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A B S T R A C T   

The collection of field-reference data is a key task in remote sensing-based forest inventories. However, tradi-
tional methods of collection demand extensive personnel resources. Thus, field-reference data collection would 
benefit from more automated methods. In this study, we proposed a method for individual tree detection (ITD) 
and stem attribute estimation based on a car-mounted mobile laser scanner (MLS) operating along forest roads. 
We assessed its performance in six ranges with increasing mean distance from the roadside. We used a Riegl VUX- 
1LR sensor operating with high repetition rate, thus providing detailed cross sections of the stems. The algorithm 
we propose was designed for this sensor configuration, identifying the cross sections (or arcs) in the point cloud 
and aggregating those into single trees. Furthermore, we estimated diameter at breast height (DBH), stem pro-
files, and stem volume for each detected tree. The accuracy of ITD, DBH, and stem volume estimates varied with 
the trees’ distance from the road. In general, the proximity to the sensor of branches 0–10 m from the road 
caused commission errors in ITD and over estimation of stem attributes in this zone. At 50–60 m from roadside, 
stems were often occluded by branches, causing omissions and underestimation of stem attributes in this area. 
ITD’s precision and sensitivity varied from 82.8% to 100% and 62.7% to 96.7%, respectively. The RMSE of DBH 
estimates ranged from 1.81 cm (6.38%) to 4.84 cm (16.9%). Stem volume estimates had RMSEs ranging from 
0.0800 m3 (10.1%) to 0.190 m3 (25.7%), depending on the distance to the sensor. The average proportion of 
detected reference volume was highly affected by the performance of ITD in the different zones. This proportion 
was highest from 0 to 10 m (113%), a zone that concentrated most ITD commission errors, and lowest from 50 to 
60 m (66.6%), mostly due to the omission errors in this area. In the other zones, the RMSE ranged from 87.5% to 
98.5%. These accuracies are in line with those obtained by other state-of-the-art MLS and terrestrial laser scanner 
(TLS) methods. The car-mounted MLS system used has the potential to collect data efficiently in large-scale 
inventories, being able to scan approximately 80 ha of forests per day depending on the survey setup. This 
data collection method could be used to increase the amount of field-reference data available in remote sensing- 
based forest inventories, improve models for area-based estimations, and support precision forestry development.   

1. Introduction 

The first studies that used ground-based LiDAR (Light Detection and 
Ranging) to measure forests date from the early 2000 s (Hopkinson 
et al., 2004; Lovell et al., 2003). Since then, different authors have 
explored and reported on the accuracy of stationary (Terrestrial Laser 
Scanner – TLS) and mobile (Mobile Laser Scanner – MLS) ground-based 
LiDAR to measure forest parameters and stem attributes. These systems 
can provide accurate measurements of stem profiles and diameter at 
breast height (DBH) at tree-level in a relatively short time and with 

centimeter-level accuracy (Balenović et al., 2020; Hyyppä et al., 2020c; 
Olofsson and Holmgren, 2016; Pierzchała et al., 2018; Puliti et al., 
2020). In addition, some ground-based laser systems can go beyond 
estimation of traditional plot-level attributes (Newnham et al., 2015) 
and provide, for instance, information on trees’ branch structure (Lau 
et al., 2018; Zhang et al., 2020) and sawmill timber quality (Pyörälä 
et al., 2019b, 2019a) with good accuracy and a high level of detail. 

However, ground-based LiDAR systems are not operationally used in 
forest inventory despite their proven suitability for retrieving field data 
due to different reasons, for instance, the high prices of the equipment 
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and the availability of data processing tools. In addition, the intensive 
manual work required for collection of TLS and MLS data (Calders et al., 
2020), with field campaigns comparable to those of traditional forest 
inventory, make these technologies less competitive with traditional 
methods. 

