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Abstract

Genomic-enabled prediction models are of paramount importance for the successful implementation of
genomic selection (GS) based on breeding values. As opposed to animal breeding, plant breeding includes
extensive multienvironment and multiyear field trial data. Hence, genomic-enabled prediction models
should include genotype � environment (G � E) interaction, which most of the time increases the
prediction performance when the response of lines are different from environment to environment. In
this chapter, we describe a historical timeline since 2012 related to advances of the GS models that take into
account G � E interaction. We describe theoretical and practical aspects of those GS models, including the
gains in prediction performance when including G � E structures for both complex continuous and
categorical scale traits. Then, we detailed and explained the main G � E genomic prediction models for
complex traits measured in continuous and noncontinuous (categorical) scale. Related to G� E interaction
models this review also examine the analyses of the information generated with high-throughput phenotype
data (phenomic) and the joint analyses of multitrait and multienvironment field trial data that is also
employed in the general assessment of multitrait G � E interaction. The inclusion of nongenomic data in
increasing the accuracy and biological reliability of the G� E approach is also outlined. We show the recent
advances in large-scale envirotyping (enviromics), and how the use of mechanistic computational modeling
can derive the crop growth and development aspects useful for predicting phenotypes and explaining
G � E.
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1 Introduction

Selection in plant breeding is usually based on estimates of breeding
values, which can be obtained with pedigree-based mixed models
[1, 2]. In their multivariate formulation, these models can also
accommodate G � E interaction [3, 4]. In the past, pedigree-
based models have been successful for predicting breeding values
of complex traits in plant and animal breeding by modeling the
genetic covariance between any pair of related individuals ( j and j0),
due to their additive genetic effects, as being equal to two times the
coefficient of parentage (2fjj0 ¼A) times the additive genetic vari-
ance, σ2a (Aσ2a ). In self-pollinated species, Aσ2a is the variance–
covariance matrix of the breeding values (additive genetic effects).
Closely related individuals contribute more to the prediction of
breeding values of their relatives than less closely related genotypes.
Moreover, when data from one individual or one selection candi-
date are missing (either partially or totally), its breeding value can
still be predicted from its relatives, albeit less efficiently than if the
data were complete.

Pedigree-based models cannot account for Mendelian segrega-
tion—a term that, under an infinitesimal additive model [5, 6] and
in the absence of inbreeding, explains one half of the genetic varia-
tion [7, 8]. However, molecular markers allow tracing Mendelian
segregation at several positions of the genome, which gives them
enormous potential in terms of increasing the accuracy of estimates
of breeding and genetic values and the genetic progress attainable
when these predictions are used for selection purposes [9].

GS [10] and genomic prediction of complex traits predict
breeding values that comprise the parental average (half the sum
of the breeding values of both parents) plus a deviation due to
Mendelian sampling. In annual crops GS has been applied mainly
in two different contexts; one approach focuses on predicting
additive effects in early generations of a breeding program such
that a rapid selection cycle with a short interval cycle (i.e., GS at the
F2 level of a biparental cross) is achieved. Another approach consists
of predicting the genotypic values of individuals where both addi-
tive and nonadditive effects determine the final commercial
(genetic) value of the lines; here predicting lines established in
multienvironment field evaluation is required.

Various models for analyzing variation arising from quantitative
trait loci (QTL) and marker-assisted selection, as well as for identi-
fying molecular markers closely linked to QTL have been widely
used in plant breeding to improve a few traits controlled by major
genes. However, adoption of these models has been limited
because the biparental populations used for mapping QTL are not
easily used in breeding applications and because only limited
marker information (a few markers) is used. On the other hand,
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GS is an approach for improving quantitative complex traits that
uses all available molecular markers across the genome to estimate
breeding values for specific environments and across environments
by adopting conventional single-environment or G � E interaction
analyses [11–13].

Early plant and animal breeding data have shown that GS
[10, 14, 15] significantly increases the prediction accuracy of pedi-
gree based selection for complex traits [13, 16–31]. Reviews on
optimizing genomic-enabled prediction and application to annual
and perennial plants were early published elsewhere [22, 32–
35]. Since then, crop breeding programs worldwide have been
studying and applying GS and, simultaneously, extensive research
have been conducted on new statistical models for incorporating
pedigree, genomic, and environmental covariates such as soil char-
acteristics or weather data, among others.

Genomic models for incorporating G � E interaction have
been proposed in an attempt to improve accuracy when predicting
the breeding values of complex traits (e.g., grain yield) of indivi-
duals in different environments (site–year combinations) [11, 23,
36]. However, different statistical models are required for assessing
the genomic-enabled prediction accuracy of noncontinuous cate-
gorical response variables (ordinal diseases as rates, counting data,
etc.) using conventional genomic best linear unbiased predictors
(GBLUP). Furthermore, deep learning artificial neural networks
(DL) are also being developed for assessing multitrait, multienvir-
onment genomic-enabled prediction [36–53].

Since the beginning of GS, several genetic and statistical factors
had been pointed out as complications for the application of GS
and genomic prediction. Genetic difficulty arises when deciding the
size of the training population and the heritability of the traits to be
predicted. Statistical challenges are related to the number of mar-
kers (p) being much larger than the number of observations (n)
(p � n), the multicollinearity among markers and the curse of
dimensionality. One important genetic-statistical complexity of
GS models arises when predicting unphenotyped individuals in
specific environments (e.g., planting date–site–management com-
binations) by incorporating G � E interaction into the genomic-
based statistical models. Moreover, the genomic complexity related
to G � E interactions for multitraits is important because these
interactions require statistical-genetic models that exploit the com-
plex multivariate relations due to multitrait and multienvironment
variance–covariance, and the genetic correlations between environ-
ments, between traits and between traits and environments. The
abovementioned problem of p � n results in a matrix of predictors
that are rank-deficient and without having a likelihood identified,
thus being prone to overfitting. Penalized regression, variable selec-
tion, and dimensionality reduction offer solutions to some of these
problems.
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Genomic-enabled prediction models are based on quantitative
genetics theory, which considers two main structures of variation,
one for the sum of genetic values (e.g., linear additive models), and
a second for nongenetic residual noise [19]. Hence, most of the
research on genomic prediction has been developing efficient para-
metric and nonparametric statistical and computational models to
deal with those two main structures of variation, and many research
articles show good prediction accuracy for complex traits such as
grain yield. The use of relationship matrices based on genomics has
also been expanded by developing and using linear and nonlinear
kernels. Nonlinear genomic kernels have the ability to account for
cryptic small effect interactions between markers (e.g., epistasis).
Furthermore, these kernels are more efficient than GBLUP in
incorporating large-scale environmental data (enviromics) and
G � E realized by enviromics-aided relatedness among field trials
[45–54].

In this chapter, we explain and review the complexity of
genomic-enabled prediction and describe models for assessing dif-
ferent forms of G � E interaction and marker � environment
interaction. We also describe GS models for categorical and count-
ing traits that are not continuous and do not have a normal distri-
bution. As intimately related with studding G � E interaction we
briefly summarize the latest results of the use of methods that
include Bayesian multitrait multienvironments as well as deep
learning (DL) of artificial neural networks, and ecophysiology-
enriched approaches such as the use of crop growth models and
enviromics. Furthermore, we extend the study of G� E interaction
when high throughput phenotype data are available.

2 Historical Timeline of G � E Modeling in Genomic Prediction

Since the study of Meuwissen et al. [10] researchers have been
devoted to the use of whole-genome markers to adjust statistical
and computation tools to predict particular phenotypes. Figure 1
presents a short timeline of the type of statistical and computational
regressions and kernel methods used in GS research in the context
of G � E. This timeline starts with two genomic G � E interaction
models, the first is related to environment-specific genomic predic-
tion effects [11] and the second to specific marker effects across
environments [12]. At this point, the model of Burgueño et al. [11]
takes into account pedigree and molecular marker information, and
in the following eight years it was updated along with that of
Schulz-Streeck et al. [12] with different statistical and computa-
tional processing methods. All models based on this source of data
were highlighted as blue in Fig. 1. Green color in Fig. 1, high-
lighted aspects introduced by Heslot et al. [23] involving the use of
environmental covariates (EC) over the marker effects. Models in
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green introduced the use of crop growth models (CGM). Briefly,
the CGM is a mechanistic approach aimed to reproduce the main
plant-environment relations through “crop-specific” parameters
and environmental inputs. After running CGM, it is possible to
derive EC that represent the plant-environment interactions,
instead of the direct use of climatic information. It also includes
research involving the direct use of CGM with genomic prediction
models, which was a concept introduced by Cooper et al. [55] as
CGM-whole genomic prediction. This approach uses the marker
effects to predict intermediate phenotypes over the mechanistic
structure of a certain CGM. Then, the tuned CGM is used for
phenotype prediction.

Lastly, purple-colored model in Fig. 1, involve the use of envi-
ronmental data to fit reaction-norm structures (e.g., linear relation
between phenotype and environmental variations). Since Jarquı́n
et al. [36] there is a second interpretation of the so-called reaction-
norm approach, which involves the use of environmental related-
ness realized from EC together with genomic kinships under
whole-genome regressions or kernel methods. Recently, Resende
et al. [56] and Costa-Neto et al. [54] introduced the concept of
‘enviromics’ to describe the core of possible environmental factors
acting over a target population of environments (TPE). It is
expected that this type of approach will popularize the use of
environment data in training prediction models for selection,

Fig. 1 History of the main research involving genomic prediction and G� E interaction since the first published
paper in 2012 until the articles published in 2020. A blue box denotes works using only DNA markers or
genomic information. A green box refers to models in which DNA marker is complemented by crop growth
modeling (CGM) outputs, such as stress index. A purple box refers to models in which DNA markers are
complemented by the use of environmental covariates (EC), such as weather and soil information for the
experimental trials
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which is especially useful for screening genotypes at novel growing
conditions. Differently from the models in green color, here the
philosophy ranges from using a large-scale environmental informa-
tion [36, 45, 54, 56–58] to a very small number of ECs [26, 43, 44,
59, 60]. In the first case, the purpose is to shape a robust environ-
mental relatedness, whereas the second relies in a two-stage analysis
(e.g., factorial regression), where are found a few key ECs that
explains a large amount of the trait G � E for that germplasm and
experimental network. Each model structure and concept is
described in the next sections.

