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Abstract: Global climate change is threatening wheat productivity; improved yield under drought
conditions is urgent. Here, diverse spring-wheat lines (modern, old and wheat-rye introgressions)
were examined in an image-based early-vigour assay and a controlled-conditions (Biotron) trial that
evaluated 13 traits until maturity. Early root vigour was significantly higher in the old Swedish lines
(root length 8.50 cm) and introgressed lines with 1R (11.78 cm) and 1RS (9.91 cm) than in the modern
(4.20 cm) and 2R (4.67 cm) lines. No significant correlation was noted between early root and shoot
vigour. A higher yield was obtained under early drought stress in the 3R genotypes than in the other
genotype groups, while no clear patterns were noted under late drought. Evaluating the top 10% of
genotypes in terms of the stress-tolerance index for yield showed that root biomass, grains and spikes
per plant were accountable for tolerance to early drought, while 1000-grain weight and flag-leaf area
were accountable for tolerance to late drought. Early root vigour was determined as an important
focus trait of wheat breeding for tolerance to climate-change-induced drought. The responsible
genes for the trait should be searched for in these diverse lines. Additional drought-tolerance traits
determined here need further elaboration to identify the responsible genes.

Keywords: spring wheat; early vigour; image-based phenotyping; drought; stress-tolerance index;
yield performance

1. Introduction

As one of the major staple food sources around the world, wheat provides approx-
imately 20% of the calories and proteins to the daily human diet [1]. According to the
latest update in 2020 by the Food and Agriculture Organization of the United Nations
(FAO), 219 million ha were harvested, which makes wheat the most widely grown crop;
meanwhile, the global production of 761 million tonnes strengthens its position as the
world’s second-largest crop (https://www.fao.org/faostat/en/#data/QCL, accessed on
26 February 2022). With the pronounced global climate changes (i.e., rising temperature),
prolonged shortages of water supply (drought stress) are becoming increasingly frequent,
thereby depleting the ecophysiological performance of plants [2,3]. Therefore, drought
has been placed at the top of the environmental stresses due to its severe impact on crop
productivity as compared to other natural abiotic stresses [4]. Severe drought-induced
yield loss in wheat has been reported in several regions of the world [5–7]. Due to the
unpredictability of the natural environment, drought stress can threaten a wheat plant
at any growth stage throughout its entire life cycle. Late drought has been reported to
have a more significant impact on yield loss than early drought [8]. However, in some
countries such as Sweden and Denmark, spring wheat is regularly affected by drought
during late spring in the early stages of crop development, when the roots have not been
fully developed [9]. Therefore, to better understand the mechanism of drought tolerance,
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the impact of early stress on some phenological and yield-related morphological traits
should not be ignored.

Water deficit inhibits the growth of plants by inducing changes of different types,
i.e., to the physiological, biochemical, morphological, and molecular characteristics [10].
Many traits besides yield are significantly influenced by drought stress, i.e., flag-leaf
area [11], root and plant biomass [12,13], days to anthesis and tillers per plant [14]. To screen
for genotypes with high yield potential under stress conditions, a stress-tolerance index
(STI) was developed and is used as an effective selection criterion [15]. With the predicted
climate change, the need to improve the drought tolerance of wheat has become necessary
in many regions of the world.

In addition to traditional labour-intensive trait measurements, scientists have intro-
duced novel sensor-based non-invasive phenotyping techniques in order to investigate
plants more efficiently. Various high-throughput phenotyping systems have been estab-
lished for the study of agronomy traits, i.e., proximal-sensing carts [16], field-scanner
systems [17], unmanned aerial systems [18], and automated, standalone systems for con-
trolled growth conditions [19]. Using such systems, the early growth of wheat was found to
be correlated to the tolerance to drought conditions, as the tolerant lines tended to display
fast early growth [20]. Moderate correlations were identified between early root traits from
controlled climatic conditions and drought scores from field trials [13].

The commonly used term ‘wheat’ usually refers to bread wheat (Triticum aestivum L.)
that belongs to the tribe Triticeae and the family Poaceae [21,22]. Over years of domesti-
cation and breeding, several types of wheat have been developed for different purposes.
Modern cultivars mainly aim for a high and stable yield while old breeding lines, landraces
and primitive forms of wheat might contain genes of relevance to sustain the varying
climate changes [23,24]. Furthermore, wild relatives and landraces of wheat are being used
as a unique source of genetic variation to compensate for the low diversity of modern
cultivars [25,26]. The successful transfer of genes from the non-Triticum species of rye
(Secale cereale) have yielded disease-resistant wheat cultivars [27–29]. In addition to the
disease resistance, the rye chromosome 1RS that was transferred to wheat was reported to
carry genes that relate to root biomass [30,31], which could potentially improve tolerance
to drought stress.

