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A B S T R A C T

Drained wetlands can constitute a large source of greenhouse gas emissions, but the drainage networks in
these wetlands are largely unmapped, and better maps are needed to aid in forest production and to better
understand the climate consequences. We develop a method for detecting ditches in high resolution digital
elevation models derived from LiDAR scans. Thresholding methods using digital terrain indices can be used
to detect ditches. However, a single threshold generally does not capture the variability in the landscape, and
generates many false positives and negatives. We hypothesise that, by combining the digital terrain indices
using supervised learning, we can improve ditch detection at a landscape-scale. In addition to digital terrain
indices, additional features are generated by transforming the data to include neighbouring cells for better
ditch predictions. A Random Forests classifier is used to locate the ditches, and its probability output is
processed to remove noise, and binarised to produce the final ditch prediction. The confidence interval for the
Cohen’s Kappa index ranges [0.655 , 0.781] between the evaluation plots with a confidence level of 95%. The
study demonstrates that combining information from a suite of digital terrain indices using machine learning
provides an effective technique for automatic ditch detection at a landscape-scale, aiding in both practical
forest management and in combatting climate change.
1. Introduction

This study presents a forestry decision support system through the
mapping of ditch networks, enabling more efficient forest management
and better climate change mitigation. The wetlands in North Europe
and parts of North America have been substantially modified and
ditched over the last century. In many places both the landscape and
the channel network have also been heavily altered by humans, espe-
cially in the agricultural landscapes, for example in mid-western United
States (Passalacqua et al., 2012). In North Europe, however, ditches
have mainly been dug to turn flat peatlands into productive forests,
resulting in profound impacts on the hydrology of this region (Rydin
& Jeglum, 2013). In Sweden, which is one of the North European
countries with the most extensive ditch network, over five million
hectares of peatland have been drained for forestry in the 20th century.
As a result, almost one million km of ditches have been introduced,
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doubling the length of watercourses across Sweden (Hasselquist et al.,
2018).

The forest industry and agencies have a demand for better maps
of ditch networks in the forest landscape. Drained afforested peatlands
contribute greatly to Swedish wood production, and consequently to
the Swedish economy. At the same time, Swedish authorities have
identified drained wetlands as a major target for greenhouse gas mitiga-
tion (Drott, 2016; Hjerpe et al., 2014). However, research on the effects
of afforested drained wetlands on greenhouse gas emission is inconclu-
sive, and they can constitute both a source and a sink for greenhouse
gases (He et al., 2016; Minkkinen et al., 2018). Consequently, there is
a need for science-based tools to optimise both forest production and
decision support systems for mitigation of greenhouse gas emissions
from drained forested wetlands. A key step to accomplish this is to map
the ditch networks in the forest landscape. However, it is unfeasible
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Fig. 1. Channel mapping status. The bars indicate the number of observed channels in the National Inventory of Landscapes in Sweden’s (NILS) line inventory of small watercourses
width <6 m). The colours of the bars indicate whether they are mapped or not on the Swedish Property map.
o conduct landscape-scale field inventories, as they are often both
hallenging and expensive.

The National Inventory of Landscapes in Sweden (NILS) has
ecorded small watercourses (width <6 m) by conducting a line in-
entory in 631 5 ∗ 5 km squares randomly distributed in Sweden,
o best capture a representative and varied sample of the Swedish
andscape. The positions of the small watercourses from this inventory
ere compared with the watercourses on Swedish Property Map (1: 12
00) (Fig. 1). A total of 1103 natural watercourses, 131 straightened
atercourses/channels, and 2089 ditches were found in the field. This

imple investigation highlights two things: First, ditches make up the
ajority of the small scale water channels in the Swedish landscape;

lmost twice as many as the natural streams. Second, most of the small
cale channels are missing on the current maps; only 45% of the natural
atercourses, 25% of the straightened watercourses/channels, and 9%
f the ditches are mapped (Fig. 1).

Light Detection and Ranging (LiDAR) can be used to produce ac-
urate 3D point clouds of landscapes by scanning large areas from
lanes using laser pulses. These LiDAR scans can in turn be used to
uild digital elevation models (DEMs), which represent the elevation in
etres above sea level across a landscape. Several previous studies have

ocated ditches from remote sensing LiDAR data in smaller agricultural
reas (Bailly et al., 2008; Qian et al., 2018; Roelens et al., 2018) or
maller forest areas (smaller than 2 km2) (Kiss et al., 2015; Rapinel

et al., 2013), predominantly characterised by artificial drainage. In this
study, however, we conduct a landscape-scale analysis in a mesoscale
catchment. The study catchment is 68 km2, representing diverse land-
scape features and geomorphological characteristics. Additionally, the
forest landscape introduces many challenges that are not present when
detecting ditches along roads (Kiss et al., 2015) or in agricultural areas:
The canopy cover in forest areas prevents the use of satellite imagery
or aerial photos, as well as lowers the quality of the DEMs, as fewer
LiDAR points reach the ground, instead frequently catching in trees,
bushes, or grass. Forest ditches are also generally not maintained to
the same extent as agricultural or road ditches, often being overgrown
or covered by windthrows or windsnaps. Using raw LiDAR point clouds
to detect ditches, as Bailly et al. (2008) and Roelens et al. (2018) did
in their studies can thus be problematic in a forest landscape. Instead,
a DEM constructed to map the points on the ground should be more
suitable. This study is the first study that uses a DEM in combination
with machine learning to detect ditches in a large forested area.

