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Abstract
Extreme wind events affect lake phytoplankton by deepening the mixed layer and increasing internal nutri-

ent loading. Both increases and decreases in phytoplankton concentration after strong wind events have been
observed, but the precise mechanisms driving these responses remain poorly understood or quantified. We
coupled a one-dimensional physical model to a biogeochemical model to investigate the factors regulating
short-term phytoplankton responses to summer wind events, now and under expected warmer future condi-
tions. We simulated physical, chemical, and biological dynamics in Lake Erken, Sweden, and found that strong
wind could increase or decrease the phytoplankton concentration in the euphotic zone 1 week after the event,
depending on antecedent lake physical and chemical conditions. Wind had little effect on phytoplankton con-
centration if the mixed layer was deep prior to wind exposure. Higher incoming shortwave radiation and
hypolimnetic nutrient concentration boosted phytoplankton concentration, whereas higher surface water tem-
peratures decreased concentrations after wind events. Medium-intensity wind events resulted in more phyto-
plankton than high-intensity wind. Simulations under a future climate scenario did not show marked
differences in the way wind events affect phytoplankton concentration. These findings help to better under-
stand how wind impacts vary as a function of local environmental conditions and how climate warming and
changing extreme weather dynamics will affect lake ecosystems.

High wind speeds reshape lake physical and chemical envi-
ronments in ways that can alter phytoplankton growth rates.
At the start of a chain of processes, wind stress at the lake sur-
face induces internal mixing, which deepens the thermocline
(Andersen et al. 2020). Mixing affects the vertical distributions

of oxygen and nutrients, and in turn phytoplankton growth
and vertical distribution. Upwelling of nutrient-rich water dur-
ing mixing can alleviate nutrient limitation, potentially caus-
ing phytoplankton blooms (Soranno et al. 1997; Kasprzak
et al. 2017; Whitt et al. 2019). At the same time, surface tem-
perature tends to slightly decrease during storms (Mesman
et al. 2020; Doubek et al. 2021), potentially reducing growth
rates of light-saturated phytoplankton (Trombetta et al. 2019).
In addition, a deeper mixed layer can increase light limitation
for growth (Diehl et al. 2002) and deepening dilutes concen-
trations by mixing phytoplankton over a larger volume of
water (Kuha et al. 2016). Sediment resuspension due to shear
stress in shallower parts of the lake may simultaneously release
nutrients and limit light availability (Ji et al. 2018). As such,
wind storms have conflicting effects on nutrient and light
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availability (Stockwell et al. 2020), and the net effect of a wind
event on phytoplankton concentrations may depend on lake
physiography and lake state prior to the event.

Changes in storm characteristics and lake thermal structure
will affect phytoplankton responses to wind. Extreme wind
events will likely shift in frequency and intensity as a result of
climate change, with different regions of the globe experienc-
ing increases or decreases (Mölter et al. 2016; Sainsbury
et al. 2018). Concurrent with these changes in meteorological
conditions, more energy will be needed to mix the water col-
umn as surface water temperatures increase and stratification
strengthens (Schmidt 1928; O’Reilly et al. 2015; Pilla et al.
2020). Therefore, in a warmer climate a wind event of a given
magnitude and duration may cause less mixing in stratified
lakes than in the current climate. The depth of the mixed
layer, at the time when a wind perturbation hits, also deter-
mines the degree of lake mixing; a deeper pre-event mixed
layer reduces entrainment of hypolimnetic water by surface
waves (Imboden and Wüest 1995). Long-term climate effects
on mixed layer depth (MLD) are still ambiguous; both
shoaling and deepening mixed layers have been observed, in
addition to no change (Kraemer et al. 2015; Pilla et al. 2020).
Furthermore, local trends in transparency or wind speed are
likely to be at least equally important as trends in warming to
determine changes in MLD (Persson and Jones 2008;
Woolway et al. 2019). Lastly, stratification is expected to occur
earlier in the year as the climate warms (Woolway et al. 2021),
and this will lead to a longer separation of epilimnion and
hypolimnion. This will lead to a greater build-up of nutrients
in the hypolimnion during the stratified period (Pettersson
et al. 2003; Nowlin et al. 2005), which could be entrained into
the mixed layer during a wind event and become available for
phytoplankton growth. The combined effects of climate
warming on the strength and depth of stratification and on
nutrient profiles may therefore cause the response of phyto-
plankton to high wind speeds to either increase or decrease in
a future climate.

Understanding mechanistically how complex lake ecosys-
tems are reshaped by wind events under present and projected
future conditions is a challenging task. Process-based models
have the advantage of enabling a quantitative comparison
between different scenarios and identifying clear causal path-
ways even in complex systems and under conditions yet to be
observed. Also, experiments that incorporate deep-water
mixing and different scenarios regarding stratification, nutri-
ent concentrations, and climate warming are very demanding
to set up (but see Giling et al. 2017), whereas models can rela-
tively easily explore such a wide range of scenarios. Moreover,
extreme events are rare by definition, hard to predict, and thus
difficult to study. Extreme winds also act on short timescales
(hours to days), while lake monitoring programs often include
only weekly or monthly sampling. Therefore, biogeochemical
data describing responses to wind events are scarce. In the pre-
sent study, we used the General Ocean Turbulence Model

(GOTM) model coupled to a biogeochemical model to study
the impact of wind events on phytoplankton dynamics. One-
dimensional process-based hydrodynamic models (including
GOTM) can simulate physical effects of extreme wind with
reasonable accuracy (Mesman et al. 2020), providing some
confidence that processes related to the transport and mixing
of biogeochemical particles and solutes during wind events
can be accurately simulated. Our approach can help identify
potential regulating factors for the responses of phytoplank-
ton to wind events, and how climate warming may affect
these responses.

We used Lake Erken, a mesotrophic dimictic lake in
Sweden, as a case study, because of the available long-term
time series of physical and biological variables that we used to
calibrate our model. However, the findings of this study are
generalizable to the processes regulating phytoplankton
responses to wind across stratifying lakes. Phytoplankton com-
munities in such lakes are shaped by their need for both nutri-
ents and light, which exhibit opposing gradients with lake
depth. We assessed scenarios covering a broad range of atmo-
spheric and lake conditions, which reflect conditions present
in many temperate, stratifying lakes.

We investigated (1) how wind speed, thermal structure,
light availability, and nutrient availability control phyto-
plankton response to wind events during summer stratifica-
tion, and (2) how climate warming may influence the
response of phytoplankton to wind events. We performed
two numerical experiments to address these topics. In the first
experiment, we repeatedly simulated a wind event while
changing wind speed, incoming shortwave radiation, and pre-
event MLD, surface water temperature, and hypolimnetic
nutrient concentration in a full factorial design. In the second
numerical experiment, we compared the response of phyto-
plankton to wind perturbations between present-day and
future-climate air temperatures, at different times of the year
and at different intensities of wind events. These simulations
may help to disentangle and better understand the dynamic
response of phytoplankton to wind events in a changing
world.