Area-based approaches (ABA, Næsset 2002) have been used in many 
operational remote sensing-based forest inventories, providing esti-
mates for a given region or pixel that can vary in size from a few square 
meters to hectares (Holopainen et al., 2014). In this approach, field- 
reference data are used as a response variable in the calibration of 
remote sensing-based models. Such models can be used to estimate 
forest attributes, such as timber volume per hectare, over the entire 
inventoried area. To develop a good model, the reference data should be 
representative of the whole study area, covering as much of the forest 
variability as possible. However, drawing a sample that sufficiently 
represents the whole inventoried area is time- and resource-consuming, 
which causes surveys to be a trade-off between cost efficiency and ac-
curacy gain. The ABA has been used in simple homogenous forest con-
ditions such as Scandinavian forests to provide rather accurate stand- 
level estimates. However, such estimates usually lack the details 
necessary for optimal planning of forest usage for different goals, such as 
tree-level information (Holopainen et al., 2014). Hence, the term Pre-
cision Forestry has been introduced and is often used to describe the 
stage at which individual tree maps are generated (Hyyppä et al., 
2020c), including both qualitative (e.g., species) and quantitative (e.g., 
diameter and volume) information about each tree. This stage requires 
efficient methods for collecting reference data in an amount sufficient to 
train models at the individual tree level. 

Recently, MLS systems appeared as efficient alternatives to conduct 
forest measurements (Holmgren et al., 2019; Hyyppä et al., 2020b; Liu 
et al., 2021; Puliti et al., 2020). They can be grouped according to their 
platform, namely handheld, on a backpack, or vehicle- or UAV-mounted 
(also called ULS). One important challenge of using MLS is the posi-
tioning signal under the forest canopy, which makes the co-registration 
of the point clouds a challenge to be solved by different methods (Bakula 
et al., 2015; Kukko et al., 2017; Qian et al., 2017). Improvements in the 
accuracy of positioning under forest canopy, and in the LiDAR sensor 
technology, have made it possible to acquire MLS point clouds compa-
rable with those obtained with TLS in terms of accuracy and precision. 
For instance, Hyyppä et al. (2020c) obtained point clouds with point 
registration accuracies ranging from ± 1 cm in a backpack MLS to ± 3 
cm in a handheld MLS and under canopy ULS. 

Amongst the different MLS systems, the ones mounted on all-terrain 
vehicles (ATVs) or cars are used in the assessment of some types of urban 
infrastructure and by the automotive industry (Puente et al., 2013), but 
less often in forestry compared to TLS or other MLS systems. This system 
has a great potential to be used in automatic large-scale forest assess-
ments and to provide an alternative to traditional reference data 
collection. Nevertheless, only a few promising studies have assessed its 
suitability to measure forest structure at individual tree-level. For 
instance, Forsman et al. (2016) proposed an algorithm to detect stem 
points in a point cloud acquired from a car-mounted MLS, yielding an 
RMSE (Root Mean Squared Error) of 3.7 cm on DBH estimations. Later, 
Čerňava et al. (2019) tested the performance of a highly accurate MLS 
mounted on a tractor under heavy canopy conditions, reporting an 
RMSE of 3.1 cm on DBH estimations in these areas. Both studies suggest 
that vehicle-mounted MLS could be used to conduct forest 
measurements. 

A car-mounted MLS can provide reference data in the quantity and 
quality required to calibrate models at individual tree level and reduce 
the need of labor-intensive field campaigns, thus supporting efficient 
Precision Forestry. This system can take advantage of forest road net-
works in regions like Sweden, where there are approximately 210,000 
km of forest roads accounting for about one-third of the total road 
network in the country (Axelsson et al., 2018), making measurements on 
the go during field visits or operations. However, areas with dense forest 

cover and sparse road network could not be suitable for using of a 
vehicle-mounted MLS with inventory purposes, once the sampling 
would be restricted to only a few areas. In terms of autonomy, cars or 
ATVs are capable of operating for longer during field campaigns when 
compared to other MLS systems (e.g., under-canopy ULS). Moreover, it 
would be possible to train models with local reference data in remote 
sensing-based forest inventory, instead of using samples at the regional 
or national level. Finally, the smooth trajectory on forest roads together 
with a clear positioning signal can yield high accuracy point clouds, 
making it possible to derive accurate estimates of forest variables at 
individual tree level. 