Below, we discuss the basic genomic model used to reproduce
particular gene–phenotype variations using phenotypic data from
single trials. Thus, it is expected that these kind of models could
capture specific environmental–phenotype covariances, related to
the particular growing conditions faced by each genotype in the
same field. Because of that, this type of model is named single-
environment model. Then, we describe how single-environment
models are fitted in terms of resemblance among relatives, captured
by genomic or pedigree realized relationship kernels. Thus, in this
section we will present novel options to model G � E interactions
among several field trials (multienvironment trials). Furthermore,
we will show Bayesian models for ordinal or count data, and finally
describe models using climatic environmental data.

3 Genomic-Enabled Prediction Models Accounting for G � E

3.1 Basic Single-

Environment

Genomic Model

To explain how the multienvironment GS approach were devel-
oped, it is indispensable to first understand how the baseline single-
environment genomic model was conceived. The basic genetic
model describes the response of the jth phenotype (yj) as the sum
of an intercept (μ), a genetic value (gj) plus a residual εj: yj¼ μ + gj + εj
( j ¼ 1, . . ., n individuals). Thus, this model takes into account a
certain genetic-informed structure within the gj effect, and consid-
ers that all nongenetic sources are split in a fixed main intercept plus
the error variation. As the genes affecting a trait in a certain envi-
ronment where the phenotyping was conducted are unknown, a
complex function must be approximated by a regression of pheno-
type on marker genotypes with large numbers of markers {xj1, . . .,
xjk, . . ., xjp} (k¼ 1, . . ., pmarkers) to predict the genetic value of the
jth individual. This function can be expressed as f(x) ¼ f(xj1, . . .,
xjp; β) such that yj ¼ μ + f(xj1, . . ., xjp; β) + εj.

Usually f(x; β) is a parametric linear regression of the

form f x j1, . . . , xjp; β
� � ¼ Pp

k¼1

xjkβk , where βk is the substitution

effect of the allele coded as ‘one’ at the kth marker. Then, the linear

regression function on markers becomes y j ¼ μþ Pp
k¼1

xjkβk þ ε j ,

or, in matrix notation,
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y ¼ 1nμþXβþ ε, ð1Þ
where 1n is a vector of order n� 1,X is the n� pmatrix of centered
and standardized markers, β is the vector of unknown marker
effects, and ε is an n � 1 vector of random errors, with ε �
N 0, Inσ2ε
� �

, where σ2ε is the random error variance component.

When the vector of marker effects is assumed β � N 0, I pσ2β

� �
,

where σ2β is the variance of marker effects, this is called the ridge
regression best linear unbiased predictor (rrBLUP).

3.1.1 Kernel Methods to

Reproduce Genomic

Relatedness Among

Individuals

From the last subsection, we can go deeper into the modeling of g
effects using relatedness kernels. By letting g ¼ Xβ with a variance–
covariance matrix proportional to the genomic relationship matrix

G ¼ XX 0=
Pp
k¼1

2qk 1� qk
� �

(where qk is the frequency of allele “1”)

with g � N 0,Gσ2g

� �
, one can define the GBLUP prediction

model as: [61, 62].

y ¼ 1nμþ g þ ε: ð2Þ
GBLUP and rrBLUP are equivalent if the genomic relationship

matrix is computed accordingly. Model 2 is computationally much
simpler than the rrBLUP, which makes the kernel methods inter-
esting for dealing with complex models involving G � E
interactions.

It should be noted that different kinds of kernel can be used for
G, potentially taking any structure capable of reproducing a certain
degree of relatedness among individuals, such as nonlinear effects
into account. One of the most used nonlinear kernels is the
so-called Gaussian Kernel (GK). Results have consistently shown
for single-environment models as well as for multienvironment
models with G � E interaction, that GK performs better than
GBLUP in terms of genomic-enabled prediction accuracy [39–
41, 45, 63].

A second nonlinear approach that has been used is deep kernel
(DK), which is implemented by the arc-cosine kernel (AK) function
recently introduced by Cuevas et al. [41] in genomic prediction.
This nonlinear DK is defined by a covariance matrix that emulates a
deep learning model, but based on one hidden layer and a large
number of neurons. To implement it, a recursive formula is used for
altering the covariance matrix in a stepwise process, in which at each
step, more hidden layers are added to the emulated deep neural
network. In this function, the tuning parameter “number of layers”
required for DK can be determined by a maximum marginal likeli-
hood procedure [41].

Research involving near-infrared data [41], multiple G � E
scenarios for several data sets [64] and modeling additive and
nonadditive genomic-by-enviromic sources [54] have shown that
DK genomic-enabled prediction accuracy is similar to that of the
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GK, but DK has the advantage over GK because (a) it is computa-
tionally more straightforward, since no bandwidth parameter is
required, while performing similarly or slightly better than GK;
(b) it is a data-driven kernel capable of linking genomic or enviro-
mic kernels with empirical phenotypic covariance structures
[41, 54, 64]. To implement DK in an R computational environ-
ment, Cuevas et al. [41] and Costa-Neto et al. [54] have provided
codes and examples that are freely available. After the creation of
DK for each genomic or enviromic source, this kernel can be
incorporated in diverse packages to implement genomic prediction,
such as BGLR [65] and BGGE [66].

3.2 Basic Marker �
Environment

Interaction Models

Multienvironment trials for assessing G � E interactions play an
important role for selecting high performing and stable breeding
lines across environments, or breeding lines adapted to local envi-
ronmental constraints. A first way of modeling G � E is to allow
environment-specific marker effect [12], or to model environment-
specific genetic effects as proposed by Burgueño et al. [11]

A kernel model can be derived to allow environment-specific
genetic effects as in model 2

y ¼ μþ g þ ε, ð3Þ

where y ¼

y1

⋮

y i
⋮

ym

2
6666664

3
7777775
; μ ¼

1n1
μ1

⋮

1niμi
⋮

1nmμm

2
6666664

3
7777775
; g ¼

g1

⋮

g i

⋮

gm

2
6666664

3
7777775
; ε ¼

ε1

⋮

εi
⋮

εm

2
6666664

3
7777775
, are

vectors with elements corresponding to each of the environments,
which are equivalent to ZE μm, where ZE is an incidence matrix for
the environments and μm is a vector of order m, that represents one
mean for each environment. When there are many environments, it
is recommended to consider vector μ as random effect, such that

μ � N 0,ZEZ
0
Eσ

2
e

� �
. Other fixed effects can also be included in the

model. The random effects are the genetic effects g ~N(0,K0) and
the residuals ε~N(0,R). When the number of observations is the
same in all the environments, thenK0 ¼UE

N
K, andR ¼ Σ

N
I,

where
N

denotes the Kronecker product andK is a kernel matrix of
relationships between the genotypes. Matrix K0 is the product of
one matrix with information between environments (UE) and one
kernel with information between individuals based on markers or
pedigrees (K). The unstructured variance–covariance can be used
for UE,of order m � m such that:
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U E ¼

σ2g1 . . . σg1gi . . . σg1gm
⋮ ⋱ ⋮ ⋱ ⋮

σgig1

⋮

σgmg1

. . .

⋱

. . .

σ2gi

⋮

σgmgi

. . .

⋱

. . .

σgigm

⋮

σ2gm

2
666666664

3
777777775
,

where the ith diagonal element is the genetic variance σ2gi within the
ith environment, and the off-diagonal element is the genetic covari-
ance σgigi0 between the ith and i0th environments. Model 3 can be
used with a linear kernel GBLUP, [11] Gaussian kernel [40] or
deep kernel [67], which allows capturing small cryptic effects, such
as epistasis.

To account for variations between individuals that was not
captured by g., a random component f, representing the genetic
variability among individuals across environments, can added to
model 3 as:

y ¼ μþ g þ f þ ε, ð4Þ

where f ¼

f 1

⋮

f i
⋮

f m

2
6666664

3
7777775
with the random vectors f independent of g and

normally distributed f ~ N(0,Q). In general, when the number of
individuals is not the same in all environments,

Q ¼

σ2f 1In1
. . . σ f 1 f iI n1

. . . σ f 1 f mIn1

⋮ ⋱ ⋮ ⋱ ⋮

σ f i f 1Ini

⋮

σ f m f 1Inm

. . .

⋱

. . .

σ2f iIni

⋮

σ f m f iInm

. . .

⋱

. . .

σ f i f mI ni

⋮

σ2f mI nm

2
666666664

3
777777775

where σ2f i is the genetic effects in the ith environment not
explained by the random genetic effect g, and σ f i f i0 is the covari-
ance of the genetic effects between two environments not explained
by g. When the number of individuals is the same in all the envir-
onments, Q ¼ FE

N
I. The matrix FE captures genetic variance–

covariance effects between the individuals across environments that
were not captured by the UE matrix.