The present study aimed to use the performance of a broad set of phenotypic traits
to characterize drought-stress tolerance in a wide variety of modern, ancient, old, and
alien introgressed spring-wheat lines. Furthermore, drought-responding characteristics
were related to the genetic background of the material. For successful evaluation, plants
were subjected to early or late drought stress in controlled conditions and the performance
of the plants was evaluated at the seedling and maturity stage using a combination of
classical agronomic traits, including the calculation of STI, and an image-based pheno-
typing technique. The hypothesis behind this study was that the genes are present in
a sufficiently genetically broad wheat material, so that drought-stress tolerance and the
genetic background for such tolerance can be identified.

2. Results
2.1. Early Root and Shoot Development

ANOVA clearly showed that both digital-root length (DRL) and digital-leaf area (DLA)
varied significantly (p < 0.001) among the evaluated genotypes (Table S1), with values
ranging from 2.83 cm to 16.13 cm for DRL and from 4.03 cm2 to 12.52 cm2 for DLA. No
significant correlation was found between the DRL and DLA values, indicating a probability
that early root and shoot traits are regulated by separate genetic mechanisms.

ANOVA followed by mean comparisons with the Tukey post-hoc test to compare
DRL and DLA in the wheat genotypes of different genetic backgrounds (Figure 1) further
verified the separate genetic mechanisms behind early root and shoot growth. Clear signifi-
cant differences were noted for DRL among the genotype groups, with the significantly
longest roots in the old Swedish breeding lines (8.50 cm), the wheat-rye introgression
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lines with chromosome 1R (11.78 cm), and 1RS (9.91 cm), as compared to the modern
cultivars (4.20 cm) and genotypes with chromosome 2R (4.67 cm; Figure 1a). Differently,
the significantly highest DLA was noted for the old lines (9.08 cm2) as compared to the
genotypes with chromosome 1RS (6.37 cm2; Figure 1b) but no significant differences in
DLA were found between the modern and old lines or among the introgression lines. Thus,
the genes for early root vigour seemed to be present in the old Swedish breeding lines and
on chromosome 1R and 1RS, while no presence of similar early vigour genes for shoot
growth was indicated.
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Figure 1. Comparisons of early crop vigour measured as (a) digital-root length (DRL) and
(b) digital-leaf area (DLA) in spring-wheat lines of different genetic background, including mod-
ern lines, old Swedish lines and wheat-rye introgression lines with different chromosomes
from rye. The results of Tukey post-hoc test are presented by applying a compact letter dis-
play at p < 0.05. Modern = approved cultivars and breeding lines received from company Lant-
männen, Old = cultivars released from 1928 to 1990, 1R = introgressions of chromosome 1R,
1RS = introgressions of chromosome 1RS, 2R = introgressions of chromosome 2R, 3R = introgressions
of chromosome 3R.

The top 10% of genotypes (229, 216, 224, 227, 230, 219 and 221) for DRL all contained
1RS and showed values ranging between 12.84 cm and 16.13 cm (Figure 2a) while the top
10% of genotypes (197, 198, 200, 201, 222, 257 and 267) for DLA were spread among the
genotype groups, i.e., old Swedish breeding lines and wheat-rye introgression lines with
1R, 2R and 3R, and the values ranged between 10.95 cm2 and 12.52 cm2 (Figure 2b).
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Figure 2. Comparisons of early crop vigour measured as (a) digital-root length (DRL) and (b) digital-
leaf area (DLA) among genotypes including modern lines (approved cultivars and breeding lines
received from company Lantmännen), old Swedish lines (cultivars released from 1928 to 1990) and
wheat-alien introgression lines (with 1R, 1RS, 2R and 3R). Due to the unstable germination power,
five genotypes (198, 203, 210, 222, 226) were missing from the DLA data.

