/08 950 28.6 1.1 83.7 3002
Victoria 15/08 869 28.5 1.1 84.0 1132
Malayantoc 02/08 1029 27.0 0.9 88.1 5849
Maligaya 29/07 1067 27.0 0.9 88.9 3553

2017 Dry Malayantoc 12/11 117 26.5 2.6 78.0 1751
Maligaya 04/11 116 26.1 2.8 78.7 1405

2017 Wet Pila 30/06 761 28.7 1.1 83.1 811
Victoria 28/07 918 28.4 1.1 84.4 363
Malayantoc 22/06 588 27.9 0.5 86.2 1760
Maligaya 10/07 570 27.6 0.4 87.2 2235

2018 Dry Pila 28/12 137 26.4 1.7 82.7 253
Victoria 20/12 217 26.4 1.8 82.9 626
Malayantoc 31/01 35 27.3 1.6 76.1 1987
Maligaya 12/01 41 26.9 1.9 76.3 1434

2018 Wet Pila 21/07 471 28.2 2.3 86.0 73
Victoria 19/06 808 28.1 2.4 86.5 592
Malayantoc 20/07 1300 27.1 0.7 87.1 1074
Maligaya 06/07 1543 27.1 0.8 87.2 496

Eur J Plant Pathol (2022) 163:1–178



1 3
Vol.: (0123456789)

The time to first symptoms was found to be sig-
nificant regardless of site or season. It was generally 
estimated to be between one to four months. The esti-
mates for time to first symptoms were approximately 
38 days higher in the dry season than the wet season, 
and approximately 18 days higher on average at the 
central Luzon sites than at the south Luzon sites. The 
estimates of the decay rate parameter, ε, was only sig-
nificantly greater than zero during the 2017 dry sea-
son at Maligaya.

Statistical analysis of incidence levels

Preliminary analysis showed that fitting a model to 
describe the number of infected tillers resulted in 
an unacceptable increase in residual variance with 
increasing number of infected tillers. Therefore, we 
took natural logarithms of the response variate before 
fitting our model. The final fitted model describing 
the number of infected tillers is given by

The factor Season and associated interactions 
were dropped from the model, all other factors were 
retained. Clearly and not surprisingly the number of 
infected tillers increased with date of observation and 
was generally larger in the susceptible variety com-
pare to the resistant at the same site-season (Fig. 4). 
Pila and Victoria tended to have lower infection rates, 
notably in resistant varieties. The largest predictions 
of infection were related to Malayantoc and Maligaya.

Analysis with spatial structure

We assume evidence of spatial trend in the disease 
incidence if the fixed effects in the LMM (which 
describe linear trend) explains a significant part of 
the variation (p < 0.05). There was little significant 

(5)

Log(I(t)) ∼ Susceptibility + Observation + Site + Site.Observation

+ Susceptibility.Observation + Susceptibility.Site

+ Susceptibility.Observation.Site

Table 3  Estimated parameter values (‘Est.’) and their signifi-
cance levels (‘Sig.’) for the: rates of primary infection on the 
resistant, aR, and susceptible, aS varieties; rate of infection of 
the resistant variety due to spread from the susceptible, rRS; 
rate of infection of the susceptible variety from the susceptible 
variety, rS; decay rate of primary inoculum, ε; and, time of first 

symptoms, τ. The * symbol indicates the estimate is significant 
at the 0.05 level; ** indicates significance at the 0.01 level; and 
*** at the 0.001 level. A ‘NA’ estimate denotes if a parameter 
was removed when nonlinear least squares was unable to con-
verge with the full model

Site Season Year aR aS rRS rS ε τ

Est. Sig. Est. Sig. Est. Sig. Est. Sig. Est. Sig. Est. Sig.