3.3 Basic Genomic �
Environment

Interaction Models

Before introducing the reaction-norm model, we will first consider
the model 5, in which the response of the jth line in the ith
environment (yij) is modeled by main random effects that account
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for the environment, (Ei), the genotypes (Lj), the genetic values (gi)
of the lines, a component assumed to be stable across environ-
ments, plus the random effects of the interaction (Egij) between
the ith environment (Ei) and the jth line (gj), representing devia-
tions from the main effects:

yij ¼ μþ Ei þ L j þ g j þ Egij þ εij , ð5Þ
where μ is an intercept, Ei �iid N 0, σ2E

� �
is the random effect of the

ith environment, L j �iid N 0, σ2L
� �

is the random effect of the jth

genotype, and εij �iid N 0, σ2ε
� �

is a model residual. Here N-
(∙, ∙) stands for a normally distributed random variable and iid
stands for independent and identically distributed.

The vector of random effects g ¼ (g1, . . ., gJ)
0
, g �

N 0, Z gKZ 0
g

� �
σ2g

� �
, with Zg being the incidence matrix for the

effects of the genetic values of the genotypes and σ2g is the variance
component of g; K is a kernel or matrix of genetic relationships
between the genotypes as in GBLUP (G) [36]. The vector Eg �
N 0, Z gKZ 0

g

� �
# Z EZ

0
E

� �
σ2Eg

� �
denotes the interaction between

the genotypes and the environments, where ZE is the incidence
matrix for environments and σ2Eg is the variance component of Eg
with # denoting the Hadamard cell-by-cell product. Note that

g � N 0,Kσ2g

� �
are correlated, such that model 5 allows borrow-

ing information between the genotypes. Hence, prediction of
genotype performance in environments where the genotypes were
not observed is possible.

3.4 Illustrative

Examples When Fitting

Models 2–5 with

Linear and Nonlinear

Kernels

Examples of models 2–5 using a wheat data set comprising
599 wheat lines evaluated in four environments (E1–E4) were
employed by Crossa et al. [19] and Cuevas et al. [29]. They are
available in the BGLR R package [65]. A total of 50 random
samples each with a training set composed of 70% of the wheat
lines in each environment and a testing set composed of the remain-
ing 30% of lines observed in only some environments but not in
others. The predictive ability was calculated as the average Pear-
son’s correlation between observed and predicted lines. Table 1
lists the averages of these correlations for each of the four models in
each environment and their standard deviations when using
GBLUP or Gaussian kernel (GK). Models 2 and 5 were fitted
with the BGLR package [65], whereas models 3 and 4 were fitted
using the multitrait model (MTM) package of de los Campos and
Grüneber [68].

For these data and the sampling used to fit the four models, the
Gaussian kernel (GK) showed higher prediction accuracy than the
GBLUP in all four models. However, model 4 gave the best results.
The differences in prediction accuracy between models 3 and 4 are
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greater with GBLUP; that is, component f captured effects that are
retained for the genetic component g. Models 3 and 4 allow
capturing covariances close to 0 or negative between environments,
but require a more intense computational effort than model 5.
Model 5 allows estimating the main genetic effects and interactions
and is very flexible for including other variables as environmental
covariables. In addition, when the covariances between environ-
ments are positive, the prediction ability of model 5 is similar to
those of model 4. For large data sets, fitting model 5 could present
problems or require intense computer programming. A good
option for large data sets including large numbers of environments
is to use the approximate kernel [69].

The G � E prediction models presented in this section can
predict new individuals in existing multienvironment trial using
molecular or pedigree information, but they cannot predict new
environments. In the next section, we discuss the use of EC and the
so-called enviromics in creating reaction-norm models for dealing
with this concern.

4 Genomic-Enabled Reaction-Norm Approaches for G � E Prediction

4.1 Basic Inclusion

of Genome-Enabled

Reaction Norms

Diverse researchers have modeled genotype-specific variations due
to key environmental factors, [70–77] which afterward was named
reaction norm; that is, the core of expressed phenotypes for a given
genotype across a certain environmental gradient. From this

Table 1
Mean prediction accuracies for the different environments of wheat breeding data for GBLUP and GK
methods, and four models including a single environment (model 2) and three multienvironment
models (models 3, 4, and 5). Values in parenthesis represent the standard deviations. Bold values
represent the best predictions among the 4 models.

Environment

GBLUP GK

Model 2 Model 3 Model 4 Model 5 Model 2 Model 3 Model 4 Model 5

E1 0.500a 0.512 0.543 0.422 0.577 0.575 0.606 0.458

�0.06 �0.04 �0.04 �0.07 �0.04 �0.04 �0.04 �0.06

E2 0.474 0.635 0.72 0.626 0.477 0.685 0.713 0.626

�0.05 �0.04 �0.03 �0.05 �0.06 �0.03 �0.03 �0.04

E3 0.37 0.592 0.694 0.473 0.422 0.685 0.699 0.5

�0.06 �0.05 �0.03 �0.06 �0.05 (0.03)) �0.03 �0.04

E4 0.447 0.501 0.525 0.501 0.511 0.555 0.572 0.525

�0.05 �0.04 �0.03 �0.06 �0.04 �0.04 �0.04 �0.05

aEmpirical phenotypic correlation between environments: E1 vs. E2¼�0.020 E1 vs. E3¼�0.193; E1 vs. E4¼�0.123;
E2 vs. E3 ¼ 0.661; E2 vs. E4 ¼ 0.411; E3 vs. E4 ¼ 0.388
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concept, it is reasonable to expect that the core of reaction norm for
a certain breeding population or germplasm, evaluated for a certain
range of environments, will be the main driver of the statistical
phenomena interpreted as G � E interaction. The models pre-
sented in the previous section considers only the G effects realized
from molecular marker data. Thus, it is also reasonable to assume
that in the same manner to the use of molecular data as a descriptor
of the genotype resemblance, the use of environmental data can
also contribute to explain a large amount of the nongenomic
differences observed in phenotypic records from field trials.

In the GS context, modeling the interaction between markers
and environmental covariates can be a complex task due to the high
dimensionality of the matrix of markers, the environmental covari-
ates, or both. Jarquı́n et al. [36] proposed modeling this interac-
tion, using Gaussian processes where the associated variance–
covariance matrix induces a reaction norm model. The authors
showed that assuming normality for the terms involving the inter-
action and also assuming that the interaction obtained using a first-
order multiplicative model is distributed normally, then the covari-
ance function is the Hadamard product of two covariance struc-
tures, one describing the genetic information and the other
describing the environmental effects. This approach was expanded
by Morais-Júnior et al. [57] to account for an H matrix, based on
genomic and pedigree-based data in field trials from different cycles
of rice breeding in Brazil. Thereafter, Gillberg et al. [78] intro-
duced the use of Kernelized BayesianMatrix Factorization (KBMF)
to account for the uncertainty of environmental covariates in envi-
ronmental relatedness kernels. Finally, the use of the GK or DK to
model both genomic and environmental relatedness was suggested
by Costa-Neto et al. [45] and will be described with details in
further sections.

4.2 Modeling

Reaction-Norm Effects

Using Environmental

Covariables (EC)

Jarquı́n et al. [36] considered model 5 but modeled the interaction
Egij,

yij ¼ μþ Ei þ L j þ g j þ Egij

� ��
þ εij , ð6Þ

where all the components are defined in model 5 except the
interaction vector (Egij)

� that is defined as Egð Þ� �
N 0, ZgKZ 0

g

� �
# ZEΩZ 0

E

� �
σ2Eg

� �
. The originality of this model is

that the relationship matrix between environments Ω is estimated
using environmental covariables and proportional to WW0, with W
being a matrix with centered and standardized values of the envi-
ronmental covariables. The construction of matrix Ω can also be
guided by the phenotypic data of the calibration set together with
the environmental covariables [44]. Heslot et al. [23] proposed an
alternative method based on factorial regressions at the marker
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level, which increased prediction accuracy in 11.1% on average in a
large winter wheat dataset. Ly et al. [43] proposed a similar model
based on a single environmental covariate, which allows predicting
the response of new varieties to the change of a given factor (e.g.,
temperature variations, drought-stress).

Heslot et al. [23] novel approach consisted in using crop
models to predict the main developmental stages for a better char-
acterization of the environmental conditions faced by the plants.
Since then, several publications have shown that environmental
covariates directly simulated by the crop model (nitrogen stress in
Ly et al. [42] dry matter stress index in Rincent et al. [44]) captured
more G � E than simple climatic covariates. Millet et al. [59]
applied a factorial regression genomic model based on three envi-
ronmental covariates, which resulted in promising prediction accu-
racy of maize yield at the European scale. It is important to note
that the use of environmental covariates results in sharing informa-
tion between environments. This means that these models can
predict new environments as long as they are characterized by
environmental covariates.

4.3 Inclusion of

Dominance Effects in

G � E and Reaction-

Norm Modeling

The main product of most allogamous breeding programs is the
development of highly adapted and productive hybrids (single-
cross F1s). In maize, an important allogamous species, recent
research suggests that the G � E variation is the end-result of two
main genomic-based sources: the additive � environment (A � E)
plus dominance � environment (D � E) interactions [80–
82]. Thus, for predicting single-crosses across diverse contrasting
environments, it is necessary to incorporate both genomic-related
sources of variation in a computational efficient and biological
accurate way.

Costa-Neto et al. [45] tested five prediction models including
D� E and enviromics (W) for predicting grain yield over twomaize
germplasm. All models were run with three different kernel meth-
ods (GBLUP, GK and DK), but a coincidence trend of increment
for D and A + D + W models were observed for all kernels. In
average, for both data sets evaluated, for predicting novel geno-
types at know growing conditions (the so-called random cross-
validation CV1 scheme) using GBLUP, these authors found accu-
racy gains ranging from to 22% to 169%, compared with the base-
line additive GBLUP. These authors concluded that the inclusion
of dominance effects is an important source for predicting novel
environments in cross-pollinated crops.

