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Abstract
Cellulose and lignin are the two main components of secondary plant cell walls with

substantial impact on stalk in the field and on straw during industrial processing.

The amount of fermentable sugar that can be accessed is another important param-

eter affecting various industrial applications. In the present study, genetic variabil-

ity of rice (Oryza sativa L.) genotypes for cellulose, lignin, and fermentable sugars

contents was analyzed in rice straw. A genome-wide association study of 33,484 sin-

gle nucleotide polymorphisms (SNPs) with a minor allele frequency (MAF) >0.05

was performed. The genome-wide association study identified seven, three, and

three genomic regions to be significantly associated with cellulose, lignin, and fer-

mentable sugar contents, respectively. Candidate genes in the associated genomic

regions were enzymes mainly involved in cell wall metabolism. Novel SNP markers

associated with cellulose were tagged to GH16, peroxidase, GT6, GT8, and CSLD2.

For lignin content, Villin protein, OsWAK1/50/52/53, and GH16 were identified. For

fermentable sugar content, UTP-glucose-1-phosphate uridylyltransferase, BRASSI-

NOSTEROID INSENSITIVE 1, and receptor-like protein kinase 5 were found. The

results of this study should improve our understanding of the genetic basis of the fac-

tors that might be involved in biosynthesis, turnover, and modification of major cell

wall components and saccharides in rice straw.

1 INTRODUCTION

Rice (Oryza sativa L.) is among the most consumed cere-
als in the world. Close to 1 billion tons of rice are con-
sumed annually, which leaves more than 1.1 billion tons

Abbreviations: CesA, cellulose synthase; CSC, cellulose synthase
complex; GH, glycoside hydrolase; GO, gene ontology; GT,
glycosyltransferase; GWAS, genome-wide association study; H2

b,
broad-sense heritability; LD, linkage disequilibrium; PC, principal
component; PM, plasma membrane; QTL, quantitative trait loci; SNP,
single nucleotide polymorphism; WAK, wall-associated kinase.
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of straw behind (Santos et al., 2017). Dry rice straw is
composed of about 35–47% crystalline cellulose with a
high degree of polymerization, 18% branched low-molecular
weight hemicellulose, and 19–24% lignin (Santos et al.,
2017). This cell wall composition makes the plant mechan-
ically strong to become resilient against lodging and to pro-
vide a first barrier against pests and diseases (Saeed, 2018).
In addition to the use of rice straw in bioenergy produc-
tion, that is, biofuels, bioethanol, and biomethane gas as fos-
sil fuel replacement (Mahlia et al., 2020), it can be used
in formulations of animal feeds, mushroom bed preparation
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(Demont et al., 2020), heavy metal biosorption toward health
and environmental preservation (Amer et al., 2017; Kardam
et al., 2014), pulp and paper raw material production (Kaur
et al., 2017), and medicine in forms of drug carriers by means
of cellulose fibers (Yusefi et al., 2020). Rice straw can also
be used to produce monomeric sugar required for production
of biosurfactants (Makkar et al., 2011). The silica present in
dried rice straw (∼15%) can contribute to the ever-increasing
demand of numerous industries (Oladosu et al., 2016).

Although agricultural residues are valuable resources for
bioethanol production, the complex nature of plant cell walls
limits the bioavailability of fermentable sugar; the recalci-
trance of cell walls to depolymerization and fermentation
is dependent on lignin content and the interrelationship of
cellulose microfibrils with so-called matrix polysaccharides
(hemicellulose) (Robak & Balcerek, 2018). Cellulose is con-
sidered to be the main producer of glycosyl residues as the
most valued fermentable sugar via enzymatic hydrolysis. Cel-
lulose is synthesized and assembled (Figure 1) in the plasma
membrane (PM) by cellulose synthase (CesA) complexes
(CSCs) that are initially being assembled in Golgi appara-
tus and delivered to PM (Polko & Kieber, 2019). Cellulose
is an indispensable part of both primary and secondary cell
walls. In the rice straw secondary cell wall, cellulose together
with noncellulosic polysaccharides are immersed in a matrix
of lignin, forming an abundant but indigestible composite (lig-
nocellulose) (Donev et al., 2018). Lignocellulosic compounds
are widely used as a raw material in the production of second-
generation biofuels (Q. Liu et al., 2018; Tan et al., 2016). The
degrees of lignification, cross-linking of polysaccharides to
each other by ferulic acid, and crystallinity of cellulose cause
recalcitrance in lignocellulosic materials (Gupta et al., 2011).
Lignin inhibits saccharification processes aimed at produc-
ing simple sugar for fermentation to ethanol (Wegrzyn et al.,
2010) and therefore acts as a hindrance in the process of
biomass to biofuel. Physical and chemical pretreatments are,
therefore, necessary to facilitate biomass digestion by remov-
ing some xylans and lignin to enable enzymes to gain access
to the hydrophobic cellulose face (Baruah et al., 2018) and
release simple sugar (saccharification). In a balancing act
between food and biofuel production, sometimes the win-
ners are dedicated energy crops including herbaceous crops
such as switchgrass (Panicum virgatum L.), reed canary grass
(Arundo donax L.) and bamboo (Fargesia nitida L.) (Glithero
et al., 2015; Shortall, 2013). However, a win-win situation
can be envisaged when cereals are being considered, as these
crops produce both food grains and raw fermentable mate-
rials (straw + husk) that can be used to produce bioethanol
(Townsend et al., 2017).

