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Abstract: Preparing sustainable and highly efficient biochars as electrodes remains a challenge for
building green energy storage devices. In this study, efficient carbon electrodes for supercapacitors
were prepared via a facile and sustainable single-step pyrolysis method using spruce bark as a
biomass precursor. Herein, biochars activated by KOH and ZnCl2 are explored as templates to be
applied to prepare electrodes for supercapacitors. The physical and chemical properties of biochars
for application as supercapacitors electrodes were strongly affected by factors such as the nature
of the activators and the meso/microporosity, which is a critical condition that affects the internal
resistance and diffusive conditions for the charge accumulation process in a real supercapacitor.
Results confirmed a lower internal resistance and higher phase angle for devices prepared with ZnCl2
in association with a higher mesoporosity degree and distribution of Zn residues into the matrix.
The ZnCl2-activated biochar electrodes’ areal capacitance reached values of 342 mF cm−2 due to the
interaction of electrical double-layer capacitance/pseudocapacitance mechanisms in a matrix that
favors hydrophilic interactions and the permeation of electrolytes into the pores. The results obtained
in this work strongly suggest that the spruce bark can be considered a high-efficiency precursor for
biobased electrode preparation to be employed in SCs.

Keywords: spruce bark electrodes; spruce bark-supercapacitors; impedance; areal capacitance;
electrical double layer capacitance

1. Introduction

The development of sustainable and efficient energy storage systems (ESS) attracts
massive attention in the literature due to their wide range of applications, from portable
electronic devices to hybrid electric vehicles [1–3]. Among different types of ESS, super-
capacitors (SCs) have favorable properties of relatively high specific power density (10
to 100,000 W/kg), outstanding cycling stability (minimal change in the electrochemical
response after a few thousands of reuses), low resistance, fast charge/discharge, and a
wide range of applications [4,5]. There are two typical mechanisms for charge storage
in supercapacitors: electric double-layer capacitance (EDLCs) and pseudocapacitance
(PC) [3,4]. EDLCs make use of the diffusion and accumulation of double-layer charges
formed by the adsorption of electrolyte ions on the electrode’s surface (physisorption); thus,
electrodes with very high specific surface area (SSA) and a high level of hydrophilicity are
generally required to fabricate EDLCs [3,4]. Differently, pseudocapacitors store energy not
only through the formation of an EDL but also through reversible redox reactions with the
fast insertion of the electrolyte ions onto the surface layer of the electrode [3,4].
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The combination of materials with the prevailing pseudocapacitive response and
one second class of materials with properties of EDLC are extensively explored to create
high-performance electrodes for SCs. A critical material for the fabrication of SCs is
graphite, typically employed as an electrode material [6–9]. However, graphite mining and
processing are costly and have a sizeable CO2 footprint [6,7], and graphene and carbon
nanotubes synthesis processes are complex and expensive.

Besides, the theoretical capacity of graphite is limited to 372 mAh g−1 with the average
area normalized capacitance of graphite being 15 µF cm−2 [10], and very low SSA (usually,
natural graphite has SSA below 10 m2 g−1 ). However, after treatments, graphite can
reach SSA values much higher (500 m2 g−1). In the case of graphene, it has a theoretical
capacitance of up to 550 F g−1 based on the theoretical surface area (2630 m2 g−1) [11].

Therefore, it is important to study new ways of replacing these high-cost and complex
materials for cheaper and sustainable ones [2,3,12–14]. Extensive research is being con-
ducted to develop innovative concepts using biomass materials as precursors to develop
biochar-based materials employed as electrodes for SC [2,3,14]. Biochars can be made
from any biomass and have an adaptable structure that, through different pre-treatments,
can be modified to reach a high SSA, even higher than 3300 m2 g−1 [12], well-developed
porosity with varying pore sizes, and more oxygen and nitrogen surface functional groups
on its surfaces, making them very suitable to be used as electrodes for SCs [3,15,16]. In
addition, using biochars is both environmentally friendly and economically advantageous.
Biochar can be made through simultaneous pyrolysis and chemical activation, and by
optimizing the pyrolysis and activation conditions, the biochar can be designed for specific
applications [15,16], but the properties of the original feedstock are nevertheless decisive
for the structure and functionality of the obtained material [3,15,16].

The biochar can be tailored to obtain properties that provide high-performance SCs
electrodes by optimizing the production method. For instance, the two most common
chemical activations, by zinc chloride (ZnCl2) and potassium hydroxide (KOH), yield
biochars with distinctly different properties [2,3,14]; the literature shows that ZnCl2, usually,
produces biochars with more developed mesoporosity while biochars activated with KOH
are mostly microporous structures [17]. This difference is fairly important in choosing
the method and activation agent for the biochars preparation with tailored properties.
The activation mechanism of KOH is based on a reaction with carbon, with the CO and
H2 considered as subproducts, while the interaction mechanism with ZnCl2 is based
on catalytic dehydration with the ZnCl2 acting as a skeleton during carbonization, with
positive effects on pore structure and specific surface area. The activation incorporates
graphite nitrogen and pyridine nitrogen, resulting in the enhancement of the oxygen
adsorption/ reduction, with direct consequences on the electron transfer. In particular,
high pyridine-nitrogen content is an important requisite to reach adequate conditions in
terms of good mesoporosity and pseudocapacitive contribution [13].