2.2. Relationships between Drought Stresses and Plant Traits

The ANOVA verified a significant effect of the drought treatments on all studied traits,
i.e., root biomass (RB), days to heading (DTH), days to anthesis (DTA), tillers per plant
(TPP), spikes per plant (SPP), productive spikes per plant (PSPP), flag-leaf area (FLA),
spike length (SPL), 1,000-grain weight (TGW), grains per spike (GPS), grains per plant
(GPP), grain weight per spike (GWPS), and grain weight per plant (GWPP) (Table S2).
A comparison of the mean values of the traits after drought stress at different growth
stages (early and late) indicated a significant change in most of them due to the drought
treatment (Table S3).

From the principal-component analyses (PCAs), with PC1 representing 39.5% and
PC2 19.7% of the variation, the effects of the treatments were well differentiated along with
the first principal component (PC1). Basically, all the measured traits were significantly
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and positively related with the control group (C) of plants (negative PC1), with a decrease
in most traits with early drought stress (EDS) and an even larger decrease for late drought
stress (LDS). PC2 generally differentiated the variation among the genotypes within a
treatment for the evaluated traits (Figure 3).
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Figure 3. Biplot from principal-component analysis (PCA) for traits, root biomass (RB), days to
heading (DTH), days to anthesis (DTA), tillers per plant (TPP), spikes per plant (SPP), productive
spikes per plant (PSPP), flag-leaf area (FLA), spike length (SPL), 1000-grain weight (TGW), grains
per spike (GPS), grains per plant (GPP), grain weight per spike (GWPS), and grain weight per plant
(GWPP) in 73 spring-wheat genotypes under control (C), early drought stress (EDS) and late drought
stress (LDS).

2.3. Relationships among Investigated Traits

The present study showed several significant correlations among the non-yield traits
(FLA, DTH, DTA, TPP and RB) and yield traits (SPL, SPP, PSPP, TGW, GPP, GPS, GWPP
and GWPS; Figure 4). In the non-stressed plants (C), the non-yield traits correlated mostly
significantly and positively with GWPP and GPP, while negative correlations were mainly
lacking between the non-yield and yield traits (Figure 4a).
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Figure 4. Correlation among morphological, phenological and yield traits flag-leaf area (FLA), days to
heading (DTH), days to anthesis (DTA), tillers per plant (TPP), root biomass (RB), spike length (SPL),
spikes per plant (SPP), productive spikes per plant (PSPP), 1,000-grain weight (TGW), grains per
plant (GPP), grains per spike (GPS), grain weight per plant (GWPP), grain weight per spike (GWPS)
studied in wheat under (a) control (C), (b) early drought stress (EDS) and (c) late drought stress (LDS).
***: sig. < 0.001, **: sig. < 0.01, *: sig. < 0.05.

For the EDS plants, a higher number of significant positive correlations were found be-
tween non-yield (especially FLA and RB) and yield traits as compared to C plants (Figure 4b).

For the LDS plants, a higher number of significant negative correlations were found
for DTH and DTA with the yield traits when compared to the C plants. In comparison, a
lower number of significant positive correlations were found for TPP and RB with the yield
traits (Figure 4c).

2.4. Genotypic Differences in Reactions to Drought Stresses

A large variation was obtained in plant performance among the genotypes after
drought stress. As can be seen from Figure 5, the yield (GWPP) was found to mainly
decrease due to EDS but even more so due to LDS, although a large and significant
variation was obtained among the genotypes. The ranges of yield under C, EDS and LDS
were from 2.02 g to 7.12 g, 1.54 g to 4.00 g and 0.08 g to 2.63 g, respectively which further
verified the effects of the drought treatments presented by the mean comparison and PCA
(Table S3 and Figure 3).

ANOVA followed by mean comparisons with the Tukey post-hoc test to compare the
STI values of DTH, DTA, FLA, TPP, RB, SPP, PSPP, SPL, TGW, GPS, GWPS, GPP and GWPP
revealed significant variations among the different genotype groups (modern, old, 1R, 1RS,
2R and 3R) under the two drought treatments (Table S4).

Under EDS treatment, basically, the modern genotypes significantly showed the high-
est STIs for GPS (0.95) and GWPS (0.96), while the genotypes with chromosome 1RS showed
the generally lowest STIs of the yield traits (SPL: 0.80, GPS: 0.47 and GWPS: 0.54). Further-
more, a significantly contrasting performance in RB was noted between the genotypes with
chromosome 3R (0.63) and the modern genotypes (0.14).