Traditionally, machine learning is used in the remote sensing field
to identify objects in images. These images can be satellite images (Ali
2

et al., 2015) or LiDAR derived DEMs (Mo et al., 2019). Cazorzi et al.
(2013) used a DEM with image processing techniques aimed at de-
tecting the elongated ditch shapes and excluding large landscape fea-
tures. Bhattacharjee et al. (2021) used orthophotos and LiDAR data,
and classified ditches using thresholding techniques. These approaches
work well for open agricultural areas or peatlands, but are difficult
to generalise to a diverse forest landscape with substantial canopy
cover. Another way of detecting ditches is to calculate certain digital
terrain indices in Geographic Information Systems (GIS), and threshold
them to highlight the ditches. In this study we combine the machine
learning techniques normally used on images in the remote sensing
field with the traditional GIS methods of calculating digital terrain
indices, focusing on the topographical incision of the ditches in the
DEM. Previous studies have found that terrain indices such as Sky
View Factor (Zaksek et al., 2011), Impoundment Index (Lindsay, 2014)
and High Pass Median Filter (Lindsay, 2014) can detect ditches in
forest landscapes in some cases (Gustavsson & Selberg, 2018). However,
different false positives and false negatives can be observed when
examining each terrain index manually. These inaccuracies can stem
either from the gaps in the LiDAR scans, or from a poorly set threshold
for the terrain index parameters. Thus, it would be useful to combine
these terrain indices to prune the weaknesses, and amplify the strengths
of each index to produce a highly accurate detection of ditch networks.

We introduce a new method for the automated mapping of ditches
by integrating multiple high resolution terrain indices using a super-
vised learning approach. This method allows for solid ditch detection in
a diverse forest landscape, where ditch detection has historically been
challenging (Kiss et al., 2015; Rapinel et al., 2013). Several features and
post-processing steps, specifically tailored for ditch detection are also
developed and employed. The features aim to both highlight elongated
shapes similarly to Cazorzi et al. (2013), as well as to include a map
of the neighbouring area as Roelens et al. (2018) did in their study.
We hypothesise that by combining the information from all the digital
terrain indices using a machine learner (Random Forests), we can
improve the detection of the ditches, compared to if a single terrain
index is used. To test this, we conduct a landscape-scale ditch detection
analysis at the Krycklan Catchment in Sweden (Laudon et al., 2013),
where a high precision manual ditch mapping has been performed. This
manual mapping guided the model training and ground-truthing in our
analysis and provided a test-bench for our methodology.

2. Materials and method

In this study we developed a five-step approach to ditch detection,
which will be detailed throughout this section. Below follows a brief
outline and description of these steps:
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1. First we used the national field inventory, in which 2188 ditch
channels were visited across all of Sweden (Fig. 1) to gain expert
knowledge on the geographical features we wanted to detect;
i.e. a ditch is an elongated local depression in the DEM with
an average width of 2 m with a standard deviation of 1.3 m,
and a mean depth of 58 cm with a standard deviation of 44 cm.
This knowledge allowed us to select suitable thresholds in the
following steps.

2. We then used some of the available GIS techniques (Sky View
Factor, Impoundment Size Index, HPMF and Slope) to highlight
the relevant elevation differences in the DEM while downplaying
others. These terrain indices highlighted the linear local de-
pression of ditches while downplaying the elevation differences
between hilltops and valleys.

3. The next step can be explained using an analogy from the map-
ping field, in which it is common to use stretch functions such
as percent clip, histogram based functions, or standard deviation
etc., as this increases the visibility and highlights features of
interest further. Our feature engineering steps attempted to do
this mathematically to assist the machine learning algorithm as
much as possible by highlighting linear features in the maps, and
removing external disrupting elements such as natural streams
and hollows.

4. The machine learning algorithm Random Forests was used to
combine the developed features, and predict the probability of
each pixel on the map lying in a ditch. Random Forests inherent
feature importance was also used to discard developed features
that did not actively contribute to the ditch prediction.

5. The final step took the predictions produced by the Random
Forests model and cleaned them by filling gaps in the ditch
prediction. This step also removed noise caused by hollows
and other geographical features, producing a final binary ditch
prediction map.

2.1. Study area and dataset

The quaternary deposits in the Krycklan Study Catchment are dom-
inated by till (51%) and sorted sediments (30%). The catchment ranges
in elevation from 114 to 405 m above sea level. Forest covers 87% of
the catchment, mires 9%, thin soils 7%, and rock outcrops 1%. The
land use is dominated by forestry; approximately 25% of the Krycklan
catchment has been protected since 1922, but the rest of the area is
mostly second growth forest (Laudon et al., 2013). A historical survey
of the catchment (Norstedt et al., 2021) recorded that the ditches
in the catchment were dug between 1900 and 1993. Initially, the
ditches were dug to drain the mires for hay production. Later on,
wet areas were drained to attempt to turn them into productive forest
lands (Päivänen & Hånell, 2012). However, research later showed that
many of the drained mires were not productive for forestry due to lack
of nutrients (Sikström & Hökkä, 2016).