Basic research is required to optimize the production of electrodes adapted to the size
of the electrolyte ions, thereby providing high conductivity and good physio-chemical
stability that improve the electrochemical performance of biochar-based SCs (e.g., lifetime,
capacity, and safety) [2,3,13,14].

Jiang et al. [18] used lignin-rich biomass for making SC anodes. The SCs exhibited a
specific capacitance of 80.9 and 92.7 F g−1 at the constant current density of 100 mA g−1.
He et al. [19] used peanut shells as a precursor to producing carbon electrodes for SCs. Car-
bon electrodes (CEs) were created through chemical activation with ZnCl2. The fabricated
SCs showed a specific capacitance of 99 F g−1 and high energy density (19.3 Wh kg−1) at a
high-power density of 1007 W kg−1. Wu et al. [20] prepared microporous carbon materials
from almond nutshells by KOH and HNO3 activation. The carbon materials displayed SSA
values of 1363 and 327.7 m2 g−1 for KOH and HNO3, respectively, while their respective
specific capacitances were 272.3 and 286.1 F g−1 at 1 A g−1.

Although some biomass precursors are employed in electrodes for SCs, there is still a
lot to understand about using biomass carbon materials as electrodes for SCs. It is well-
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known that the structure of the original biomass severely restricts the final structure of the
synthesized carbon material. However, there is a lack of understanding regarding the rela-
tionship between biomass properties, process conditions, the resulting biochar properties,
and the electrochemical performance of the carbon electrodes in SCs applications.

Generally, softwood bark is a low-value residue in forest–industrial production chains.
In this work, Norway spruce (Picea abies (Karst.) L.) bark was used as the main precursor for
producing electrode biochar for SCs. The bark’s constitution of cellulose, hemicellulose, and
lignin [16], makes it a suitable precursor for biochar to be used as electrodes for SCs [2,3,14].
Herein, we describe the preparation of two different electrode types, made from KOH-
and ZnCl2-activated Norway spruce bark, respectively. These two electrodes were fully
characterized by various physicochemical and electrochemical analyses, displaying high
specific capacitance and good rate capability.

To the best of our knowledge, only one paper employed spruce bark as the main
precursor for the preparation of biochar electrodes for SCs [11]. Besides, the effect of
different chemical activation and responses that describe the structural and chemical
properties of the biochar materials and their resulting electrode performance are fully
evaluated. These two electrodes were fully characterized by various physiochemical and
electrochemical analyses, displaying high specific capacitance and good rate capability.

2. Materials and Methods
2.1. Chemicals and Reagents

The Norway spruce bark was provided by a Holmen paper (Stockholm, Sweden)
and pulp mill in North-Eastern Sweden. The spruce bark was dried and milled (Fritsch
Pulverisette 14, Idar-Oberstein, Germany) at a screen size of 500 µm. The chemicals
potassium hydroxide (KOH), polyvinylidene fluoride (PVDF), zinc chloride (ZnCl2), and
hydroxide chloride (HCl) were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Dimethylformamide (DMF) was purchased from Dinamica (Gorizia, Italy), and the carbon
black was purchased from Micromeritics (Norcross, GA, USA).

2.2. Preparation Process

The biochars were prepared as follows: first, 50.0 g of bark were mixed with KOH at a
ratio of 1:1 (weight), and then mixed with 30 mL of distilled water in a melting pot until
a homogeneous paste was obtained [21,22]. The same procedure was followed with the
ZnCl2 activation process. The mixtures were left for 2 h at ambient temperature, whereafter
it was dried in a drying oven at 105 ◦C overnight. Pyrolysis was performed at 900 ◦C for
2 h under nitrogen flow, with an initial heating rate of 10 ◦C per min. After pyrolysis, the
samples were milled and washed with 1.0 M and 6.0 HCl for KOH and ZnCl2 biochars,
respectively. Finally, a washing step with distilled water was performed several times until
the pH value of the filtrate reached a neutral value [21,22].

2.2.1. Biochar Characterization

The SSA and porosity data of the biochars were evaluated via nitrogen adsorption–
desorption isotherms using a Tristar 3000 apparatus, Micrometrics Instrument Corp. The
biochars were subjected to degasification at 180 ◦C for 3 h, and the SSA and pore size
distribution were obtained using the Brunauer–Emmett–Teller (BET) method.

