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Abstract
Metabarcoding of DNA extracted from environmental or bulk specimen samples is 
increasingly used to profile biota in basic and applied biodiversity research because 
of its targeted nature that allows sequencing of genetic markers from many samples 
in parallel. To achieve this, PCR amplification is carried out with primers designed 
to target a taxonomically informative marker within a taxonomic group, and sample- 
specific nucleotide identifiers are added to the amplicons prior to sequencing. The 
latter enables assignment of the sequences back to the samples they originated from. 
Nucleotide identifiers can be added during the metabarcoding PCR and during “library 
preparation”, that is, when amplicons are prepared for sequencing. Different strate-
gies to achieve this labelling exist. All have advantages, challenges and limitations, 
some of which can lead to misleading results, and in the worst case compromise the 
fidelity of the metabarcoding data. Given the range of questions addressed using me-
tabarcoding, ensuring that data generation is robust and fit for the chosen purpose 
is critically important for practitioners seeking to employ metabarcoding for biodi-
versity assessments. Here, we present an overview of the three main workflows for 
sample- specific labelling and library preparation in metabarcoding studies on Illumina 
sequencing platforms; one- step PCR, two- step PCR, and tagged PCR. Further, we 
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1  |  INTRODUC TION

In recent years, the analysis of environmental DNA (eDNA) and DNA 
extracted from bulk specimen samples has experienced an enor-
mous surge in popularity in basic and applied biodiversity studies 
seeking to detect e.g., animal, plant, algae, fungi, and bacteria (Bálint 
et al., 2016; Compson et al., 2020; Creer et al., 2016; Jarman et al., 
2018; Lindahl et al., 2013; Taberlet et al., 2012). Within the field of 
genetic biodiversity assessment, DNA metabarcoding is currently 
the most widely used approach, as it allows targeted, parallel, and 
as such relatively cost- effective, identification of multiple taxa from 
environmental samples, such as soil, water, and faeces, as well as 
from bulk samples of organisms (Taberlet, Coissac, Pompanon, et al., 
2012). Here, the applications of metabarcoding range widely; for 
example, detection of invasive species (e.g., Pochon et al., 2013); 
assessment of water quality via identification of freshwater inver-
tebrates in bulk specimen samples (e.g., Elbrecht et al., 2017) and 
environmental samples (e.g., Seymour et al., 2020); identification 
of plant- pollinator interactions (e.g, Gous et al., 2019; Lucas et al., 
2018); detection of vertebrate wildlife via invertebrate “samplers” of 
vertebrate blood or faeces (e.g., Calvignac- Spencer et al., 2013), and 
assessment of for example, niche partitioning (e.g., Razgour et al., 
2011) and ecosystem services (e.g., Aizpurua et al., 2017) through 
detection of diet items. Furthermore, metabarcoding is explored for 
implementation in routine biomonitoring around the world (Aylagas 
et al., 2018; Li et al., 2018, 2019; Pont et al., 2018, 2021; Zizka et al., 
2020; www.danub esurv ey.org; www.syke.fi), and is an integral com-
ponent of the proposals for the Next Generation of Biomonitoring 
programmes (Bohan et al., 2017).

Metabarcoding relies on PCR amplification of extracted DNA 
with primers designed to target a taxonomically informative marker 
for a selected taxonomic group (Taberlet, Coissac, Pompanon, et al., 
2012) (Figure 1). The backbone of metabarcoding analyses is the 
addition of sample- specific nucleotide identifiers to amplicons and 
the use of these to assign metabarcoding sequences back to the 
samples they originated from (“demultiplexing”). This allows pooling 
of hundreds to thousands of samples for sequencing and utilisation 
of the capacity of high- throughput sequencing platforms (Figure 1). 
Amplicon labelling can be achieved at two stages during a metabar-
coding workflow: prior to library build, as 5′ nucleotide “tags” on 
metabarcoding primers, and during library build as library indices. 
The strategies to achieve this labelling can be categorised into three 

main approaches; one- step PCR, two- step PCR, and tagged PCR 
(Figure 2). All three approaches have advantages, challenges, and 
limitations which, if not considered, can result in misleading data in-
terpretation, and in the very worst case can lead to unusable data 
and considerable wasted time and money, as for instance in the case 
of the so- called “tag- jumps” (Carøe & Bohmann, 2020; Esling et al., 
2015; Schnell et al., 2015). Despite this, in contrast to discussions on 
metabarcoding substrate selection, DNA extraction, and data pro-
cessing, the strategies for amplicon labelling and library preparation 
workflows have received little systematic attention in the metabar-
coding literature (although see Murray et al., 2015).

Here, we present an overview of the three most commonly used 
workflows with which to achieve sample- specific labelling and li-
brary preparation in metabarcoding studies, and how they can po-
tentially influence the resulting data. For the sake of simplicity, we 
mainly focus on metabarcoding of plants and animals in basic and 
applied biodiversity studies with sequencing on arguably the most 
used high- throughput sequencing platform series today, the Illumina 
sequencing platforms. Note that points raised will be relevant for 
metabarcoding of other organisms and to high- throughput sequenc-
ing platforms with similar labelling structures to Illumina platforms, 
such as Ion Torrent (Thermo Fischer Scientific), BGI platforms (BGI 
Genomics), Oxford Nanopore Technologies MinION, and PacBio 
(Pacific Biosciences). In the present article, we provide critical 
considerations for researchers to choose the optimal metabarcod-
ing strategy for generating reliable data tailored to their individual 
study; for example, regarding sample type and number, research 
question, speed of laboratory processing, contamination risk, bud-
get, and whether similar studies are to be carried out in the labo-
ratory. Ultimately, by gaining detailed and critical insights into the 
consequences of choosing different metabarcoding workflows, we 
hope to further increase the potential of metabarcoding as a reliable 
tool for use across a wide range of applications.