Rogers et al. [83] conducted an extensive multienvironment
framework analysis involving 1918 hybrids across 65 environments,
in which the use of factor analytic (FA) structures were used for
both defining clusters of environments and finding patterns of
genomic and enviromic relatedness. The use of FA is a common
practice since the classic phenotypic-based G � E analysis. This
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means that the variance–covariance matrices are dissected in
orthogonal factors and these loadings are used as variance–covari-
ance structures, priors of any Bayesian approach [68] or for cluster-
ing genotypes or environments for targeting better and adapted
cultivars for certain environments [84]. FA was important to iden-
tify the environmental factors related to the main A and D effects
and how it can boost accuracy for predicting these
phenotypes [83].

Gathering results from Costa-Neto et al. [45] and Rogers et al.
[83] it is possible to infer that the dominance-related factors are
responsible for a sizeable proportion of the phenotypic variation for
grain yield in hybrid maize. The inclusion of environmental covari-
ates is important, but some key aspects should be taken into
account: (a) the statistical structure to model the A, D, and W
effects, in which linear kernel GBLUP models might be limited
and the use of FA or other nonlinear kernels may overcome this
limitation; (b) how the environmental data were processed and
integrated in the genomic prediction model for modeling A � W
and D�W; (c) the nature of G� E for each trait under prediction.
Below we discuss some results related to the use of nonlinear
kernels for those purposes.

4.4 Nonlinear

Kernels and Enviromic

Structures for Genomic

Prediction

Three kernel methods were adopted for the genomic and enviromic
sources: nonlinear GK, nonlinear arc-cosine, named as deep kernel
and the linear GBLUP used as the benchmark approach. It is
important to highlight the differences in creating the environmen-
tal relatedness kernel, which in this study was designed the percen-
tile distributions of each environmental factor (e.g., soil, weather,
management) across five key crop development stages, and because
of that, it takes into account a large amount of environmental
typologies as markers of relatedness (W). This bridges the gap
between raw environmental data, and what has really happened in
the field.

In order to differ from the reaction norm using quantitative
covariables (e.g., factorial regression on ECs), Costa-Neto et al.
[45, 54] named this model as “envirotyping-informed” GS,
because it takes into account the environments of the experimental
network. A generalization of the enviromic-enriched genomic pre-
diction model can be described in matrix form as follows.

y ¼ 1μþXf βþ
Xk
s¼1

gs þ
Xl

r¼1

wr þ ε ð7Þ

where y is the vector combining the means of each genotype across
each one of the q environments in the experimental network, in
which y ¼ [y1, y2, . . .yq]

T. The scalar 1μ is the common intercept or
the overall mean. The matrix Xf represents the design matrix asso-
ciated with the vector of fixed effects β. In some cases, this vector is
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associated with environmental effects (target as fixed-effect). Ran-
dom vectors for genomic effects (gs) and enviromic-based effects
(wr) are assumed to be independent of other random effects, such
as residual variation (ε).

Equation 7 is a generalization for a reaction-norm model
because, in some scenarios, the genomic effects may be divided as
additive, dominance, and other sources (epistasis) and the G � E
multiplicative effect. In addition, the envirotyping-informed data
can be divided into several environmental kernels and a subsequent
genomic by enviromic (GW) reaction-norm kernels. The baseline
genomic models assumes

Pp
s¼1gs 6¼ 0 and

Pq
r¼1wr ¼ 0, without

any enviromic data. However, the enviromic enriched models
might assume

Pp
s¼1gs 6¼ 0 and

Pq
r¼1wr 6¼ 0 , in which

Pq
r¼1wr

can describe a main enviromic effect (given by W), analogous to a
random environment effect, but with a structured matrix from ECs
(Ω), and a reaction-norm GW effect as multiplicative effect such as
described by Jarquin et al. [36]. Thus, some enviromic-enriched
models can be more accurate with less parameters, depending on
the way that the genomic and enviromic kernels are built. It has
been observed that nonlinear kernels are more efficient than the
reaction-norm GBLUP [36].

4.5 Genomic

Prediction Accounting

for G � E Under

Uncertain Weather

Conditions at Target

Locations

In most crops, genetic and environmental factors interact in com-
plex ways, giving rise to substantial and complex G � E. The
combination of G � E and the uncertainty about future weather
conditions make agricultural research and plant breeding extremely
challenging. In this context, de los Campos et al. [58] proposed
that computer simulations leveraging field trial data, DNA
sequences, and historical weather records can be used to predict
the future performance of genotypes under largely uncertain
weather conditions. The authors used field trial data linked to
DNA sequences and environmental covariates in order to learn
how genotypes react to specific environmental conditions. These
patterns are then used, together with DNA sequences and historical
weather records, to simulate the expected performance of geno-
types at target locations.

The approach of de los Campos et al. [58] uses Monte Carlo
methods that integrate uncertainty about future weather condi-
tions as well as model parameters. Using extensive maize data
from 16 years and 242 locations in France, the authors demonstrate
that it is possible to predict the performance distributions of geno-
types at locations where the genotypes have had limited testing data
or lacking them. They also showed that predictions that incorpo-
rate historical weather records are more robust with respect to year-
to-year variation in environmental conditions than the ones that
can be derived using field trials only.

As the use of EC information can really improve the accuracy of
genomic prediction across multienvironment conditions, most
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research has focused on quantitative traits (e.g., grain yield) or traits
with a simpler genomic architecture, such as days to heading [60]
and flowering time [85] which also are measured using a continu-
ous scale. Below we present Bayesian models for dealing with
ordinal data, which is a complex problem, particularly for quality
traits.

5 G � E Genome-Based Prediction Under Ordinal Variables and Big Data

5.1 Genomic-

Enabled Prediction

Models for Ordinal

Data Including G � E

Interaction

In this section, we present Bayesian genomic-enabled prediction
models for ordinal data including G � E interaction. Several
genomic-enabled prediction models have been developed for pre-
dicting complex traits in genomic-assisted animal and plant breed-
ing. These models include linear, nonlinear, and nonparametric
models, mostly for continuous responses and less frequently for
categorical responses. Linear and nonlinear models used in GS can
fit different types of responses (e.g., continuous, ordinal, binary).
Several linear and nonlinear models are special cases of a more
general family of statistical models known as artificial neural
networks.

Recently Pérez-Rodriguez et al. [86] introduced a neural net-
work that generalizes existing models for the prediction of ordinal
responses. The authors proposed a Bayesian Regularized Neural
Network (BRNNO) for modeling ordinal data. The proposed
model was fitted in a Bayesian framework using data augmentation
algorithm to facilitate computations and was compared with the
Bayesian Ordered Probit Model (BOPM). Results indicated that
the BRNNO model performed better in terms of genomic-based
prediction than the BOPM model. Results are consistent with the
findings of previous research [47]. It should be pointed out that the
BRNNO approach for modeling ordinal data could be applied not
only in the GS context but also in the context of conventional
phenotypic breeding for host plant resistance to pathogens and
pests, and many other ordinal traits.

In general, models for nonnormal data are scarce in the context
of genome-enabled prediction since most of the models developed
so far are linear mixed models (mixed models for Gaussian data).
Statistical research has shown that using linear Gaussian models for
ordinal and count data frequently produces poor parameter esti-
mates, lower prediction accuracy and lower power, while increasing
the complexity of parameter interpretation when transformations
are used [47, 49, 87, 88]. Few models for genome-enabled predic-
tion of ordinal and count variables are available [46–49, 88, 89].

The ordinal probit model assumes that conditioned to xi (cov-
ariates of dimension p), Yi is a random variable that takes values
1, ..., C, with the following probabilities:
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P Y i ¼ cð Þ ¼ P γc�1 � l i � γcÞð
¼ Φ γc þ Ei þ g j þ Egij

� �
�Φ γc�1 þ Ei þ g j þ Egij

� �
,

c ¼ 1, . . . ,C ð8Þ

where � 1 ¼ γ0 < γ1 < . . . < γC ¼ 1 are threshold parameters.
A Bayesian formulation of this model assumes the following
independent priors for the parameters: a flat prior distribution
for γ ¼ (γ1, . . ., γC � 1) ( f(γ) / 1), a normal distribution

for beta coefficients, g ¼ (g1, . . ., gJ)
0
, g � N 0, ZgKZ 0

g

� �
σ2g

� �
and a scaled inverse chi-squared distribution for σ2g , σ

2
g � χ�2

vg ,Sg
,

Eg � N 0, ZgKZ 0
g

� �
# ZEZ

0
E

� �
σ2Eg

� �
denotes the G � E interac-

tion, where ZE is the incidence matrix for environments and σ2Eg is
the variance component of Eg, also with a scaled inverse
chi-squared distribution for σ2Eg, σ

2
Eg � χ�2

vEg ,SEg
.

This threshold model assumes that the process that gives rise to
the observed categories is an underlying or latent continuous nor-
mal random variable li ¼ � Ei � gj � Egij + ϵi where ϵi is a normal
random variable with mean 0 and variance 1, and the values of li are
called “liabilities.” The ordinal categorical phenotypes in model 1
are generated from the underlying phenotypic values, li, as follows:
yi ¼ 1 if � 1 < li < γ1, yi ¼ 2 if γ1 < li < γ2,. . . ., and yi ¼ C if
γC � 1 < li < 1.