Methodology
Site description

Lake Erken (Fig. 1) is a mesotrophic lake in Sweden
(59�5003700N, 18�3503800E), with a mean depth of 9 m and a
maximum depth of 21 m. The lake has a surface area of
24 km2 and its retention time is 7 yr (Blenckner et al. 2002).
Lake Erken is dimictic, although short-term partial or com-
plete mixing events are possible in summer in response to
wind-induced mixing (Yang et al. 2016a). During summer
stratification, both nitrogen (N) and phosphorus (P) can limit
phytoplankton growth (Vrede et al. 1999), whereas during
deep mixing or fully mixed conditions, light availability is the
main limiting factor (Yang et al. 2016a). During summer,
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nutrient concentrations build up in the hypolimnion, and are
circulated through the water column after the autumn turn-
over (Pettersson et al. 2003).

In most years, Lake Erken experiences a distinct spring phy-
toplankton bloom followed by a clear water phase, and then a
second phytoplankton peak in summer or autumn (Yang
et al. 2016b), similar to many monomictic and dimictic lakes
across the globe (Sommer et al. 2012). The spring bloom in
Lake Erken is dominated by diatoms such as Aulacoseira spp.,
Stephanodiscus spp., and Asterionella formosa (Weyhenmeyer
et al. 1999; Yang et al. 2016b). In summer, the cyanobacte-
rium Gloeotrichia echinulata is a major bloom-forming species
(Karlsson-Elfgren et al. 2003; Yang et al. 2016b).

Data collection
We used meteorological, water temperature, and biogeo-

chemical data from 1999 to 2020. Meteorological data (wind
speed, air temperature, air pressure, relative humidity, short-
wave radiation, cloud cover, and precipitation) were collected
every hour at a weather station on a small island in the lake
(Fig. 1). Moras et al. (2019) replaced missing meteorological
data with data from nearby stations, selected by artificial neu-
ral network analysis, and we continued to use this dataset,
supplemented by data until the end of 2020.

Discharge into Lake Erken was estimated by the HYPE
model (Hydrological Predictions for the Environment,
Lindström et al. 2010) from 2004 onwards, and validated
using measured data from the main tributary of the lake. Dis-
charge and temperature data in the main tributary were auto-
matically monitored and summarized to daily values, while
phosphate, total phosphorus, nitrate, and particulate organic
matter concentrations in the inflow were measured once or
twice per month. Because the discharge data were available
only since 2004, the first 5 yr of the discharge data were
recycled for 1999–2003, which was the spin-up period of the
model (see below). In the lake, hourly water temperature data
were collected during the ice-free season with a thermistor
chain roughly 500 m northeast of the weather station, every
0.5 m down to 15 m depth (Fig. 1). Starting in 2017, these
data were collected year-round. Schmidt stability
(Schmidt 1928; Idso 1973) and MLD were calculated from the

water temperature profiles. Schmidt stability was calculated
using the “rLakeAnalyzer” R package (Winslow et al. 2019)
and the MLD was defined as the depth where water density
had increased by 0.15 kg m�3 relative to the surface (similar
method as in Wilson et al. 2020).

Water samples to determine nutrient concentrations (phos-
phate, total phosphorus, nitrate, and ammonium) and chloro-
phyll a (Chl a) were collected above the deepest point of the
lake (21 m), close to the site of the weather station, every
2 weeks during the ice-free season. During stratification, sepa-
rate integrated samples of the epilimnion and hypolimnion
were taken. The integrated samples were created by (1) deter-
mining the depth of the thermocline from temperature and
oxygen profiles, (2) taking water samples at 2-m intervals
using a tube sampler, and then (3) creating a mixed sample
for epilimnion and hypolimnion separately, weighting each
sample according to the lake bathymetry. In winter, if the ice
was sufficiently safe for sampling, a single integrated sample
was taken through a hole in the ice approximately every
month. Nutrients were analyzed using standard laboratory
techniques (Ahlgren and Ahlgren 1976; Goedkoop and
Sonesten 1995). Chl a was concentrated by filtration on glass
fiber filters and then analyzed using spectrophotometry
(Ahlgren and Ahlgren 1976).

Model description and setup
GOTM is a one-dimensional k-epsilon model that simu-

lates vertical thermal and turbulence dynamics in freshwater
and marine water bodies (Umlauf et al. 2005). GOTM is inter-
faced to the Framework for Aquatic Biogeochemical Models
(FABM), which allows coupling of a physical model with a bio-
geochemical model (Table 1, Bruggeman and Bolding 2014). At
every simulation time step, the biogeochemical equations are
applied to each layer in GOTM, including water–atmosphere
and water–sediment exchange, and GOTM regulates the trans-
port of biogeochemical substances (e.g., oxygen and nutrients)
between the layers. Using FABM, GOTM was coupled to a mod-
ified version of the SELMA model, which is a modular version
of the ERGOM model (Table 1, Neumann et al. 2002). This
new version was named “Selmaprotbas,” because apart from

Fig. 1. Lake Erken, including the locations of the main inflow and outflow, the thermistor chain, and the weather station. The lake is located in Sweden
at 59�5003700N, 18�3503800E.
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several code improvements, we implemented several features
from the PROTBAS model (Markensten and Pierson 2007).

The Selmaprotbas model describes oxygen, detritus, nitro-
gen, phosphorus, phytoplankton, and zooplankton dynamics.
Processes described in the model include (de-)nitrification,
sediment resuspension, sediment solute release, mineraliza-
tion of detritus, phytoplankton growth regulated by nutrients
and light, and grazing by zooplankton (Neumann et al. 2002).
Chl a content and phytoplankton biomass are linked through
a fixed chlorophyll-to-carbon ratio, which was required to
match our observations of Chl a to the biomass estimates
of the model. We modified the SELMA model code by
(1) expressing phytoplankton and zooplankton concentration
in carbon instead of nitrogen; (2) adding a silica cycle;
(3) adding an option to use the phytoplankton light limitation
and temperature growth dependence function described in
Reynolds et al. (2001); (4) relating Chl a concentration directly
to the carbon content of phytoplankton; (5) adding the possi-
bility for buoyancy regulation of phytoplankton; and (6) all-
owing varying nutrient ratios over time in detritus and
sediment. Advantages of these changes include a more compa-
rable setup to other biogeochemical models and a more com-
plete description of potentially relevant processes. A detailed
common-language description of the model has been supplied
in Supplement S1 of Supporting Information and the model
code is publicly available (see Software and Data Availability).

The meteorological conditions and inflow data collected at
Lake Erken were used as inputs for the model, and the GOTM
model was run with an integration time step of 1 h and 0.5 m
thick layers. A fourth-order Runge–Kutta time integration
scheme was used in the Selmaprotbas model. The Selmaprotbas
model was run with two phytoplankton groups: diatoms and
cyanobacteria, both of which had growth regulated by light,
temperature, and the concentrations of phosphorus and
nitrogen. The diatom group was calibrated specifically for the
spring period, had high sinking rates, and was also regulated
by silica; cyanobacteria could fix nitrogen and regulated
buoyancy based on light availability, with the same settings
as Anabaena (now Dolichospermum) described by Reynolds
et al. (2001). For the files to run the model, see Software and
Data Availability.