Under LDS treatment, higher STIs of yield traits were noted in the modern genotypes
(SPP: 0.69, GPS: 0.75, GWPS: 0.54 and GWPP: 0.38) as compared to the other genotype
groups, while the lowest yield performances were found in the genotypes with chromosome
1RS (SPL: 0.75, GPS: 0.35 and GPP: 0.21) and 3R (SPP: 0.36, TGW: 0.61 and GWPS: 0.24).
A significantly contrasting performance in RB was noted between the genotypes with
chromosome 3R (0.66) and the old genotypes (0.18).
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Figure 5. Yield (grain weight per plant = GWPP) of each genotype under control (C), early drought
stress (EDS) and late drought stress (LDS).

Based on the STI values of GWPP, the genotypes 257 (3R), 256 (3R), 244 (3R), 227 (1RS),
202 (old), 208 (old) and 254 (3R) were found to be the top 10% genotypes under EDS with
STI values ranging from 0.97 to 1.29, and the genotypes 238 (2R), 281 (modern), 204 (old),
273 (modern), 201 (old), 270 (2R) and 217 (1R) were found to be the top 10% genotypes
under LDS with STI values ranging from 0.44 to 0.67 (Table 1). From the PCA with all
the studied traits except GWPP, it was clear that different traits contributed to the high
performance in terms of GWPP in the top 10% of genotypes. Under EDS, GPP and RB
contributed to the highest extent to GWPP in the genotypes 254 (3R) and 256 (3R), while
TGW and SPP had the highest impact on GWPP in the genotypes 227 (1RS) and 257 (3R),
respectively (Figure 6a). Under LDS, TGW and FLA positively contributed to GWPP
while GPP and RB showed a negative impact on GWPP in the genotypes 201 (old) and
217 (1R). On the contrary, a positive impact on GWPP was found with PSPP and RB in the
genotype 238 (2R) (Figure 6b).

Table 1. Top 10% genotypes selected by stress-tolerance index (STI) of yield (grain weight per
plant = GWPP) under early drought stress (EDS) and late drought stress (LDS).

EDS LDS

Genotype STI Genetic Background Genotype STI Genetic Background

257 1.29 3R 238 0.67 2R
256 1.25 3R 281 0.66 modern
244 1.18 3R 204 0.58 old
227 0.98 1RS 273 0.57 modern
202 0.97 old 201 0.57 old
208 0.97 old 270 0.51 2R
254 0.97 3R 217 0.44 1R
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Figure 6. Principal-component analysis (PCA) for stress-tolerance index (STI) of all traits except
grain weight per plant (GWPP) with the top 10% genotypes selected by stress-tolerance index (STI)
of GWPP under (a) early drought stress (EDS) and (b) late drought stress (LDS). Modern = approved
cultivars and breeding lines received from company Lantmännen, Old = cultivars released from
1928 to 1990, 1R = introgressions of chromosome 1R, 1RS = introgressions of chromosome 1RS,
2R = introgressions of chromosome 2R, 3R = introgressions of chromosome 3R.

3. Discussion

Corresponding to the hypothesis of the present study, drought tolerance at various
genotypes and genotype groups were investigated, representing different genetical consti-
tutions. Thereby, the genetic background of the drought tolerance could be identified. Thus,
old genotypes and alien wheat lines with 1R or 1RS showed a robust early root growth,
which is most likely a characteristic of importance for drought-stress tolerance. However,
the old genotypes and the lines with chromosome 1R and 1RS did not result in a high
final-yield performance after drought stresses. Instead, the genotypes with 3R were found
to be among the top 10% of genotypes that are tolerant to EDS while no clear pattern of
the dominant genetic background was shown among the 10% best performing genotypes
under LDS. Interestingly, separate genetic mechanisms for early root and shoot growth
were demonstrated in the present study. Furthermore, our results demonstrated that RB,
GPP and SPP were important characteristics that correlated with tolerance to EDS while
TGW and FLA correlated positively with tolerance to LDS. This finding suggested that the
general yield-based drought tolerance of wheat could be decomposed into multiple specific
traits that potentially contribute to the high performance of the yield under drought.