5.2 Illustrative

Application Bayesian

Genomic-Enabled

Prediction Models

Including G � E

Interactions, to Ordinal

Variables

Gray leaf spot (GLS), caused by Cercospora zeae-maydis, is a foliar
disease of global importance in maize production. The disease was
evaluated using an ordinal scale [1 (no disease), 2 (low infection),
3 (moderate infection), 4 (high infection), and 5 (complete infec-
tion)] at three environments (in Colombia, Mexico, and Zim-
babwe), in 240 maize lines. The 240 lines were genotyped using
the 55k single-nucleotide polymorphism (SNP) Illumina platform.
The final genotypic data contained 46,347 SNPs [46].

Table 2 gives the prediction performance for each environment
of the GLS data set. The prediction performance is reported as
an average Brier Score [90], which was computed as:

BS ¼ n�1
Pn
i¼1

PC
c¼1

bπic � dicð Þ2 , where dic takes the value of 1 if the

ordinal categorical response observed for individual i falls in cate-
gory c; otherwise, dic ¼ 0. The closer to zero, the better the
prediction performance. The average Brier Score was computed
with the testing set of the 20 random partitions implemented.
The best predictions were obtained with model E + G + GE that
takes into account the G � E interaction. Relative to models based
on main effects only, the models that included G � E gave gains in
prediction accuracy between 9% and 14% [46].
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5.3 Approximate

Genomic-Enabled

Kernel Models for Big

Data

When the number of observations (n) is large (thousands or
millions), there are computational difficulties for inverting and
decomposing large genomic kernel relationship matrices. This
problem increases when G � E and multitrait kernels are included
in the model. Cuevas et al. [69] proposed selecting a small number
of lines m (m < n) for constructing an approximate kernel of lower
rank than the original and thus exponentially decreasing the
required computing time.

The method of approximate kernels proposes a simple input
that originally had a kernel matrixKn, n of order n� n from where a
smaller submatrix is selected, Km, m of order m � m with the
restriction that m < n, with the aim of finding an approximate
matrix Q of rank m, smaller than the rank of Kn, n such that:

K � Q ¼ Kn,mK
�1
m,mK

0
n,m

where Km, m is a submatrix constructed with m selected individuals
with pmarkers,Kn, m is a submatrix ofK with the relation between
the total n lines and the m selected ones. Thus, Q is of smaller rank
than K, and computational time is significantly saved when
performing the required spectral decomposition or/and inversion.
Based on this approximation, Misztal et al. [91] and Misztal [92]
employed recursive methods from the joint distribution of the
random genetic effects when testing a large number of animal
production.

Cuevas et al. [69] described the full genomic method for single
environment (FGSE) with a covariance matrix (kernel) including all
n lines. Thenm lines (observations) approximate the original kernel
for the single environment model (APSE model). Similarly, but
including main effects and G � E (FGGE model), and including
m lines, the kernel method was approximated by main effects and
G � E (APGE model). The authors compared the prediction

Table 2
Brier scores (mean, minimum and maximum; smaller indicates better prediction) evaluated for the
validation samples. Model E + L contains in the predictor only the information of environment + lines
without markers, model E + G contains in the predictor information of environment + genomic data
and model E + G + GE has the same information as E + G plus the genotype-by-environment
(GE) interaction [46]

Model

Colombia Zimbabwe Mexico

Mean Min Max Mean Min Max Mean Min Max

E + L 0.389 0.379 0.401 0.360 0.355 0.366 0.351 0.341 0.362

E + G 0.382 0.371 0.393 0.362 0.358 0.369 0.346 0.336 0.363

E + G + GE 0.329 0.315 0.347 0.333 0.323 0.344 0.320 0.304 0.335
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performance and computing time for FGGE vs APGE models and
showed a competitive prediction performance of the approximated
method with a significant reduction in computing time (Table 3).
To predict the 2017–2018 cycle using the previous four cycles with
the full genomic GEmodel (FGGE), it was necessary to manipulate
large covariance matrices, one for the main effects of the genomic
model and another for the interaction, of order 45,099 � 45,099.
It was not possible to manage this matrix size with available laptops;
therefore, the genomic-enabled prediction accuracy recently
reported by Pérez-Rodrı́guez et al. [87] was used as a reference.
The authors reported a genomic prediction accuracy of 0.426 for
the 2017–2018 cycle using all the other cycles as a training set.

Using the APGE model and only 25% of the total training set,
matrices Km, m, and Kn, m, are now of manageable sizes of order
9021 � 9021 and 45,099 � 9021, respectively, which gave a
genomic prediction accuracy of 0.427; that is, there is no loss of
prediction accuracy with respect to the full model FGGE. The
computing time required, including the time for preparing the
matrices for the approximation method, and the time for the
eigenvalue decomposition and the 20,000 iterations, was
30,670 s or 8.5 h.

6 Open Source Software for Fitting Genomic Prediction Models Accounting for G� E

In this section, we present practical examples of use of three soft-
ware for genomic prediction accounting for multitrait and

Table 3
The models FGGE and APGE considering the size of m, as 25% of the original training set. Average
correlation between predictive and observed values (CORR), residual variance bσ2ε

� �
and average

computing time required. Training set sizes contains 8000 to 10,000 wheat lines each cycle

Data set FGGE APGE

Cycle Training cycle Corr. bσ2ε
� �

Time Corr. bσ2ε
� �

Time

2014_2015 2013_2014 0.222 0.317 4.96 h 0.206 0.363 0.68 h

2015_2016 2013_2014 0.328 0.287 11.10 h 0.347 0.309 2.80 h
2014_2015

2016_2017 2013_2014 0.328 0.275 23.72 h 0.321 0.29 5.08 h
2014_2015
2015_2016

2017_2018 2013_2014 0.426 NA NA 0.427 0.301 8.38 h
2014_2015
2015_2016
2016_2017
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multienvironment data in plant breeding. We emphasize open-
source packages developed under the R computational-statistical
environment, due to widespread use in plant breeding and quanti-
tative genetics. Historically, the first open-source R software for
genome-based prediction was developed by de los Campos et al.
[16] Thereafter, Pérez et al. [93] formally described the Bayesian
linear regression (BLR) that allows fitting high-dimensional linear
regression models including dense molecular markers, pedigree
information, and several other covariates. Then, Endelman [94]
presented the frequentist ridge-regression approach (RR), that also
allowed the estimation of marker effects and other kernel models
that helped to popularize GS in plants. This package were named
rrBLUP because it runs a RR-BLUP approach, that is, a whole-
genome regression of the molecular markers over a certain
phenotype.

The package rrBLUP is mostly used for single-environment
studies or genome-wide association studies (GWAS). On the
other hand, BLR from Pérez et al. [93] allows not only including
markers but also pedigree data jointly. In the seminal work of BLR,
Pérez et al. [93] explained the challenges that arise when evaluating
the genomic-enabled prediction accuracy through random cross-
validation and how to select the best choice of hyperparameters of
the Bayesian models. Thus, to facilitate the use of such Bayesian
models in genomic prediction, the Bayesian generalized linear
regression package (BGLR) [65, 95] was defined in 2014, as a
generalization of the BLR package that implements several para-
metric and semiparametric regression models, which includes
Bayesian Lasso and Bayesian ridge regression (BRR), BayesB,
BayesCπ, and reproducing kernel Hilbert spaces (RKHS) for con-
tinuous and ordinal responses (either censored or not). This
approach opened up the way for dealing with more complex struc-
tures of phenotypic records, specially concerning to the multienvir-
onment data and the “black box” of the G � E interaction.

After the works of Jarquı́n et al. [36], López-Cruz et al. [37],
and Souza et al. [63] the use of kernel models including several
structures for main genotypic effect (MM model), MM plus single
G � E deviation (MDs), MDs with environment-specific variation
(MDe), inclusion of random intercepts [41] and environmental
relatedness kernels [36] became an issue for a large number of
genotypes and environments (thus large size of each kernel).
Granato et al. [66] presented the Bayesian genotype plus genotype-
by-environment (BGGE) software, which takes advantage of a
singular-value decomposition (SVD) of those kernels to speed up
Gibbs sampling and mixed model solving. This software runs the
same kernel models of BGLR (using multienvironment RKHS) but
it is about 5 times faster without accuracy loss.
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Another software with great importance is the ASReml-R (ver-
sion 3.0) [96], a non–open source software that is widely used.
Briefly, the main advantage of this software is the possibility of easily
running a wide number of structures genomic relationship (G),
environmental relatedness (E), and G � E, thus allowing explicit
modeling of variance–covariance matrices of G, E and G � E in
different ways, such as unstructured (UN) and factor analytic struc-
ture (FA). Several publications show the benefits of using FA for
modeling genomic and G � E sources [80, 82, 83] because this
approach deals with the main patterns of variation in a more parsi-
monious and accurate manner.

Another way to model multivariate structures is through the
open source software MTM [68]. It allows fitting a Bayesian multi-
variate Gaussian model with arbitrary number of random effects
using a Gibbs sampler with several specifications for (co)variance
parameters (unstructured, diagonal, factor analytic, etc.). In this
package, the use of multienvironment structures can be interpreted
as multitrait, where the phenotypic records for same genotype at
different environments is visualized as a different trait. This concept
traces back to the idea of the phenotypic correlation across envir-
onments [97] and its putative structure for modeling G� E effects,
and measure its importance in phenotypic variation. The MTM
package is able to fit model 3 and to estimate matrices UE, and Σ.
MatrixUE can indeed be modeled with different levels of complex-
ity as illustrated by Malosetti et al. [79].

Another option for creating unstructured environmental relat-
edness matrices is the use of explicit environmental data
[36, 57]. The use of environmental data for this purpose must
follow a certain biological reality, because the covariates must rep-
resent in silico the growing conditions expected for a certain envi-
ronment, in which “environment” means a certain time interval for
a certain location using a certain crop management.