Calibration
After 5 yr of spin-up, 13 yr (2004–2016) were used for cali-

bration. We used the parsac software (Table 1, Bruggeman and
Bolding 2020), employing a differential evolution method to
optimize the maximum likelihood objective function of the
root mean square error (RMSE) between observations and sim-
ulations. A single set of parameter values was retrieved from
the calibration. The calibration was split into two steps. First,
the water temperature data were optimized using 10,000 itera-
tions, by calibrating five parameters based on a previous study

Table 1. Software used or referred to in this study. Supplement S1 of Supporting Information contains more information on how
GOTM and Selmaprotbas are coupled to each other, and how the Selmaprotbas model was derived from the SELMA and PROTBAS
models.

Abbreviation Full name Description References

GOTM General Ocean Turbulence Model One-dimensional hydrodynamic model. Used in

this study to simulate the vertical thermal

structure

Umlauf et al. (2005)

FABM Framework for Aquatic Biogeochemical Models Framework to couple a hydrodynamic to a

biogeochemical model. Used in this study to

couple GOTM and Selmaprotbas

Bruggeman and

Bolding (2014)

Selmaprotbas Selmaprotbas (combination of the SELMA and

PROTBAS models)

Biogeochemical model. Used in this study to

simulate oxygen, nutrient, and phytoplankton

dynamics. Based on SELMA and PROTBAS

This study

SELMA Simple EcoLogical Model for the Aquatic Biogeochemical model. A modular (i.e.,

compartmentalized) version of ERGOM that

can be coupled to FABM

—

ERGOM Ecological ReGional Ocean Model Biogeochemical model Neumann et al. (2002)

PROTBAS PROTech-Based Algal Simulations One-dimensional physical and biogeochemical

model. Based on PROTECH

Markensten and

Pierson (2007)

PROTECH Phytoplankton RespOnses To Environmental

CHange

One-dimensional biogeochemical model Reynolds et al. (2001)

parsac Parallel Sensitivity Analysis and Calibration Software for sensitivity analysis and calibration.

Used in this study to perform a sensitivity

analysis and calibrate the GOTM-

Selmaprotbas coupled model

Bruggeman and

Bolding (2020)
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(Ayala et al. 2020): minimum turbulent kinetic energy, the
extinction coefficient of visible light, and scaling factors for
heat fluxes, wind speed, and incoming shortwave radiation. In
the second step, 400,000 model iterations were run, varying
50 parameters that were determined in a sensitivity analysis
(see next section). The objective function compared simulated
in-lake concentrations of ammonium, nitrate, phosphate,
total phosphorus, Chl a, water temperature, and oxygen with
measured lake data. Physical parameters from the first step
were also included in the second step of the calibration, but
their ranges were constrained to � 10% of the value
obtained in the first calibration step. Because the nutrient
and Chl a samples were based on integrated samples for the
epilimnion and hypolimnion, for the calibration we
assumed these samples to be representative of 3 and 15 m
depth, respectively.

The parsac calibration attaches equal weight to each obser-
vation. To avoid attaching too much value to the water tem-
perature and oxygen measurements (which were collected at
higher frequency) in the second step, we excluded tempera-
ture and oxygen measurements that were not collected on the
same day as the nutrients, and we reduced the vertical resolu-
tion from 0.5 to 1.0 m. The full time series were used to assess
goodness-of-fit.

The results of the calibration can be found in Supplement
S2 of Supporting Information.

Sensitivity analysis
We performed a sensitivity analysis using the parsac software

to determine what parameters to include in the calibration of
the Selmaprotbas model (Bruggeman and Bolding 2020; Ander-
sen et al. 2021). Parsac applies the Sensitivity Analysis Library
(Herman and Usher 2017) in Python. All parameters in the
Selmaprotbas model, scaling factors for inflow discharge and
concentrations, and the five calibrated parameters in GOTM
were included in the sensitivity analysis (totaling 55 parame-
ters), and responses in simulated mean values of ammonium,
nitrate, phosphate, total phosphorus, Chl a, and oxygen were
assessed.

We followed a density-based delta-sensitivity method
(Borgonovo 2007), which has been described earlier for the
GOTM-FABM-PCLake model (Andersen et al. 2021). First, a
Latin hypercube sampling (McKay et al. 2000) was applied to
generate a number of parameter sets equal to 200 times the
number of parameters. This number of parameter sets was
based on a convergence test, where we found that values for
sensitivity started to converge at this sampling size (results of
convergence test not shown). We then ran the model for all
parameter sets in the Latin hypercube and applied the delta-
sensitivity analysis to the results. In this method, the global
importance of a parameter is calculated based on its effect on
the entire output distribution, which can be calculated even
when parameters are correlated (Borgonovo 2007). A 95%
confidence interval around the sensitivity values was

estimated by 100 resamples using a bootstrapping approach
(Plischke et al. 2013). To distinguish sensitive from insensitive
parameters, we introduced a dummy parameter in the sensi-
tivity analysis (Andersen et al. 2021). If a parameter’s sensitiv-
ity value fell within the 95% confidence interval of the
dummy for all variables (ammonium, nitrate, phosphate, Chl
a, oxygen), that parameter was excluded from the calibration.
For parameters that were repeated for the two phytoplankton
groups, the parameter was excluded only if it fell in the
dummy confidence interval for both groups. If not, the
parameter was retained for both phytoplankton groups. The
parameters that were excluded during the sensitivity analysis
can be found in Supplement S2 of Supporting Information.

Validation
We calculated RMSE, mean absolute error (MAE), mean

error (ME), and Nash–Sutcliffe efficiency (NSE, Nash and
Sutcliffe 1970) from the simulated and measured values of
water temperature, nutrients, oxygen, and Chl a as measures
for the goodness-of-fit. All measured values at each depth were
compared to the corresponding simulated values, by linear
interpolation of simulated values if necessary. The last 4 yr of
the time series (2017–2020) were used for validation, and
thus not used to train the model. The measures for the
goodness-of-fit were compared between the calibration and the
validation period to assess the quality of the simulation.
The simulation from 1999 to 2020 using the observed weather
conditions and the calibrated parameter values is termed the
“long-term simulation.”

All calculations and data handling were done in the R soft-
ware, version 4.0.1 (R Core Team 2020).

Numerical experiment 1: Variables controlling
phytoplankton response to wind events

Our first numerical experiment investigated which vari-
ables control the response of phytoplankton concentrations
to wind events. Consequently, we induced a 1-d wind event
for different values of several meteorological and pre-event
lake variables. Five variables were chosen that were expected
to impact the phytoplankton response to wind:

• Wind speed during the event: Represents the magnitude of
the disturbance induced by the event.