2  |  TAGGING AND INDE XING 
APPROACHES IN METABARCODING 
STUDIES

Today, the most commonly used high- throughput sequencing 
platform for metabarcoding studies is the Illumina series, where 
for example the MiSeq, iSeq, HiSeq, NextSeq, and NovaSeq have 

distill the key considerations for researchers seeking to select an appropriate meta-
barcoding strategy for their specific study. Ultimately, by gaining insights into the con-
sequences of different metabarcoding workflows, we hope to further consolidate the 
power of metabarcoding as a tool to assess biodiversity across a range of applications.

K E Y W O R D S
amplicon sequencing, biodiversity assessment, eDNA, environmental DNA, high- throughput 
sequencing, Illumina sequencing, library preparation
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been employed (Jarman et al., 2018). These platforms offer high 
throughput, relatively low error rates, and relatively long paired- end 
reads, typically up to 150 bp of each paired read on the iSeq100, 
NextSeq550/1000/2000, HiSeq 3000/4000, and NovaSeq (up 
to 250 bp on SP flow cell), and 300 bp of each paired read on the 
MiSeq platform (www.illum ina.com, applied in e.g., Elbrecht et al., 

2017; Hope et al., 2014; Quéméré et al., 2013; Shehzad, Riaz, et al., 
2012; Singer et al., 2019; Stoeck et al., 2018).

The sequencing depth required per sample is commonly much 
lower in metabarcoding studies than in shotgun sequencing studies 
(e.g., Srivathsan et al., 2015; Stat et al., 2017), and in metabarcoding 
studies it is (economically) feasible to sequence tens, hundreds, or 

F I G U R E  1  Simplified overview of a metabarcoding workflow. (a– b) DNA extracted from environmental samples such as soil, water, 
and faeces or from bulk specimen samples. The DNA extracts are typically a complex mix of DNA from target and nontarget organisms. 
(c) DNA extracts are PCR- amplified with metabarcoding primers that target a taxonomically informative marker for a taxonomic group. 
Importantly, identifiers unique to each PCR product are added in the form of 5′ nucleotide tags on primers and/or as indices added to 
sequence libraries during library build. (d) The taxonomic markers of hundreds to thousands of samples are sequenced in parallel on a high- 
throughput sequencing platform producing millions of sequence reads. (e) The sequences can be traced back to the samples they originated 
from through the nucleotide tags and/or library indices, and (f) can be further analysed. Images courtesy of the Integration and Application 
Network, University of Maryland Centre for Environmental Science (ian.umces.edu/symbols/) and Illumina.com
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Structure of dual-tagged and dual-indexed Illumina metabarcoding library sequence(a)
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even thousands of samples per sequencing run. To allow pooling and 
parallel sequencing of this magnitude, different molecular labelling 
systems have been developed. For metabarcoding studies, the addi-
tion of sample- specific identifiers to PCR amplicons can be achieved 
either as nucleotide tags during the metabarcoding PCR, or as library 
indices when converting amplicons into sequencing libraries, that is, 
as part of the workflow of adding sequencing adapters to amplicons. 
A metabarcoding sequencing library consists of amplicons carrying 
sequencing adapters and indices and can consist of one or more PCR 
products from one or more samples as outlined below. Note that 
given the inconsistent use of terminology in the metabarcoding lit-
erature, for clarity, we use the original term for nucleotide tags in 
amplicon sequencing as used by Binladen et al., (2007), and Illumina's 
terminology to describe the nucleotide reads that are used to de-
multiplex sequencing libraries, the i5 and i7 index reads. That is, 5′ 
nucleotide tags are sequenced with the metabarcoding marker and 
primers in the Illumina sequencing read 1 (and read 2 for paired- end 
sequencing), while library indices are sequenced as separate index 
reads, i.e., if dual- indexing is performed as i5 and i7 reads (Figure 2a) 
(https://suppo rt.illum ina.com).

Metabarcoding approaches can be divided into three overall 
strategies for adding nucleotide tags and library indices (Taberlet 
et al., 2018) (Figure 2):

1. The “one- step PCR” approach in which sample DNA extracts 
are amplified and built into sequence libraries in one reac-
tion. Here, metabarcoding primers carry sequencing adapters, 
nucleotide tags, and/or library indices, referred to as “fusion 
primers” (Figure 2b). This approach is used in for example, 
Kozich et al. (2013), Elbrecht and Leese (2015), Sickel et al. 
(2015), Grealy et al. (2016), Berry et al. (2017), Elbrecht et 
al. (2017), Hardy et al. (2017), Elbrecht and Steinke (2018), 
Seersholm et al. (2018), and Bessey et al. (2020). If indices 
are used, then each PCR replicate or sample is a sequencing 
library and as such is returned as a separate fastq file fol-
lowing sequencing. It should be noted that most studies add 
nucleotide tags next to the primers thereby eliminating the 
need for i5 and i7 “indexing”.

2. The two- step PCR approach in which sample DNA extracts are 
PCR- amplified with two primer sets. In the primary reaction the 
metabarcoding primers carry 5′ sequence overhangs of c. 33– 
34 nucleotides in length. These can be with (Clarke et al., 2017; 
Griffiths et al., 2020; Kitson et al., 2018; Li et al., 2019; Vesterinen 
et al., 2018) or without (Bista et al., 2017; de Vere et al., 2017; 
Galan et al., 2017; Miya et al., 2015; Swift et al., 2018; Vesterinen 
et al., 2018) nucleotide tags (Figure 2c,d). The sequence over-
hangs allow the resulting amplicons to be targeted by the second 
round of primers, which carry sequencing adapters and indices. 