The package EnvRtype [54] was developed to support quanti-
tative geneticists to import environment data and use it in genomic
prediction. This model runs the BGGE routine developed by
Granato et al. [66] and Cuevas et al. [41]. Despite the mention as
a software for genomic prediction, the main contribution of this
package is related to the facility in importing, processing and incor-
porating environmental information as reliable source of variation.
This package provides tools to implement reaction-norm model
and other enviromic-enriched structures (see Eq. 7). The Bayesian
prediction is implemented using the structure of both BGGE and
BGLR packages.

Other open source packages commonly used are the Solving
Mixed Model Equations in R (sommer), [98] Bayesian multitrait
multienvironment (BMTME) [99], and linear mixed models for
millions of observations (MegaLMM) [100]. Here, we focus on
practical examples for two software: BGLR and MTM.

Genome Based Prediction of G � E Interaction 265



7 Practical Examples for Fitting Single Environment and Multi-Environment
Modeling G � E Interactions

7.1 Single

Environment Models

with BGLR

This section gives the R codes to illustrate how to fit RR and
GBLUP models described before. We have adapted the codes
from previous publications. Here, we analyze the wheat dataset
described in Crossa et al. [19]. The dataset includes phenotypic
and genotypic information for 599 wheat lines. The response vari-
able is grain yield, which was evaluated in four environments. Lines
were genotyped using DArT markers, which were coded as 0 and
1. An additive relationship matrix (A) derived from the pedigree is
also available.

R code in Box 1 shows how to load the BGLR package and load
the data from an RData file. In this example the RData file can be
downloaded from the following link: http://genomics.cimmyt.
org/BookChapter_Rincent/. Note that the grain yield data
contained in this dataset differs from the one included in the
package because this response variable is not standardized in each
environment. After loading the data, three objects are available in
the R environment: (1) X, a matrix with markers whose dimensions
are 599 rows (individuals) and 1279 columns (markers), (2) A,
additive relationship matrix derived from pedigree, (3) Pheno, a
data frame with 3 columns, Yield (t/ha), Var (Genotype) and Env
(Environment). The R code also shows how to generate a boxplot
for grain yield in each environment (Fig. 2).

Box 1 Loading Bayesian Generalized Linear Regression
(BGLR) and Wheat Data

1 library(BGLR)

2 load("wheat599.RData")

3 ls() #list objects

#Boxplot for grain yield

boxplot(Yield~Env,data¼Pheno,
xlab¼"Environment",

ylab¼"Grain yield (t/ha)")

Box 2 includes R code to fit RR (model 1). We predict grain
yield in environment 4 using the BGLR function. The number of
burn-in, iterations and thin are parameters for the Gibbs sampler, in
order to compute the posterior means of the parameters of interest.
After the model is fitted, the estimated marker effects bβ� �

can be
obtained for further processing (see Fig. 3). The structure of the
output object returned by the BGLR function is described by Pérez
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and de los Campos [65] and in the corresponding package
documentation.

Box 2 Fitting Bayesian Ridge Regression (BRR)

1 #You need to run code in Box 1

2 #Specify linear predictor

3 EtaR<-list(markers¼list(X¼X,model¼"BRR"))

4

5 #Grain yield in environment 4

6 y<-as.vector(subset(Pheno,Env¼¼4)$Yield)

7

8 #Set random seed

9 set.seed(456)

10 #Fit the model

11 fmR<-

12 BGLR(y¼y,ETA¼EtaR,nIter¼10000,burnIn¼5000,
thin¼10,verbose¼FALSE)

13 #Estimated marker effects

14 betaHat<-fmR$ETA$markers$b

15

16 #Plot estimated marker effects

17 plot(betaHat,xlab¼"Marker",ylab¼"Estimated
marker effect")
abline(h¼0,col¼"red",lwd¼2)

Fig. 2 Distribution of grain yield in each environment
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Box 3 shows R code to fit G-BLUP model (Eq. 2). We predict
grain yield for environment 4. The first lines of the script computes
a genomic relationship matrix based on centered markers
[37]. After that we define the linear predictor and fit the model
using the BGLR function. Predicted random effects bu (BLUPs) are
obtained from the output of the resulting object. The estimated
variance parameters bσ2ε and bσ2g can be obtained using the code in
lines 22–24.

Box 3 Fitting Genomic Best Linear Unbiased Predictor
(GBLUP)

1 #You need to run code in Box 1

2 #A genomic relationship matrix

3 Z<-scale(X,center¼TRUE,scale¼TRUE)

4 G<-tcrossprod(Z)/ncol(Z)

5

6 #Specify linear predictor

7 EtaG<-list(markers¼list(K¼G,model¼"RKHS"))

8

9 #Grain yield in environment 4

10 y<-as.vector(subset(Pheno,Env¼¼4)$Yield)

(continued)

Fig. 3 Estimated marker effects using Bayesian ridge regression
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11

12 #Set random seed

13 set.seed(789)

14

15 #Fit the model

16 fmG<-BGLR(y¼y,ETA¼EtaG,nIter¼10000,
burnIn¼5000,thin¼10,

17 verbose¼FALSE)

18

19 #BLUPs

20 uHat<-fmG$ETA$markers$u

21

22 #Variance parameters

23 fmG$varE #Residual

24 fmG$ETA$markers$varU #Genotypes

R codes to perform cross-validation analysis using the BGLR
package are included in Pérez and de los Campos [65].

7.2 Multien-

vironment MDs Model

with BGLR

In this example, we use the same wheat dataset described previ-
ously. Box 4 shows R code to fit model 5. Lines 6 and 7 obtains the
incidence matrices for environments (ZE) and genotypes (Zg), lines
12 and 13 compute a genomic relationship matrix [37]. Lines
15 and 18 defines the kernels for the variance covariance matrices
for random effects. Lines 20–22 define the linear predictor and
finally the model is fitted in lines 24 and 25. Once the model is
fitted, the resulting object contains information that can be used for
further processing (prediction of response variable, variance para-
meters, prediction of random effects, etc.). Lines 37–41 show how
to retrieve estimated variance parameters. We obtain bσ2E ¼ 0:4942,

bσ2ε ¼ 0:2409, bσ2g ¼ 0:1067 and bσ2Eg ¼ 0:1499, thus being 0.9920

the phenotypic variance. Hence, about 50% of variance was
explained by the difference between environments, 15% was due
to the interaction between genotypes and environment, and 11%
due to the genotypes and the rest goes into the residuals (Fig. 4).
CV1 and CV2 [11] can be implemented easily in BGLR, the
software includes routines to predict missing values, so we assign
missing values to the response vector to the entries to be predicted.
Full codes are included in Jarquı́n et al. [36].
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Box 4 Fitting Multienvironment Model with a Block
Diagonal for Genotype-by-Environment (GxE) Variation

1 library(BGLR)

2 load("wheat599.RData")

3

4 #incidence matrix for main eff. of environments.

5 Pheno$Env<-as.factor(Pheno$Env)

6 ZE<-model.matrix(~Pheno$Env-1)

7

8 #incidence matrix for main eff. of lines.

9 Pheno$Var<-as.factor(Pheno$Var)

10 ZVar<-model.matrix(~Pheno$Var-1)

11

12 Z<-scale(X,center¼TRUE,scale¼TRUE)

13 G<-tcrossprod(Z)/ncol(Z)

(continued)

Fig. 4 Observed versus predicted grain yield, predictions were obtained using the fitted multienvironment with
a block diagonal for genotype-by-environment (G � E) variation
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14

15 K1<-ZVar%*%G%*%t(ZVar)

16

17 ZEZE<-tcrossprod(ZE)

18 K2<-K1*ZEZE

19

20 EtaRN<-list(ENV¼list(X¼ZE,model¼"BRR"),

21 Grm¼list(K¼K1,model¼"RKHS"),

22 EGrm¼list(K¼K2,model¼"RKHS"))

23

24 fmRN<-BGLR(y¼Pheno$Yield,ETA¼EtaRN,
nIter¼10000,

25 burnIn¼5000,thin¼10,verbose¼FALSE)

26

27 #Observed vs predicted values

28 plot(fmRN$y,fmRN$yHat,

29 pch¼as.integer(Pheno$Env),

30 col¼Pheno$Env,

31 xlab¼"Grain yield observed (t/ha)",

32 ylab¼"Grain yield predicted (t/ha)")

33

34 legend("topleft",legend¼c(1,2,3,4),
title¼"Environment",

35 bty¼"n",col¼1:4,pch¼1:4)

36

37 #Variance parameters

38 fmRN$varE #Residual

39 fmRN$ETA$ENV$varB #Environment

40 fmRN$ETA$Grm$varU #Genotypes

41 fmRN$ETA$EGrm$varU #Interaction

7.3 Multi-

environment Factor

Analytic Model Using

MTM

Code in Box 5 shows how to fit model 3 using MTM package
[68]. We use the wheat dataset described previously. The covariance
matrix for the random effect and that for model residuals are
unstructured. The relationship between individuals is computed
using markers. Lines 28 and 29 fit the model. Lines 31–42 show
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how to retrieve the estimates for genetic and residual covariance
matrices. Cross-validation analysis can be implemented easily in the
package, we assign missing values to the entries of the phenotypes
to be predicted, and the software includes routines to perform the
predictions automatically.