The morphology of biochars was evaluated from the scanning electron microscopy
(SEM) technique, using a Zeiss-Gemini microscope, and images were made at 20 µm scales
with 2.5k× of magnification.

XPS analysis of the biochars was collected using a Kratos Axis Ultra DLD electron
spectrometer using a monochromated Al Kα source operated at 150 W. An analyzer of
160 eV for acquiring survey spectra and 20 eV for individual photoelectron lines were used.
The samples were gently hand-pressed using a clean Ni spatula into the powder sample
holder. Due to the electrical conductive behavior of the carbonaceous material, no charge
neutralization system was used. The binding energy (BE) scale was calibrated following
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the ASTM E2108 and ISO 15472 standards. Processing of the spectra was accomplished
with the Kratos software.

Raman spectra were collected using a Bruker Bravo spectrometer (Bruker, Ettlingen,
Germany) connected to a docking measuring station. Shortly, 0.5 g of each biochar powder
was placed in 2.5 mL glass vials and scanned in the 300–3200 cm−1 spectral range at 4 cm−1

resolution for 256 scans. Min–Max normalization over the 1000–2000 cm−1 region and
smoothing (9 points) was conducted using the built-in functions of the OPUS software
(version 7, Bruker Optik GmbH, Ettlingen, Germany). No baseline correction was needed.

Fourier transform infrared spectroscopy (FTIR) was exploited to determine the func-
tional groups of the biochars. The FTIR spectra were recorded over the wavenumber
range of 4000–400 cm−1, utilizing a Bruker IFS 66v/S instrument (Bruker Optics, Ettlingen,
Germany) with an acquisition of 64 scans min−1 and resolution of 4 cm−1.

The X-ray diffraction pattern was measured in a Rigaku Miniflex X-ray diffractometer
(Rigaku Corporation, Tokyo, Japan) with CuKα (λ = 1.4518 Å), with operation parameters
of 40 kV and a current of 15 mA in a continuous can from 5◦ to 6◦ with a step of 0.02◦,
speed of 10◦/min.

2.2.2. Preparation of Powder and Assembly of Two-Electrode Supercapacitors

As a first step in the electrode preparation, a slurry containing biomass charcoal (KOH
biochar, ZnCl2 biochar), carbon black, and PVDF in a mass ratio of 0.70, 0.20, and 0.10,
respectively, was created. Firstly, 10 mg of PVDF was added to 500 µL of DMF; then,
the solution was stirred for 5 min at 85 ◦C to solubilize the polymer. After that, 70 mg
of biomass charcoal and 20 mg of carbon black were added. The resulting solution was
kept under stirring for 10 min at 85 ◦C. After that, 1 cm × 1 cm graphite electrodes were
applied as support (current collector to be coated with slurry). The electrode was prepared
by dropping 25 µL of the as-prepared slurry on the surface of the graphite paper. After
evaporating the solvent, the coated graphite paper was placed on a hotplate at 70 ◦C for
5 min. This process was repeated until the surface of the graphite paper was completely
covered. At the end of this process, two electrode types were obtained, one containing the
KOH biochar and the other the ZnCl2 biochar. The SC was assembled in a sandwich-type,
where a filter paper separated the electrodes. Both electrodes and the separator were
impregnated with a KOH 5 M solution. Pictures for the assembled device are shown in
Figure 1a,b, in which it is possible to identify the electrodes, the separator, and the final
disposition of the parts.
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Figure 1. (a) Frontal view of the electrode and (b) disposition of components (symmetric electrodes
and separator) in an assembled device.

3. Results and Discussion
3.1. Textural Properties and Morphology of the Biochars

SSA and porosity of the biobased carbon materials are essential properties that strongly
influence their performance as materials regardless of their applications [2,3]. Both chemical
activation methods yielded biochars with N2 adsorption/desorption isotherm curves close



Nanomaterials 2022, 12, 866 5 of 17

to type I as the nitrogen adsorption increased at low partial pressure (Figure 2). This
describes an adsorption process resulting in micropores filling. However, hysteresis was
observed in both samples, which characterizes mesoporous materials [23,24]. Both materials
contain micro and mesoporosity due to the high N2 adsorption volume at low and high
pressure [23,24]. To a large extent, the activation process influenced the amount of adsorbed
N2, which also is reflected in the SSA values.
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KOH biochar adsorbed a much higher N2 volume and, as a consequence, exhibited a
much higher SSA value (2209 m2 g−1) (see Table 1). Since the pyrolysis conditions were the
same for both biochars, the differences in their SSA values could be exclusively related to
the chemical activation mechanisms based on KOH and ZnCl2. The reaction between KOH
and biomass usually leads to a much more violent chemic during the thermal treatment,
indicated by the lower yield (13.7% for KOH and 28.1% for ZnCl2).

Table 1. Textural properties of the biochars.