• MLD prior to the wind event: A measure of the sensitivity
of the thermal structure to further deep-water entrainment
and controls the volume of the epilimnion.

• Shortwave radiation during the event: Regulates the avail-
ability of light.

• Surface water temperature: Increases the strength of stratifi-
cation prior to the event, and therefore the resistance to
mixing.

• Hypolimnetic nutrients: Regulate the potential for nutrient
upwelling.
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Ten levels of each variable were taken into consideration in
a full factorial design, therefore totaling 105 simulations.
The wind perturbation had a duration of 24 h and was initi-
ated 24 h after initialization of the model run (Fig. 2a).

We focused on the month of July to generate the weather
conditions for this numerical experiment. Lake Erken was
always stratified in July and stratification would have existed

for sufficient time to allow for the build-up of hypolimnetic
nutrients. To have a representative period with natural
weather variations, we selected a year in our dataset with the
most generic weather conditions during July. To that purpose,
we calculated the mean and standard deviation for the meteo-
rological driving variables measured in July (wind, pressure,
temperature, relative humidity, shortwave radiation, and

Fig. 2. Setup of the first numerical experiment. Panels (a–d) show the weather conditions used in the experiment—(a) wind speed, (b) air temperature,
(c) incoming shortwave radiation, and (d) cloud cover. The solid lines were used in all simulations and the dashed lines indicate the different scenarios
used in the numerical experiment, which were varied independently of one another. In panels (e–g), the initial vertical profiles of (e) water temperature,
(f) nitrate, and (g) phosphate are shown. The initial profiles varied in both MLD (dashed lines) as well as the epilimnetic value for water temperature and
the hypolimnetic value for nitrate and phosphorus (solid lines). Because the experiment had a full factorial design, each of the panels (e–g) could contain
100 lines (varying both MLD and absolute value), but instead variation in either MLD (keeping the absolute value constant) or absolute value (keeping
MLD constant) is shown. Nitrate and phosphate were part of the same scenario (i.e., “nutrients”) and therefore did not vary independently. These initial
profiles were based on the average conditions during July in the long-term simulations. The values of the levels used in the scenarios can be found in Sup-
plement S3 in the Supporting Information.
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cloud cover) for each year separately and for the full period
(1999–2020). For each year, we then calculated the root mean
squared relative error (Despotovic et al. 2016) between the
year and the full period values for both mean and standard
deviation. July 2006 had the lowest error value and therefore
most closely matched the long-term mean and variance, so we
used these weather conditions as baseline in the first experi-
ment (Fig. 2a–d).

For all model variables, we based initial conditions on the
average long-term July profiles for the epilimnion and hypo-
limnion separately. Both profiles were defined as 10 equidis-
tant values, interpolated from surface to the MLD for the
epilimnion, and from the MLD to the maximum lake depth
for the hypolimnion. As an example, when the MLD was 8 m,
the epilimnetic profile consisted of 10 values, a linear interpo-
lation of the simulated values over 0–8 m, and when the MLD
was 4 m, the epilimnetic profile still had 10 values, but inter-
polated over 0–4 m depth. Dates with a density difference
between top and bottom of less than 0.15 kg m�3, and dates
with an MLD < 2 or > 15 m were excluded. The average of all
calculated epilimnetic and hypolimnetic profiles during July
were taken as initial conditions for our simulations, for each
model variable. Because these initial conditions were defined
relative to MLD, profiles for any value of MLD could be gener-
ated (see dashed lines in Fig. 2e–g).

The 10 different levels of wind speed, MLD, incoming solar
radiation, surface temperature, and hypolimnetic nutrient
concentration used in the simulations were also taken from
the long-term simulation (1999–2020) using data from July.
The 5th and 95th percentiles of the daily averages were com-
puted, and a linear sequence of 10 values between these per-
centiles was used for the experiment (Fig. 2). The only
exception was wind speed. Because the main interest of the
present study was high wind speed, the lowest wind speed
considered was the median, and the highest wind speed was
set to 5 m s�1 above the maximum recorded daily average
wind speed, to anticipate the possibility of increased extreme
wind speeds in the future due to climate change (Mölter
et al. 2016). Moreover, energy transfer from wind to the lake
increases exponentially with wind speed (Wüest et al. 2000).
Because we used a constant wind speed for 24 h (Fig. 2), our
simulated wind events would cause less mixing than a brief
event with the same daily mean but varying wind speeds.
Using a higher wind speed than the recorded maximum par-
tially compensated for this. Each combination of the indepen-
dently changed variables was a separate simulation.

The model output of each run—concentrations of Chl a,
nitrate, and phosphate—was volume-averaged over the
euphotic zone for the first week after the end of the wind
event. The depth of the euphotic zone (i.e., the depth where
1% of the light remains) was kept constant and was calculated
as �ln(0.01) times the calibrated value of the e-folding depth
of visible light (“g2” parameter) in the GOTM model, which
gave a euphotic zone depth of 8.0 m. We decided to average

over a euphotic zone of fixed depth, because phytoplankton
below this zone are unlikely to contribute to primary produc-
tion and will likely degrade over time, yet they are still present
as biomass in the model. Averaging over the full water column
would therefore lead to underestimation of the effects of
mixed layer deepening on production and Chl a. In addition
to the average concentrations, average Schmidt stability was
also calculated for the first week after the event.

As the last step of this experiment, we fitted the volume-
averaged Chl a concentrations in the experiment with a ran-
dom forest model to discern what variables affected the result
most, using permutation variable importance. The random
forest model contained 1000 trees. All data from the experi-
ment were used (no holdout), because we wanted to identify
the most important variables rather than make predictions.
The fitting of the random forest model and the calculation of
the permutation importance were done using the “ranger” R
package (Wright and Ziegler 2017).

Numerical experiment 2: Effect of a warmer climate on
phytoplankton response to wind events

Whereas the first numerical experiment investigated the
effect of individual variables, the second experiment focused
on discerning the net effect of a warming climate on phyto-
plankton response to wind events. The long-term simulation,
from 1999 to 2020, under observed weather conditions, was
taken as the baseline. Every year (N = 22) a 24-h wind pertur-
bation was added to this baseline. To avoid cumulative effects,
only one perturbation was applied to each 22-yr simulation.
For the rest of the period, observed weather data were used.
Based on average seasonal patterns of stratification, this per-
turbation occurred early summer (9th of June, corresponding
to the first day-of-the-year when the averaged Schmidt stabil-
ity over all the years exceeded 50% of the maximum) or mid-
summer (4th of July, 80% of maximum Schmidt stability), and
with moderate (7.2 m s�1, i.e., 95th percentile of daily average
wind speed) or high (9.0 m s�1, 99th percentile) intensity
(Table 2; for the determination of these thresholds, see Supple-
ment S4 of Supporting Information).