A method able to estimate stem attributes using MLS from forest 
roads could change the current opportunities of using remote sensing- 
based methods that require large amounts of reference data for cali-
bration and parametrization. For instance, Kolendo et al. (2021) used a 
large-scale reference dataset to parameterize ITD algorithms in conif-
erous forests, reaching tree count RMSEs varying from approximately 6 
to 13%, depending on the forest type. Skudnik and Jevšenak (2022) 
found that, in the presence of sufficient reference data for calibration, 
artificial neural network-derived tree height predictions can outperform 
predictions derived from mixed effect models. Generally, deep learning 
methods require large datasets for calibration to be used at their full 
potential (Hamraz et al., 2019; Xi et al., 2020). 

In addition, the type of reference data is a constraint while working 
with remote sensing-based environmental assessments, because some 
forest attributes are not easily measurable with manual methods. For 
instance, Zhen et al. (2016) pointed out the difficulty to acquire precise 
tree locations in field reference data as a disadvantage of individual tree 
detection approaches in forest inventories. Another example is the 
estimation of stem profiles, which requires either destructive methods or 
heavy machinery to be measured. In this sense, the car-mounted MLS 
has the potential to provide data of the type and amount required by 
different applications and pose as a suitable reference data collection 
component in remote sensing-based forest inventories. 

A possible drawback of such a solution is that at the roadside, where 
there is usually less competition among individual trees, the trees are 
under edge effect and may show different growth rates and patterns 
compared to trees further into the stand (Delgado et al., 2007; Harper 
et al., 2015). Consequently, a car-mounted MLS solution that limits data 
collection to the roadside might sample mostly trees that are not 
representative of the whole forest and may not be suitable for calibrating 
remote sensing-based models. 

The main objective of this study is to assess the suitability of a car- 
mounted MLS sensor to retrieve field reference data along forest 
roads. We assess the potential of such technology in providing reference 
data for remote sensing-based forest inventories. The specific objectives 
are: (1) to propose algorithms for ITD (Individual Tree Detection), DBH, 
stem profiles, and total volume estimation with MLS data, and (2) to 
assess the influence of distance from the roadside on the estimations. 

2. Material and methods 

2.1. Study area and reference data 

The proposed algorithms were validated on the Remningstorp test 
site, in Southern Sweden (lat. 58.5 degreesN, long. 13.6 degreesE), 
where the dominant tree species were Norway spruce (Picea abies) – 
85.7%, Scots pine (Pinus sylvestris) – 9.1%, and Birch (Betula spp.) – 
3.4%, with density of 580 trees/ha. Altogether, 18 circular plots with a 
radius of 10 m were measured in the field during summer 2017. In each 
field plot, all living trees with a DBH greater than 4 cm had their DBH 
and position recorded. The mean DBH of the measured trees was 26.7 
cm, with approximately 95% of all measured trees having DBH >= 15 
cm. The plots were organized in six groups, with the plot centers aligned 
perpendicularly to the road (Fig. 1). 

To evaluate the effect of the distance from the road on the proposed 
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method’s accuracy, we divided the trees into 6 range zones, according to 
their distances from the roadside: 0–10 m, 10–20 m, 20–30 m, 30–40 m, 
40–50 m, and 50–60 m (Fig. 1). 

In November 2019, TLS surveys were conducted in each group using 
a multi-scan setup, with 2 scans per plot (Fig. 1). The TLS sensor used 
was a Trimble TX8. The wavelength was near-infrared (1500 nm) and 
repetition rate was 1 million points per second. The field of view was 
360 degrees in the horizontal and 317 degrees in the vertical direction, 
and the point spacing of 0.4 cm at 10 m from the scanner. The footprint 
diameter was 3.4 cm at 100 m from the sensor. The system records up to 
three returns from the same pulse with a range accuracy less than 0.2 
cm. 