A significantly higher early root growth, here measured as DRL, was found in the
old wheat genotypes and alien genotypes with chromosome 1R and 1RS, as compared
to modern wheat and wheat with other alien introgressions. Thus, genes contributing to
early root growth seem to be present both in the wheat material consisting of old Swedish
wheat lines and on chromosome 1RS. Previous studies have shown that an extensive root
system in wheat enhances water and nitrogen capture, thereby explaining that a vigourous
root system contributes to the yield performance of wheat under water deficiency [32].
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An early root growth might be a trait of significant relevance for a good performance during
drought stress, as early root growth might contribute to a higher chance of reaching the
humidity during dry conditions [33]. A general understanding among Swedish growers
is that old wheat varieties have a strong root growth, which contributes to their good
performance during dry conditions, although scientific evidence for such a statement is
lacking. However, in a recent study, a larger root system was observed in old wheat
varieties than in modern wheat [34]. Furthermore, this large-to-small change in root
biomass from old to modern wheat has been confirmed by several studies [35–37]. The
relatively small root system in modern wheat could be attributed to the years of recurrent
breeding programs that were mainly aimed at increasing the aboveground biomass, and
especially the grain yield. Hence, the biomass shift from underground to aboveground was
established along with years of yield-oriented selection.

The findings of increased early root vigour in the genotypes with 1R and 1RS in-
trogressions in the present study correspond well with the findings of other studies as
reported below. Several studies have indicated positive performance at abiotic and biotic
stress conditions by the introgression of 1RS in wheat [26]. The 1RS has been reported
to confer disease resistance to wheat. For example, the resistance genes Sr31, Yr9, Lr26
and Pm8 were reported to be introduced to wheat along with chromosome 1RS, and
effectively resisted or mitigated stem rust, stripe rust, leaf rust and powdery mildew,
respectively [38,39]. A previous study using molecular markers provided evidence for
the presence of Sr31 in 1BL.1RS translocation lines [40]. Improved resistance to stripe
rust and powdery mildew was reported in five 1BL.1RS translocation lines [41] and a
newly detected gene, Sr59 introgressed to wheat from 2R, has been reported to confer
resistance to all currently known stem-rust races [29]. Translocations of 1RS to the long
arm of wheat chromosome 1 (1AL, 1BL and 1DL) were shown to increase root biomass
and yield in spring wheat [42]. The gene(s) for rooting ability have been suggested to
be present in the distal 15% of the physical length of the 1RS arm [31]. Recently, several
studies have provided evidence that the 1RS translocation improves the root traits of
wheat [43–45]. In addition to the improvement of root traits, the 1RS translocation has been
reported to contribute to increased grain yield [41,46,47]. Despite all the positive effects
from introgression of the chromosome 1RS, grains of introgression lines containing 1RS
were found to exhibit bread-making quality defects including sticky dough. The reduction
in bread-making quality by 1RS has been related to the presence of the rye storage protein,
secalin, which is encoded by Sec-1, and to a decrease in dough strength due to the loss of
Glu-B3/Gli-B1-encoding gliadins and low-molecular-weight glutenins [48–51].

The results of the present study showed that both DRL and DLA varied significantly
among genotypes, but a correlation between DRL and DLA was lacking. These findings
indicate that early root and shoot growth of wheat are regulated by separate genetic
mechanisms, which could possibly be either different genes or the same genes with different
expression timings. However, previous studies have indicated a strong association between
root and shoot traits at maturity [52–54], and old genotypes are reported to have both
higher root and shoot biomass than modern genotypes [55,56]. Also, several dwarfing
genes e.g., Rht-B1c, Rht-D1c and Rht12 were found to significantly affect the root length
of wheat at early stages [57]. Other studies have shown that a class of Rht genes did not
affect shoot-growth traits such as coleoptile length, leaf-elongation rate and responsiveness
to Gibberellin at early stages [58]. Another study showed that significant root-biomass
differences observed at early vegetative stages among five wheat genotypes were clearly
reflected in the leaf area and leaf biomass at later stages [59], which indicated the correlation
between early root vigour and late shoot traits. Despite the above-mentioned findings, the
relationships among root and shoot characteristics at early crop growth and the effects on
the mature crop are still uncertain and need further evaluation.

The layout of the Biotron experiment under controlled conditions allowed us to
selectively treat the plants with drought stress, explicitly avoiding other environmental
variations, and to observe the variation of each of the 13 selected traits among the genotypes.
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Unexpectedly, the early root vigour of the old genotypes and the lines with 1RS did not
contribute to the drought tolerance of these genotypes at maturity. We attribute the lack of
correlation between early root vigour and drought stress to the fact that the experiment
was carried out in pots in an indoor controlled-environment space, where a larger and
more robust root system does not play a role in the opportunity to reach the humidity
and nutritional elements. Field conditions provide considerably more space for the root
system to expand in order to reach water and nutrient sources. From reported results based
on wheat plants grown in a sufficiently large space, e.g., 1 m and 1.5 m PVC tubes [35]
and 1.6 m columns [60], old wheat genotypes did show higher root biomass and longer
roots than modern genotypes at maturity. Similarly, increased root biomass in wheat-rye
introgression lines with chromosomes 1R and 1RS was noted by studies that were carried
out in field conditions [43,44]. Long-rooting genotypes grown in conditions where the
spread of their root systems have an impact on reaching water and nutrients should most
likely be more drought tolerant than genotypes with smaller and less spread root systems.
Studies in real field conditions are needed to evaluate the effect of the superior root system
of old genotypes and the genotypes with chromosome 1R and 1RS on drought tolerance.