We repeated our design for a climate scenario in which the
air temperature was scaled to the period 2041–2070 of an Rep-
resentative Concentration Pathway (RCP) 8.5 emission sce-
nario (IPCC 2014) of the regionally downscaled output of the
HadGEM2-ES global climate model (Collins et al. 2008). This
climate model output was created as part of the EURO-
CORDEX experiment (Table 2, Jacob et al. 2013). The mea-
sured Lake Erken air temperature was scaled according to the
delta-decile method (Perroud and Goyette 2010); for every
month and every decile of daily averaged air temperature (0th

to 10th percentile, 10th to 20th percentile, etc.) the increase in
temperature was calculated and applied to the historical time
series. The other meteorological conditions, including relative
humidity and wind speed, were kept the same. We chose this
approach to isolate the effects of warming alone and to draw
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conclusions for a wider range of lakes, as local trends in other
variables (such as cloud cover) that may be specific to Lake
Erken were not included. Atmospheric warming not only
influences surface temperature and strength of stratification,
but can also change the MLD and lead to an earlier onset of
stratification and thus to different vertical profiles of nutrients
and oxygen (Kraemer et al. 2015; Woolway et al. 2021). As
such, increased air temperature influences multiple potentially
important lake variables that affect the relationship between
wind events and phytoplankton, which were investigated in
isolation in the first numerical experiment.

In each simulation, the volume-averaged Chl a concentration
between 0 and 8.0 m depth (the euphotic zone) was calculated.
The maximum difference in concentration between the control
and the perturbation scenarios (Table 2), within 1 wk after the

event, was determined. These values were then compared
between the present-day and the future climate scenarios.

Results
Calibration and validation

During the calibration period, the model simulated water
temperature with an RMSE of 0.9�C. Seasonal cycles in oxy-
gen, nitrate, and phosphate were also reproduced, as indicated
by NSE values above 0 (Table 3). The main cause for the low
fit statistics of Chl a was the substantial underestimation of
the spring Chl a peak (Supplement S5 of Supporting Informa-
tion). In the validation period, the model fit worsened slightly
for phosphate, nitrate, and Chl a, as indicated by the NSE
values. Inspection of the time series (Supplement S5 of
Supporting Information) confirmed that seasonal cycles in
water temperature were well simulated. Deep-water oxygen
concentrations were also simulated accurately, except that
under ice, oxygen depletion was underestimated by the
model, and in 2014–2016 deep-water anoxia events were mis-
sed. Chl a concentrations showed distinct spring and summer
peaks, but the spring peak concentrations were under-
estimated in almost all years, and sometimes simulated too
late. Summer Chl a levels tended to be close to observed
levels, with the exception of some summer blooms, when the
model underestimated observed values. Simulated summer
epilimnetic concentrations of both nitrate and phosphate
were low, typical of values measured in the lake. However, the
increase in nitrate concentrations in autumn was reproduced
too early, and winter concentrations of phosphate tended to
be underestimated.

Numerical experiment 1: Variables controlling
phytoplankton response to wind events

MLD, surface water temperature, hypolimnetic nutrient
concentration, and incoming shortwave radiation all inter-
acted with wind speed to affect phytoplankton response to
wind events. Wind speed had a nonlinear effect on the average
phytoplankton concentration in the first week following the
event: moderate wind speeds increased Chl a concentrations,
but strong winds (on the order of 10 m s�1 or higher) had a

Table 2. Design for the second numerical experiment. Starting
from the long-term simulation (1999–2020), 24-h wind perturba-
tions were added either early or later in summer, and with mod-
erate or high intensity. These wind perturbations were added to
every year in separate simulations, to avoid accretion of effects.
This design was repeated for a future-climate scenario, in which
air temperatures were scaled to the level of 2040–2070 according
to an RCP 8.5 climate scenario.

Present climate
(observed

meteorological data)

RCP8.5
(scaled air

temperatures)

Control (no

perturbations)

1 simulation 1 simulation

Early summer,

moderate intensity

22 simulations

(1 perturbation for

each year 1999–2020)

22 simulations

Early-summer, High

intensity

22 simulations 22 simulations

Mid-summer,

moderate intensity

22 simulations 22 simulations

Mid-summer, High

intensity

22 simulations 22 simulations

Table 3. RMSE, MAE, ME, and NSE for the calibration (“Cal.,” 2004–2016) and validation (“Val.,” 2017–2020) periods. For RMSE,
MAE, and ME, values close to 0 indicate an optimal fit, whereas for NSE a value close to 1 indicates an optimal fit. These metrics are
calculated for the epilimnion in case of nitrate, phosphate, and Chl a, and for the full water column for oxygen and temperature.

Variable

RMSE MAE ME NSE

Cal. Val. Cal. Val. Cal. Val. Cal. Val.

Phosphate (mg P L�1) 0.011 0.012 0.007 0.008 �0.003 �0.001 0.406 0.234

Nitrate (mg N L�1) 0.050 0.051 0.037 0.038 0.017 0.024 0.375 0.346

Oxygen (mg O2 L
�1) 2.106 2.115 1.152 1.321 0.659 0.775 0.511 0.720

Chl a (μg L�1) 6.163 6.820 3.544 4.437 �1.797 �2.741 �0.054 �0.156

Water temperature (�C) 0.880 0.818 0.580 0.511 �0.065 �0.018 0.957 0.976

Mesman et al. Drivers of phytoplankton responses

863



less positive, or even a reducing effect on Chl a concentration
(Fig. 3b, inset). When the initial MLD was deeper than about
8 m, even strong winds had substantially less effect on Chl
a concentrations than under shallower mixed layers (Fig. 3b).

Of the other variables included in the experiment, incom-
ing shortwave radiation had the strongest influence (Table 4).
At low incoming radiation (< 150 W m�2 daily averaged), the

effect of wind on phytoplankton was largely negative,
although at moderate wind speeds some increases were still
evident (Fig. 3b). When incoming radiation increased above
200 W m�2, wind had an overall positive effect on phyto-
plankton concentration in the euphotic zone, moderate wind
speeds more so than high wind speeds. Hypolimnetic nutri-
ents were less influential than light or surface water

Fig. 3. The figure has two main panels, (a) and (b), which are each composed of 16 subpanels. Panel (a) shows the volume-averaged Chl
a concentration in the euphotic zone (upper 8.0 m of the water column), averaged over the first week after a simulated wind event in Numerical experi-
ment 1. In panel (b) the same data as in panel (a) are shown, but relative to the lowest wind condition, while keeping MLD, nutrients, and light constant.
The subpanels each represent a scenario with a different hypolimnetic nutrient concentration (low on the left, high on the right; N and P concentrations
are indicated on top) and a different average incoming shortwave radiation (low on top, high on bottom, values indicated on the left). Each subpanel
has the wind speed during the event on the x-axis and the MLD on the y-axis (see labels in the inserts), and each small rectangle inside each subpanel
corresponds to one simulation. The change in main panel (b) was calculated relative to the simulation with a wind speed of 3.7 m s�1 (which is why the
left column of each subpanel always has a value of 0). The numerical experiment was performed using 10 levels of shortwave radiation and nutrient
levels. Only four by four subpanels are shown for visualization purposes, because the results for intermediate input values can be interpolated from the
ones presented.
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temperature (Table 4), but higher concentrations resulted in
increased phytoplankton concentration following wind events
at mixed layers deeper than about 4 m when incoming radiation
was high (Fig. 3b). At the shallowest mixed layer (2 m), wind
speed had a negative effect on Chl a when hypolimnetic nutri-
ents were high. Surface water temperature before the event (and
therefore Schmidt stability) also influenced phytoplankton
response to wind; a higher initial surface temperature caused a
decrease of phytoplankton after a wind perturbation
(Supplement S6 of Supporting Information).