The TLS point cloud was processed according to Olofsson and 
Holmgren (2016). The stem volume was estimated for the TLS data using 
the stem curve procedure described in section 2.3.7. In comparison with 
field-measured DBHs, the TLS measurements had an overall Root Mean 
Squared Error (RMSE) and bias of 1.54 cm and 0.93 cm, respectively. 
Table 1 shows the RMSE of TLS-derived DBH estimates for each distance 
range from the road. These values are higher than the reported by 
Olofsson & Holmgren (2016) of 1 cm RMSE. This difference may be 
partly explained by the two years elapsed between the field and TLS 

surveys, which might also have caused the systematic overestimation 
evidenced by the positive bias. In addition, zones as 0–10 m and 50–60 
m were scanned by the TLS from only one direction, whereas the zones 
from 10 to 50 m had TLS positioned in both sides of the trees. This 
scanning set up might have caused lower accuracy in the closest and 
furthest distance ranges. 

2.2. Mobile and Airborne laser scanning systems and Pre-processing 

The MLS data survey was carried out using a car-mounted Riegl VUX- 
1LR sensor in November 2019. In total, approximately 7 km of forest 
roads were scanned in the both sides, yielding 84 ha of scanned forests 
considering the 0–60 m range. The car had a speed of 8 km/h and the 
sensor was leaning 30 degrees from the horizontal plane, with the side of 
the sensor pointing up and turned toward the front part of the car. The 
sensor shot near-infrared (1550 nm) pulses at a repetition rate of 820 Hz, 
which together with a field of view of 330 degrees yielded the angular 
step width (ASW) of 0.0066 degrees. The footprint diameter was 5 cm at 
100 m from the sensor. The system records up to three returns from the 
same pulse with point registration accuracy of 1.5 cm. 

The Airborne laser scanning (ALS) data was collected in October 
2019 with a Leica TerrainMapper-LN system from approximately 1450 
m above ground. The airplane had an average speed of 115 knots. The 
laser beam footprint was 0.35 m, the pulse frequency equal to 1600 Hz, 
and the scanner field of view equal to 30 degrees. The average point 
density was approximately 22 points/m2. 

Before ITD, the point clouds were classified into ground and non- 
ground points using the ground classification algorithm by Zhang 
et al. (2016) implemented in the lidR R package (Roussel et al., 2020). 
Once classified, we divided the MLS point clouds in two. The first point 
cloud excluded the ground points, and this was used for ITD, diameter, 
and stem profile estimation. The second point cloud was formed by only 

Fig. 1. Schematic representation of spatial disposition of a group of plots in relation to the roadside and TLS survey setup (A), with details of the position of the plots 
in the study area (B), and position of the field plots in Sweden (C). 

Table 1 
RMSE and bias of TLS-derived DBH estimates according to the distance range 
from the road.  

Zone RMSE Bias 

0–10 m 2.57 cm (10.7%) 2.35 cm (9.87%) 
10–20 m 1.53 cm (5.60%) 1.04 cm (3.81%) 
20–30 m 1.40 cm (5.06%) 1.11 cm (4.02%) 
30–40 m 1.55 cm (5.62%) 0.85 cm (3.11%) 
40–50 m 1.32 cm (5.15%) 1.01 cm (3.94%) 
50–60 m 1.62 cm (6.36%) 0.82 cm (3.22%)  
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the ground points and used to find the aboveground height of the trees. 

2.3. Individual tree Detection, stem Profiling, and stem curve estimation 

The scanner’s setup was chosen to facilitate tree detection and stem 
diameter estimation. The sensor’s high repetition rate, combined with a 
scanning frequency lower than that normally used in surveys, yielded 
point clouds with high density within scan lines, but two consecutive 
scan lines are more separated in space. For instance, at 40 m from the 
sensor, two consecutive points were approximately 0.5 cm apart, 
whereas two consecutive scan lines were approximately 17 cm apart. 
The scanning frequency was chosen to yield very high density in stem 
cross sections, facilitating branch filtering and circle fits. However, it 
caused a significant loss of information in the vertical direction along the 
stem. Thus, this setup provided a better representation of the the targets 
in the scanline direction than in three dimensions, since solid tar-
gets—like stems—do not become represented in the point cloud as 
continuous surfaces, but rather as a collection of cross sections (Fig. 2). 
For this reason, the proposed ITD algorithm assumed that points 
belonging to the same stem appear in the point cloud as arcs, and it finds 
point clusters with circular shape within each scan line. After that, the 
identified arcs were segmented into single stems. Next, to estimate the 
stem profile, we divided the detected stems into sections, corrected their 
inclination (to point straight up), and estimated their diameter. 