Parameters. ZnCl2 Biochar KOH Biochar

SSA (m2 g−1) 1114 2209
Mesopore surface area (m2 g−1) 512 449

Mesopore surface area (%) 46.0 22.6
Micropore area (m2 g−1) 602 1710

Micropore area (%) 54.0 77.4
Total pore volume (cm3 g−1) 0.78 1.50
Micropore volume (cm3 g−1) 0.41 0.25
Mesopore volume (cm3 g−1) 0.37 1.25

Average pore size (nm) 2.21 2.70

KOH activation consists of several steps during the pyrolysis process-based solid–
liquid reactions because potassium hydroxide is diluted in water. Above 700 ◦C, potassium
metallic is formed and may enhance the porosity; the metallic ion K+ may act as a catalyst
for gasification reactions, which helps to form and develop pore structures [25,26]. Addi-
tionally, a K intercalation process can occur; K ions may go between graphene layers of
the biochar, widening its pore network and straining the structure, which potentializes the
pore formation and reaches very high SSA values.

Activation with ZnCl2, which is a Lewis acid, is a potent dehydrating reagent as
it catalyzes the decomposition of lignocellulosic compounds. This activation involves
dehydration, depolymerization, and ring-opening [25–28]. ZnCl2 is an efficient catalyst for
C-O and C-C bonds scission. Moreover, during pyrolysis, ZnCl2 starts to melt at 290 ◦C
and may, if evenly mixed with the biomass, reach the biomass’ interior. Increasing the
pyrolysis temperature leads to thermal dehydration of the zinc oxide chloride hydrate that
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forms a gaseous phase of ZnCl2 and a solid phase of zinc oxide. The gaseous phase of
ZnCl2 is diffused through the carbonaceous structure to develop the pore network [26,27].

Thus, it can be stated that the activation process using KOH produced biochar with
more developed porosity. In addition, the contributions of micropores and mesopores
reaction in the biochar structures were evaluated. The percentage of mesopores in KOH
biochar was 22.6% and in ZnCl2-BBC was 46%, while the share of micropores was 77.4% in
KOH biochar and 54% in ZnCl2 biochar.

In ESS applications, an adequate combination of micro/mesopores distribution and
electrolyte ions type and size is highly required because the electrolyte ions can be efficiently
transported in small-sized pores, reaching high charge storage capability at low current
density [2,3,29]. Miao et al. [30] reported that a large number of micropores (size between
1 and 2 nm) could facilitate the charge separation (due to the available sites for charge
accumulation), which affects the overall energy density of the device.

SEM analysis was performed to examine the effect of the chemical activation on the
surface morphology of the biochars. Figure 3 display the surface morphology of the two
biochars. The images show that KOH activation results in a sponge-like structure (Figure 3a)
full of roughness and irregular structure and tons of small holes. On the other hand, the
sample made with ZnCl2 (Figure 3b) shows a much denser structure, with more elongated
cavities and holes of different sizes and shapes.
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Thus, by the SEM analysis (and to corroborate the BET analysis), it is possible to infer
that the choice of activation method strongly affected the surface characteristics of the
biochars. Moreover, both materials have a significant presence of macropores and ultra-
macropores; vital because they serve as vectors to the electrolyte passage until it attains
smaller pores (in the interior of the biochars). In terms of relevance for supercapacitor-based
applications, it provides the possibility to provide electrolyte permeation along with the
porous structure for the following step of charge accumulation into the cavities (more
accessible channels).

3.2. Chemical and Functional Characterization of the Biochars

The chemical state and the main composition of the elements in the biochars were
evaluated via the XPS technique [16,25,31], which gives detailed and valuable information
about the effect of the chemical activation methods (KOH and ZnCl2) on the surface
properties of the biochars. Figure 4a (KOH) and b (ZnCl2) show C 1s, O 1s, and N 1s
spectra, carbon, oxygen, and nitrogen bonds, respectively.
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The asymmetric C 1s spectra could be deconvoluted into four peaks centered at 284.3
and 284.4 eV, which are attributed to C–C and C=C bonds, at 285.4 eV, which is related
to C–N, at 286.3 and 286.5 eV (C–O–C), and at 287.4 and 287.5 eV that are related to
C=O [16,25,27].

O1s spectra exhibited some differences regarding the chemical activation process. The
biochar made with KOH showed O1s spectra deconvoluted to three chemical oxygen states
with binding energies at around 530.8 eV, 532.5 eV, and 535.6 eV [16,31]; while the biochar
made with KOH deconvoluted into four peaks, 531.2 eV, 532.9 eV, 535.1 eV, and 537.2 eV. The
different peaks are related to the following: (i) 531.2 and 530.8 eV—oxygen double-bonded
with carbon in carbonyl and quinone-like structures, (ii) 532.5 and 532.9 eV—oxygen singly
bonded to carbon in aromatic rings, in phenols and ethers, (iii) 535.1 and 535.6 eV—hydroxyl
groups, and (iv) 537.2 eV—adsorbed H2O-OH sub-monolayer in which both OH and H2O
are hydrogen-bonded to each other (this peak is found only in the ZnCl2 biochar). The
presence of this oxygen species can improve the hydrophilicity degree of the sample, which
can reflect in better interaction between solid and liquid phase (electrode–electrolyte),
characterizing an advantage for permeation of aqueous electrolyte ions into the biochar-
based electrode.