Most commonly, two consecutive PCRs are carried out, such as 
in Miya et al. (2015), de Vere et al. (2017), Galan et al. (2017), 
Kaunisto et al. (2017), Swift et al. (2018), and Vesterinen et al. 
(2018). However, a few studies carry out only one reaction with 
the two primer sets, such as Clarke, Czechowski, et al. (2014). The 
two- step PCR approach is based on Illumina's 16S rRNA system 
originally developed for microbiome studies (www.illum ina.com). 
If unique ndexing is used on PCR replicates in the two- step ap-
proach, each PCR replicate is an individual sequencing library and 
as such is returned as a separate fastq file following sequencing.

3. The “tagged PCR” approach, in which sample DNA extracts are 
PCR amplified with metabarcoding primers that carry 5′ nucleo-
tide tags. Following PCR amplification, the individually tagged 
PCR products are pooled, and ligation- based library preparation 
is carried out on pools of 5′ tagged amplicons. The ligated adapt-
ers can themselves contain indices, which eliminates the need for 
a second PCR step (e.g., Carøe & Bohmann, 2020; Thomsen et 
al., 2016), or the adapter ligation can be followed by a PCR step 
with indexed primers (e.g., Bohmann et al., 2018; Hope et al., 
2014). This approach was first demonstrated by Binladen et al. 
(2007) on the 454 FLX platform and has since been used in for 
example, Shehzad, McCarthy, et al. (2012), Hibert et al. (2013), 
Hope et al. (2014), Thomsen et al. (2016), Apothéloz- Perret- Gentil 
et al. (2017), Sigsgaard et al. (2017), Bakker et al. (2017), Kocher 
et al. (2017), Thomsen and Sigsgaard (2019), and Lynggaard et al. 
(2020) (Figure 2e). In this approach, each library pool of PCR rep-
licates is a sequencing library and is returned as a separate fastq 
file, each of which can contain data from a large number of tagged 
PCR replicates.

For all three strategies, it is important to carefully design tags 
and indices to ensure that oligonucleotide synthesis, PCR, and se-
quencing error will not cause them to be unidentifiable or confused 
(Coissac, 2012; Faircloth & Glenn, 2012). Further, all three strategies 
offer the option to add extra nucleotides to shift PCR amplicons in 
relation to each other and thereby to increase sequence complexity 
on the flow cell (“heterogeneity spacers”, see for example, Bohmann 
et al., 2018; De Barba et al., 2014; Elbrecht & Leese, 2015).

In this article, we discuss the three main metabarcoding strat-
egies. One approach not mentioned here is library preparation on 
individual unlabelled PCR products through a ligation- based library 
preparation protocol with or without an index PCR step. However, 
such ligation based protocol would entail several protocol steps to 
be carried out on each PCR product, such as end- repair and ligation 
of adapters (e.g., carrying indices such as in Illumina's TruSeq Nano 
DNA Library Prep kit, see Zizka et al., 2019). The reason that we 
do not consider this approach a main metabarcoding strategy is due 

F I G U R E  2  Metabarcoding approaches can be divided into three overall strategies for adding nucleotide tags and library indices. (a) The 
composition of a dual- tagged and dual- indexed metabarcoding Illumina library sequence. Note that the metabarcoding marker, primers, 
and tags are sequenced as Illumina read 1 and read 2, while index reads are sequenced separately as i7 and i5 reads and used to multiplex 
sequencing libraries. (b– e) Strategies for adding nucleotide tags and indices to metabarcoding markers. The one- step PCR (b) is depicted with 
the use of nucleotide tags, which eliminates the need for indices

https://support.illumina.com
http://www.illumina.com
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to low reported use of this method, its high cost and workload and 
thereby limited throughput (Zizka et al., 2019).

3  |  PROS AND CONS OF 
METABARCODING APPROACHES

The ability to tag and index amplicons to fully harvest the power of 
high- throughput sequencing comes at a price as the labelling and 
pooling of hundreds of PCR replicates is highly complex and entails 
costs associated with preventing, detecting, and eliminating errors 
and biases. None of the metabarcoding approaches presented here 
is perfect; rather each of them has pros and cons. Below, we outline 
the advantages and disadvantages, specifically addressing issues 
related to cross- contamination risk, PCR amplification efficiency, 
chimera formation, tag- jumping, index- misassignment, cost, and 
workload. The issues associated with each metabarcoding strat-
egy are important to keep in mind for choosing a metabarcoding 
strategy and for designing laboratory workflows and interpreting 
results.

3.1  |  Cross- contamination risk

During the metabarcoding PCR, here specified as the PCR in which 
the metabarcoding marker is targeted, relatively short DNA se-
quences (typically <350 bp) are enriched through amplification. 
Especially when targeting trace amounts of DNA, PCR amplifica-
tion can be highly susceptible to contamination and thereby to false 
positives. The risk of contamination when preparing metabarcod-
ing PCRs, that is from the surroundings or laboratory reagents, is 
the same no matter which of the three overall metabarcoding ap-
proaches is used. Moreover, regardless of the metabarcoding strat-
egy employed, cross- contamination can happen between nucleotide 
tagged and indexed primer stocks (which are delivered at high mo-
larity). The risk of this happening will be similar between the strate-
gies and will depend on the number of samples and the chosen setup 
within the employed strategy. In the following, we will therefore 
focus on how the three main metabarcoding approaches differ in 
their ability to allow detection of cross- contamination between PCR 
products after the metabarcoding PCR.