The LiDAR dataset used in this study was produced by TerraTec
Sweden AB in August 2015, on demand of the Department of For-
est Resource Management at the Swedish University of Agricultural
Sciences, and is freely available online ([dataset] Swedish University
of Agricultural Sciences, 2015). The average density of the dataset is
20 pulses per m2. Ground point classification was performed with las-
round (included in LAStools, a software suite produced by rapidlasso
mbH). The DEM was created with blast2dem (included in LAStools),
ith a cell size of 0.5 ∗ 0.5 m. Only ground points were imported to
enerate a DEM of the ground.

.2. Digitising the ground truth

For training and validation, a vector layer of all ditches in the
rycklan Catchment (Laudon et al., 2013) was digitised. The study
3

atchment comprises several types of ditches including road ditches,
forest ditches, and agricultural ditches. A multidirectional hillshade of
the 0.5 m DEM was calculated in ArcGIS Pro, and from this layer, most
of the ditches could be easily identified by a human. We conducted the
digitisation at a scale of 1:600 to ensure that all the digitised ditches
were properly aligned with the actual ditch on the ground, and did
not coincide with the edge of the banks. In addition, both current
and historical records and orthophotos dating back to the 1960’s were
consulted to help locate all the ditches. In uncertain areas, the ditches
were verified in the field. The digitisation of the ditch networks showed
that there are 107 km of road ditches and 208 km of forest/agricultural
ditches in the catchment (Fig. 2). The stream network in Fig. 2 shows
a 197 km long network with a 8 hectare flow initiation threshold,
representing median flow conditions.

From the ditch mapping, the vector layer was rasterised with a
resolution of 0.5 ∗ 0.5 m for use as a ground-truth for our ditch detector.
Our field observations have shown that most of the ditches in the
catchment range between 0.5 and 3.5 m in width. To ensure that all
ditch pixels were labelled correctly for the model in the training phase,
we labelled all pixels within three pixels (1.5 m) of the vectors as ditch
pixels, making the labels 3.5 m wide (Fig. 3). Due to all ditches varying
in width, it was not possible to produce a perfect representation of
each ditch, but this widening helped ensure that almost all ditch pixels
were covered by the labels. To match the labels with our predictions
(where we downscale the predictions into grids to remove outliers), the
ground-truth was also downscaled into grids of 6 ∗ 6 pixels (9 m2) by
labelling each grid cell containing at least 25% ditch pixels as a ditch
(Fig. 3c).

2.3. Extracting ditches with digital terrain indices

From the DEM, several digital terrain indices were calculated:

∙ Sky View Factor
The Sky View Factor represents how much of the sky that is
visible from a certain point on the ground (Zaksek et al., 2011).
A point inside a ditch would produce a low value, as more of
the sky is obscured by the ditch bank. Sky View Factor tends to
produce false positives in steep terrain. The index was calculated
in SAGA GIS, using a search radius of 10 m to ensure that it
was large enough to capture the ditches, but small enough to
not include large scale topographical features such as hills.

∙ Impoundment Index
The Impoundment Size Index in Whitebox Tools (Lindsay, 2014)
inserts a digital dam with a user-defined length of cross-sectional
profile for each cell in the DEM, calculating the size of the
impoundment (area, volume, or depth) that is created as a result
of the digital damming operation. The Impoundment Size Index
is calculated in three main steps. For detecting the ditches we
focus on the first part which calculates the height of a potential
dam for each grid cell based on the topographic profile perpen-
dicular to the flow line at the site. The algorithm rotates the
artificial dam in four different orientations (N–S, NE–SW, E–W,
SE–NW) to find the maximum cross sectional damming for each
cell across the landscape. The dam height is thus a measure of
the topographic incision and can be used to detect the small scale
ditch channels. Here, we used the dam height calculated with a
dam length of 3 m to attempt to cover the entire ditches. Typical
false positives with this index are natural stream channels with
a clear incised channel.

∙ High Pass Median Filter
High Pass Median Filters (HPMF) highlight ditches by indicating
local depressions (such as ditches) in the DEM by subtracting
the value at the grid cell at the centre of the window from the
median value in the window. Typical false positives with this
index are small hollows. HPMF was calculated using Whitebox

Tools (Lindsay, 2014) with a window size of 4.5 ∗ 4.5 m.
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Fig. 2. Krycklan channel map. Shows ditches and stream channels in the Krycklan catchment, as well as our division into 21 subsections of 2997 ⋅2620 pixels (roughly 196 hectare)
each. The 10 subsections with a white border were used for developing features and optimising parameters before the experiment. The 11 subsections with a black border were
used in the experiment for evaluation with K-fold cross validation (K = 11).
Fig. 3. Processing of ditch labels. a: Rasterised ditches with a width of one pixel. b: Ditches after a widening process, seven pixels (3.5 m) wide. Used as labels when training
the model. c: Ditches after a grid zone conversion. Used for evaluating the results from the ditch detector.
∙ Slope
The Slope index represents the degree of slope at a certain point,
with a value ranging from 0◦ to 90◦ with no information about
the direction of the slope. It was calculated on the 0.5 m grid,
using ArcGIS (Ormsby et al., 2010).