Figure 4 also show the deconvoluted N 1s spectra for the biochars; a single peak is
observed in KOH biochar, which is related to pyrrolic nitrogen (400 eV) [14,16], while for
ZnCl2 biochar, two peaks are observed, one at 397.9 eV which corresponds to pyridinic
species [14,16] and at 400.5 eV that is related to pyrrolic nitrogen [14,16]. The presence of
more N species in the ZnCl2 biochar can improve its electrochemical performances as an
electrode for SCs. Nitrogen can act as an electron donor, enhancing the charge exchange
with the electrolyte [32,33]. In addition, Hou et al. [33] reported that pyridinic-N boosts
the electrochemical performances of the electrodes, which can be considered an essential
advantage for ZnCl2-activated biochars.

To further evaluate the chemical composition of the biochar samples, Table 2 show the
quantitative analyses for the C, O, and N and the ID/IG ratio (based on Raman analysis).
ZnCl2 biochar presented the highest C content, while the oxygen content was much higher
in the KOH biochar (see Table 2). The nitrogen content is almost the same in both samples,
while a residual Zn content is present in the biochar, which could positively affect the
electrochemical performance of the material.
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Table 2. XPS elemental composition of the biochar samples.

XPS
ID/IG HI

Samples C 1s O 1s N 1s Zn 2p

ZnCl2 biochar 93.3 4.7 1.5 0.5 0.94 0.90
KOH biochar 86.6 10.5 1.7 - 1.16 0.96

Raman spectroscopy is considered one of the most informative methods for evalu-
ating the structural perfection and degree of order/graphitization of bio-based carbon
materials [16,34]. Raman spectra of the biochars are shown in Figure 5. Both biochars
exhibit two typical carbon characteristic diffraction peaks at 1370 cm−1 and 1590 cm−1,
representing the D and G bands, respectively. The D band refers to the degree of chaos
or imperfect structure in carbon materials, while the G peak corresponds to the ordered
carbon structure [17].
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According to Raman analysis, the intensity ratio of D band to G band (ID/IG) can
be calculated, which is generally used to appraise the graphitization degree of carbon
material [16,21,34–36] (see Table 2). It is well known that graphite has a high conductivity
degree and is a very efficient material used as an electrode for ESS. Thus, the degree of
graphitization is a valuable tool for understanding the carbon-based material’s suitability
as electrode material [34–36]. The ZnCl2 and KOH biochars presented ID/IG values of 0.94
and 1.16, respectively. Low ID/IG value suggests that the material has closer to perfect
and orderly graphite structures with a high graphitization degree; a high ID/IG indicates
that the material has more structural defects in its structure [16,21,34–36]. The biochar
made via ZnCl2 activation presented a lower ID/IG value (0.94) than KOH activation
(1.16); therefore, ZnCl2 biochar had the highest graphitization degree. These results match
SSA values because KOH biochar had the highest SSA, suggesting a lot more defects and
disordered structure.

The XRD patterns of the biochar samples are shown in Figure 6. The patterns show
important differences between both samples. It seems that the different chemical treatments
affected the biochar structures.
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Figure 6. XRD patterns of biochar samples.

The ZnCl2 biochar exhibited a typical diffraction pattern for amorphous biochars
in 20–30◦ and three crystalline peaks in 38◦, 44◦, and 69◦ (which are assigned to the
sample holder of aluminum). It is pointed out that the presence of amorphous material
is required for carbon electrodes due to its network pores and vacancies [37]. For KOH-
activated biochar, four evident crystalline peaks at 30◦, 38◦, 44◦, and 69◦ (with the last three
associated with the substrate) and additional and very small peaks at 23◦, 36◦, 39.5◦, and
48.8◦ can be identified.

The other crystalline peaks in both samples can be related to the high concentration of
calcite in its structures. It is well known that spruce bark is biomass rich in calcium that,
when is subjected to pyrolysis, reacts to form calcite [38].

Comparing the XRD of both biochars, it seems that KOH yielded a sample with more
inorganic compounds such as calcite and quartz (electronic inert elements) [37,38], which
can negatively affect the electrochemical properties of the electrode material.

FTIR spectra (see Figure 7) were performed to identify the presence of the functional
groups on biochar samples. It is possible to observe that the different chemical treatments
affected the chemical functionalities on the biochar surfaces. The band at 3467 cm−1

represents the O–H stretching vibration in carboxyl and phenol groups [10–12,15].
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Figure 7. FTIR spectra of biochar samples.