PCR products are labelled during the metabarcoding PCR ampli-
fication in the one- step PCR approach (Figure 2b), the two- step PCR 
approach where tagging is carried out in the first PCR (Figure 2d), and 
the tagged PCR approach (Figure 2e). If the resulting PCR products 
carry different tag combinations then cross- contamination between 
them is obviously not of concern. However, if the same tag com-
binations occur across multiple samples, then cross- contamination 
between them can be an issue. A solution is to process them in sepa-
rate batches to avoid cross- contamination. Some laboratories do not 
reuse tag- primer combinations to eliminate cross- contamination risk 
(see Murray et al., 2015).

In the two- step approach, sample- specific labelling is not neces-
sarily carried out during the metabarcoding PCR (Figure 2c,d). If not 
labelled, there is a risk of cross- contamination between unlabelled 
PCR products when handling them prior to the second PCR (Zizka 
et al., 2019). Therefore, this metabarcoding approach has the great-
est theoretical risk of cross- contamination between PCR products 
(Figure 2c, Table 1). The risk of this kind of cross- contamination is 
eliminated if tagging is carried out in the first PCR, see for example 
Kitson et al. (2018). If untagged metabarcoding primers are used in 
the two- step PCR approach (Figure 2c), then cross- contamination 
can be eliminated if the two PCRs are carried out in the same re-
action, that is, both two primer sets are included, see for example 
Clarke, Czechowski, et al. (2014).

Irrespective of the chosen approach, cross- contamination can be 
detected and filtered out by including sample replicates, PCR repli-
cates, and positive and negative controls. Thus, these should be in-
cluded in the laboratory workflow and sequencing (e.g., Bista et al., 
2017). An important measure that enables one to filter out potential 
contamination during data processing is to use different nucleotide 
tag or library index combinations on each sample's individual PCR 
replicates. This will allow for stringent sequence processing across 
each sample's PCR replicates, that is, a restrictive approach in which 
only sequences that are shared by a number of a sample's PCR rep-
licates are retained (see Alberdi et al., 2018, applied in, for example, 
Giguet- Covex et al., 2014; De Barba et al., 2014; Hope et al., 2014; 
Cohen et al., 2020; Lynggaard et al., 2021; Yang et al., 2021).

3.2  |  PCR amplification

PCR amplification introduces biases, such as primer biases, and 
errors, such as nucleotide substitutions and chimeras (Haas et al., 
2011; Murray et al., 2015; Piñol et al., 2015; Polz & Cavanaugh, 
1998). Two of the three main metabarcoding strategies allow prac-
titioners to carry out only a single PCR step before sequencing, 
namely the one- step PCR approach and the tagged PCR approach in 
which PCR- free library building is carried out (Figure 2b,e, Table 1). 
Because an extra PCR step adds an additional risk of introducing 
errors, these two approaches offer an advantage over the two- step 
PCR method (Figure 2c,d) and the tagged PCR approach in which 
the workflow includes an index PCR step (Figure 2e). It should be 
noted that the number of cycles in the indexing PCR is typically kept 
low to minimize PCR errors (e.g., eight cycles: Bohmann et al., 2018). 
Throughout any of these workflows there is a need to keep PCR cy-
cles to a minimum, which might be especially true of metabarcoding 
workflows with two PCR steps.

Aside from minimizing the number of PCR steps, the effect of 
5′ nucleotide additions to metabarcoding primers should be con-
sidered as they are likely to decrease PCR efficiency (Murray et al., 
2015; Schnell et al., 2015). Bulk sample and eDNA extracts consist 
of complex mixtures of DNA from a large number of organisms, 
which especially in the case of eDNA can be degraded (Taberlet 
et al., 2012). With DNA extracts, the primers are faced with the task 
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of amplifying (trace copy number) target DNA from different taxa 
(Taberlet, Coissac, Pompanon, et al., 2012) potentially distorted by 
primer biases, inhibitors, and potentially abundant predator or host 
DNA (e.g., Clarke, Soubrier, et al., 2014; Deagle et al., 2014; Murray 
et al., 2015). Therefore, it is important to take the effect of 5′ nucle-
otide additions to metabarcoding primers into account.

The three main metabarcoding strategies have different lengths 
of nucleotide additions on the 5′- end of metabarcoding primers. The 
longest 5′- nucleotide additions are found in the one- step PCR ap-
proach where up to 60 nucleotides (sequence adapters and tags) are 
added to one or both of the primers, making the complete primer 
often over 80 bp long (e.g., Elbrecht & Leese, 2015). In the two- step 
PCR approach (Figure 2c,d), the sequence overhangs on the me-
tabarcoding primers used in the first PCR are approximately half the 
length of the fusion primers, for example, 33– 34 nucleotides if using 
Illumina Nextera Indices. The tagged PCR approach has the shortest 
nucleotide additions to the metabarcoding primers (Figure 2e) with 
tags of typically 5– 10 nucleotides in length (e.g. Alberdi et al., 2018; 
Coissac, 2012; De Barba et al., 2014). The long additions to the me-
tabarcoding primers in the one- step PCR approach cause a decrease 
in PCR efficiency, as witnessed by an increase in CT values (Murray 
et al., 2015). A comparison of PCR efficiency to other metabarcoding 
strategies has not, to our knowledge, been formally assessed for the 
two- step PCR approach, but the two- step PCR approach has been 
shown to have higher consistency as compared to the one- step fu-
sion primer approach (Zizka et al., 2019). Even the short nucleotide 
additions in the tagged PCR approach have been shown to decrease 
PCR efficiency, as witnessed by a significant increase in CT values 
(Schnell et al., 2015). Thus, no method is free of decreased PCR effi-
ciency caused by the nucleotide additions to 5′- end of metabarcod-
ing primers. However, it has to our knowledge, not been formally 
tested whether -  and to what extent -  the shorter nucleotide tag 
additions in the tagged PCR approach offers greater PCR efficiency 
and taxonomic detection than the two other approaches, and 
thereby it can only be speculated that it is the most sensitive when it 
comes to detection of taxa in low abundance. It should be noted that 
increasing the cycle number in the PCR amplifications is not an ac-
ceptable solution to increase sensitivity, as increased cycle number 
will reduce taxonomic diversity (Kelly et al., 2019; Piñol et al., 2015). 
Regardless of metabarcoding strategy, we stress the importance of 
optimising PCR amplifications (usually by qPCR) to detect PCR inhi-
bition, identify samples with low template quantity, and track PCR 
efficiency issues (Murray et al., 2015; Yang et al., 2021).