Pila Wet 2016 0.582 0.067 0.00078 0.091 *** NA 0
Victoria Wet 2016 0.373 2.60 0.0065 0.056 * NA 36.9
Malayantoc Wet 2016 204.8 180.5 0.016 *** 0.072 *** 0.703 48.7
Maligaya Wet 2016 7.06 ** 1.26 ** 0.0014 0.050 *** 0 0
Malayantoc Dry 2017 181.2 248.9 0 0.0015 0.159 124.3 ***
Maligaya Dry 2017 68.5 ** 88.9 ** 0 0.0022 0.062 * 103.9 ***
Pila Wet 2017 7.32 32.5 ** 0.010 0 0.0061 57.0 ***
Victoria Wet 2017 0 5.03 *** 0.015 ** NA 0 32.8 *
Malayantoc Wet 2017 0.142 0.098 0.041 *** 0.075 *** 0 NA
Maligaya Wet 2017 30.5 * 31.3 * 0.035 * 0.053 ** 0 64.6 ***
Pila Dry 2018 0 0.024 0.017 * 0.065 ** 0 NA
Victoria Dry 2018 2.50 6.53 0.014 * 0.072 *** 0.075 71.5 ***
Malayantoc Dry 2018 4.82 0.122 0.12 *** 0.19 *** NA 54.9
Maligaya Dry 2018 11.5 9.20 0.054 0.060 * 0.034 59.1 ***
Pila Wet 2018 0.342 ** 0.873 NA 0.047 * 0 58.3 ***
Victoria Wet 2018 3.16 11.80 * 0 0.039 0.018 58.4 ***
Malayantoc Wet 2018 43.3 146.1 0.040 * 0.023 0.238 41.3 *
Maligaya Wet 2018 16.4 *** 19.9 *** NA 0 0 51.0 ***
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evidence of spatial trend in the disease incidence 
across observations, except for at Malayantoc where 
in all but one season at least a third of observations 
showed evidence of spatial trend (Table  4). Fig.  5 
shows the variogram fits for the susceptible plots at 
Malayantoc in the wet season of 2016. Here, four of 

the eight observations had evidence of significant 
spatial trend (Table  4). This is also visually evident 
from variogram models (weeks 4, 6 – 8). If trend is 
present in the data (and unaccounted for) then typi-
cally the variogram does not rise to an asymptote but 
continues to increase with increasing lag distance. 

Fig. 4  Predictions from the 
linear mixed model of the 
number of infected tillers 
at each site for susceptible 
and resistant varieties. The 
average s.e.d. is given by 
the error bar

Table 4  The number of 
observation dates for each 
site, season and variety 
where a spatial trend was 
detected, with the total 
number of observations for 
each site x season given in 
brackets. Spatial trend is 
assumed when a significant 
fixed effect was detected in 
the linear mixed model

Year Season Variety South Luzon Central Luzon

Pila Victoria Maligaya Malayantoc

2016 Wet Resistant 1 (6) 0 (6) 2 (8) 2 (8)
Susceptible 3 (6) 2 (6) 4 (8) 4 (8)

2017 Dry Resistant 0 (6) 2 (6)
Susceptible 1 (6) 2 (6)

Wet Resistant 0 (6) 0 (6) 1 (6) 4 (6)
Susceptible 2 (6) 2 (6) 1 (6) 2 (6)

2018 Dry Resistant 0 (3) 1 (6) 1 (8) 1 (8)
Susceptible 0 (3) 0 (6) 1 (8) 0 (8)

Wet Resistant 0 (3) 0 (6) 3 (6) 3 (6)
Susceptible 0 (3) 1 (6) 2 (6) 4 (6)
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Visual inspection of the empirical variograms (shown 
by the points; see Fig. 5 and additional examples in 
Fig. S19 – S54 in Online Resource 2) shows that this 
is often related to a secondary process with lag dis-
tance just over 2 m (the second rise in the variogram), 
which is the distance between plots of a similar type. 
This might relate to variation in environmental con-
ditions affecting the diseases as well as secondary 
dispersal.

We compared the best fitting spatial model (i.e. 
either the one with or without trend as determined 
in the previous step) to a model without a spatially 
correlated random component using the Akaike Infor-
mation Criterion (AIC). We found that there was 
significant spatial structure in the data for almost 
all observations made at Malayantoc and Mali-
gaya, whereas for data from Pila and Victoria there 

were more occasions where the random model fit-
ted the data better than the model with spatial struc-
ture (Table 5) this was particularly true in the resist-
ant varieties and suggests there was no evidence of 
secondary infection. We generally found little to no 
spatial structure in the first observations of the plots 
across sites and seasons. In many cases the “nug-
get” model (indicated by near constant variance 
with increasing lag) gave the best fit (see Fig.  6 for 
an example). This suggests that primary inoculum 
infects the crop in a random fashion.