Two small peaks related to CH– stretching at 2933 and 2864 cm−1 were observed
in ZnCl2 biochar, while only the first one was observed in KOH biochar. The peak at
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2262 cm−1 can be attributed to hydrogen-bonding in OH, while in 1631 cm−1 it could be
related to the asymmetric stretching of the O=C of carboxylates.

Small peaks at 1252, 792, and 646 cm−1 can be observed only in ZnCl2 biochar as
well as others in the area highlighted by the circle inside the figure, suggesting that the
ZnCl2 activation generated more functionalities on its surface. The presence of more
functionalities on the ZnCl2 biochar surface can be related to the different activation
mechanisms previously discussed. The existence of a high number of functional groups on
biochar surfaces is often related to better electrochemical properties since it increases the
electrode–electrolyte interactions [2,13,14].

3.3. Electrochemical Characterization

Electrochemical impedance spectroscopy (EIS) is a non-steady-state method that pro-
vides relevant information about several mechanisms at interfaces between the electrolyte
and electrode [39]. In particular, the direct relationship between the time-dependent voltage
(V) and current (I) defines the impedance (Z = V/I) that can be converted in terms of the
complex capacitance C (with j =

√
−1)

C = C′ + jC′′ (1)

From the definition of current I and capacitance C (I = dQ/dt and C = Q/V), both in
terms of the charge Q, it is possible to write that

I =
V
|Z| =

dQ
dt

= jQω → Q
V

= C =
1

jω|Z| (2)

With |Z| =
√

Z′2 + Z′′ 2. Equation (2) can be finally written in terms of the real and
imaginary parts of the complex capacitance, as follows:

C′ =
−Z′′

2π f |Z|2
(3)

C′′ =
Z′

2π f |Z|2
(4)

where C′ is the capacitance at steady-state and C” is related to the dielectric loss. In
addition to the information provided by the complex capacitance, the frequency–response
analysis (obtained from Nyquist plots) and response–time data (phase vs. frequency plot
data) [40] are relevant information concerning diffusive properties, internal resistance, and
resistive–capacitive transitions.

Figure 8 summarize EIS-based curves, revealing the relevant electrochemical prop-
erties of the electrodes. Nyquist plots in Figure 8a are composed of a small semicircle
at a higher frequency followed by a straight line at a low frequency. The capacitive be-
havior of samples can be explored from the relative variation in the linear line slope at
a low frequency, while the intersection with the x-axis provides the estimative about the
internal resistance. Results indicate lower internal resistance for ZnCl2 biochar (R = 0.55 Ω)
against 0.86 Ω for KOH biochar. Regarding the slope in the low-frequency region, the
inset of Figure 8a confirm a similar slope for both devices, indicating a minimal difference
for diffusive transport along with the structures. Relative to the phase versus frequency
dependence in the Bode plot (Figure 8b), an important parameter to be considered is the
value of the phase angle that intercepts the y-axis. The values for ZnCl2- and KOH-based
biochars are −77.13◦ and −71.93◦, respectively, (the value of −90◦ is expected for ideal
capacitors), indicating that ZnCl2-based samples obtain the best properties for a capacitor.
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Figure 8. Electrochemical characterization curves for supercapacitors prepared with electrodes of
KOH-based biochar (in black) and ZnCl2 biochar (in red): (a) Nyquist plots, (b) Bode plot of phase
angle versus frequency, (c) real part of areal capacitance versus frequency, and (d) imaginary part of
capacitance versus frequency.

In addition, the typical behavior for the real part of capacitance was observed for
both experimental systems with an increase from almost zero at higher frequencies to a
maximum value at lower frequencies—characterizing a typical transition from resistive
to capacitive behavior confirmed from the peak in the imaginary part of the capacitance.
As shown in Figure 8c, confirming previous results from internal resistance and phase
angle, the best performance in terms of the real part of capacitance at the quasi-stationary
limit of frequency was observed for ZnCl2-based biochar with capacitance in order of
295 mF cm−2 in comparison with 143 mF cm−2 obtained for sample activated by KOH. The
imaginary part of capacitance confirmed a breaking frequency established in the transition
from resistive to capacitive behavior (values of 0.29 Hz and 0.62 Hz for ZnCl2 and KOH,
respectively). The value of frequency at a maximum of C” was explored to estimate the
time constant for charge/discharge—the calculated values were 3.44 s for ZnCl2-based
biochar and 1.61 s for KOH-based biochar.

Based on the previous results, it was possible to observe that the best performance is
attributed to samples prepared via ZnCl2, as indicated by lower internal resistance and
higher modulus of phase angle at low frequency, which justifies the good performance in
terms of the areal capacitance.