Many initiatives have been taken in recent years to improve
the pretreatment or other aspects of industrial biomass pro-
cessing to improve the yield of released fermentable sugar
(Guragain & Vadlani, 2021; Østby et al., 2020). In addi-

Core Ideas
∙ GWAS was conducted for cellulose, lignin, and fer-

mentable sugar contents in rice straw.
∙ GWAS was conducted for the first time for cellu-

lose in rice straw.
∙ Many QTLs were found for rice straw composition,

some of which are reported for the first time.
∙ New candidate genes were found in vicinity of

genomic regions associated with studied traits.

tion to the process optimization of saccharification and fer-
mentation (Sukma et al., 2019; Takano & Hoshino, 2018),
attempts to change the plant cell wall structure to reduce
its recalcitrance have been undertaken, and most have been
dependent on silencing the genes that directly/indirectly pro-
duce the bulk of plant biomass to provide raw materials for
bioprocessing next to other processing means (Kalluri et al.,
2014). Therefore, knowing which genes and proteins define
the amount and structure of the main constituents of cell walls
in rice straw would be beneficial in designing future crops
toward targeted applications.

Genome-wide association studies (GWASs), also known as
linkage disequilibrium (LD) mapping, provide the opportu-
nity to find the correlation between phenotypes and associated
markers in a high-resolution manner (Alqudah et al., 2020;
Rosyara & Joshi, 2012). Choosing the right population in
terms of diversity and number, availability of marker-enriched
linkage groups for genotyping, and precision-phenotyping
greatly enhances the resolution of GWAS findings toward
the definition of candidate associated genes (Nayyeripasand
et al., 2021; Nguyen et al., 2020). Rice straw GWAS have
so far focused on biomass digestibility (Norton et al., 2018),
lignin, and saccharification (Nguyen et al., 2020), whereas
no such report has been presented for cellulose content. A
small number of studies from other plants have shown that
genes other than members of the CesA family and quan-
titative trait loci (QTLs) are involved in cellulose content
(Houston et al., 2015; Kaur et al., 2017; K. Li et al., 2016;
Miao et al., 2019; Niyitanga et al., 2019; Shiringani & Friedt,
2011; Thumma et al., 2010; Xu et al., 2017). For example, a
barley (Hordeum vulgare L.) GWAS identified members of
the glycosyltransferase (GTs) and glycosyl hydrolase (GHs)
families as candidate genes associated with cellulose con-
tent (Houston et al., 2015). Wheat (Triticum aestivum L.)
GWAS introduced β-tubulin and the auxin-induced protein
5NG4 as candidate genes (Kaur et al., 2017). Rice QTLs
associated with lignin and fiber content were reported to be
qADF-9, qADL-9, qADF-2, and qADF-3 (Bao et al., 2007).
In another study, eight related lignin monomers and biomass
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F I G U R E 1 Trafficking of cellulose synthase complex (CSC) in plant cells. Cellulose synthase (CesA) proteins are being synthesized in
endoplasmic reticulum and with the help of STELLO1 and 2 (STL1/2; GT75) are being assembled into CSC in Golgi apparatus (Zhang et al., 2016).
Cortical microtubule-associated (CMT) vesicles carry CSC to plasma membrane (PM) (Crowell et al., 2009; Gutierrez et al., 2009) with the help of
exocyst complex (Zhu et al., 2018). Exocyst is in interaction with CesA6 and POM2/CSI1, which the latter interacts with PATROL1 (PTL1) protein
(Zhu et al., 2018). SHOU4/4L involves in regulating CesA exocytosis and therefore levels the cellulose synthesis (Polko et al., 2018). For proper
CMT spacing during cellulose synthesis, CMT-interacting CELLULOSE SYNTHASE MICROTUBULE UNCOUPLING (CMU) is necessary (Liu
et al., 2016). KOR (an endoglucanase) interacts with CesAs and defines their processivity (Vain et al., 2014). COBRA (COB) found in apoplast
regulates the orientation of extruded cellulose microfibrils (L. Liu et al., 2013; Roudier et al., 2005). SOS5 (SALT-OVELY SENSITIVE5) and
FEI1/2 (a leucine-rich repeat receptor like kinase) regulate cellulose biosynthesis (Basu et al., 2016)

digestibility QTL clusters were found for rice straw (Hu et al.,
2018). A GWAS for maize (Zea mays L.) lignin presented
xyloglucan endotransglucosylase/hydrolase among others (K.
Li et al., 2016), while laccase and peroxidase genes were pro-
posed for rice (Nguyen et al., 2020). For fermentable sugar
content, a QTL for cellulose digestibility was reported in
a recombinant inbred population of maize (Penning et al.,
2014). In a rice biparental population, a broad region on chro-
mosome 1 was identified to have an impact on straw digestibil-
ity (B. Liu, Gómez et al., 2016). Overexpression of the OsAt10
gene, expressing a BAHD acyltransferase, altered the amount
of saccharification in rice straw (Bartley et al., 2013). Later,
overexpression of OsAt10 in switchgrass enhanced sacchari-
fication of lignocellulosic biomass (G. Li et al., 2018). Rice
GWAS for fermentable sugar revealed the probable involve-
ment of BdMYB48, OsIRX9, and CesA 11 in defining the con-
tent (Nguyen et al., 2020).

Here, we have used rice as a model plant with genomic
data available to decipher the genes that might be involved
in defining cellulose, lignin, and fermentable sugar contents.
An understanding of the natural variability of cellulose and

lignin contents, and the potential for cell wall saccharification
in plants could, if associated with specific genomic regions,
facilitate the enhancement of the industrial applications of
rice.