Preliminary analysis showed that fitting linear 
models to describe the magnitude of the spatial com-
ponent of the variograms across the sites (C1) and the 
distance parameter (d) resulted in an unacceptable 
increase in residual variance with increasing value of 
the response variate. Therefore, in both cases we took 

Fig. 5  Susceptible variety at Malayantoc in wet season 2016. 
Each pane shows the results from eight observations taken 
across the season. The points show the empirical variogram 
calculated using the method of moments, the grey line is the 
variogram model fitted without a trend effect accounted for and 

the black line is the variogram model with the trend accounted 
for. We note that neither line is a fit to the points shown, all 
three relate to different methods for fitting the variogram to the 
data set
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natural logarithms of the response variate before fitting 
our model. The final fitted model for the model of the 
spatial component is given by

All terms were retained in the full model with some 
higher order interactions dropped. The model showed 
that the spatial structure quantified by the C1 parameter 
tended to be smaller in the resistant plots compared with 
the susceptible plots (see Fig. S55 in Online Resource 2) 
across sites. Season had no comparable consistent affect 
across sites. There was an increase in C1 with time at all 
sites. The increase in structure is evidence of secondary 
spread, although we note that the random component 
(the nugget) was often relatively large.

Only the site parameter was retained in the model to 
explain the variation in range, no other factors were signifi-
cant in the model. Malayantoc showed the largest predicted 
range parameter suggesting that the correlated structure 
extended up to 6m (Table  6). This is likely to reflect the 
larger scale differences across the plots identified by the 
variogram models with trend included. The range of the cor-
related structure was predicted to be smallest at the Laguna 
sites with a predicted mean value of 1.64 m for Victoria. This 
is likely to reflect the short-scale transmission of the disease.

Discussion

Here we have described, with epidemiological and sta-
tistical models, how the resistance genes affected the 

(6)

Log
(

C1

)

∼ Site + Observation + Season + Susceptibility

+Site.Observation + Site.Season + Site.Susceptibility

+Season.Susceptibility + Site.Season.Susceptibility

bacterial blight incidence, primary and secondary infec-
tion efficiency, and the spatial spread of the disease. We 
have further clarified how any differences in disease 
dynamics between the resistant and susceptible varie-
ties were affected by site and season. This experiment 
is unique in that every hill was assessed across multiple 
time points allowing for an in-depth analysis both tem-
porally and spatially. To be able to assess every hill, we 
decided to sample the number of infected tillers, rather 
than assess infected leaf area. Sampling at this level 
allowed us to sample a site within a day while providing 
a sufficient level of data for modelling purposes.

Across sites and seasons the resistant varieties 
showed less disease incidence than the susceptible 
varieties (Fig. 2 & 3). At some sites and seasons the 
incidence levels on resistant varieties were substan-
tial. However, lesions on these plants were small (less 
than 5cm) indicating that the resistant variety is still 
effective against the local pathogen population and 
that secondary spread from these plants were likely 
to be limited. Indeed, the spatial analysis showed that 
in most cases there was no indication of spatial struc-
ture in the resistant plots supporting the observation 
that secondary spread was unlikely to have occurred 
between resistant plants. We note however, that due 
to the close proximity of the susceptible plots, infec-
tion attempts on the resistant variety from secondary 
inoculum from the susceptible varieties were likely, 
as reflected in our model formulation and supported 
by the significant rRS parameters values obtained in 
many of the site-seasons.

We observed three general patterns in the increase 
of infected tillers over time: (i) linear increase (e.g. 

Table 5  The number 
of observation dates for 
each site, season and 
variety where there was 
no significant evidence 
of spatial structure, 
with the total number of 
observations for each site 
x season given in brackets. 
This was determined 
by comparing the AIC 
of models fits with and 
without a a spatially 
correlated random 
component

Year Season Variety South Luzon Central Luzon

Pila Victoria Maligaya Malayantoc

2016 Wet Resistant 3 (6) 2 (6) 0 (8) 0 (8)
Susceptible 0 (6) 1 (6) 0 (8) 0 (8)

2017 Dry Resistant 0 (6) 0 (6)
Susceptible 0 (6) 0 (6)

Wet Resistant 2 (6) 3 (6) 0 (6) 0 (6)
Susceptible 1 (6) 1 (6) 0 (6) 0 (6)

2018 Dry Resistant 1 (3) 3 (6) 0 (8) 2 (8)
Susceptible 0 (3) 1 (6) 0 (8) 0 (8)

Wet Resistant 3 (3) 5 (6) 0 (6) 0 (6)
Susceptible 3 (3) 1 (6) 0 (6) 0 (6)
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Maligaya wet season 2018); (ii) asymptotic increase 
(e.g. Maligaya dry season 2017); and, (iii) exponen-
tial increase (e.g. Malayantoc wet season 2016). This 
corresponds to the three types of dynamics the model 
can describe and indicates the dominant processes 
responsible for the observed data. Linear increase 
depends only on the rate of infection from the pri-
mary inoculum. Asymptotic increase occurs when the 
rate of infection decreases over time, e.g. due to inoc-
ulum levels decreasing or reduction in susceptibility 
of the plant. In our model this behaviour is governed 
by a rate of decay parameter acting upon the primary 
inoculum. Exponential increase of infection occurs 
when the disease is spread via inoculum produced 
from neighbouring plants, i.e. secondary spread.