Complementary and standard characterizations were evaluated (cyclic voltammogram,
charge–discharge curves, and impedance spectrum), which returned data to calculate the
areal capacitance, power density, and energy density for experimental systems. Cyclic
voltammograms for ZnCl2-SC and KOH-SC are shown in Figure 9a,b, respectively. From
these curves, it is possible to note that the corresponding current observed for ZnCl2-SC
devices at the same scan rate is higher than the observed for KOH-SC devices. It introduces
direct consequences on the area enclosed in the curve, affecting the calculus of the resulting
capacitance. For both experimental systems, a quasi-rectangular behavior was observed at
a low scan rate. At increasing values of the scan rates, an evident change can be seen in the
curve format that acquires a prolate behavior with a cone-shaped response at a high limit
(200 mVs−1). According to Liu et al. [41], the abundance of oxygenated functional groups
(OH, C=O, COOH) may enhance the pseudocapacitive of biochar-based electrodes, which
justifies the prolate behavior in CV curves.
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(d) at a current of 1 mA to 5 mA.

The response of the devices at distinct current density was evaluated from galvano-
static charge–discharge, summarized in Figure 9c,d for samples ZnCl2-SC and KOH-SC,
respectively. It is worth mentioning that the format and limiting values from these curves
reveal important working mechanisms from respective devices [42–44]. Quasi-linear behav-
ior was observed in the response of the supercapacitors, with a longer time interval for a
complete charge–discharge cycle at lower current densities, as expected [42–44]. It is worth
mentioning that a negligible IR drop was observed in the change from charge–discharge
cycles, characterizing the low level of ohmic loss, an essential advantage in the overall
energy storage process.

The reduced IR drop in both experimental systems can be confirmed from the low
internal resistance of samples, as described in Figure 9a, with corresponding values of
0.55 Ω for ZnCl2-based and 0.86 Ω for KOH-based samples.

Data from CV and GCD curves were applied in Equations (5)–(7) to return values of
areal capacitance (Car) and the Ragone plot, calculated as follows:

Car =
2 × Dar × I

V2 × A
(5)

ED =
Car ×V2

2 × 3600
(6)

PD =
3600 × ED

∆t
(7)

From Equation (5), Dar is calculated from the area under the discharge curve, I is the
current under the discharge process, V is the voltage window for the discharge curve, and
A is the area of the device. The energy density (ED), given by Equation (6), is calculated
from areal capacitance and the voltage window, while the power density (PD) considers
the resulting energy density and the total time involved in the device’s discharge.

Based on Equations (5)–(7) and the data in Figure 9, curves of areal capacitance and
Ragone plot were obtained. As shown in Figure 10a, the areal capacitance for samples
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ZnCl2-SC returned a better performance than the corresponding KOH-SC, with higher
values for capacitance for all of the current densities. In the same direction, the areal capaci-
tance calculated from the area under the CV curves confirmed that the best performance in
the capacitance was observed for ZnCl2-based biochars for all scan rates (Figure 10b). The
superior electrochemical performance was confirmed from the Ragone plot (see Figure 10c),
in which it was possible to observe higher values for both energy density and power
density for ZnCl2-based samples in comparison with corresponding KOH-based electrodes.
In addition, points with different colors were introduced in Figure 10c to compare these
values with those reported in the literature for corresponding experimental systems. As
can be seen, our samples present good power density and competitive energy density in
comparison with data in the literature.
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Figure 10. (a) Dependence of areal capacitance with the current for different samples, (b) areal
capacitance calculated from the area under CV curves and (c) Ragone plot for samples ZnCl2−SC
and KOH−SC and comparison with data reported in the literature (green-up triangle—Ref. [45],
purple circle—Ref. [46] and blue down triangle—Ref. [47]), (d) capacitive retention for ZnCl2−SC
and KOH−SC at GCD curves acquired at a current of 5 mA.

Degradation assays were evaluated for both experimental systems, in successive GCD
assays in which a current of 5 mA was applied in symmetric supercapacitors (KOH-SC and
ZnCl2-SC) with results summarized in Figure 10d. As can be seen, due to the prevailing con-
tribution of carbon derivatives in both systems, a high retention degree in the capacitance
was observed for ZnCl2-SC and KOH with increasing retention degree (negligible degrada-
tion) after 1000 cycles of charge/discharge at a high current density. Denmark observed a
similar effect in supercapacitors based on molasses-based co-doped carbon with KOH as
the electrolyte [42]. In the literature, this process is attributed to the delayed activation of
the electrochemical properties of the device, since the electrochemical charge–discharge
reactions progressively activated mechanisms in extra non-accessible sites being favored
by the increasing wettability at the electrode/electrolyte interface (higher activation degree
is observed for sample ZnCl2—as expected). These data confirm the high stability degree
of the device in a basic electrolyte.
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The electrochemical characterization strongly indicated that the bark biochars exhib-
ited satisfactory supercapacitor application performance. Although the nature of each
carbon electrode is different, and each one of them has its advantages and drawbacks,
here, we provided comparison data with other published works. Table 3 show the areal
capacitance values for our bark biochar electrodes compared with other reported electrodes
in the literature.