To benchmark our method against a non-machine learning method,
we binarised the original four digital terrain indices using thresholds.
Different threshold values were tested, and the value that yielded the
highest Cohen’s Kappa score for each respective index was chosen. This
test was conducted for the 11 subsections described in Section 2.4.2.
Sky View Factor was classified to only include values below 0.955,
the Impoundment Index Dam Height using values above 0.27 m, HPMF
4

using values below −0.18 m, and the Slope index using values above
14◦ (Table 3).

2.4. Data preparation

2.4.1. Feature engineering
The digital terrain indices provided a satisfactory foundation for

the model, but were not always able to generalise well to the diverse
landscape features across the study catchment. To give a representation
of the area surrounding a specific pixel, we extracted more diverse
features using simple statistical aggregates such as mean, median, min,
max, and standard deviation in different circular radii around the pixel
(similar to the approach of Roelens et al. (2018)). This aided in pruning
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pixels with outlier values, often smoothing out the data to represent
ditches more accurately on a per-pixel basis (Fig. 4: b, c, f, and g).
Additionally, several features were generated by using thresholds on
one or multiple indices to exclude, lower, or amplify the values of pixels
that indicated ditches or non-ditches (Fig. 4: d and h).

Features were generated from both HPMF and Sky View Factor
using the image processing gabor filter, which can be used to detect lines
f a certain orientation in an image (Hong et al., 1998). 30 Gabor filters
hich were rotated in different angles and with different frequencies
ere combined to detect lines, amplifying ditches by utilising the fact

hat ditches have a linear elongated shape (Fig. 4:e).
In an attempt to exclude ravines from the predictions, the Impound-

ent Index was used to mask out areas with a very large dam height
which would indicate that the area most likely contained a ravine).
his mask was applied on several features to smooth out the values
nder the mask, generating one new feature from each original feature.
lthough ravines are uncommon in the Swedish forest landscape, they
re overrepresented in the Krycklan catchment. Approximately 56% of
he catchment area is below the highest postglacial coastline, meaning
hat the postglacial sediments form a thick layer through which the
arger streams have deeply incised channels, forming ravines and bluffs
f up to 30 m in height (Fig. 2). The features marked with streams
emoved in Table 1 make use of this filter (Fig. 4:i).

Overall, 81 features were extracted from the terrain indices. In
pilot study, we compared several different algorithms (Random

orests, Extreme Gradient Boosting, Naive Bayes, and Support Vector
achines), and it was found that Random Forests produced the most

ccurate results. We then conducted a sub-experiment using Random
orests’ feature importance to find the best features, as well as the
ptimal number of features to use. This was done by iteratively training
new model with the feature set, and removing the two worst per-

orming features according to Gini feature importance (Menze et al.,
009). This process was repeated until the model started deteriorating
n performance, and resulted in a final feature set of 40 contributing
eatures (Table 1).

.4.2. Training and validation datasets
To develop and evaluate our ditch detector, the raster and ditch

abel data of Krycklan were manually divided into 21 subsections,
ach representing an area of roughly 196 hectare (Fig. 2). This was
ecessary because our method relies on the area surrounding a pixel
or feature extraction, meaning it is not possible to select random pixels
or training and testing. 11 of the subsections were put aside as hold-
ut data, only for use in the experiment to evaluate the performance
f the ditch detector. The remaining 10 subsections were used solely
efore the experiment to develop the ditch detector, and to test dif-
erent ways of preparing the data. This allowed the ditch detector to
e evaluated on independent data, strengthening the validity of the
xperiment. Fig. 2 shows which subsections were used for development
nd evaluation respectively. The 11 hold-out subsections were used as
olds in a K-fold cross validation (K = 11) in the final experiment. The
igital terrain indices and labels for the 21 subsections are available
or download ([dataset] Swedish University of Agricultural Sciences,
020);

.5. Developing the random forests model

The Random Forests (Breiman, 2001) algorithm from the Python
ibrary scikit-learn (Pedregosa et al., 2011) was used in the experiment,
nd the classifiers were trained on the 40 features seen in Table 1. A
yperparameter tuning through a grid search of 32 unique parameter
ombinations was performed to identify the optimal parameters, with
ohen’s 𝜅 as the target metric (Table 2). The hyperparameters chosen

or examination in this tuning were the ones that were identified as hav-
ng the highest impact on model performance during the development
hase of the study. A by-product of training a Random Forests model is
5

Table 1
Feature set. The 40 features used to train the model.

Terrain index/Algorithma Circular radiib

Sky View Factor median 2, 6
Sky View Factor standard deviation 6
Sky View Factor min 6
Sky View Factor max 2, 4, 6
Sky View Factor non ditch amplification –
Sky View Factor Gabor –
Sky View Factor Gabor - streams removed –
Impoundment mean 2, 3, 4, 6
Impoundment median 2, 4, 6
Impoundment standard deviation 4, 6
Impoundment max 6
Impoundment ditch amplification –
Impoundment ditch amplification - streams removed –
HPMF mean 3, 4, 6
HPMF median 4
HPMF standard deviation 6
HPMF min 2, 4
HPMF ditch amplification –
HPMF ditch amplification - streams removed –
HPMF Gabor - streams removed –
Slope mean 6
Slope median 6
Slope standard deviation 4, 6
Slope min 2, 4, 6
Slope non-ditch amplification –

aThe algorithm used to produce the feature.
bRepresents the radius of the circular mask (if one was used) to determine which
neighbouring pixels to use in the aggregation. The radii represents pixels with a 0.5 m
resolution.