Theoretically, the reduced PCR efficiency in the one- step and 
two- step PCR approaches caused by the long overhangs on prim-
ers might be counteracted by spiking the PCRs with metabarcod-
ing primers without any 5′ attachments (e.g., Murray et al., 2015). 
However, this has been shown to have modest PCR efficiency im-
provements for the one- step approach (e.g., Murray et al., 2015). 
Alternatively, a pre- enrichment can be carried out before the me-
tabarcoding PCR. That is, running a PCR with metabarcoding prim-
ers with no nucleotide additions prior to the metabarcoding PCR, 
as done in Zizka et al. (2019) and Elbrecht and Steinke (2018) for TA
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the one- step PCR approach. However, this not only introduces 
another PCR amplification step, but can increase the risk of cross- 
contamination between PCR products due to the initial unlabelled 
PCR amplification step (e.g., Murray et al., 2015). Note that adding 
such a pre- enrichment step to the one- step approach can cause it to 
be mistaken for a two- step PCR approach.

Apart from the length of the nucleotide additions, it has been 
investigated whether differences in nucleotide tag sequences can 
result in biases in the tagged PCR approach. Although some studies 
show that such tag bias is an issue (Berry et al., 2011; O’Donnell 
et al., 2016), other studies show that it is not (Leray & Knowlton, 
2017; Yang et al., 2021). If tag bias does exist, it should theoreti-
cally be minimised if different tags are used on each sample's PCR 
replicates.

3.3  |  Chimeras and tag- jumps

Chimeras can be formed during all PCR steps in any metabarcod-
ing workflow (Figure 2b– e). Chimeras are amplicons which com-
bine sequences from two or more different template molecules, 
and the majority are thought to result from incomplete primer ex-
tension during the elongation phase of the PCR cycle (Judo et al., 
1998; Meyerhans et al., 1990; Shin et al., 2014; Wang & Wang, 
1997). The probability of chimera formation increases when simi-
lar template sequences are amplified in the same PCR reaction ( 
Judo et al., 1998, Smyth et al., 2010, but see also Fonseca et al., 
2012), such as during the metabarcoding PCR or during the index 
PCR amplification of pools of tagged amplicons (Figure 2e). There 
are different consequences of chimeric sequences depending on 
where they arise. If they are created during a PCR amplification 
of a single sample's DNA extract, the chimeras will be intrasam-
ple chimeras, which can be falsely interpreted as novel taxa and 
erroneously inflate measures of diversity. On the other hand, if 
chimeras are created during a PCR amplification of pooled tagged 
amplicons, such as in the tagged PCR approach (Figure 2e), the 
chimeras may be intersample chimeras. Such intersample chime-
ras can result in tag- jumps and false attribution of amplicon se-
quences to samples, which can lead to false positives and inflation 
of diversity (Schnell et al., 2015).

All metabarcoding approaches are prone to intra- sample chi-
meras. However, as chimera formation increases when similar se-
quences are amplified in the same PCR reaction (e.g. Judo et al., 
1998; Smyth et al., 2010), the use of metabarcoding primers with 
long 5′ overhangs, as in the one- step and two- step approaches, 
might be more prone to chimera formation since they carry long and 
similar sequences at the 5′ end of the primers. However, this hy-
pothesis requires testing. Intrasample chimeras can be reduced by 
limiting the number of PCR cycles and extending elongation time 
(Haas et al., 2011; Qiu et al., 2001). Also, if samples are subjected to 
multiple, independent PCRs, chimeras can be filtered out by keeping 
only sequences that occur in multiple PCR replicates, the “restric-
tive approach” described in Alberdi et al., (2018). Chimera detection 

programmes such as UCHIME (Edgar et al., 2011) can be used for 
further clean- up.

Inter- sample chimeras can cause havoc in metabarcoding stud-
ies. They can only occur in the tagged PCR approach where library 
build is carried out on pooled tagged amplicons from different sam-
ples (Figure 2e, Table 1). Here, tag- jumps can create sequences with 
new combinations of the nucleotide tags used in the amplicon pool 
(Schnell et al., 2015). If the new combinations of tags are already 
used in the amplicon pool, it will cause false assignment of sequences 
to samples, which should be avoided at all cost (Esling et al., 2015; 
Schnell et al., 2015). Such tag- jumps can cause negative controls to 
accumulate a number of sequences following bioinformatic sorting 
of sequences to samples, which makes sequencing of negative con-
trols a valuable tool to detect tag- jumps.

The rate of tag- jumping has been estimated from ca. 2% to up 
to 49% of total sequences (Carøe & Bohmann, 2020; Esling et al., 
2015; Schnell et al., 2015). This broad range can be caused by fac-
tors affecting intersample chimera formation during the index PCR. 
For example, DNA template and primer concentration, PCR cycle 
number, and sequence similarity (e.g., Carøe & Bohmann, 2020; 
Judo et al., 1998; Smyth et al., 2010). The range of tag- jump pro-
portions highlights the unreliability of including an index PCR step 
in the tagged PCR approach. It should be noted that tag- jumps can 
also occur due to T4 DNA polymerase activity in the blunt- ending 
step during library preparation, as demonstrated in library building 
for the Roche/454 sequencing platform (van Orsouw et al., 2007; 
Palkopoulou et al., 2016) and for the Illumina sequencing platform 
(Carøe & Bohmann, 2020).