2 MATERIALS AND METHODS

2.1 Plant material

A previously genotyped set of global rice accessions from
82 countries (Zhao et al., 2011) was received from the
T. T. Chang Genetic Resources Center, International Rice
Research Institute (IRRI) and grown in Sari Agricultural Uni-
versity (Northern Iran) on 2017–2019 in three replicates.
One hundred seventy of the grown accessions were randomly
selected for association mapping of cellulose, lignin, and
fermentable sugar in rice straws (Supplemental Table S1).
Accessions were TEJ (temperate japonica), IND (indica),
AUS (aus), ARO (aromatic), TRJ (tropical japonica) ADMIX
subpopulations. Single nucleotide polymorphisms (SNPs)
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information for the rice 44.1 K SNPs array (Zhao et al.,
2011) was downloaded from the Gramene portal (http://
gramene.org). The rice accessions were sown in plots of 2 ×
2 m2 with 25 cm within rows spacing. Superphosphate triple
(180 kg/ha at plowing): urea (100 kg/ha at seedling stage):
potash (80 kg/ha at plowing stage) were given to plants. Plots
were hand harvested at maturity and straw was stored at
25 ˚C.

2.2 SNP genotyping data

The development and sequencing of a SNP array hybridiza-
tion for the rice population have previously been described by
Zhao et al. (2011). Briefly, previously published 44,100 SNP
data from a 44K SNP array, resulting in genotype data from
33,484 high-quality SNP markers, were used for GWAS.

2.3 Measurement of cellulose, lignin, and
fermentable sugar contents

At the stage of complete maturity, first internodes (from the
top) were randomly collected from each accessions in three
replicates, ground with a mill, and filtered with a 0.1-mm
mesh. Crystalline cellulose content was determined using the
Updegraff acetic acid/nitric acid method (Updegraff, 1969)
with modifications as described in Pettolino et al. (2012).
Briefly, 1 ml of acetic acid:water:nitric acid (8:2:1) was added
to 50 mg dried tissue, vortexed, and incubated at 100 ˚C for
4 h. The tubes were cooled to 22 ˚C and centrifuged in a
swing-out rotor at 10,000 rpm for 10 min. The pellet was
washed four times with dH2O, vortexed in between, and the
repelleted by centrifugation at 10,000 rpm for 10 min, fol-
lowed by a 90% ethanol wash. The tubes were dried at 80 ˚C
and the amount of cellulose was measured as dry weight.

Lignin was measured using the Klason method (Dence,
1992). Briefly, 1 ml 72% (v/v) sulfuric acid was added to
100 mg dried tissue, vortexed, and incubated at 22 ˚C for
2 h. Water (30 ml) was added, vortexed, and centrifuged at
13,000 rpm to pellet lignin. The tubes were dried at 80 ˚C to
determine lignin content. If a visible pellet was not obtained
with one step centrifugation, the second round was carried
out.

Fermentable sugar were determined in two steps: chemical
pretreatment and a hydrolytic process optimized by Lee et al.
(2017). Cut pieces of rice straw (2–3 cm) were sieved through
a 0.36–1.00 mm mesh and pretreated with 1% (v/v) of sulfuric
acid at 95 ˚C for 60 min (Ong et al., 2012). The treated straw
was washed with dH2O, dried at 60 ˚C, and used for enzy-
matic hydrolysis. Straw (100 mg) was pretreated with sulfu-
ric acid, incubated with 0.1 M of citrate buffer (pH = 6.0),
and 0.1 ml of cellulase (Accellerase 1000; Sigma-Aldrich)

at 50 ˚C for 48 h at 100 rpm on a rotary shaker (Hsu et al.,
2010). The concentrations of reducing sugar were analyzed
using the di-nitrosalicylic acid reagent and compared to a stan-
dard glucose curve (Lee et al., 2017). Each 10 ml of sam-
ple solution was mixed with 1 ml of di-nitrosalicylic acid
reagent and heated in boiling water for 5 min. The solution
was cooled down to 22 ˚C and the absorbance was measured at
540 nm.

2.4 GWAS analysis

Analysis of population structure among rice accessions was
performed by principal components analysis (PCA) in TAS-
SEL (Bradbury et al., 2007). The PCA analysis and cor-
responding plot were generated using GAPIT, the genomic
association and prediction integrated tool (Lipka et al., 2012).
The kinship matrix was obtained using TASSEL v.5 and visu-
alized in GAPIT (Zhang et al., 2010). To determine the size of
LD blocks, pairwise LD between the markers was visualized
using the LD heatmap package in R (https://CRAN.R-project.
org/package = LDheatmap). Association analyses were per-
formed using the genotypes of accessions with 33,484 SNPs
and phenotyping data obtained from 170 accessions in GAPIT
by Bayesian-information and Linkage-Disequilibrium Itera-
tively Nested Keyway (Blink) model (Huang et al, 2019). A
QTL was considered significant when markers were associ-
ated with cell wall components content at –Log10(P) > 4.
Broad-sense heritability of lignin, fermentable sugar, and cel-
lulose was estimated in rptR package using phenotypic data
(Stoffel et al., 2017).