Table 2
Hyperparameter tuning. Shows the hyperparameters that were included in the hyperpa-
rameter tuning for the Random Forests model (scikit-learn implementation Pedregosa
et al., 2011). A grid search was performed on the 32 unique parameter combinations
with Cohen’s 𝜅 as the target metric. The best parameters from the tuning are highlighted
in bold text.

Hyperparameter

criterion Gini Entropy
max_depth 35 None
min_samples_split 2 10
class_weight rating Balanced None
n_estimators 200 300

the Gini importance, which denotes the most important features (Menze
et al., 2009). The testing phase showed that, due to the class imbal-
ance (only 2% of pixels being ditch pixels), the model was not being
punished for mislabelling ditches as non-ditches. To combat this, we
evened out the amount of ditch and non-ditch instances in the training
data by undersampling non-ditch pixels: First, we extracted all pixels
labelled as ditches as well as pixels within close proximity of ditches.
Second, pixels were sampled randomly from the entire subsection to
still capture most of the geographical features of each area (Fig. 5).

2.6. Post-processing

The output from the model was a ditch probability ranging from
zero to one for each pixel (Fig. 6a).

2.6.1. Noise reduction and gap filling
The probability predictions contained a lot of noise in the areas

largely distant from the ditches. This noise was removed by first using
a bilateral de-noising filter, and then removing outlier pixels that were
far away from any other high probability ditch pixels. This left linear
properties and pixels with a very high value intact, while lowering
the value of pixels that did not contribute to an accurate prediction
(Fig. 6b) (Fig. 7a).

To fill gaps in ditches that the model failed to correctly predict due
to gaps in the LiDAR scans, we aggregated pixel values by covering
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Fig. 4. Feature examples. Shows the ditch labels as well as 8 of the 40 features for a small sample area. The radii represents pixels with a 0.5 m resolution. a: Labelled ditches,
b: Slope standard deviation, radius 6, c: HPMF mean, radius 4, d: HPMF ditch amplification, e: Sky View Factor Gabor, f: Sky View Factor max, radius 6, g: Impoundment mean,
radius 3, h: Impoundment ditch amplification, i: Impoundment ditch amplification - streams removed.

Fig. 5. Balancing training data. Black pixels here indicate the balanced masks used to determine what pixels were used when training the model. a, b: Examples of two subsection
from the training dataset.
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Fig. 6. Post-processing step one and two. Darker pixels indicate a higher ditch probability. a: Random Forests probability prediction. b: Bilateral de-noising.
Fig. 7. Post-processing step three and four. Darker pixels indicate a higher ditch probability. a: Custom de-noising. b: Gap filling.
them with cone masks expanding outwards in different directions from
the examined pixel. This amplified some of the noise that was left,
but filling the gaps in the ditches was judged to be more important
(Fig. 7b).

2.6.2. Binarisation and cluster removal
To correct errors stemming from lone, incorrectly classified pixels

inside ditches, the resolution was lowered by binary classifying each
6 ∗ 6 pixel grid as a ditch or a non-ditch if the mean probability
of the pixels inside the grid exceeded 40% (Fig. 8a). The same zone
partitioning was performed on the labels (Fig. 3c).

A cluster detection algorithm was developed to remove noise from
the final ditch prediction. By finding the number of connected pixels
with a true value and removing those whose cluster size were below
a threshold of 1500 pixels, minor noise in the prediction could be
removed, while still retaining most of the ditch pixels. A distance
calculation was also performed in tandem with this method to find the
largest distance between any two pixels inside each given cluster. This
distance could be compared to the cluster size to determine whether
the examined cluster was elongated or more compact in shape, where
7

compact shapes were likely to be false positives and could therefore be
discarded from the final prediction. This helped to remove sinks and
hollows that were not removed by the initial small cluster removal,
but that did not have a linear directional characteristic that ditches
generally have (Fig. 8b).

2.7. Evaluation

Using only accuracy as an evaluation metric when dealing with an
imbalanced dataset (roughly 98% of all pixels are non-ditch (Table 4))
would produce a poor performance assessment (Spelmen & Porkodi,
2018); by simply classifying all pixels as non-ditches, we would by
default attain 98% accuracy. For this reason, the results were mainly
evaluated using Cohen’s Kappa (Cohen’s 𝜅) index, and the Area under
Precision–Recall curve (AUPRC). Cohen’s 𝜅 index measures how much
better a prediction is compared to a completely random prediction,
where predicting 2% of the occurrences as ditch pixels completely at
random would yield a value of zero (Sim & Wright, 2005). Values above
zero are better than random, and values below zero are worse than
random.
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Fig. 8. Post-processing step five and six. Black pixels indicate a ditch prediction. a: Grid zone binarisation b: Cluster removal (final ditch prediction).
The random rating 𝑃𝑐 of a prediction of 𝑛 occurrences is calculated
with2:

Pc =

(

(TP+FN)⋅(TP+FP)
n

)

+
(

(FN+TN)⋅(FP+TN)
n

)

n
Cohen’s 𝜅 is then calculated as a value between −1 and 1 with:

𝜅 =
Accuracy − Pc

1 − Pc
The Precision–Recall curve and the AUPRC are additional metrics

that can be used when evaluating datasets with a largely imbalanced
class distribution (Fu et al., 2019). The weighting causes the Precision–
Recall curve to place an unequal weight on true negatives and true
positives (Fu et al., 2019). For our ditch detection problem, this means
that the AUPRC evaluation metric favours accurately classifying ditch
pixels over accurately classifying non-ditch pixels.