To avoid tag- jumps in the tagged PCR approach, and thereby 
prevent false assignment of sequences to samples, it is important 
to refine index PCR parameters to decrease the likelihood of chi-
mera formation, or better yet, to omit the index PCR step (Figure 2e). 
Furthermore, blunt- ending using T4 DNA polymerase should be cir-
cumvented during library preparation (Carøe & Bohmann, 2020; 
Palkopoulou et al., 2016; Schnell et al., 2015). If both T4 DNA poly-
merase blunt- ending and index PCR are eliminated during library 
preparation of pools of tagged amplicons, tag- jumps can practically 
be eliminated (Carøe & Bohmann, 2020).

If the library preparation protocol contains a T4 DNA blunt- 
ending step and/or an index PCR step, and thereby can be assumed 
to generate tag- jumps, they can be detected and removed by using 
“twin- tags” during the original PCRs (e.g., F1- R1, F2- R2, etc.), be-
cause tag- jumped sequences would then produce nontwinned tag 
combinations not used in the set- up (e.g., F1- R2, F2- R3, etc.) (e.g. 
Schnell et al., 2015; Yang et al., 2021). However, using twin tags 
comes at the price of buying many more versions of tagged prim-
ers and building more libraries (Schnell et al., 2015). If twin tags 
are not used, chimera removal software can remove some chimeric 
sequences carrying false combinations of used tags (Schnell et al., 
2015).

The extent of tag- jumping and spillover of taxa between sam-
ples can be detected through inclusion of positive controls con-
sisting of synthetic oligos or taxa not expected to occur in the data 
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set. However, note that such controls do not enable confident 
elimination of false positives caused by tag- jumps. The extent of 
tag- jumping can also be assessed by comparing all observed combi-
nations of used tags to all originally used tag combinations (Schnell 
et al., 2015; Zepeda Mendoza et al., 2016).

3.4  |  Misassignment of library indices

Incorrect assignment of indices between pooled libraries can cause 
sequence reads to be incorrectly assigned to libraries. Misassigned 
indices have been attributed to the formation of mixed clusters on 
the sequencing flow cell, that is, clusters originating from two dif-
ferent template molecules or clusters growing into each other, to 
low levels of free index primers present in the sequence library 
and to bulk amplification of pooled libraries (Costello et al., 2018; 
Nelson et al., 2014; Sinha et al., 2017; Valk et al., 2019; Vodak et al., 
2018). Regardless of how index misassignment occurs, if it occurs 
in metabarcoding studies it can cause incorrect assignment of am-
plicon sequences to libraries, which can cause incorrect assignment 
of sequences to samples and false positives. This phenomenon can 
affect metabarcoding approaches that include indexing of libraries 
(Figure 2, Table 1). To avoid index misassignment it is recommended 
to dual- index libraries with unique library index combinations 
(Kircher et al., 2012; Sinha et al., 2017), www.illum ina.com). Further, 
stringent bead purification (or size selection) can remove free adapt-
ers/primers from the libraries (Owens et al., 2018). The labelling in 
the different metabarcoding approaches further allows for account-
ing for potential incorrect assignment of sequences to libraries. In 
the tagged PCR approach, unique tagging of PCR replicates across 
all pooled libraries can be used to account for (and detect) index mis-
assignment. However, this can be costly. In the one- step PCR ap-
proach, it is common to eliminate the use of i7 and i5 library indices, 
instead relying on 5′ nucleotide tags, which creates a single library 
that is free of index misassignment (Table 1). As with tag- jumping, 
the extent of incorrect assignment of indices and spillover of taxa 
between samples can be detected through inclusion of positive con-
trols consisting of taxa not expected to occur in the data set and 
by comparing all observed to all used combinations of used indices 
when demultiplexing libraries.

It is important not to mistake tag- jumping, index misas-
signment, or cross- contamination between PCR products with 
cross- contamination of the primers themselves. Due to the high 
concentration of primers upon synthesis, cross- contamination 
(e.g., by aerosols) can manifest itself as low numbers of sequence 
reads and could be misinterpreted as tag- jumps or index- bleeding. 
Due to the risk of primer cross- contamination, some laboratories 
avoid ordering primers in 96- well plates. As mentioned, the risk of 
cross- contamination between nucleotide tagged primer stocks and 
indexed primer stocks, which could for example occur during resus-
pension of primers, will generally be the same no matter which of the 
three overall metabarcoding approaches is used. If the first PCR step 
in the two- step PCR approach is carried out without tags (Figure 2c), 

the primers are unlabelled and any cross- contamination between 
the primers will not have consequences.

3.5  |  Cost

Metabarcoding primers in the tagged and one- step PCR approaches 
are labelled, whereas the metabarcoding primers in the two- step ap-
proach can be either labelled or not (Figure 2). Due to the different 
labelling systems in the three primary metabarcoding approaches, 
there are different costs associated with them.

The fusion primers for the one- step PCR approach are the most 
expensive metabarcoding primers amongst the three approaches. 
This is because differently labelled versions are purchased for each 
metabarcoding primer set and because the increased oligo length 
results in lower yield of the full length product. If indexing is used 
instead of tagging and unique matching indices are used to account 
for index misassignment, one- step PCR can become increasingly 
expensive for larger scale studies. However all of this needs to be 
factored against the potential cost of repeating runs due to arte-
facts and contamination, and the fact that only a single PCR step is 
needed to go from sample extract to library. The tagged two- step 
PCR primers will be the second- most expensive (Figure 2d) due to 
their length and individual labelling.