One characteristic of the car-mounted MLS data is the uneven point 
density of the point cloud (Fig. 3), which varied according to the dis-
tance from the sensor: while areas closer to the road (and thus closer to 
the sensor) had trees with both the stem and canopy scanned, trees 
further into the stand might have lacked several portions of the stem and 

did not have returns from the upper canopy part, which prevented the 
retrieval of total heights from the MLS point cloud for many trees in 
these areas. To contour this issue, each tree’s total height was retrieved 
from ALS instead of MLS point clouds. Total heights can also be 
modelled based on other tree attributes, however, in this study we used 
ALS-retrieved values in order to better understand the effects of the 
distance from the road in the estimates. 

Finally, once the stem profiles of each tree were estimated, a stem 
curve model was fit to each detected tree. With such model, we could 
estimate diameters at any height of the tree even though it might not 
have been scanned. A flow chart of the method is presented in Fig. 4, and 
the details of each step are described in the following sections. 

2.3.1. Intensity-based point clustering per scanline 
The trees were independently detected in each scanline by finding 

arcs in the point cloud, as in Forsman et al. (2016). In this step, we 
assumed that points close enough to each other could be considered as 
returns from the same target, e.g., the same stem. 

The algorithm operates in each scanline in two steps. First, it clusters 
points together and secondly, it uses intensity thresholds to select only 
reliable laser returns in each cluster. This avoided inaccurate echoes at 
the edge of the stem due to, for instance, the laser beam’s footprint 
(Forsman et al., 2018, 2016). This process works as follows:.  

- For each scan line, cluster together points that are at a maximum 
distance dt cm from each other. In other words, inside a cluster a 
point should be maximum dt cm from its nearest neighbor in the 
same cluster. The cluster should have at least 15 points;  

- For each cluster, save the 95th intensity percentile as the intensity 
peak (Ip). Then filter out points with intensity value less than 70% of 
Ip. 

The threshold distance dt used to cluster points together was based 
on the laser survey’s angular step width (ASW) and accuracy (A). It 
denotes the maximum distance a point in a given cluster should be from 
its closest point in the same cluster. It is given by equation (1), 

dt = sin(ASW/2)*D*2 + 2*A, (1) 

where the first part of the equation denotes the minimum distance 
between two consecutive points at a given distance D from the sensor, 
assuming the points have reflected from a perfectly flat target. The ASW 
represents the angular separation between two consecutive laser pulses. 
Finally, different factors, such as the stem shape and point positioning 
errors, could cause the distance between two consecutive points to be 
bigger than the theoretical one. For this reason, we added two times A to 
dmin to form dt, accounting thus for both the circular shape of the stem 
and inaccuracies in the point’s position. 

2.3.2. Circle fitting 
The first circle fitting was done for two reasons: first, to eliminate 

point clusters that do not have the arc shape we assume stems to have, 
and second, to obtain coordinates for each circular cluster, which will be 
subsequently used to segment the arcs into tree stems. 

To fit the circle, we used the modified version of the Random Sample 
Consensus (RANSAC) algorithm described by Olofsson et al. (2014). This 
algorithm iteratively fits circles to a given set of points and chooses the 
best fit (Fig. 5). The circles were fit to the projection of the points on the 
horizontal plane, i.e., only the X and Y coordinates were used in the 
fitting process. The number of iterations for each cluster was set to 140, 
based on the probability of finding a good circle model, as in the paper 
by Olofsson et al. (2014). In each iteration for a given cluster, three 
points were randomly selected and a circle was fit to them. For each 
iteration, we recorded the number of inliers as being the number of 
points within a given tolerance distance from the circle. The points 
outside this tolerance distance were considered outliers. Each iteration 
determines unique sets of inliers and outliers, which are not dependent 

Fig. 2. Representation of a stem section in the car-mounted MLS point cloud. 
The stem is represented as a collection of arcs. It is possible to notice branches 
and shaded areas. 
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on the other iterations. In this study, we decided to set this tolerance 
distance equal to the accuracy of the laser survey, which was 1.5 cm. 