To circumvent some of the evaluation issues arising from the use of
pixel classification for ditch objects, as well as not having completely
accurate labels on a pixel basis (due to uncertainties in the width of
the ditches), we modified the evaluation labels to allow for some error
in close proximity to ditches in the prediction. False negative and false
positive grid zones that lay adjacent to the ditch label grid zones were
evaluated as true negatives and true positives, as they can be considered
a part of correctly located ditch objects (Fig. 9).

3. Results and analysis

Table 3 shows the evaluation metrics from the experiments where
the digital terrain indices were thresholded separately. Of the four,
the Impoundment Index and HPMF performed relatively close to each
other, and outperformed the other indices for most of the metrics.

Table 4 shows the total results of our ditch detector in the form
of a confusion matrix. Table 5 displays all the evaluation metrics for
the prediction of our ditch detector. The confidence intervals were
calculated from the results from the 11 cross-validation subsections
(folds). Because the subsections have varying amounts of ditches in
them, the confidence intervals will not be completely conclusive, but
will produce a close estimation. Averaging the results from the 11
subsections yields a very similar value to the total results, indicating
that the ditch detector generally performs equally well on subsections
with a small amount of ditches as on subsections with a large amount
of ditches.

2 P = Positive (ditch pixel), N = Negative (non-ditch pixel), T = true, F =
false.
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Table 3
Index thresholding metrics. Metrics from the total results of the four digital terrain
indices experiments, where only a sole terrain index is used with a threshold to detect
ditches.

Metric Sky View Factor Impoundment HPMF Slope

Accuracy % 83.67 97.07 97.45 82.66
Recall % 44.54 29.98 25.31 34.83
Precision % 4.00 18.51 20.10 2.99
𝜅 rating 0.048 0.215 0.211 0.029
AUPRC 0.247 0.248 0.232 0.194

Table 4
Confusion matrix. Shows the total results of our ditch detector on a per pixel basis.

Predicted Actual

Ditch Non-ditch Sum

Ditch 1 205 820 352 440 1 558 260
Non-ditch 509 915 84 305 365 84 815 280
Sum 1 715 735 84 657 805 86 373 540

Table 5
Ditch detector performance metrics.

Metric Totala Subsection averageb CI 95%c

Accuracy % 99.00 99.00 [98.69, 99.32]
Recall % 70.28 70.19 [61.28, 79.09]
Precision % 77.38 75.79 [71.94, 79.64]
𝜅 rating 0.732 0.718 [0.655, 0.781]
AUPRC 0.741 0.733 [0.674, 0.791]

aThe performance on all 11 subsection experiments when combined.
bAn average score from the 11 different experiment subsections.
cConfidence intervals at 95% confidence level.

The 𝜅 rating from our method (𝜅 = 0.732) (Table 5), which is in
the substantial range according to 𝜅 performance thresholds proposed
by Landis and Koch (1977), outperforms all digital terrain indices (𝜅 =
0.048, 𝜅 = 0.215, 𝜅 = 0.211, 𝜅 = 0.029) (Table 3). This confirms our
hypothesis that combining digital terrain indices with machine learning
produces better ditch detection than using a single thresholded terrain
index. Most false positives lie in stream channels (Fig. 10a, b), and most
false negatives occur either due to ditches being too shallow (Fig. 10c,
d), or due to the deepest ditches being removed as a result of the
attempt at removing streams as explained in Section 2.4.1 (Fig. 10e,
f).

In Table 6, the top 20 (out of 40) features from the Random Forests
model are presented with their Gini importances (Menze et al., 2009).
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Fig. 9. Modifying evaluation labels. Green marks true positives, red marks false negatives, and blue marks false positives. False positives and false negatives that lay within one
grid zone (9 m2) of a ditch label were evaluated as true positives and true negatives. a: Original results, b: Modified results.
Table 6
Feature importances. The top 20 features (out of 40) by Gini importance.

Pos Variablea Importance (%)

1. Impoundment mean 3 7.33
2. HPMF mean 4 6.23
3. Impoundment mean 4 5.57
4. Impoundment mean 2 5.41
5. HPMF mean 3 4.33
6. Impoundment median 4 3.84
7. HPMF Gabor - streams removed 3.54
8. HPMF median 4 3.40
9. Impoundment median 2 3.01

10. Sky View Factor Gabor - streams removed 2.84
11. HPMF mean 6 2.73
12. Impoundment median 6 2.69
13. Impoundment standard deviation 4 2.52
14. Sky View Factor Gabor 2.44
15. Impoundment ditch amplification 2.43
16. Impoundment mean 6 2.27
17. Impoundment ditch amplification - streams removed 2.24
18. HPMF min 2 2.23
19. Slope standard deviation 6 2.01
20. Sky View Factor non-ditch amplification 1.88

aThe number next to some of the variables indicates the circular radius used to
select what neighbouring pixels to use in the statistical aggregation method. The radii
represents pixels with a 0.5 m resolution.