Box 5 Multi Trait Model (MTM)

1 #install MTM package

2 install.packages("remotes") #install MTM

3 remotes::install_github("QuantGen/MTM")
#install MTM

4 library(MTM)

5 load("wheat599.RData")

6

7 #Phenotypes

8 y1<-subset(Pheno,Env¼¼1)$Yield

9 y2<-subset(Pheno,Env¼¼2)$Yield

10 y3<-subset(Pheno,Env¼¼3)$Yield

11 y4<-subset(Pheno,Env¼¼4)$Yield

12 Y<-cbind(y1,y2,y3,y4)

13 #Genotypes

14 Z<-scale(X,center¼TRUE,scale¼TRUE)

15 G<-tcrossprod(Z)/ncol(Z)

16 #Linear predictor

17 EtaM<-list(

18 list(K ¼ G, COV ¼ list(type ¼ "UN",df0 ¼ 4,S0 ¼
19 diag(4)))

20 )

21 #Residual

22 residual<-list(type ¼ "UN",S0 ¼ diag(4),df0 ¼ 4)

23 fmM <- MTM(Y ¼ Y, K¼EtaM,resCov¼residual,

24 nIter¼10000,burnIn¼5000,thin¼10)

25 #Predictions of phenotypical values

26 fmM$YHat

27 #Predictions of random effects

(continued)
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28 fmM$K[[1]]$U

29 #Residual covariance matrix

30 fmM$resCov$R

31 #Genetic covariance matrix

fmM$K[[1]]$G

7.4 Multitrait or

Multienvironment

Factor Analytic Model

Using MTM

As mentioned, the first study of genomic prediction using pedigree
and genomic information with the factor analytic (FA) model for
combining estimation of the main effects of cultivar plus G � E
interaction was presented by Burgueño et al. [11] Code in Box 6
shows how to fit model 3 using FA structure. We used the same
wheat dataset and molecular markers described previously. By using
FA, a certain variance–covariance matrix (Gk) is decomposed into
common and specific factors according to: Gk ¼ BKBk

0
+ ψK, where

BK is a matrix of loadings and ψK is a diagonal matrix whose
nonnull entries give the variances of factors that are trait-specific
(or environment-specific when assuming observations for same
genotype at different environments as a different trait). Any factor
analysis is equal to a regression on implicit covariates (now factors),
in which every factor is orthogonal and captures a different pattern
of variation from the linear combination of traits. In MTM, the
loadings are assigned flat priors (normal priors with null mean and
large variance) and the variances of the specific factors are assigned
scaled-inverse chi-squared with degrees of freedom (df) and scale
given by parameters df0 and S0 [68]. In Box 6, we exemplify the
use of FA over the same model described in Box 5. The differences
are given in Lines 17–19, where the FA is indicated.

Box 6 Multi Trait Model (MTM) with Factor Analytic
(FA) Model

1 library(MTM)

2 load("wheat599.RData")

3

4 #Phenotypes

5 y1<-subset(Pheno,Env¼¼1)$Yield

6 y2<-subset(Pheno,Env¼¼2)$Yield

7 y3<-subset(Pheno,Env¼¼3)$Yield

8 y4<-subset(Pheno,Env¼¼4)$Yield

9

(continued)
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10 Y<-cbind(y1,y2,y3,y4)

11

12 #Genotypes

13 Z<-scale(X,center¼TRUE,scale¼TRUE)

14 G<-tcrossprod(Z)/ncol(Z)

15

16 #Linear predictor using factor analytic for G
strucure

17 EtaFA<-list(

18 list(K ¼ G, COV ¼ list(type ¼ ’FA’, nF¼1,M¼matrix

19 (nrow ¼ 4,ncol ¼ 1, TRUE),df0 ¼ rep(1,4),S0 ¼ rep
(1,4),var¼100)))

20 #Residual

21 residual<-list(type ¼ "UN",S0 ¼ diag(4),df0 ¼ 4)

22 fmFA <- MTM(Y ¼ Y, K¼EtaFA,resCov¼residual,

23 nIter¼10000,burnIn¼5000,thin¼10)

24

25 #Predictions of phenotypical values

26 fmFA$YHat

27

28 #Predictions of random effects

29 fmFA$K[[1]]$U

30

31 #Residual covariance matrix

32 fmFA$resCov$R

33

34 #Genetic covariance matrix

35 fmFA$K[[1]]$G

8 What to Expect for the Future of G � E in Genomic Prediction?

The G � E interactions at molecular level can be seen as a source of
variability we can benefit from to develop materials adapted to
specific pedoclimatic conditions. Because the phenotyping of vari-
ety or environment combinations is considerably constrained for
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practical reasons (e.g., costs, MET size), prediction models are of
paramount importance for exploring G � E. Such models will be
essential to develop cultivars adapted to upcoming environmental
conditions in the context of climate change. Below, we put together
some of the concepts described in this chapter and envisage key
elements that will contribute to more accurate G� E predictions in
the near future.

8.1 High-Throughput

Phenotyping Opens an

Avenue for Modeling

Functional Traits

Under G � E Scenarios

Large numbers of breeding lines, hybrids or cultivars, among other
germplasm, can be screened at a very low unitary cost by using
high-throughput phenotyping platforms (HTP). With HTP, it is
possible to collect many phenotypes on large numbers of breeding
individuals at different stages of plant growth, under different
environmental conditions. Collecting data on primary and second-
ary traits in many testing genotypes at an early stage of plant growth
could be of great value for reducing evaluation time and cost, while
increasing selection intensity and prediction accuracy and, conse-
quently, the response to selection. The main idea of HTP is to use
predictor traits related to grain yield, disease resistance or end-use
quality that may be useful in early-generation testing of lines.
Models incorporating genomic � environmental covariables or
pedigree � environmental interaction covariables already exist,
and prediction during early-generation testing is fundamental for
increasing genetic gains. The main objective of GS is to reduce
phenotyping costs and accelerate genetic gains. This can increase
both the accuracy and intensity of selection and therefore the
selection response, while decreasing phenotyping costs. One exam-
ple of G � E prediction involving HTP is given by Montesinos-
Lopez et al. [49] who investigated models with genomic and near-
infrared spectra (NIRS or light absorbance at different wave-
lengths) and observed that the models with wavelength � environ-
ment interaction terms were the most accurate models. NIRS can
also be used to estimate environment specific similarity matrices
[101, 102] that we hope to be useful for modeling G � E.

HTP instruments can also be used to calibrate crop-growth
model (CGM) at the variety level, for instance for predicting the
phenological stages [59] of each genotype in each environment.
CGM are promising tools to predict G � E, as they were developed
to model the response of the plants to various environmental con-
ditions and were, for instance, adapted to directly produce stress
covariates [42, 44] Stress indices simulated by the CGMwas shown
to better capture G � E than basic pedoclimatic covariates,
although the improvement in prediction accuracy was only moder-
ate. Complete integration of CGM and GS models was also pro-
posed for phenological [103–105] or productivity traits [106, 107]
thereby allowing predictions of contrasted variety/environment
combinations.
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8.2 Accurate

Environmental Data

and Optimized

Experimental Designs

Are Essential for

Accurately Predicting

G � E

One of the major gaps in GS research for G � E modeling using
environmental data lies in the steps of collecting, processing and
integrating those data in an ecophysiology-smart and parsimonious
manner. The lack of hardware sensors for monitoring field growing
conditions is also a problem, mostly for breeding programs located
in developing regions with a limited budget to invest in those
technologies. Luckily, the availability of public data bases derived
from geographic information systems (GIS) allows: (1) the remote
collection of past weather, elevation and soil data in any part of the
world; and (2) the projection of future trends for specific growing
regions. If this large amount of environmental data is available, it is
possible to study in depth the typology of each environment (inter-
val between sowing date and harvest for a specific location, using a
specific crop management, and with a range of probable climatic
conditions).

An environmental typology (envirotype) is defined by:
(a) discretizing the gradient of some key environmental factor for
G � E and crop adaptation (e.g., air temperature in maize) in types
of stressful/optimum growing conditions; (b) discovering the fre-
quency of occurrence of each class in order to identify the predom-
inant envirotype for each environment, for a multienvironment trial
(MET) or for an entire target population of environments (TPE).
Considering an environment as a random sample of the possible
growing conditions that the germplasm can face in the TPE, it is
possible to check the representativeness of each environment in
relation to the TPE, but also the similarity among environments
in a specific MET. As the TPEs gather multispatial and temporal
environments (e.g., worldwide locations from the past, present,
and future trends), the core of possible frequent types of environ-
mental and management factors represents the envirome of the
TPE. Thus, breeders can take advantage of this approach to develop
an “enviromic assembly” of each one of the environments, which
can be useful to design better MET networks with reduced pheno-
typing costs, either for GS or crop modeling. It also can provide a
more realistic environmental similarity matrix to be incorporated in
predictive tools for G � E. As presented in the Subheading 5, this
enviromic potentiality can be implemented in a cost-effective man-
ner using open-source software, such as EnvRtype [54].

Apart from the representativeness and accurate descriptions of
the MET, the selection of individuals composing the calibration set
can have a major effect on GS accuracy [108], that has rarely been
considered in the context of G � E [109]. One potential way for
defining calibration set optimized for predicting G � E is to use
multitrait criteria such as CDmulti [110], by considering each trial
as a trait. The MET phenotypes are thus considered as a set of traits
with correlation levels depending on the similarity between envir-
onments. The experimental costs of each trial can be taken into
account with such criteria to optimize the phenotyping
strategy [110].
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8.3 Deep Learning Is

a Promising Way of

Combining Genomics,

HTP and Enviromics

Deep learning (DL) is another technology that has great potential
to be applied in any area of predictive data science and especially in
GS-assisted breeding for multi-trait, multienvironment big data. It
is fundamental to use high quality DL and sufficiently large training
data. DL will be more and more valuable with the upcoming size
increase of the datasets due to high-throughput phenotyping.
Despite the fact that recent articles show that the use of DL for
GS did not produce strong evidence for its superiority in terms of
prediction accuracy compared to conventional genomic prediction
models with actual datasets, there is evidence that DL algorithms
are efficient for capturing nonlinear patterns more efficiently than
conventional genomic prediction models and for integrating data
from different sources without the need for feature engineering
[50–53]. Likewise, DL algorithms have the potential to improve
prediction accuracy by developing specific topologies for the type of
data in plant breeding programs. Combined with enviromic
sources, it is possible that DL algorithms can reveal implicit patterns
of phenotype–envirotype–genotype relations, thereby resulting in a
cost-effective data-driven approach to describe the phenotypic plas-
ticity of plants in contrasting environments. This can be an alterna-
tive to a complex approach combining genetic modeling and CGM
[111–113] that demands some degree of expertise in each CGM
software. However, it is important to remember that CGM is still a
state-of-the-art modeling approach that combines all ecophysiol-
ogy knowledge in nonlinear equation models. In this sense, the
CGM is also a supervised algorithm that has the ability to describe
the response of intermediate phenotypes due to environmental
variations. DL is a tool that may incorporate different sources of
information related to high throughput phenotype, enviromics and
genomics, in order to find pathways to better describe G� E, but in
a context that may not be able to explain the true nature of those
pathways.