We assumed that the laser beam cannot go through the stem, so if the 
randomly chosen circle in a given iteration had more than 1% of the 
outliers inside the trunk, the iteration was considered invalid. Then, we 
selected the fit with the highest number of inliers amongst the valid it-
erations as the best fit. After the best fit is selected, the outcomes of all 
the other iterations are ignored. The inliers of the best fit were used in a 
final adjustment by iteratively looking for the circle with smallest mean 
squared distance between its inliers and its edge. The center coordinates 
(X, Y), its radius and height (median height of the points), were recorded 
for the next step. 

2.3.3. Stem segmentation 
Since the trees were detected independently in each scan line, it was 

necessary to vertically aggregate the arcs to build consecutive tree 
stems. Thus, in the stem segmentation, we associated several arcs to a 
single stem using the circle center locations obtained in the previous 
step, according to the tree stem segmentation proposed by Holmgren 

et al. (2019):  

- For each arc’s circle, estimate a direction vector (Vdi) using other 
circles within a 50 cm radius of the target circle with Principal 
Component Analysis (PCA). Use the center coordinates (X, Y and 
height) of the circles as input;  

- For each Vdi, calculate the root-mean-square-deviation (RMSD) of 
the 3D linear distance of the circles’ centers to Vdi;  

- Sort all the Vds from the smallest to the largest RMSD;  
- For each Vdi, starting from that with smallest RMSD, segment to the 

same stem all the arcs whose circular areas – generated in section 
2.3.2 – are crossed by Vdi. In other words, segment to the same stem 
all circles crossed by the direction vector calculated in the first step. 
Repeat this step until no more arcs are available (i.e., no more arcs 
without a stem associated). 

Once the arcs were segmented into stems, we recorded the position 
of the lowest arc as the position of the stem. 

Fig. 3. Representation of 3D point cloud, where the point density varies according to the distance from the sensor. The left side is closer to the sensor than the right 
side and has more points in the canopy and on the stem compared to the trees in the right side of the figure. 

Fig. 4. Flowchart showing the processing of MLS point cloud.  

R.P. Pires et al.                                                                                                                                                                                                                                  



ISPRS Journal of Photogrammetry and Remote Sensing 187 (2022) 211–224

216

2.3.4. Stem partitioning 
Neighboring arcs from the same stem were grouped to provide better 

input data for the circle fitting than would be possible using a single arc 
(Fig. 6 A and B). This process, which we called stem partitioning, was 
necessary for two reasons. First, branch points are often classified as 
stems, especially in transition areas where both connect. Second, the 
identified arcs might have imperfections, such as gaps or noise around 
them (Fig. 2). 

The grouping was done by partitioning the segmented stem into 
small sections of 30 to 50 cm. The size of the section was dependent on 
how many arcs could be found in each height interval. In this study, the 
minimum number of arcs in each section was defined according to the 
laser survey’s setup, which gives that two consecutive scan lines would 
be 17.1 cm apart from each other in height. Thus, on a 30 cm long 
section of a given stem, we expect to find two arcs. However, this dis-
tance between scan lines can vary according to the car’s speed during 
the survey. Hence, when fewer than two arcs were found in a 30 cm 
section, the section size was increased by 10 cm until it reached 50 cm, 
or until the minimum of two arcs were found. If at least two arcs were 
not found in a 50 cm interval, this interval was considered empty and 
not used in the stem profiling. In the first two zones, from 0 to 10 m and 
10–20 m, we recorded stems with at least 10 sections, to avoid classi-
fying bushes or branches as trees. When stems in those zones had fewer 
than 10 sections, they were considered noise. 

2.3.5. Inclination correction 
Hyyppä et al. (2020b) demonstrated that the horizontal projection of 

points from inclined stems can lead to biased diameter estimations when 
trees lean more than 3–4 degrees. To avoid such errors, stem direction 
should always be perpendicular to the plane on which the points are 
projected. 