Features derived from the HPMF and Impoundment terrain indices
contributed the most to a successful prediction. The features that used
statistical aggregation methods on the neighbouring area around pixels,
as well as the stream removal and Gabor filter features also performed
well.

4. Discussion

Our study has shown that it is possible to locate ditches automat-
ically in high-resolution DEMs (0.5 ∗ 0.5 m in our case), and that
ditch detection is improved if several terrain indices (Table 5) are
combined through machine learning than if indices are used separately
(Table 3). The ditch detection performance varied depending on the
type of ditches, which is illustrated in Fig. 11. For example, the retrieval
rate was slightly higher for the road ditches compared to forest or
agricultural ditches. This was likely due to the fact that road ditches
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are found in open areas alongside roads, and also that they are gen-
erally well maintained for optimum functioning (Fig. 11a). However,
most of the ditches in Krycklan today are found below the canopy
(e.g. Fig. 11c), and the majority have not been maintained, causing
difficulties in detecting them as some have grown back in with peat,
grasses, or shrubs (Fig. 12b). This, in combination with the surrounding
peat having subsided (Heikurainen, 1957), have rendered them almost
impossible to detect in the DEM today (Fig. 11d). This challenging land-
scape necessitated a different approach compared to studies that have
detected ditches in open agricultural areas or peatlands (Bailly et al.,
2008; Bhattacharjee et al., 2021; Cazorzi et al., 2013; Passalacqua et al.,
2012; Qian et al., 2018; Roelens et al., 2018). Despite a challenging
study catchment composed of a mixture of different landscape types,
we achieved a recall rate of 70.28%, showing that the majority of the
ditches could still be retrieved automatically.

Hypothetically, it should be quite easy to detect ditches using LiDAR
data. In practice, however, there are many variables affecting the
results, such as the point density and the interpolation method used
to create the DEM. Rapinel et al. (2013) found that the results were
usually more sensitive to the point density (ranging 1–4 points m2 in
their study) than the interpolation method. They retrieved 54.8 and
63.8% of the ditches on the Aucey and Boucey marshes in France,
compared to 70.28% in our study. However, in our study we had a
LiDAR point density of 20 points m2, so the quality of the DEM in our
study ought to be robust, possibly contributing to our higher retrieval
rate. Fig. 12(a, b) illustrates the difference in the quality of the ground
DEM when it is generated from LiDAR where the laser pulses have
caught in trees or shrubs, and fewer points have reached the ground. It
was difficult to compare our results to a lot of studies due to a lack of
sufficient evaluation metrics. Some studies report no metrics (Melniks
et al., 2020), and many studies only report a Recall score (Graves et al.,
2020; Kiss et al., 2015; Rapinel et al., 2013), which does not take false
positives into account. There is also a lack of the use of metrics that take
into account the large class imbalance (such as AUPRC and Cohen’s 𝜅)
that ditch classification often involves.

A common false positive with our ditch detector was natural streams
(Fig. 10b). However, this indicates that with some adjustments, our
method could also be used to map small, previously unmapped natural
stream channels. The national survey showed that 55% of the natural
stream channels and 75% of the straightened water courses were
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Fig. 10. Visual analysis of the ditch detector. The left panel shows the hillshade for
a number of subsections, and the right panel shows the hillshade with the extracted
ditches superimposed on top. Green marks correctly classified ditches (true positives),
red marks missed ditches (false negatives), blue marks incorrectly classified ditches
(false positives), and transparent areas mark correctly classified non-ditches (true
negatives). a and b illustrate that the most common false positives were natural stream
channels being classified as ditches. c and d illustrate that very shallow ditches that
were barely visible in the DEM were not captured with our ditch detector. e and f
illustrate that some of the deepest and more prominent ditches were also missed. This
occurred as a result of attempting to get rid of more false positives in the form of
streams by using the features explained in 2.4.1.

missing on the maps (Fig. 1). This is in line with other national (Ku-
glerová et al., 2017) and international (Benstead & Leigh, 2012) studies
highlighting this phenomenon called ‘‘Aqua Incognita — the unknown
headwaters’’ (Bishop et al., 2008; Kuglerová et al., 2017).

Sometimes pixels in ditches were initially identified correctly as
ditch pixels, but because not enough pixels in the surrounding area
were detected, the post-processing algorithms identified them as noise
and removed them. However, these steps were necessary as they helped
to remove small sinks or hilly areas that had been incorrectly classified
as ditches. Had we been able to use labels that were correctly labelled
on a pixel basis, i.e. each ditch had its actual width recorded, the model
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could have learned with a better accuracy in the training phase, and
the classification results would also most likely have benefitted from
this. We managed to bridge gaps and exclude streams to some extent
in our predictions. This was in part due to the post-processing of the
predictions helping where the model was unsuccessful on its own, and
in part due to the features developed.