2.5 Candidate gene finding and analyses

We extended marker intervals by 200 kb in both directions
(400 Kb window) to take account of map order uncer-
tainty and LD. This window of 400 Kb was chosen due
to the very slow LD decay in rice genome (Mather et al.,
2007). To identify genes underlying the QTLs of cell wall
content, genes overlapping the physical regions of these
QTLs (i.e., in the vicinity of their associated SNPs) and
any gene deposited on the Rice Annotation Project database
(http://rice.plantbiology.msu.edu/) were assessed. The co-
expression gene analysis of candidate genes was carried out
using Genevestigator (https://genevestigator.com/) and Rice-
Frend (https://ricefrend.dna.affrc.go.jp/). Expression pattern
of the candidate genes was determined by RNA-Seq assay
in eight different tissues (leaves, shoots, seed, endosperm,
embryo, anther, pistil, and panicles) and was retrieved from
RGAP database (http://rice.uga.edu/), in which the expres-
sion level was reported based on FPKM. The KEGG (https:
//www.kegg.jp/) and PANTHER (http://pantherdb.org/)

http://gramene.org
http://gramene.org
https://CRAN.R-project.org/package
https://CRAN.R-project.org/package
http://rice.plantbiology.msu.edu/
https://genevestigator.com/
https://ricefrend.dna.affrc.go.jp/
http://rice.uga.edu/
https://www.kegg.jp/
https://www.kegg.jp/
http://pantherdb.org/
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T A B L E 1 Descriptive statistics of celloluse, lignin and
fermentable sugar content in a collection of rice (Oryza sativa L.)
genotypes

Descriptive
statistic Cellulose Lignin

Fermentable
sugars

μg/mg g/l

Average 485.62 273.02 9.74

Maximum 593.08 395.51 15.16

Minimum 240.55 98.88 2.49

SD 58.85 73.14 2.70

CV 0.121 0.268 0.277

H2
b 0.69 0.70 0.63

Note. H2
b, maximum, minimum, standard deviation, coefficient of variation, and

average values in the collection are represented.

analysis tools were used for understanding the function of
candidate genes.

3 RESULTS

3.1 Variation of phenotypic traits

Phenotypic variation in 170 rice accessions was estimated
for cellulose content using three biological replicates, and for
lignin and fermentable sugar using two biological replicates.
The average amount of cellulose in our study was equal to the
amount of cellulose reported in other studies for rice (46.5%)
(Siro & Placket, 2010). The typical lignin content observed
in rice straw was at a similar level to that of grasses in gen-
eral and higher than that found in dicots but lower than woody
species (Abramson et al., 2013). Although we used a different
method for lignin measurement than that used by Nguyen et al.
(2020), similar results (26.3%) were obtained. Our mean val-
ues for cellulose, lignin, and fermentable sugar content were
485.6, 273, and 9.7 g/l in rice straw, respectively (Table 1).
The broad-sense heritability (H2b) was 0.69 for cellulose, 0.70
for lignin, and 0.63 for fermentable sugar (Table 1). These
data indicate the greater contribution of accessions genotype
in defining straw cell wall polysaccharide contents.

3.2 PCA and population stratification
results

The results showed relatively higher genetic relatedness
among accessions within subpopulations. Population struc-
ture of rice collection justified by principal component
(PC)1 = 8.5% and PC2 = 7.4% (Figure 2a). GAPIT was used
to characterize population structure and PC2 against PC1 scree
plot from GAPIT showed the selection of PCs for associ-
ation study. Results were illustrative of three main groups

(Figure 2b). The kinship matrix summarized the distribution
of the pairwise relative relationship coefficients among the
accessions in the association panel based on SNPs’ informa-
tion (Figure 3). As expected, genetic relatedness was greater
within populations as opposed to between populations.

3.3 GWAS results and candidate gene
identification

To identify the genetic loci responsible for the variation
in cellulose, lignin, and fermentable sugar contents in rice
accessions, GWAS was conducted with SNP data using the
BLINK model in GAPIT (Huang et al., 2019). BLINK model
revealed eight, five, and five significant marker-trait asso-
ciations with –log10(P) > 4 for cellulose, lignin and fer-
mentable sugar, respectively (Figure 3). In the vicinity of sig-
nificant SNP markers (400 kb window), several co-located
genes were retrieved from RAP db (http://rice.plantbiology.
msu.edu/) (Supplemental Table S2). Among the co-located
genes with the associated SNP markers for each trait, we intro-
duced nine, six, and four genes as candidate genes for cel-
lulose, lignin, and fermentable sugar, respectively (Table 2).
Candidates were selected based on whether the function of
the genes had been characterized before in rice or if similar
genes in other species had known roles in cell wall biosyn-
thesis or modification. For cellulose, we identified signif-
icant associations for seven genomic regions (on chromo-
somes 2, 3, 6, 9, and 11) and a total of five QTLs (Figure 4a;
Table 2). The strongest QTL was located on chromosome 3
at position 0.99 Mbp. For lignin, three genomic regions were
tagged by a total of five SNPs on chromosomes 3 and 4. The
strongest QTL was located on chromosome 4 at position 30.27
Mbp (Figure 4b; Table 2). For fermentable sugar, five SNPs
were identified that together tagged 3 genomic regions located
on chromosomes 1, 8, and 9. The most strongly associated
QTL was located on chromosome 8 at position 17.38 Mbp
(Figure 4c; Table 2).