Our results suggest that 3R might be useful to improve early drought tolerance in
wheat, which is an increasingly important characteristic for Nordic conditions, as well as
under the predicted climate-change conditions. Differences in early drought tolerance were
noted among the genotype groups evaluated here with the least change in yield (a high
STI of GWPP) by the early drought treatment in the genotypes containing 3R. Additionally,
four (257, 256, 244 and 254) of the top 10% of genotypes were identified as containing 3R.
Previous studies on drought tolerance in wheat showed limited findings on stress-tolerance
genes connected to chromosome 3R. To our knowledge, there is just one field study that
proposes that genes regulating drought tolerance are present on chromosomes 7R, 3R and
5R [61]. Instead, 3R, along with 4R, 6R and 7R, has been well demonstrated as one of the
rye chromosomes carrying major genes for the tolerance to aluminium toxicity [62–66]. Our
results, indicating genes for drought tolerance on 3R, were achieved under EDS, differently
to most other studies on drought tolerance in wheat-rye introgressions, which have mainly
been based on drought stress imposed at late stages [12,42,67]. Thus, the timing of the
drought stress might be the reason for the lack of data in the literature on drought-tolerance
genes on 3R, and the potential tolerance genes on 3R might be specific to early drought. The
PCA result based on the top 10% of genotypes for EDS suggested that a large root system,
together with high numbers of grains and spikes per plant as beneficial traits for high
tolerance to early drought. Thus, the 3R chromosome seemed to contribute to the ability
for the plant to set roots and spikes regardless of whether there had been an early drought
period, which is a characteristic that might be of importance for the future climate change
in the Nordic countries, where early drought seems to be an increasingly common feature.

The present study clearly indicated different mechanisms of wheat to combat to
drought stress at different maturation stages. This was verified by the fact that the genotype
groups with early root vigour and EDS tolerance were clearly distinguishable, while no
clear pattern of LDS tolerance in a specific genotype group was detected in the present
study. As anthesis is a critical period for grain formation in wheat, with a high impact on
meiosis from drought [68], large impacts on final yield have often been described as a result
of late drought [8,69]. The potential of the grain weight of wheat at maturity is closely
determined by the number of endosperm cells per grain and the process of cell division in
the endosperm, which ends within two to three weeks after anthesis [70]. Another factor
determining the grain weight is cell expansion, which was found to be related to water
content during the grain-filling period [71]. Drought stress at anthesis has been reported
to shorten the grain-filling period of wheat [72], and the termination of cell expansion
predetermines the maturation of grains [73,74]. Thus, the water deficit during this period
is known to cause a severe reduction in grain yield. Unlike the direct and severe effects
of post-anthesis drought on the final yield, the effects of early drought at the vegetative
growth stages are more morphology-related, e.g., EDS affects plant height, leaf area and
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number of tillers [75]. In the present study, the PCA results based on the top 10% of
genotypes for LDS indicated that TGW and FLA might account for the high tolerance of
genotypes 201 (old) and 217 (1R), while RB and GPP showed a negative correlation to the
high tolerance. Hence, large grain size and flag leaves are beneficial traits for high tolerance
to late drought, and the negative contribution of RB and GPP to the high tolerance to late
drought further confirmed the different mechanisms of wheat plants to combat early and
late drought.