The dynamics of the model are such that for infec-
tion to occur on the susceptible variety there must be 
primary infection on the susceptible variety whereas 
the resistant variety can be infected either by primary 
inoculum or from secondary spread from the suscep-
tible variety. This means that the parameter aS must 
be greater than zero, whereas the parameter aR may 
be greater than or equal to zero. Despite this, there 
were many cases where aS was not significantly 
greater than zero. In several cases, significant sec-
ondary infection made it difficult to detect signifi-
cant primary inoculum, which may explain why so 
few cases were found to be significant. For example, 
only in Maligaya during the 2016 and 2017 wet sea-
sons were both aS and rS significant, and only in the 

Fig. 6  Variograms of the 
incidence of X. oryzae pv. 
oryzae in (a–f) resistant 
and (g–l) susceptible plots 
observed on six occasions 
at the Victoria site in the 
wet season of 2016. The 
points show the empirical 
variogram, the grey line 
is the variogram model 
fitted without a trend effect 
and the black line is the 
variogram model with the 
trend accounted for. The 
variograms for the resistant 
variety show a flat structure 
that persists over time 
suggesting little secondary 
infection. The variograms 
for the susceptible variety 
show an increase in spatial 
structure over time indicat-
ing local spatial spread
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latter were both aR and rRS significant. Our estimates 
of aR were generally not found to be significantly dif-
ferent from aS, suggesting that, the primary inoculum 
had a similar effect on the number of infected tillers 
of the susceptible variety as the resistant. This means 
that resistance doesn’t reduce the number of lesions 
caused by primary inoculum significantly. Given 
that we still see less infection in the resistant variety, 
suggests that resistance leads to a lack of second-
ary spread, supporting the results from the statistical 
analysis.

Weather, particularly rainfall and windspeed, 
is believed to be a main driver of secondary spread 
(Naqvi, 2019 and references therein), however this 
was not supported by our results. At some sites we 
found evidence of significant secondary spread even 
in very dry conditions (e.g. at Malayantoc and Mali-
gaya during the 2018 dry season) and no evidence for 
secondary spread at other sites in wetter conditions 
(e.g. at Malayantoc and Maligaya during the 2018 wet 
season), see Table 5.

Our analysis of the data using LMMs showed that 
site had a more significant effect on disease incidence 
than season (addressing our secondary objective). We 
found the northern sites in Nueva Ecija (Malayantoc 
and Maligaya) generally showed greater levels of dis-
ease incidence than those in the south, yet these sites 
had less rainfall and lower windspeeds than those in 
the south (Table  2). All sites had average tempera-
tures in the range considered optimal for the disease 
(25-30°C; Naqvi, 2019). Crop management is also 
reported to significantly influence disease, and it is 
likely that this is a key driver in the differences in 
incidence that we observed in our experiments. In 
particular nitrogen fertilizer is reported to positively 
correlate with X. oryzae pv. oryzae and we found that 
the disease incidence was greatest at Malayantoc and 
Maligaya where a total of 72.8 kg/ha was applied in 
each season compared with Pila and Victoria where 
only 27.6 kg/ha was applied. Although the Nueva 
Ecija sites have higher rate of nitrogen application 

than in the Laguna sites, the 72.8 kg/ha in the Nueva 
Ecija sites is still lower than the recommended rate 
that farmers are told to use to avoid high incidence 
of bacterial blight. That is to say, the rate of nitrogen 
application in the Nueva Ecija sites is not considered 
high in the context of that area and may not neces-
sarily explain the greater incidence observed among 
the Nueva Ecija sites as compared with those in the 
Laguna sites. Further, the low fertiliser rate applied 
in the south was in response to a high application in 
the previous cropping season (as explained above). 
As nitrogen fertilizer rate was somewhat confounded 
by location, we did not include this as a factor in our 
statistical model.