3.4 Analysis of candidate genes

Co-expression analysis of the identified candidate genes
using Genevestigator are summarized in Table 2. Several
genes including CesAs, GHs, and GTs were identified as co-
expressors with most of the candidate genes. Network analysis
using RiceFREND (https://ricefrend.dna.affrc.go.jp/) showed
co-expression pattern of the candidate genes. For each candi-
date gene, up to six direct interactions were detected in the
gene networks (Supplemental Table S3). For example, in the
case of LOC_Os11g34390 (GT6), it showed co-expression
with LOC_Os02g49140 (similar to α-galactosyltransferase),
LOC_Os06g41770 (DNA-binding domain containing

http://rice.plantbiology.msu.edu/
http://rice.plantbiology.msu.edu/
https://ricefrend.dna.affrc.go.jp/


6 of 17 PANAHABADI ET AL.The Plant Genome

T
A

B
L

E
2

Si
ng

le
nu

cl
eo

tid
e

po
ly

m
or

ph
is

m
s

as
so

ci
at

io
n

w
ith

ce
llu

lo
se

,l
ig

ni
n

an
d

fe
rm

en
ta

bl
e

su
ga

r,
an

d
re

sp
ec

tiv
e

ca
nd

id
at

e
ge

ne
s

Tr
ai

t
Q

TL
C

hr
N

o.
of

A
M

Pe
ak

m
ar

ke
r

-lo
g 1

0P
-

va
lu

e
M

A
F

Po
sit

io
n

C
an

di
da

te
ge

ne
na

m
e

C
an

di
da

te
ge

ne
ID

C
o-

ex
pr

es
se

d
ge

ne
lis

t
ob

ta
in

ed
by

G
en

ev
es

tig
at

or
bp

C
el

lu
lo

se
qC

L
u2

.1
2

1
id

20
16

31
1

4.
54

0.
25

35
,4

28
,6

23
G

H
16

L
O

C
_O

s0
2g

57
77

0
C

ES
A5

,C
ES

A6
,G

T8
,

C
ES

A1
,G

T4
3

qC
L

u2
.2

2
1

id
20

10
58

1
4

0.
27

24
,7

08
,0

94
G

T8
L

O
C

_O
s0

2g
41

52
0

C
ES

A7
,G

T4
3

qC
L

u3
.1

3
2

id
30

00
58

3
4.

95
0.

30
99

0,
39

9
G

H
16

L
O

C
_O

s0
3g

02
61

0
C

ES
A1

,C
ES

A5
,C

ES
A6

,
G

T8
pe

ro
xi

da
se

L
O

C
_O

s0
3g

02
92

0
C

SL
C

7,
G

T4
3,

CO
BR

A,
C

ES
A8

,C
ES

A1
,G

T8
O

sF
BX

76
L

O
C

_O
s0

3g
02

55
0

G
H

17
,C

SL
C

2,
C

SL
H

1,
G

H
3

qC
L

u3
.2

3
1

id
30

01
41

5
4.

15
0.

25
2,

57
2,

89
7

re
ce

pt
or

-l
ik

e
pr

ot
ei

n
ki

na
se

2
L

O
C

_O
s0

3g
05

14
0

–

xy
lo

gl
uc

an
ga

la
ct

os
yl

tr
an

sf
er

as
e

K
A

TA
M

A
R

I1

L
O

C
_O

s0
3g

05
11

0
–

qC
L

u6
.1

6
1

id
60

00
45

6
4

0.
42

69
8,

63
2

C
SL

D
2

L
O

C
_O

s0
6g

02
18

0
C

ES
A6

,C
SL

C
7,

G
H

16
qC

L
u9

.1
9

1
id

90
04

03
2

4.
28

0.
36

14
,5

40
,5

27
–

–
–

qC
L

u1
1.

1
11

1
id

11
00

77
27

4.
40

0.
12

19
,9

60
,8

78
G

T
6

L
O

C
_O

s1
1g

34
39

0
–

L
ig

ni
n

qL
ig

3.
1

3
1

id
30

10
51

1
4.

28
0.

15
22

,8
49

,6
97

gi
bb

er
el

lin
-r

eg
ul

at
ed

G
A

SA
/G

A
ST

L
O

C
_O

s0
3g

41
06

0
G

H
16

,U
D

P-
gl

uc
ur

on
at

e

(C
on

tin
ue

s)



PANAHABADI ET AL. 7 of 17The Plant Genome

T
A

B
L

E
2

(C
on

tin
ue

d)

Tr
ai

t
Q

TL
C

hr
N

o.
of

A
M

Pe
ak

m
ar

ke
r

-lo
g 1

0P
-

va
lu

e
M

A
F

Po
sit

io
n

C
an

di
da

te
ge

ne
na

m
e

C
an

di
da

te
ge

ne
ID

C
o-

ex
pr

es
se

d
ge

ne
lis

t
ob

ta
in

ed
by

G
en

ev
es

tig
at

or
qL

ig
4.

1
4

3
id

40
10

27
8

4.
94

0.
18

30
,2

79
,0

61
V

ill
in

pr
ot

ei
n

L
O

C
_O

s0
4g

51
10

0
G

H
16

,G
H

10
,C

SL
H

2,
CO

BR
A,

ce
ll

w
al

l
ad

he
si

on

pe
ro

xi
da

se
pr

ec
ur

so
r

L
O

C
_O

s0
4g

51
30

0
PS

II
11

kD
pr

ot
ei

n,
PS

I
re

ac
tio

n
ce

nt
er

su
bu

ni
t

II
I,

PS
Ir

ea
ct

io
n

ce
nt

er
su

bu
ni

tI
V

A

M
A

D
S-

bo
x

fa
m

ily
L

O
C

_O
s0

4g
49

15
0

G
H

35
,S

uc
ro

se
-U

D
P

gl
uc

os
yl

tr
an

sf
er

as
e

3

O
sW

A
K

1/
50

/5
2/

53
L

O
C

_O
s0

4g
51

03
0

C
O

B
R

A
7

qL
ig

4.
2

4
1

id
40

10
30

1
4.