Yield performance under drought stress is the major concern when breeders develop
drought-tolerant crop varieties [76] because, in a broad sense, drought tolerance is defined
as the yield-maintaining ability of a plant under drought. The empirical approach used
in breeding programs for drought-tolerant genotypes emphasizes the yield under both
non-stressed and stressed conditions, so that both yield stability and yield potential can be
evaluated [77]. However, the complexity of drought tolerance has been widely accepted,
particularly from a genomics perspective, due to the identification of many drought-
responsive genes [78]. The Lea genes encoding late-embryogenesis-abundant (LEA) proteins
were reported to be highly related to drought tolerance [79–81]. Another large drought-
related gene family is the NAC genes that encode transcription factors. By introducing a
rice NAC1 gene (SNAC1) into a wheat variety, significantly enhanced drought tolerance
was achieved in the transgenic wheat plants [82]. The V-PPase gene family that encodes
an enzyme vacuolar H+-translocating pyrophosphatase was found to be responsive to
abiotic stress. Improved drought tolerance was observed in transgenic Arabidopsis plants
that were overexpressing a V-PPase member of wheat TaVP1 [83]. Therefore, due to the
polygenic nature of drought tolerance, using yield as the only selection criterion to screen
for a drought-tolerant genotype might not be the optimal approach. Valuable information
on drought tolerance that is hidden behind other traits could be missed. However, blindly
including too many traits into a selection process could result in an unnecessary increase
in workload and provide a misleading result. As demonstrated earlier in this paper, we
propose that the yield-based drought tolerance of wheat can be explained by other traits,
and therefore identifying and combining the most yield-contributing traits during selection
may help achieve more effective results than selecting based on yield alone.

4. Materials and Methods
4.1. Plant Materials

A collection of 73 spring-wheat (Triticum aestivum) genotypes consisting of 14 Swedish
landraces and old cultivars released from 1928 to 1990 [84], 50 wheat-alien introgression
lines [85] with rye chromosomes 1R, 2R, 3R, 4R, 5R, 6R and Leymus Racemosus chro-
mosome N in the form of translocation and substitution [29,40], and nine modern wheat
breeding lines from the company Lantmännen were used in this study (Table S5). All the
wheat lines with different genetic backgrounds (old, modern, introgression lines) will be
referred to as genotypes from here and onwards in this publication.

4.2. Early Root and Shoot Phenotyping

To evaluate the early root growth of the genotypes, a hydroponic experiment was
conducted in the greenhouse, germinating the wheat seeds on wet filter paper at low-
temperature conditions (4 ◦C, 48 h) for uniform germination. Following previously de-
scribed methods [13,86], germinated seeds were fixed on dedicated blue blotter paper
(210 mm × 297 mm, Anchor paper company) with small clips and covered by black plas-
tics. The wetness of the paper was maintained by dipping its bottom in water. After
seven days of growth under room temperature (25 ◦C/18 ◦C day/night), root imaging was
performed with a DSLR camera (Canon 1300D, Canon Inc., Tokyo, Japan) mounted on a
kaiser stand 40 cm above the root surface. The image-based digital-root length (DRL) was
extracted using the software RootNav [87].

To evaluate the early shoot growth, the genotypes were phenotyped in the Biotron
(growing conditions described below) from three different angles using two digital single-



Int. J. Mol. Sci. 2022, 23, 3333 12 of 17

lens reflex (DSLR) cameras (Canon 1300D, Canon, USA) 20 days after sowing as pre-
viously described [88]. Cameras were operated through the software digiCamControl
(http://digicamcontrol.com/, accessed on 28 February. 2020). The image-based digital-
leaf area (DLA) was extracted using the software Easy Leaf Area (https://www.quantitative-
plant.org/software/easy-leaf-area, accessed on 28 April 2020).

Comparisons of DLA and DRL were made on an individual-genotype basis, but
groups of genotypes were also compared (i.e., modern wheat genotypes, old Swedish
genotypes, 1R wheat-alien introgression lines, 1BL.1RS wheat-alien translocation lines, 2R
wheat-alien introgression lines, 3R wheat-alien introgression lines).

4.3. Biotron Trial

The experiment was carried out in 2020, growing the genotypes from April–September
in a daylight (DK) chamber with natural light in the Biotron at the Swedish Univer-
sity of Agricultural Sciences in Alnarp, Sweden. The temperature and humidity were
strictly regulated hourly based on the mean weather data of Malmö over the past decade
(2010–2019). The data were obtained from Swedish Meteorological and Hydrological In-
stitute (SMHI) (Table S6). Five seeds of each genotype and for each treatment were sown
in each 2.5 L plastic pot filled with peat-based soil, and after thinning, three plants were
retained in each pot. Thus, three biological replicates of each genotype were subjected to
each of the three growing conditions, i.e., standard growing conditions used as a control (C),
early-drought-stress (EDS) growing conditions, and late-drought-stress (LDS) growing
conditions. To achieve uniform solar irradiance for growth throughout the experiment, the
position of each pot was shifted within the chamber weekly.