One concern with using a DEM instead of the raw LiDAR data is
that valuable information may have been discarded when aggregating
the elevations from the original point cloud. Roelens et al. (2018) used
machine learning to detect ditches directly from point-clouds instead of
a DEM. However, we achieved a similar score to their method; 𝜅 = 0.73
in our study compared to 0.77 for grassland and 0.73 for peri-urban
area in Roelens et al. (2018) study. This suggests that DEM can also be
used to automatically extract ditches, provided that enough input data
is available to generate a high resolution DEM for capturing the small
scale features of ditches.

Bailly et al. (2008) also showed that the vegetation cover signif-
icantly affects the ability to detect ditches from LiDAR data (Figs. 11
and 12). Approximately 75% of the ditches in their study were retrieved
where no vegetation existed, whereas the detection accuracy went
below 10% under the cover of high vegetation, shrubs, and trees (Bailly
et al., 2008). Thus, a 𝜅 of 0.73 in our study catchment with 87%
forest cover (Laudon et al., 2013) is substantially better than that of
previous research. This could possibly be a result of the higher point
density of our LiDAR measurements (20 compared to 10 points per
m2). The hydrology of our study catchment also differs from that of
other studies, as we have almost as many natural stream channels
as ditches, whereas their studies were conducted in smaller, predom-
inantly artificially drained areas (Bailly et al., 2008; Rapinel et al.,
2013; Roelens et al., 2018). Because our model locates both ditches
and natural stream channels, we have to take additional measures to
remove the stream channels (affecting ditch detection negatively), as
explained in Section 2.4.1. A future improvement to the ditch detector
could be to use a shape index to remove small natural streams, as
natural streams often form complex channels, whereas ditches are often
relatively straight.

Although we believe that our ditch detector would work well in
other forest landscapes similar to the Krycklan area, additional detailed
ditch mappings of other forest regions are required to test this empiri-
cally. The model’s input features were developed based on occurrences
in the Krycklan area, which means that generalising the ditch detector
to areas with different geographical compositions may require the
adjustment of the thresholds that were used in some of the features.
However, the post-processing steps employed to fill gaps in the ditch
predictions (Figs 6, 7) and to remove noise (Fig. 8) were carried out
solely on the probability values output from the Random Forests model,
and should therefore be translatable to any new area with only the
tuning of a few parameters.

5. Conclusion

The detection of artificial ditches over large areas with substantial
natural stream coverage is challenging, especially under tree canopy,
but highly desired for effective forest management. Ditches represent
elongated depressions in a DEM, however, the exact shape and size
differs between ditches. We combined recently developed digital terrain
indices (the most important being Impoundment Index and High Pass
Medium Filter) but, unlike previous studies, did not apply generic
thresholding on them. Instead, we included local variability in the
indices by using different radii to capture ditches with varied shapes.
This integration of a large set of terrain indices using machine learn-
ing produced good results, as evidenced by the confidence interval
for the Cohen’s 𝜅 index, which ranged from 0.655 to 0.781 with a
confidence level of 95%. With the developed features and extensive
post-processing, we also managed to remove many stream channels and
fill gaps in the ditches where the LiDAR scans were weak.
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Fig. 11. Ditches in the study catchment. These photos illustrate the difficulty of capturing the ditches based on their form (i.e. an elongated, narrow, hollow in the ground). a:
A roadside ditch. These are generally easily detected as they are usually found in open areas along the roads, and have often been maintained. b: A ditch in a mire. This is still
easily detected, as there is no canopy and there is a clear elevation difference between the ditch and surrounding area. c: A narrow, more or less overgrown ditch in a dense
forest stand. d: A ditch in a mire that has more or less grown back in with Sphagnum sp. and Carex, likely also in combination with subsiding surrounding soils. Such ditches can
be found in the field as the vegetation differs, but as there is no longer an elevation difference between the ditch and the surrounding soils it will not be detected in the DEM.
Photos a–c: E. Maher Hasselquist, Photo d: G. Norstedt.
Although there is room for further improvement, the methodology
is a significant step forward as it performs on a par with previous
studies conducted in more homogeneous agricultural landscapes where
ditches are generally easier to detect. Our approach enables accurate
ditch detection in complex forested landscapes with tree canopy and
many natural streams. Future work could introduce more features and
post-processing steps, such as using path finding algorithms to fill gaps
in the ditch model, or shape indices to remove stream channels from
the prediction. Moving towards image segmentation instead of pixel
classification of tabular pixel values could also be a suitable future
approach. Our developed methodology can be adjusted to apply to
any setting for artificial ditch detection, reducing time and labour
investment compared to the conventional manual mapping techniques.
The accurate ditch maps can both significantly contribute to practical
forestry and operational land management, as well as allow govern-
ment agencies, forest companies, and regional and local authorities
to predict the climate consequences of potential management actions,
which will be critical in reaching global sustainability goals.
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Fig. 12. Weak LiDAR scan illustration. a and b illustrate that despite a LiDAR point density of 20 points m2, not all points reach the ground in places with dense vegetation. In
a there is a clear difference between the smooth surface of the DEM in the open area (black arrow), and in the areas covered by trees and shrubs (red arrows), where the DEM
is much coarser due to interpolation with a lower number of LiDAR points here. The orthophoto (b), clearly shows that trees and shrubs are growing in the ditches in this area,
making it more difficult to detect ditches. However, despite these coarser grid points in the DEM, c and d shows that the ditch detector still managed to capture a majority of the
ditches (green), and only failed at certain points (red).
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