1
0.

21
29

,2
48

,8
98

G
H

16
L

O
C

_O
s0

4g
51

45
0

–

FM
qF

M
1.

1
1

2
id

10
06

10
3

4.
1

0.
10

7,
73

9,
82

9
re

ce
pt

or
-l

ik
e

pr
ot

ei
n

ki
na

se
5

L
O

C
_O

s0
1g

13
80

0
–

B
R

A
SS

IN
O

ST
E

R
O

ID
IN

SE
N

SI
T

IV
E

1
L

O
C

_O
s0

1g
14

51
0

G
T1

4

qF
M

8.
1

8
2

ud
80

01
13

9
5.

64
0.

22
17

,3
81

,8
99

re
tin

al
pi

gm
en

t
ep

ith
el

ia
lm

em
br

an
e

pr
ot

ei
n

L
O

C
_O

s0
8g

28
41

0
–

qF
M

9.
1

9
1

id
90

07
48

1
4.

1
0.

27
22

,0
70

,0
19

U
T

P–
gl

uc
os

e-
1-

ph
os

ph
at

e
ur

id
yl

yl
tr

an
sf

er
as

e

L
O

C
_O

s0
9g

38
03

0
G

H
10

N
ot

e.
Q

T
L

,q
ua

nt
ita

tiv
e

tr
ai

tl
oc

i;
A

M
,a

ss
oc

ia
te

d
m

ar
ke

rs
;M

A
F,

m
in

or
al

le
le

fr
eq

ue
nc

y;
FM

,f
er

m
en

ta
bl

e
su

ga
r.



8 of 17 PANAHABADI ET AL.The Plant Genome

F I G U R E 2 Principal component (PC) and population structure. (a) population structure of rice populations collection as reflected by PCs. First
two PCs explain 8.5% and 7.4% of the variations, respectively. (b) PC2 against PC1 scree plot from GAPIT showing the selection of PCs for
association study and results show three main groups

protein), LOC_Os10g36760 (peptidase S28 family protein),
and LOC_Os06g44910 (similar to glutaredoxin). SLD2 in
first hierarchy was co-expressed with LOC_Os10g35294
(DUF1218 family protein), LOC_Os02g19510 (DUF707
family protein) and LOC_Os03g21540 (resistance protein
candidate).

Furthermore, gene expression analysis by RNA-Seq assay
revealed differential expression of most of the candidate genes
in different tissues. For example, in the case of cellulose con-
tent, peroxidase and GT6 genes showed highest expression in
immature seed (5 DAP), OsFBX76 and GT8 in shoots, CSLD2
and LRR40 showed highest expression in pistil, and two GH16
genes showed highest expression in panicles (Supplemental
Table S4). In the case of lignin content, peroxidase and GH16
were expressed in highest levels in leaves, villin protein in
anthers, and MADS-box and gibberellin-regulated GASA in
panicles. In the case of fermentable sugar, receptor-like pro-
tein kinase 5, UTP-glucose-1-phosphate uridylyltransferase,
and BRASSINOSTEROID INSENSITIVE 1 showed highest
expression in pistils, panicles, and shoots, respectively (Sup-
plemental Table S4).

Using KEGG analysis, six genes associated with cellulose
content were identified with a KEGG orthology identifier
(Supplemental Table S5); these include LOC_Os03g02610
(K11752), LOC_Os03g02920 (K00430), LOC_Os02g57770
(K08235), LOC_Os03g05110 (K20888), LOC_Os02g41520
(K22809), and LOC_Os06g02180 (K20924). The KEGG
pathway of four of the most putative genes, including CSLD2
(LOC_Os06g02180), is osa01000/or dosa01003 (glycosyl-
transferases, structural polysaccharides). The gene ontol-
ogy (GO) analysis using PANTHER (http://pantherdb.org/)
revealed cellular component, molecular function, and biolog-
ical process of the candidate genes. For example, CSLD2

(LOC_Os06g02180), is localized in membrane, PM, and
Golgi apparatus, has molecular functions of transferase
activity and cellulose synthase (UDP-forming) activity, and
involves several biological processes including biosynthetic
process, carbohydrate metabolic process, cellulose biosynthe-
sis, multicellular organismal development, anatomical struc-
ture morphogenesis, cell differentiation, cell growth, and
response to abiotic stimulus (Supplemental Table S5).

4 DISCUSSION

Most studies on cell walls in plants to date have been per-
formed on the model organism Arabidopsis thaliana. The
results of these studies are not directly transferable to mono-
cots and cereals due to differences in the cell wall structure of
dicots and monocots. Rice straw has the potential to be refined
and used in many industries as part of a circular bioeconomy.
The initial step of refining (i.e., separation of macromolecular
components) is the main burden due to the structural complex-
ity of rice biomass and cell walls. To reduce the inherent recal-
citrance, corresponding genes and proteins that define such
complex structures need to be identified. A GWAS via estab-
lishing the correlation between phenotypes and genotypes has
already promised the identification of such elements. Subse-
quent to such studies, candidate associated genes are required
to be functionally characterized. The relevant genes can be
used in developing fresh selection-cross breeding programs
and new less-recalcitrant transgenic varieties. Here in a rice
straw GWAS, we were able to find associated markers and
their flanking genes to be the candidates for cellulose, lignin,
and fermentable sugar contents. Interestingly, some of these
genes are reported for the first time in this study, whereas

http://pantherdb.org/
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F I G U R E 3 Phylogenetic tree in the form of a kinship plot that efficiently separates the 170 accessions in five main geographical clusters of
subpopulations: TEJ (Temperate japonica), IND (indica), AUS (aus), ADMIX-ARO (aromatic + ADMIX), TRJ (Tropical japonica). Red indicates
the highest correlation between pairs of individuals and yellow indicates the lowest correlation. A hierarchical clustering tree based on the pairwise
kinship values for all accessions is displayed along the top and left axes

others were observed in earlier reported data. The levels of
lignin and cellulose in our population were similar to those
previously reported for rice (Santos et al., 2017).