4.4. Growing Conditions including Drought Stress

For the C treatment, the plants were watered every second day so that the soil moisture
was maintained throughout the whole cultivation period and watering was stopped when
the spikes turned yellowish in order for the plants to become mature. The EDS-treated
plants were watered similarly to the C plants until day 30 (Zadoks 23) after planting [89]
when the drought treatment started, by withholding water for 28 days, and thereafter
the watering again followed the C treatment. Similarly, the LDS plants followed the C
treatment until day 60 (beginning of heading stage, Zadoks 50) after planting, when water
was withheld for 14 days, and thereafter the C treatment started again. The soil moisture
on the last day of both drought treatments was below 1%, as measured by a moisture meter
(Takemura electric works DM-15 soil PH & moisture tester hygrometer).

4.5. Morphological, Phenological and Yield Traits

Days to heading (DTH) (number of days taken from sowing to appearance of spikes)
and anthesis (DTA) (number of days taken from sowing to appearance of anthers) were
recorded manually. Spike length (SPL) was measured with a ruler in centimetres. Tillers
per plant (TPP), spikes per plant (SPP), productive spikes per plant (PSPP), grains per plant
(GPP) and grains per spike (GPS) were counted. Flag-leaf area (FLA) [90] was measured
with an LI-3000C Portable Leaf Area Meter (LI-COR Environmental). Grain weight per
plant (GWPP), grain weight per spike (GWPS), 1000-grain weight (TGW) (CONTADOR
seed counter, PFEUFFER, Kitzingen, Germany) and dry root biomass (RB) were measured
in grams. Thus, yield per plant = GWPP.

4.6. Data Analysis

The stress-tolerance index of five yield traits, including GWPP, GWPS, GPP, GPS, and
TGW, was calculated to determine the comprehensive responses of genotypes to drought
stresses by using the following formula.

Stress-tolerance index (STI) [15]:

STI = (Ys × Yp)/(Yp)2, (1)

http://digicamcontrol.com/
https://www.quantitative-plant.org/software/easy-leaf-area
https://www.quantitative-plant.org/software/easy-leaf-area
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where Ys represents the yield trait of each genotype under drought-stress conditions;
Yp and Yp represent the yield trait of each genotype and the mean yield trait of all genotypes
in the productive conditions, respectively.

All the statistical analyses were performed using software RStudio [91], version 1.2.5042.
A two-way ANOVA was conducted for each trait to detect significant differences between
the treatments. Where significant differences (p < 0.05) were detected, multiple mean
comparisons were conducted using the Tukey post-hoc test with the package rstatix. Pear-
son’s correlation coefficients were calculated to investigate correlations among different
traits with their mean values using the package Hmisc, and the results were visualized
using the package corrplot. Principal-component analysis (PCA) was performed with the
package ggfortify to further explore the relationship among different drought-related traits
and treatments.

5. Conclusions

Global food security is currently threatened by dynamic climate changes and the
growing global population, leading to an increase both in abiotic stress conditions and in
demands. To cope with this situation, and with the loss of genetic diversity in modern
breeding lines over the last century, diverse genetic materials are untapped resources
with which to search for candidate genes that contribute to high yield under stress condi-
tions. Early root vigour is a useful characteristic for the plant to sustain stressful growing
conditions, e.g., from drought, which is present in the old Swedish lines and lines with
1R and 1RS. The early root vigour in such lines is not necessarily correlated to early shoot
growth, indicating the possibility of different genetic determinants of these characteristics.
The 3R may contain important genes contributing to tolerance in wheat for early drought
stress, which is a characteristic already of importance under Nordic conditions, although
early drought tolerance is expected to become even more important with the predicted
climate change. The mapping of the responsible genes and the plant traits determining
early drought tolerance is therefore an important challenge. Here, grains per plant, root
biomass and spikes per plant were the dominating traits that contributed to a low change
in yield in the genotypes with good tolerance to early drought. This indicated the ability
to grow and set seeds despite an early drought period as an important property of early
drought tolerance. Differently, the 1000-grain weight and a large flag-leaf area were the
most important traits for a low change in yield and therefore a good tolerance to late
drought. Thus, breeding targets related to early vigour or breeding for drought resistance
at various developmental stages need to be set, and suitable genes need to be determined
and mapped in order to successfully breed drought-tolerant spring wheat.
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