Table 3. Comparison of areal capacitances of porous carbon-based supercapacitors prepared (with
different types of electrodes) reported in the literature and devices prepared in this work.

Electrode Material (Red for Biochar-Based Materials) Areal Capacitance Electrolyte Current Density (A g−1) or
Scan Rate (mV s−1) Reference

Wheat straw cellulosic biochar 0.3 mF cm−2 6 M KOH 0.5 A g−1 [43]
Graphene fiber 3.3 mF cm−2 PVA/H3PO4 [44]

Modified Graphene fiber with polyaniline 66.6 mF cm−2 PVA/H3PO4 [44]
Graphene oxide-conductive polymer fiber 131 mF cm−2 PVA/H3PO4 [45]

Graphene modified with polyaniline 87.8 mF cm−2 EMITFSI/PVDF-HFP 0.22 mA cm−2 [46]
N-doped porous carbon fiber sheets from biomass-flax 703 mF cm−2 6 M KOH 20 mA cm−2 [47]
Lignin-carbon decorated with molybdenum disulfide 16 mF cm−2 6 M KOH 10 mV s−1 [48]

Lignocellulose-derived phosphorus-doped carbon 146 mF cm−2 6 M KOH 10 A g−1 [49]
Sputtered carbon-doped titanium nitride 45.81 mF cm−2 6 M KOH 10 mV s−1 [50]

KOH biochar 138.49 mF cm−2 5 M KOH 5 A g−1 This work
ZnCl2 biochar 342 mF cm−2 5 M KOH 5 A g−1 This work

According to Gou et al. [43], it is challenging to produce biomass carbon anodes for
supercapacitors with high areal capacitance because many biomass precursors provide
carbon anodes with areal capacitance lesser than 28 mF cm−2. Therefore, developing
economically feasible carbon materials with high areal capacitance is imperative to meet
the demand of future applications in energy storage.

By Table 3, which compares the areal capacitance of some electrode material, it is
possible to see that the areal capacitance for ZnCl2 biochar is the second-highest among
the listed electrodes in Table 3, showing to be very competitive biochar for employment in
supercapacitors and perhaps in other electrochemical systems. ZnCl2 biochar displayed
an areal capacitance of 342 mF cm−2 at 5 A g−1, while some graphene materials presented
much less areal capacitance [44–46]. It is worth highlighting that the production costs for
graphene are incredibly higher when compared to that of ZnCl2 biochar. Consequently, if
the production cost is added to the desirable properties, ZnCl2-activated spruce biochar
could be classified as an excellent electrode material for supercapacitors with high areal
capacitance.

Therefore, the valorization of spruce bark as a sustainable and green strategy to obtain
porous and efficient anodes materials for high-performance supercapacitors represents a
remarkable example of constructing highly sustainable energy storage devices.

The best performance of ZnCl2-based SCs in comparison with KOH-based can be
considered as a conjunction of the several factors, described as follows:

(i) The measured residual zinc in samples of ZnCl2 Biochar, even at a small quantity,
might influence the capacitance of the electrodes since Zn metal has a high theoretical
capacity (820 mAh g−1) [51], which is more than double the theoretical capacity of
graphite (372 mAh g−1);

(ii) The morphology of ZnCl2-based biochars with a rich distribution of cavities and holes
are driven forces that facilitate the permeation of electrolytes along with the electrodes,
contributing to a more effective process of charge separation.

In addition to these aspects, the low internal resistance of material associated with
the higher phase angle measured of ZnCl2-based biochar contributes to the overall best
performance in areal capacitances and energy storage. It is a consequence of the higher
mesoporosity of ZnCl2 that facilitates the electrolyte permeation and charge accumulation
in assembled supercapacitors.
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4. Conclusions

The chemical activation of biochars for carbon derivatives is a critical step in devel-
oping more effective electrodes for supercapacitors. As commonly used activators, the
electrochemical properties of biochars based on ZnCl2 and KOH were evaluated, and the
data was compared with the microstructure of the resulting materials. The higher meso-
porosity degree was observed for samples activated by ZnCl2 while widening micropore
was obtained with KOH activation. Consequently, better capacitive properties associated
with lower internal resistance were obtained for ZnCl2-based biochar that returned an areal
capacitance in order of 342 mF cm−2 in comparison with 138.49 mF cm−2 for KOH-based
biochar. The doping process with a residual zinc element and higher hydrophilic behavior
for ZnCl2-based samples can be considered positive aspects that improve the performance
of the mesopore-type supercapacitors. The results obtained in this work strongly suggest
that the spruce bark can be considered a high-efficiency precursor for biobased electrode
preparation to be employed in SCs.
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