Apart from changes in Chl a, we also examined changes in
Schmidt stability, and nutrient concentrations. The strongest
decrease in Schmidt stability was diagnosed at strong wind
speeds and shallow MLD (Supplement S6 of Supporting Infor-
mation), an indication of intense mixing. Although mixing
always entrained nutrients into the epilimnion, noticeable as
a peak directly after the wind event (not shown), the nutrient
concentration averaged over the euphotic zone in the first

Table 4. Permutation-based variable importance of wind speed,
MLD, hypolimnetic nutrients, incoming shortwave radiation, and sur-
face water temperature for predicting change in volume-averaged
Chl a over the euphotic zone (i.e., the values shown in Fig. 3b) in
the first numerical experiment, based on a fitted random forest
model. The out-of-the-bag R2 was 0.992. The importance values rep-
resent the degree to which the mean squared error of the fitted ran-
dom forest model increases if the input column for that variable is
randomly permuted. The greater the error after permutation, the
more the model relies on the variable for making predictions, and
therefore the more important the variable is to the model.

Permutation-based importance

Incoming shortwave radiation 0.21

Wind speed 0.15

Surface water temperature 0.09

Mixed layer depth 0.07

Hypolimnetic nutrients 0.02

Fig. 4. Comparison of summer long-term averages (June–August) between the unperturbed present-day and RCP8.5 climate scenarios of the Lake Erken simu-
lations. Surface temperature and Chl a are taken from a depth of 3 m, and the variables marked “deep water” are taken from 15 m depth. Onset and end of
stratification were calculated as the first and last day-of-the-year that Schmidt stability continuously exceeded 10 J m�2 for the duration of at least 1 week. The
boxplots show the median and quartiles (N = 22). Whiskers extend to the smallest and largest value within 1.5 times the interquartile range from the nearest
quartile, and values outside this range are marked as outliers (•) (made using the geom_boxplot function of the ggplot2 R package, Wickham 2016).
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week after the event could decrease due to enhanced phyto-
plankton uptake, especially for moderate wind speeds (5–
10 m s�1, Supplement S6 of Supporting Information). If the
initial mixed layer was deeper, the effect of the wind on ther-
mal structure and nutrients was less strong (Supplement S6 of
Supporting Information).

Numerical experiment 2: Effect of a warmer climate on
phytoplankton response to wind events

Under the warming scenario, Lake Erken surface tempera-
tures in summer increased by roughly 1.6�C while deep-water
temperatures remained similar to present-climate conditions,
and therefore the Schmidt stability increased (increase in
median by 43%, Fig. 4). The mixed layer shoaled by 1.2 m
(14%), and stratification tended to both form earlier and van-
ish later in the year (medians are 3.5 d earlier and 6.5 d later
in the RCP8.5 scenario, respectively). Median deep-water oxy-
gen concentrations decreased by 20% (1.17 mg L�1), while
deep-water nitrate and phosphate concentrations increased
(nitrate increase in median of 50%, 14.4 μg L�1; phosphate
increase in median of 28%, 8.8 μg L�1). Average summer Chl
a concentration tended to be higher in the warming scenario
compared to present-day conditions (0.56 μg L�1 higher, 10%
increase, Fig. 4).

Overall, impacts of identical wind events under the RCP8.5
climate scenario did not have a drastically different effect
compared to the present-day situation in our simulations
(Fig. 5). Both increasing and decreasing effects of wind events
on Chl a were found early and later in the stratified season

and also with either moderate or high intensity (Fig. 5). Events
with a higher wind speed tended to have more effect than
moderate-intensity events, but without shifting toward either
more positive or more negative effects on Chl a. Moreover,
the difference in effect between high- and moderate-intensity
wind events was small (Fig. 5).

Discussion
We applied a coupled physical–biogeochemical model,

GOTM-Selmaprotbas, to investigate the effect of wind events
on lake phytoplankton under present and projected condi-
tions in Lake Erken, Sweden. Moderate wind speeds (≈ 5–
10 m s�1) promoted phytoplankton concentration more
strongly than high wind speeds and also had increasing effects
compared to low wind speeds when there was sufficient
incoming light. This shows that the effect of wind events on
phytoplankton is nonlinear. The effect of wind on phyto-
plankton decreased when MLD exceeded 8 m, highlighting
the effect of thermal structure on the susceptibility of phyto-
plankton to wind perturbations. Higher availability of light
and nutrients caused a larger increase of phytoplankton after
wind events, whereas a stronger stratification decreased phyto-
plankton concentrations after wind perturbation. In the sec-
ond numerical experiment, we found that under warmer
atmospheric conditions, the response of phytoplankton to
wind events is similar to that under present-day climatic con-
ditions. These findings help to improve our understanding of
how wind events influence phytoplankton and how climate

Fig. 5. Comparison of the effect of wind events on phytoplankton between present-day and RCP8.5 climate forcing in Numerical experiment 2. Each
histogram represents the maximum difference in volume-averaged Chl a concentration in the euphotic zone between simulations with and without wind
events on the y-axis. Positive values indicate that wind events had an increasing effect on Chl a concentration, and negative values that the event had a
decreasing effect. The back-to-back histograms compare the present-climate (bars to the left, in light gray) against the RCP8.5-scaled climate scenario
(bars to the right, in black). The four panels compare these outcomes in simulations when wind events are moderate or severe (left- and right-hand
panels, respectively), and when they occur early in summer (9th of June) vs. later in the summer (4th of July; top vs. bottom panels). Each panel represents
the outcome of multiple simulated events, one for each year in the long-term simulation (N = 22). On the x-axis are the number of simulated events that
showed the corresponding change in Chl a compared to baseline conditions.
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change (including changing extreme weather patterns) will
affect lakes.

Model validation
The model successfully reproduced the seasonal cycles of

all variables. Water temperature was simulated well, and with
an RMSE of 0.9�C the fit was similar to those in previous stud-
ies in Lake Erken (Moras et al. 2019; Ayala et al. 2020). Periods
of summer hypolimnetic hypoxia were captured well by the
model in most years, although the clear underestimation of
under-ice oxygen consumption did point toward an incom-
plete description of winter oxygen dynamics by the model.
Also, the dynamics of dissolved nutrients (nitrate and phos-
phate) were reproduced rather well, with concentrations close
to observed values in summer, the period under study. How-
ever, winter concentrations of phosphate and nitrate tended
to be underestimated and the increase in nitrate in autumn
was simulated too early, potentially due to a missing recalci-
trant organic matter component, such as macrophytes near
the shore. In addition, expanding the model description of
sediment dynamics may lead to improvements in oxygen and
nutrient simulations. The statistics describing the nutrient
simulations for our simulations of Lake Erken are similar to
recent applications of the GLM-AED2 model in Lake Mendota,
USA, (Ladwig et al. 2021) and of the CE-QUAL-W2 model in
Rappbode Reservoir, Germany, (Mi et al. 2020).