4.1 Cellulose content candidate genes and
their co-expressors

Based on the marker-trait associations, eight rice genes are
reported to be associated with cellulose content (Table 2).
Galacturonosyltransferase 9 (GAUT; GT8, Table 2) (Pharr
et al., 1981) was the one of the candidate genes with role in
pectin and/or xylan biosynthesis (M. Li et al., 2019). Xylans

and cellulose intertwine by hydrogen bonds to form a strong
and flexible structure (Scheller et al., 2010). Brown et al.
(2005) showed that some GT8 family members co-express
with CesA7 (IRX3) in Arabidopsis, which is involved in sec-
ondary cell wall synthesis (Hernández-Blanco et al., 2007).
Xylan glucuronosyltransferase is the other reported function
for GT8 family members. In this role, it is involved in sec-
ondary cell wall thickening at interfascicular fibers and xylem
cells (Lee et al., 2012). The deposition and arrangements of
glucuronic acids on xylans may play a great role to shape and
strengthen the wall (Lyczakowski et al., 2017). Interestingly,
xylan backbone biosynthetic family (GT43) was the other co-
expressor (Table 2). GT43 family members have shown to be
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F I G U R E 4 Manhattan plot showing
quantitative trait loci significant single
nucleotide polymorphisms (–Log10[P] > 4;
minor allele frequency > 5%) from
genome-wide association studies (GWAS) using
the BLINK model. The-log10 (p-values) from
the GWAS are plotted according to genetic
position on each of the 12 rice chromosomes in
left side of each Manhattan plot. (a) cellulose,
(b) lignin, (c) fermentable sugar

involved in secondary cell wall formation and the definition
of cellulose orientation (Ratke et al., 2018; Wang et al., 2016).

Next candidate gene which was associated to cellulose
content was xyloglucan galactosyltransferase KATAMARI
1 (LOC_Os03g05110). This protein belongs to GT47 fam-
ily (A. Wu et al., 2019) and regulates actin microfilament
organization. It is involved in cell wall biosynthesis (Tamura
et al., 2007). Xyloglucans interact with cellulose in plant cells
(Lopes et al., 2010) to make a network that provides flexibil-
ity; with proven function in cell elongation (Somerville et al.,
2004). Considering the involvement of this gene in xyloglucan
turnover and due to the association of cellulose with xyloglu-
can, it can be concluded that this gene can indirectly affects
the amounts of cellulose, but its putative role must be investi-
gated in future.

CslD2, a cellulose synthase-like protein belonging to GT2
and the closest to CesAs (Richmond & Somerville, 2001)
was the other candidate gene found in our study. This gene
has been shown to be involved in the synthesis of cellu-
lose (Bernal et al., 2008; M. Li et al., 2009). CSL mutant

analysis in Arabidopsis showed that CSLD2, CSLD3 and
CSLD5 are required for early flower development in addi-
tion to stem interfascicular fibers and xylem vessels via their
role on cell wall mannan content (Yin et al., 2011). GH16,
CesA6, and CesA7 genes showed to be co-expressed with
CSLD2 (Table 2). CesA6 and CesA5 roles were demon-
strated in stunted O. glaberrima with compromised height by
tungro spherical virus (Budot et al., 2014). It was demon-
strated that a naturally occurring barley CesA6 siRNA, not
only reduces the abundance of primary wall CesAs, several
Csl genes, and GT8, it is also correlated with the reduc-
tion of cellulose biosynthesis (Held et al., 2008). CesA1 and
CesA8 found to be co-expressed with more than one co-
located genes (Table 2). These two CesAs that are function-
ally belong to primary and secondary wall synthesis respec-
tively, were demonstrated to complement each other (S. Li
et al., 2013). GO enrichment analysis for CSLD2 revealed that
it involves in cellulose biosynthesis (GO: 0016760) and has
a cellulose synthase (UDP forming) activity (GO: 0030244)
(Figure 5).
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F I G U R E 5 Gene ontology (GO) enrichment for CSLD2 (LOC_Os06g02180). The enrichment was done with GO terms: (a) biological process
and (b) molecular function

Interestingly, a peroxidase gene (LOC_Os03g02920)
showed association with cellulose content. It is co-expressed
with many cellulose related genes including CSLC7, GT43,
COBRA, CesA8, CesA1, and GT8. Furthermore, here we
report the co-expression of COBRA genes with the associ-
ated genes of both cellulose and lignin contents (Table 2).
COBRA modulate the orientation of cellulose microfibrils
and have shown to have defining roles in both cellulose and
lignin content (Gritsch et al., 2015; Sato et al., 2010).