9 Conclusion

Considerable progress has been made in the last decade for adapt-
ing GSmodels to the prediction of G� E. We have here introduced
different kinds of modeling to address this issue, and many studies
illustrated that suchmodels result in more accurate predictions than
standard GS models. Open-source packages were developed for an
easy use of these models by the genetic and breeding communities.
G � E prediction is an active field of research that will benefit from
upcoming improvements of experimental designs, phenotyping
throughput, as well as genetic, physiological, and statistical model-
ing. A trend can be noticed toward a multidisciplinary approach
potentially involving genetics, ecophysiology, phenomics, and
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statistics. The main task for such an approach could be the advance
in predicting novel genotypes at novel environments, which will be
very important in a near future for several reasons, including antici-
pating climate change scenarios, designing crop ideotypes and for a
better allocation of resources in large-scale breeding programs
worldwide.
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Maurer HP, Longin FH, Ranc N, Reif JC
(2012) Accuracy of genomic selection in
European maize elite breeding populations.
Theor Appl Genet 124:769–776

30. Windhausen VS, Atlin GN, Crossa J, Hickey
JM, Grudloyma P, Terekegne A, Semagn K,
Beyene Y, Raman B, Cairns JE, Jannink J-L,
Sorrels M, Technow F, Riedelsheimer C, Mel-
chinger AE (2012) Effectiveness of genomic
prediction of maize hybrid performance in
different breeding populations and environ-
ments. G3 2:1427–1436. https://doi.org/
10.1534/g3.112.003699

31. Technow F, Bürger A, Melchinger AE (2013)
Genomic prediction of northern corn leaf
blight resistance in maize with combined or
separated training sets for heterotic groups.
G3 3:197–203

32. Heffner EL, Sorrels MR, Jannink J-L (2009)
Genomic selection for crop improvement.
Crop Sci 49:1–12

33. Jannink J-L, Lorenz AJ, Iwata H (2010)
Genomic selection in plant breeding: from
theory to practice. Brief Funct Genomics 9:
166–177

34. Lorenz AJ, Chao S, Asoro F, Heffner EL,
Hayasi T, Iwata H, Smith K, Sorrels ME,
Jannink JL (2011) Genomic selection in
plant breeding: knowledge and prospects.
Adv Agron 110:77–123. https://doi.org/
10.1016/B978-0-12-385531-2.00002-5

35. Daetwyler HD, Kemper KE, van der Werf
JHJ, Hayes BJ (2015) Components of the
accuracy of genomic prediction in a multi-
breed sheep population. J Anim Sci 90:
3375–3384. https://doi.org/10.2527/
jas2011-4557

36. Jarquı́n D, Crossa J, Lacaze X, Cheyron PD,
Daucourt J et al (2014) A reaction norm
model for genomic selection using high-
dimensional genomic and environmental
data. Theor Appl Genet 127:595–607

37. Lopez-Cruz M, Crossa J, Bonnett D,
Dreisigacker S, Poland J, Jannink J-L, Singh
RP, Autrique E, de los Campos, G. (2015)
Increased prediction accuracy in wheat breed-
ing trials using a marker � environment inter-
action genomic selection model. G3 5:
569–582. https://doi.org/10.1534/g3.114.
016097

38. Crossa J, de los Campos G, Maccaferri M,
Tuberosa R, Burgueño J, Perez-Rodriguez P
(2016) Extending the marker x environment
interaction model for genomic-enabled pre-
diction and genome-wide association analyses
in Durum wheat. Crop Sci 56:1–17. https://
doi.org/10.2135/cropsci2015.04.0260

39. Cuevas J, Crossa J, Soberanis V, Pérez-
Elizalde S, Pérez-Rodrı́guez P et al (2016)
Genomic prediction of genotype · environ-
ment interaction kernel regression models.

Genome Based Prediction of G � E Interaction 279

https://doi.org/10.1007/s00122-012-1868-8
https://doi.org/10.1007/s00122-012-1868-8
https://doi.org/10.1186/s12864-016-2553-1
https://doi.org/10.1186/s12864-016-2553-1
https://doi.org/10.1534/g3.112.003699
https://doi.org/10.1534/g3.112.003699
https://doi.org/10.1016/B978-0-12-385531-2.00002-5
https://doi.org/10.1016/B978-0-12-385531-2.00002-5
https://doi.org/10.2527/jas2011-4557
https://doi.org/10.2527/jas2011-4557
https://doi.org/10.1534/g3.114.016097
https://doi.org/10.1534/g3.114.016097
https://doi.org/10.2135/cropsci2015.04.0260
https://doi.org/10.2135/cropsci2015.04.0260


Plant Genome 9:1–20. https://doi.org/10.
3835/plantgenome2016.03.0024

40. Cuevas J, Crossa J, Montesinos-Lopez O,
Burgueno J, Perez-Rodriguez P et al (2017)
Bayesian genomic prediction with genotype ·
environment interaction kernel models. G3 7:
41–53

41. Cuevas J, Granato I, Fritsche-Neto R,
Montesinos-Lopez OA, Burgueño J et al
(2018) Genomic-enabled prediction Kernel
models with random intercepts for multi-
environment trials. G3 8:1347–1365

42. Ly D, Chenu K, Gauffreteau A et al (2017)
Nitrogen nutrition index predicted by a crop
model improves the genomic prediction of
grain number for a bread wheat core collec-
tion. Field Crops Res. 214:331–340

43. Ly D, Huet S, Gauffreteau A et al (2018)
Whole-genome prediction of reaction norms
to environmental stress in bread wheat (Triti-
cum aestivum L.) by genomic random regres-
sion. Field Crops Res 216:32–41. https://
doi.org/10.1016/j.fcr.2017.08.020

44. Rincent R, Malosetti M, Ababaei B et al
(2019) Using crop growth model stress cov-
ariates and AMMI decomposition to better
predict genotype-by-environment interac-
tions. Theor Appl Genet 132:3399–3411

45. Costa-Neto G, Fritsche-Neto R, Crossa J
(2021) Nonlinear kernels, dominance, and
envirotyping data increase the accuracy of
genome-based prediction in multi-
environment trials. Heredity 126:92–106.
https://doi.org/10.1038/s41437-020-
00353-1
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81. Alves FC, Granato ÍSC, Galli G, Lyra DH,
Fritsche-Neto R et al (2019) Bayesian analysis
and prediction of hybrid performance. Plant
Methods 15:1–18. https://doi.org/10.
1186/s13007-019-0388-x

Genome Based Prediction of G � E Interaction 281

https://doi.org/10.1038/s41598-020-70267-9
https://doi.org/10.1038/s41598-020-70267-9
https://doi.org/10.1534/g3.117.042341
https://doi.org/10.1534/g3.117.042341
https://doi.org/10.3389/fgene.2019.01168
https://doi.org/10.3389/fgene.2019.01168
https://doi.org/10.1534/g3.118.200435
https://doi.org/10.1534/g3.118.200435
https://doi.org/10.1534/g3.119.400493
https://doi.org/10.1534/g3.119.400493
http://quantgen.github.io/MTM/vignette.html
http://quantgen.github.io/MTM/vignette.html
https://doi.org/10.3389/fgene.2020.567757
https://doi.org/10.3389/fgene.2020.567757
https://doi.org/10.1093/bioinformatics/btz197
https://doi.org/10.1093/bioinformatics/btz197
https://doi.org/10.1038/s41437-018-0053-6
https://doi.org/10.1038/s41437-018-0053-6
https://doi.org/10.1186/s13007-019-0388-x
https://doi.org/10.1186/s13007-019-0388-x


82. Ferrão LFV, Marinho CD, Munoz PR,
Resende MFR (2020) Improvement of pre-
dictive ability in maize hybrids by including
dominance effects and marker � environment
models. Crop Sci 60:666–677. https://doi.
org/10.1002/csc2.20096

83. Rogers AR, Dunne JC, Romay C, Bohn M,
Buckler ES, Ciampitti IA et al (2021) The
importance of dominance and genotype-by-
environment interactions on grain yield varia-
tion in a large-scale public cooperative maize
experiment. G3 11:2. https://doi.org/10.
1093/g3journal/jkaa050

84. Smith AB, Ganesalingam A, Kuchel H, Cullis
BR (2014) Factor analytic mixed models for
the provision of grower information from
national crop variety testing programs. Theor
Appl Genet 128:55–72

85. Guo T, Mu Q, Wang J, Vanous AE, Onogi A,
Iwata H et al (2020) Dynamic effects of inter-
acting genes underlying rice flowering-time
phenotypic plasticity and global adaptation.
Genome Res 30:673–683. https://doi.org/
10.1101/gr.255703.119
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