The goodness-of-fit statistics were worst for the Chl
a dynamics. This was largely due to the significant underesti-
mation of the magnitude of the spring peak, and this peak
was also simulated too late in some years. In Lake Erken,
under-ice growth and resting stages can play an important role
in phytoplankton dynamics (Weyhenmeyer et al. 1999; Yang
et al. 2016b). These processes were not included in the model,
which could explain why the model did not replicate the mag-
nitude of the spring peak. Moreover, as chlorophyll-to-carbon
ratios tend to be higher during the high-nutrient conditions
in winter/spring (Riemann et al. 1989; Jakobsen and
Markager 2016), the use of a fixed ratio in our model may
have partially caused the underestimation of the spring peak.
However, in summer, during stratification, the long-term sim-
ulations matched the observed conditions well in most years,
which supports the use of the model in the numerical experi-
ments, that were conducted during the summer months.
Short-term changes in the monitored Chl a concentrations,
however, were not well captured by the model, as the model
points at average concentrations and responses. Temporary
surface accumulations of buoyant cyanobacteria or sudden
increases in pelagic biomass due to emerging resting stages
would not be simulated, which may have been the cause of
the missed summer phytoplankton peaks.

The choice for a one-dimensional model enabled the high
number of scenarios used in this study. However, this also
meant that wind direction and associated three-dimensional
processes that cannot be resolved in a one-dimensional model

(e.g., near-shore upwelling) were not included in the model,
despite their potential importance in how extreme wind
affects lakes (MacIntyre and Jellison 2001; Roberts et al. 2021).
During calibration, a one-dimensional model partially com-
pensates for the lack of description of such processes, but a
complete simulation would require a three-dimensional
model. Especially lakes with a complex bathymetry may there-
fore show different mixing dynamics in response to wind
events than assessed here.

Causal factors regulating phytoplankton response to wind
events

As mentioned before, the effect of wind speed was
nonmonotonic, with a maximum increase in phytoplankton
concentration after wind events of around 5–10 m s�1. Such
moderate wind speeds may cause nutrient upwelling without
strongly deepening the mixed layer, and as such promoted
growth. Stronger wind speeds, however, caused stronger nutri-
ent upwelling, but also more mixed layer deepening and con-
sequently light limitation (Kuha et al. 2016; Jalil et al. 2020).
This explanation is supported by the volume-averaged nutri-
ent concentrations over the depth of the euphotic zone after
the wind perturbations (Supplement S6 Supporting Informa-
tion); strong wind speeds increased nutrient concentrations in
the mixed layer, but this was not accompanied by increased
phytoplankton concentrations. A positive effect (relative to
low wind speed) of moderate wind speed combined with a
negative effect of high wind speeds has, to our knowledge,
not yet been shown in the lake literature. In marine studies, a
maximum phytoplankton concentration was found at
moderate wind speeds (Millet and Cecchi 1992; Fitch and
Moore 2007), similar to our study. This nonmonotonic effect
of wind speed suggests that the entire wind speed distribution
is relevant for aquatic ecosystem functioning, not just the
extremes.

Another result was that wind had the largest effect on the
investigated lake variables when the mixed layer was around
8 m or shallower prior to the event. In case of a deeper ante-
cedent mixed layer, the mechanical mixing generated at the
water surface is largely dissipated at the depth of the maxi-
mum density gradient (Imboden and Wüest 1995), so that
wind has less effect on thermal, nutrient, and phytoplankton
vertical profiles. The 8-m threshold did not change substan-
tially when we averaged the response variables over a
shallower or deeper depth than the euphotic zone depth
(results not shown). Wind-induced mixing also had only a
small effect on MLD and entrainment when stratification was
deep and strong in a modeling study by Mi et al. (2018).

Whether the net effect of a wind event on phytoplankton
concentration was positive or negative also depended on the
other variables that were varied as part of the first numerical
experiment. Higher nutrient concentrations in the hypolim-
nion promoted higher Chl a concentrations in the euphotic
zone after the event, but only under high incoming light
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conditions. Wind-induced nutrient upwelling is indeed known
to potentially boost phytoplankton growth in lakes (Soranno
et al. 1997; MacIntyre and Jellison 2001; Crockford et al. 2015;
Giling et al. 2017). The negative effect of wind on Chl a at
the shallowest MLD at high nutrients was caused by the setup
of the experiment (Fig. 2), as even under the lowest wind
speed a large amount of nutrients entered the epilimnion,
and high wind speeds therefore mostly reduced growth due
to mixed layer deepening. Phytoplankton concentration after
wind events also increased in the first numerical experiment
when incoming shortwave radiation was high. Observed
decreases in phytoplankton concentration after a storm have
been explained by a combination of dilution due to mixed
layer deepening and exposure to more stringent and dynamic
light conditions (Ibelings et al. 1994; De Eyto et al. 2016;
Kuha et al. 2016). Lastly, a higher pre-event surface temperature
resulted in more negative effects of wind on phytoplankton con-
centration in the first experiment. As water temperature only has
a slight positive effect on cyanobacterial growth rates in the
model, this result was mostly caused by the effect of surface
water temperature on the thermal structure: because we kept the
hypolimnetic temperature constant, a higher surface temperature
caused a higher Schmidt stability and therefore stronger stratifi-
cation. Stronger stratification resists mixing (Mi et al. 2018), and
as such less nutrients ended up in the epilimnion.

Effects of wind events on phytoplankton under a warmer
climate

Summer-averaged Chl a concentrations increased in simu-
lations with warmer air temperatures in the second numerical
experiment, consistent with previous studies in mesotrophic/
eutrophic systems (Markensten et al. 2010; Trolle et al. 2014;
Gray et al. 2019). The projected increases in deep-water nutri-
ent concentrations are also in line with previous studies. Cli-
mate warming promotes an increase in hypolimnetic nutrient
levels in deep lakes through an increase in hypolimnetic
anoxia (Sahoo et al. 2013; North et al. 2014) and incomplete
winter mixing (Salmaso 2005; Yankova et al. 2017). In addi-
tion, an earlier onset of stratification separates the epilimnion
and hypolimnion earlier in the year, therefore both increasing
nutrient concentrations in the hypolimnion and exacerbating
nutrient limitation in the epilimnion. Earlier onset of
stratification, lower oxygen concentrations, and increases in
hypolimnetic nitrate and phosphate in a warmer climate were
indeed reproduced by our simulations.