In the tagged PCR approach (Figure 2e), the metabarcoding prim-
ers are relatively inexpensive as they only add 5′ tags of 5– 10 nu-
cleotides in length. However, these need to be purchased in many 
tagged versions for each metabarcoding primer set. Furthermore, if 
tag- jumping is to be taken into account by only using each tag once 
in a library amplicon pool, for example, by only amplifying with twin 
forward and reverse tags, then metabarcoding primer sets have to 
be ordered in many differently labelled versions (Schnell et al., 2015). 
To keep costs down, this twin- tagging needs to be balanced by pool-
ing fewer PCR products into each library and thereby creating more 
sequence libraries, but this then increases expenses to library prepa-
ration (Figure 2e). However, if a library preparation protocol is used 
that does not create tag- jumps, tags can be freely combined, which 
lowers the number of tagged primers that must be purchased (Carøe 
& Bohmann, 2020; Schnell et al., 2015). In contrast to the other 
two metabarcoding approaches, the tagged PCR approach includes 
ligation- based library preparation of pools of amplicons, and the cost 
of this therefore has to be taken into account. The cost can be kept 
low if a protocol that does not generate tag- jumps is used and only a 
few libraries have to be made.

If a large number of metabarcoding primer sets are used, the 
two- step approach, where primers in the first PCR do not carry 
tags (Figure 2c), offers a relatively inexpensive solution. This means 
that the same primer set can be used across multiple samples and 
projects. This has the benefit that trying out new metabarcoding 
primer sets does not entail buying many labelled versions of the 
metabarcoding primer sets, as it does in the other metabarcod-
ing approaches (Figure 2b,d,e). However, the second primer set in 
the two- step PCR approach is costly as it has to include both the 

http://www.illumina.com


1240  |    BOHMANN et Al.

sequence complementary to the sequence overhang, the sequence 
adapters, and the library indices (Figure 2c). It is worth noting that 
many labelled index primers will have to be purchased if twin dual- 
indices are used to account for incorrect assignment of indices to 
libraries. This second primer set is, however, applicable across differ-
ent metabarcoding primer sets and can thereby be used across many 
metabarcoding studies. For all three approaches, cost- effectiveness 
will be increased if the purchased primers are depleted effectively, 
that is, if they are not only to be used in one small study. The two 
primer sets in the untagged two- step PCR approach (Figure 2c) have 
good potential for being used up, as the first unlabelled metabar-
coding primer set can be used across many samples and the second 
primer set can be used across different metabarcoding primer sets.

3.6  |  Laboratory workload

The one- step PCR approach is without doubt the quickest method 
for generating sequence- ready libraries, as it only requires a single 
PCR- step to achieve both amplification and library preparation of 
the metabarcoding amplicons (Figure 2b). Researchers have used 
this method in research and commercial scenarios to turn around 
sequence data in 12– 24 h in the field on the iSeq platform (Bunce, 
unpublished data). In some applications, especially requiring timely 
interventions, the rapid turnaround time of the one- step PCR ap-
proach may be a consideration. The workload for the two- step PCR 
approach and the tagged PCR approach depends, to some extent, 
on how many sample extracts and PCR replicates are to be pro-
cessed. If it is a relatively high number, the tagged PCR approach 
is the quickest due to the library build being performed on pooled 
amplicons rather than through a PCR step on individual PCR prod-
ucts. However, as with all molecular biological workflows, carefully 
organised liquid handling and automation provide solutions to high- 
throughput studies.

4  |  CHOOSING A METABARCODING 
APPROACH

It is clear that there is no such thing as a perfect metabarcoding 
sample- labelling approach, and that choosing which one is right for 
a given study or laboratory should be an informed trade- off of pros 
and cons balanced to the needs (Table 1). Within metabarcoding 
studies, those needs can range widely.

Metabarcoding studies range from those that look for one or a 
few taxa within sample units ( Bohmann et al., 2018) to studies that 
look for many taxa within sample units (Seersholm et al., 2018), and 
sample numbers can range from tens (Elbrecht et al., 2017), to hun-
dreds (Galan et al., 2017; Rodgers et al., 2017) or even thousands 
(Ji et al., 2021; Schnell et al., 2018). The research question and ex-
perimental set- up can require taxonomic identifications to be made 
within individual samples (Coghlan et al., 2012), while in other stud-
ies, taxonomic identifications from pools of individual samples or 

from a number of samples within, for example, a geographic location 
is the goal (Grealy et al., 2016; Schnell et al., 2018). Sample types can 
range from bulk specimen samples consisting of high quality DNA 
from pools of entire organisms (Tang et al., 2015) to environmental 
samples in which DNA from target organisms can be fragmented and 
scarce (Stat et al., 2017). Furthermore, studies differ in how many 
metabarcoding primer sets are used -  from only one ( Bohmann 
et al., 2011; Drinkwater et al., 2018) to several (De Barba et al., 2014; 
Drummond et al., 2015; Zhang et al., 2018). Furthermore, the bud-
get for a metabarcoding project will differ between studies, as will 
whether the metabarcoding primers are to be used in future studies. 
Lastly, some applications of metabarcoding, such as biosecurity or 
forensics, will necessitate a “high bar” for data fidelity and controls.

A multitude of combinations of the above metabarcoding study 
parameters exist, and as demonstrated by this article, the signifi-
cance of the pros and cons of the metabarcoding approaches will 
differ with them. For example, while the tagged PCR approach 
(Figure 2e) may excel in amplifying low abundance templates given 
the shorter nucleotide additions to the metabarcoding primers than 
the one- step PCR primers (Murray et al., 2015; Zizka et al., 2019), 
the one- step PCR offers a quicker turnaround (Figure 2b). However, 
the one- step PCR strategy comes at the cost of buying long fusion 
primers, and is only worthwhile if the metabarcoding primers are to 
be used again.