4.2 Lignin content candidate genes and
their co-expressors

Based on the marker-trait associations, five rice candi-
date genes are shown to be associated with lignin con-
tent (Table 2). One of the candidate genes was villin pro-
tein (LOC_Os04g51440). Villin family proteins appear to
participate in secondary cell wall formation and thicken-
ing (Obudulu et al., 2016). GH10, a co-expressor gene with
villin, is involved in breaking down lignocellulosic materi-
als and removing residual xylans from pretreated lignocellu-
losic feedstock (Velasco et al., 2019). Earlier, and in hybrid
aspen, the possible roles of GH10 and GH16 were proposed

via functional genomics and use of microarrays with the appli-
cation of probes obtained from developing xylem (Aspeborg
et al., 2005). Gibberellic acid-stimulated (GASA/GAST) pro-
tein, one of our candidate genes (LOC_Os03g41060) asso-
ciated with lignin content, has been shown to be wall asso-
ciated and involved in regulation of hydroxyl radical levels
at specific sites to help in cell division and wall elongation
(Furukawa et al., 2006; Trapalis et al., 2017). However, its
clear link to lignin content has not been demonstrated.

Another candidate gene was a peroxidase (LOC_
Os04g51300). It was reported that peroxidases are among
lignin degrading and synthesizing enzymes (Falade et al.,
2017). This gene was introduced as a candidate gene linked
to saccharification potential in an earlier QTL mapping study
(Liu et al., 2016). It is co-expressed with photosynthesis-
related genes, including PS II 11 kDa protein and PS I
reaction center subunit III and IV A (Table 2).

Several genes of WAK family (OsWAK1, 50, 52, 53b) were
identified as candidate genes that co-located with associated
SNPs with lignin content (Table 2). The OsWAK proteins
have kinase activity and bind to pectin fragments in the cell
wall (He et al., 1996). These genes have been shown to be
required for cell wall expansion (Wagner & Kohorn, 2001).
Mutations in some members of this gene family in the plants
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F I G U R E 6 Gene ontology (GO)
enrichment with GO term of biological process
for GH16 (LOC_Os04g51450). The gene
involves in polysaccharid metabolism and
glucan metabolism

have been studied and it has been shown that they reduce
plant growth. For example, mutation in WAK4 has stopped
leaf growth (Lally et al., 2001). It has also been suggested
that mutations in this gene family alter glucose metabolism
(Kohorn et al., 2006). In rice, OsWAK gene family has 122
members (Zhang et al., 2005). OsWAKs found in this study,
localize to cell/PM (Supplemental Table S4) as few other
OsWAK proteins tested in rice (Cayrol et al., 2016). The rela-
tionship between each of these genes and the amount of lignin
has not been studied yet, but due to their effect on cell wall
expansion (Wagner & Kohorn, 2001), it is likely that they have
an indirect effect on the amount of lignin.

Interestingly, GH16 (LOC_Os04g51450) was found as
a candidate gene associated with lignin content. However,
no reports considering the role of GHs on lignin content
are available and we believe in the future that a more
detailed analysis of the corresponding genes is required to be
performed. Based on GO enrichment, the GH16 gene local-
izes to cell wall, functions as a hydrolase/transferase,
and involves in cellular polysaccharide metabolism
(GO: 0044264) and glucan metabolism (GO: 0006073)
(Figure 6).

4.3 Fermentable sugar content candidate
genes and their co-expressors

Sugar is not only important molecules for growth, devel-
opment, and gene expression regulation in plants, they also
serve various industrial applications. Thus, comprehensive
understanding of the genes and proteins that establish sugar
homeostasis within plant cells would have a strong influ-
ence in developing future crops. We have found four can-
didate genes in association to fermentable sugar content
(Table 2). UTP-glucose-1-phosphate uridylyltransferase (also
known as UGPase for UDP–glucose pyrophosphorylase) was
among high-ranking candidate genes for fermentable sugar
content, as its important regulatory role already demonstrated
in carbohydrate metabolism (N. Li et al., 2014). Rice con-
tains two UGPases, namely Ugp1 and Ugp2 (Chen et al.,
2007). Tobacco plants overexpressing the corresponding gene
showed an improved height growth (Coleman et al., 2006;
Wang et al., 2011). In overexpression of a UDP-glucose
pyrophosphorylase genes in Arabidopsis, the role of the cor-
responding protein in sucrose/polysaccharide metabolism,
soluble sugar contents, starch, cellulose, and cell wall
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biosynthesis was reported and suggested that the gene would
be a fine candidate in improvement of fiber cell development
(Coleman et al., 2006, 2007; N. Li et al., 2014; Wang et al.,
2011). Another candidate gene was BRASSINOSTEROID
INSENSITIVE 1, a ubiquitous leucine-rich repeat receptor
of serine/threonine kinase (Friedrichsen et al., 2000). It has
been shown that this gene negatively regulates cellulose syn-
thesis in Arabidopsis by phosphorylating cellulose synthase
1 (Sanchez-Rodriguez et al., 2017). Because of the effect of
this gene on the amount of cellulose, its effect on the released
sugar must be investigated in the future.

5 CONCLUSIONS

Genome-wide association study, as a forward genetic
approach, is a powerful tool for detecting genes defining spe-
cific traits. In the present study, genetic diversity for cellu-
lose, lignin, and fermentable sugar contents were analyzed
in a panel of rice accessions via GWAS. Several genes were
reported for each trait, and the probable roles of these genes
in defining corresponding phenotype were discussed. Most of
the candidate genes found for cellulose content were directly
co-expressed with CesAs in rice straw. Candidate genes for
lignin content were mostly kinases. A variety of kinases have
been shown to be involved in lignin deposition in cells (Sulis
& Wang, 2020). Among the associated genes with markers for
fermentable sugar, a kinase with probable releasing capability
of cyclic activated protein kinase into intercellular space was
noted.
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