The model-based estimates suggested it took an 
average of two months after transplantation for symp-
toms of X. oryzae pv. oryzae to appear. The infection 
took the least amount of time to appear in the 2017 
wet-season, where symptoms were predicted as early 
as one month. Two site-seasons had predicted infec-
tion times of over three months. A study by Mundt 
et al. (1999) investigating plant-to-plant spread from 
a clip-inoculated plant suggested that symptoms 
should develop in neighbouring plants within 30-35 
days after inoculation of the inoculated plant. We 
would expect that plants naturally infected by primary 
inoculum would take longer for symptoms to develop 
on the leaf. Our average estimate of two months for 
symptoms to develop from transplant may therefore 
not be unreasonable.

We found little evidence that the source of primary 
inoculum decays over time or that plants become 
less susceptible, as the effect was only found to be 
significant at Maligaya during the 2017 dry season. 
This may be due to other more dominant processes, 
e.g. secondary spread masking this effect or it may 
suggest that either the bacteria can survive on weeds 
and the rice stubble of previous crops for long peri-
ods of time or that there is a significant amount of pri-
mary inoculum replenishing the decaying pathogen 
population.

Table 6  Mean predictions 
of the effective range at 
each site with associated 
standard errors of prediction

Central Luzon Southern Luzon

Malayantoc Maligaya Pila Victoria

Predicted log (Range) 1.87 1.42 1.16 0.50
Standard error of prediction 0.1064 0.1073 0.1920 0.1564
Back transformed Range / m 6.51 4.15 3.18 1.64
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Disease infection in crops may appear spatially ran-
dom or may have a more aggregated pattern. Generally, 
spatial aggregation suggests that the pathogen spreads 
locally from plant to plant, whereas a random pattern 
suggests other larger-scale processes dominate (Nayak 
and Reddy, 1987). Mundt et  al. (1999), report that 
although epidemics of X. oryzae pv. oryzae can begin 
from small foci of initial infection, the initial disease 
pattern can appear to be random. Our spatial analysis 
suggests that the primary inoculum infects the plots in 
a random fashion (as indicated by the variograms fitted 
to the data from the first observations made at each site-
season). Thereafter, in most site-seasons evidence of 
spatial structure emerged. This suggests local secondary 
spread. Our observations support the findings of Nayak 
and Reddy (1987) who observed random patterns of 
infection at low incidence with aggregation occurring at 
higher levels of disease as secondary spread takes hold. 
The variogram range parameter quantifies the extent of 
local spatial dependence in disease incidence. Malayan-
toc showed the largest predicted range parameter sug-
gesting that the correlated structure extended up to 6m 
(Table 6). Closer inspection of the variogram however 
suggests that this larger scale process is likely to reflect 
the differences between plots at that site (Fig. 5). The 
shorter-range process at this site suggests a correlated 
structure with less than 2m-range. The range of the 
correlated structure was predicted to be smallest at the 
Laguna sites with a mean value of 1.64 m for Victoria 
and 3.18 m for Pila. These relatively short-range param-
eters are not surprising. Splash dispersal of X. oryzae 
pv. oryzae is reported to be quite a localised phenom-
enon with droplets estimated to generally disperse 
between 0.2 and 1 m (Mundt et al., 1999). Longer dis-
tance dispersal tends to be attributed to smaller splash 
droplets being dispersed by the wind (Ou, 1985; Mundt 
et al., 1999).

In this article, we show how epidemiological and 
statistical models can be used in tandem with large 
data sets on disease to reveal new insights into the 
mechanisms of the epidemic. Our analysis showed 
primary infection in resistant varieties was not sig-
nificantly different from susceptible varieties and that 
there was little evidence to suggest that the source of 
primary infection decayed over the season. However, 
the secondary spread of disease infection was not evi-
dent among  the resistant variety. Primary infection 

appeared spatially random. As the season progressed, 
at many sites we observed an emerging short-range 
(1.6 m – 4 m) spatial structure in the disease inci-
dence suggesting secondary spread was predomi-
nantly short-range. The spatially structured variation 
tended to be smaller in the plots where the resistant 
variety was grown. All these findings highlighted 
the important role of resistance genes in rice bacte-
rial blight management by effectively slowing down 
disease epidemics in the field. While bacterial blight 
incidence is commonly high during the wet crop-
ping season, our results have shown that the disease 
can also effectively established during the dry crop-
ping season. For the sites considered, we found cli-
mate variables were not a good predictor of infection 
suggesting that other environmental and management 
factors (such as fertilizer application) had greater 
effect.
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