When choosing a metabarcoding approach, the need for future 
multiplexing of the metabarcoding primers should be considered. 
That is, to use several metabarcoding primer sets that target differ-
ent markers and taxonomic groups within the same PCR reaction 
to simultaneously screen for many taxonomic groups and thereby 
keep costs and work load at a minimum (e.g., De Barba et al., 2014). 
For this, the nucleotide tagged primers in the tagged PCR approach 
should theoretically be the most applicable, whereas the long addi-
tions to the metabarcoding primers in the one- step and two- step 
PCR approaches might be less conducive to multiplexing due to the 
extensive sequence homology.

Lastly, it should be noted that whatever metabarcoding strategy 
is chosen, it should be clear from the present article that one should 
not change workflows within an experiment. Moreover, there is 
some justified concern within the metabarcoding community that 
the nuances in metabarcoding workflows makes interlaboratory 
comparison difficult (Blackman et al., 2019; Murray et al., 2015; 
Zizka et al., 2019).

5  |  APPLIC ATIONS ON OTHER 
SEQUENCING PL ATFORMS

Although to a more limited extent, other second generation se-
quencing technologies than Illumina are used in metabarcoding. For 
example, Ion Torrent (Thermo Fischer Scientific) and BGI platforms 
(BGI Genomics) (Braukmann et al., 2019; Forin- Wiart et al., 2018; 
Schnell et al., 2018; Yang et al., 2020). These technologies require 
the addition of sequencing adapters similar to Illumina platforms 
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and have similar labelling structure. Therefore, discussions regard-
ing labelling strategies in the present article are largely applicable to 
metabarcoding on these other platforms. For example, the one- step 
(Schnell et al., 2018) and the two- step PCR approach (Braukmann 
et al., 2019; Nota et al., 2019) have been used on the Ion Torrent plat-
form, and the tagged PCR approach has been used on BGI's MGISEQ 
platform (Yang et al., 2020). Further, third generation technologies 
yielding long reads have been employed in metabarcoding; Pacific 
Biosciences (PacBio) (James et al., 2016; Tedersoo et al., 2018) and 
the portable Oxford Nanopore Technologies MinION sequencer 
(Karst et al., 2021). These platforms also rely on the addition of se-
quencing adapters. The high error rate of these platforms (Dohm 
et al., 2020) compared to Illumina platforms (Stoler & Nekrutenko, 
2021) makes correct taxa identification and sample specific label-
ling difficult. However, solutions to this are being developed (Karst 
et al., 2021). It is likely that metabarcoding applications will probably 
follow the platform with the highest sequencing fidelity although in 
some applications speed and portability may also increasingly be-
come factors in platform choice.

6  |  PERSPEC TIVES

All metabarcoding strategies can generate robust data. However, 
like all laboratory workflows if they are not executed well or are in-
appropriate for the application, they may lead to flawed data. We 
advocate that just because PCR is a relatively simple method it does 
not mean that metabarcoding is simple, and there are many traps in 
metabarcoding workflows that can trip- up new users. Here, we have 
presented an overview of the three main metabarcoding strategies 
for assessment of biodiversity on Illumina sequencing platforms, and 
the downstream consequences for the resulting data with regards 
to cross- contamination risk, PCR amplification efficiency, chimera 
formation, tag- jumping, index- misassignment, as well as cost and 
workload. In doing so we wish to enable researchers and practition-
ers to make an informed choice of which metabarcoding strategy is 
best suited for their specific study. Ultimately, this is to avoid the 
worst case scenario: generation of unusable data and wasting a con-
siderable amount of time and money, or even worse making wrong 
conclusions due to flawed data.

Metabarcoding of environmental DNA has some commonali-
ties with the field of ancient DNA in which low quality and quantity 
of target DNA is also targeted amongst nontarget, and potentially 
more abundant, templates. In the early days of ancient DNA studies, 
PCR- based techniques, including amplifying already amplified DNA 
to enhance signals, were used, which caused authentication issues, 
as amplification of modern templates was mistaken for true ancient 
signals. This was followed by urgent calls for precautions to ensure 
reliability and authenticity of ancient DNA sequences (Cooper & 
Poinar, 2000; Pääbo et al., 2004). Also similarly to the field of an-
cient DNA, the take- home message should be that metabarcoding 
is becoming a self- critical and self- correcting field in which techni-
cal reliability is promoted and rewarded, with the long- term benefit 

of uptake by stakeholders who will employ metabarcoding for en-
vironmental management. Reputational setbacks as the result of 
practitioners not executing their metabarcoding workflows well will 
probably resonate across a variety of biomonitoring, forensic, and 
bioseurity applications.

We thus stress the importance of being informed about the pros 
and cons of the chosen metabarcoding approach with regards to 
cross- contamination risk, PCR amplification efficiency, chimera for-
mation, tag- jumping, index- misassignment, cost, and workload and 
to include appropriate quality assurance and quality control mea-
sures. This will help ensure that the generated data will facilitate 
informed data analysis and interpretation. We advocate that me-
tabarcoding publications should include detailed information about 
the metabarcoding strategy and how its challenges have been taken 
into account in the laboratory, data processing, and interpretation of 
results. Furthermore, it may be appropriate to eventually develop a 
set of metabarcoding guidelines similar to the MIQE guidelines for 
qPCR (Bustin et al., 2009) to establish standard reporting practises, 
which would ultimately further increase the power and reliability of 
metabarcoding.
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