In the second experiment, model predictions suggested
that the response of phytoplankton to summer wind events
would not deviate strongly from the present-day situation
when air temperatures were increased to a level consistent
with a RCP8.5 climate scenario. The first experiment suggested
that surface temperature increases would cause lower phyto-
plankton concentrations after wind events in the RCP8.5 sce-
nario and that higher hypolimnetic nutrient concentrations
would cause higher phytoplankton concentrations. The

opposing effects on phytoplankton of these trends may have
largely canceled each other out in the second experiment,
resulting in no marked difference in the response of phyto-
plankton to wind events between the present-climate and
RCP8.5 scenarios. Another potential reason for these relatively
small differences could be that even under this high-emission
scenario, the changes in the lake variables were rather small
compared to the ranges that were included in the first numeri-
cal experiment (i.e., the variation experienced in July at Lake
Erken over the past 22 yr). In addition, no strong response
would be expected in years when the mixed layer stayed
deeper than about 8 m, the depth below which the first
numerical experiment showed a marked reduction of wind
effects. Thus, changes in atmospheric warming alone are not
likely to strongly change the response of phytoplankton con-
centration to wind events of similar intensity in Lake Erken.

Implications beyond Lake Erken
The range of the scenarios (surface temperature, nutrients,

solar radiation, MLD, and wind speed) and morphometry were
specific to Lake Erken. The simulated phytoplankton groups (dia-
toms, dominant in spring, and cyanobacteria, dominant in sum-
mer) were intentionally generic and not unique to Lake Erken,
but during calibration the phytoplankton parameters were opti-
mized to match the seasonal patterns of the phytoplankton
community in this lake. However, the effects of extreme wind
events on light and nutrient availability occur widely (Stockwell
et al. 2020), and the scenarios tested in the first numerical exper-
iment covered a wide range of lake and atmospheric conditions.
Therefore, the processes observed in Lake Erken are expected to
be similar in other stratifying, mesotrophic lakes. Although the
absolute thresholds we found are likely to differ from lake to lake
and are prone to model uncertainty, our findings are applicable
to other lakes as well and may facilitate general understanding
of lake responses to wind events.

Trends in extreme wind speeds (frequency, duration, and
intensity) vary with geographic location (Webster et al. 2005;
Sainsbury et al. 2018). Future trends in storm intensity and
frequency in the region surrounding Lake Erken are uncertain
(Mölter et al. 2016). However, in regions where storm inten-
sity and frequency are predicted to increase, such as western
Europe, the importance of wind for phytoplankton dynamics
may increase.

Air temperatures are increasing globally and are expected to
strengthen stratification, but trends in MLD remain uncertain
(Pilla et al. 2020). In the present study, MLD was identified as a
key regulator in responses to wind, so local trends in this vari-
able may affect impacts of wind events. Next to air temperature,
mean wind speed (Stetler et al. 2021) and light penetration
(Read and Rose 2013) determine MLD, and these may change
on local or regional scales. In regions that experience atmo-
spheric stilling (Woolway et al. 2019) or lake brownification
(Jennings et al. 2010), mixed layers might shoal and these lakes
may become more strongly impacted by wind events.
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Nutrient concentrations and their vertical profiles modulate
the effect of wind events on phytoplankton. Trends in nutri-
ent loading are mostly controlled by human activities, and
developing countries especially may experience increasing
trends (Fink et al. 2018). Earlier onset of stratification and a
later overturn with climate warming (Woolway et al. 2021)
causes more nutrient build-up in the hypolimnion (Isles
et al. 2017), so if nutrients are limiting in the epilimnion, phy-
toplankton increase after wind events may become more
prominent. However, this was not observed in our second
numerical experiment. In lakes where nutrients are high in
the epilimnion throughout the year, a wind episode that
deepens the mixed layer is likely to decrease phytoplankton
concentration due to dilution and reduced light availability.

We focused solely on wind, but meteorological extremes
such as passing storms tend to affect not only wind speed, but
also air temperature, humidity, and incoming solar radiation.
Moreover, precipitation during storms will affect both the
quantity and quality of catchment runoff. The retention time
of Lake Erken is around 7 yr, indicating that catchment runoff
during storms is likely to have a minor influence. However, in
lakes with short residence times (e.g., < 1 yr), storm-induced
inflow can be at least as impactful as wind (Barbiero et al. 1999;
Reichwaldt and Ghadouani 2012; De Eyto et al. 2016).

Conclusion
The primary result of our research was that high wind speeds

(⪆ 10 m s�1) always had more decreasing effects on phyto-
plankton concentration than moderate wind speeds (≈ 5–
10 m s�1), although the magnitude of the effect also depended
on the level of incoming radiation and antecedent surface
water temperature and hypolimnetic nutrients. The effect of
wind decreased markedly when the MLD was about 8 m or
deeper. Higher incoming radiation and hypolimnetic nutrient
concentrations promoted increases in Chl a concentrations
after wind events, whereas increases in surface temperature had
a decreasing effect. These outcomes confirmed the conflicting
effects of wind events on light and nutrient limitation of
growth (Diehl et al. 2002; Kasprzak et al. 2017; Stockwell
et al. 2020), and provide a mechanistic framework to better
understand under what conditions wind events tend to either
increase or decrease phytoplankton concentration. A simula-
tion forced by a future climate scenario suggested that the
response of phytoplankton to wind events did not strongly
change with warming air temperatures despite earlier onset of
stratification and a higher summer Chl a concentration.

Increased understanding of the drivers of wind impacts on
lakes can help short-term forecasting and in some cases may
be used to inform lake or reservoir management. In addition,
this facilitates assessment of how atmospheric trends will
affect lakes, specifically those caused by climate change.
Future trends in extreme wind events include changes in
intensity, duration, and frequency, and different regions are

expected to experience different trends in air temperature,
(extreme) wind speed, and nutrient loading. Studies evaluat-
ing the combined effects of these trends to assess the impacts
of wind events on lake phytoplankton could further our
understanding of the global impact of extreme weather events
on lake ecosystems.

Data availability statement
The GOTM code for the lake-branch is publicly available at

https://github.com/gotm-model/code/tree/lake (last accessed:
29 July 2021). The code for the Selmaprotbas model can be
found at https://github.com/jorritmesman/selmaprotbas (doi:
10.5281/zenodo.5094298), including instructions on how to
couple it to GOTM. The model setup, including the configura-
tion and input files, can be found at https://github.com/
jorritmesman/Erken_GOTM_SP_setup. Gap-filled hourly mete-
orological data for Lake Erken until 2018 have been published
by Moras et al. (2019). Lake data until 2016 have been made
available on https://www.ieg.uu.se/erken-laboratory/lake-
monitoring-programme/ (last accessed: 29 July 2021). For the
most recent data, contact Don Pierson (don.pierson@ebc.uu.
se). The HadGEM2-ES model output for the EURO-CORDEX
experiment was downloaded from the ESGF node of the Ger-
man Climate Computing Centre (DKRZ).
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