In this study, diameters were always estimated in the horizontal 
plane. Therefore, the stem’s inclination was corrected before projecting 
its sections. It is also important to note that a stem’s inclination is not 
constant along the tree. For this reason, we corrected the inclination at 
each 2 m of stem, respecting the sections defined in the previous step: we 
found the direction vector of each 2-meter log simply by getting the 
centroids of the log’s upper- and lowermost sections. Then, we rotated 

Fig. 5. Schematic representation of the point selection done by the modified 
RANSAC (Olofsson et al., 2014). 

Fig. 6. Representation of a stem section from a Norway spruce tree where all points were classified as stem points. A: Single arc seen from above; B: group of arcs 
(stem section) seen from above. 
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the log to match a vector of the same size with its upper- and lowermost 
sections vertically aligned. 

2.3.6. Diameter estimation 
After defining the sections and correcting their inclination, we esti-

mated the sections’ diameters by fitting circles to the projection of each 
section’s points on the horizontal plane. The main difference between 
the two circle fit steps in this study is that in section 2.3.2 the process 
was done at arc level (i.e., only one scan line), whereas in the current 
step the fit was done at section level (i.e., group of arcs). 

In addition, the circle fit for diameter estimation was done in two 
stages as proposed by Lindberg et al. (2012), making the estimation less 
sensitive to the local influence of branches. In the first stage, we fitted 
circles as described by Olofsson et al. (2014). In the second stage, the 
center positions (Xc, Yc) and diameters (D) from the circles in the first 
stage were used to select a new set of points. If we let (xi, yi) be a point 
coordinate from the stem section we are analyzing, we select the points 
that meet the criteria in equation (3) in the second stage. 

(Xc − xi)2
+(Yc − yi)2

≤ (p*D/2)2 (2)  

where p is a constant that expresses the maximum distance from the 
circle center (Xc, Yc) a point (xi, yi) should be so it would be included in 
the second stage, expressed as a proportion of the radius value found in 
the first stage. In this study, we use p = 1.1. 

At last, a final circle fitting was done using the points selected in the 
second stage, and the diameter value and section height found were 
recorded as the stem profile of the tree. 

2.3.7. Stem curve 
We used the stem curve model by Hyyppä et al. (2020b) to describe 

the diameter variation along a tree’s stem, estimating diameter values 
for regions of the tree that have not been scanned, e.g., the treetop and 
DBH height. The model combines equations (4) and (5). 

Ra(z) = a1*(H − z) + a2*(H − z)2
, (3)  

Rb(z) = b*
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(H − z)

√
, (4)  

where H is the total height of the tree retrieved from ALS, and R(z) is the 
radius at the height z. Both a1, a2, and b are coefficients to be determined 

with least square regression. With the coefficients, equation (5) gives the 
stem volume (V). 

V = π
/

2*
(∫ H

0
Ra(z)2dz+

∫ H

0
Rb(z)2dz

)

. (5) 

The system composed by equations (3) and (4) was chosen for 
several reasons, as pointed by Hyyppä et al. (2020b). First, the small 
number of coefficients used in the equations make the model robust to 
deal with outliers along the stem profile. Second, the average of both 
equations (effective fit) fits well to the stem profile, performing similarly 
in trees with several diameter values measures along the stem (Fig. 7 – 
Tree A), and trees with less measurements (Fig. 7 – Tree B). 

To obtain accurate total heights for all the trees we use ALS data over 
the same area. The retrieval of total heights from the ALS point cloud 
was done with a 30 cm radius search around the MLS-retrieved tree 
positions. Inside this radius, the highest height value was considered the 
tree’s total height. 

2.4. Accuracy assessment 

Different reference data sources were used to assess the accuracy of 
the variables retrieved with the car-mounted MLS. The accuracy of the 
ITD was assessed in each zone by matching the MLS-detected trees with 
the field-recorded tree positions. This was done by conducting a radius 
search around 30 cm of each MLS-detected tree. If an MLS-detected tree 
corresponded to a field-recorded one, the tree was considered a true 
positive. If it did not correspond to any field-recorded tree, it was 
considered a commission error. Finally, we considered omission when a 
field-recorded tree position did not have any correspondence with the 
MLS-detected individuals. Then, we computed the precision (equation 
(6)) and sensitivity (equation (7)) to quantify the accuracy of the ITD: 

Precision = TP/DT, (6)  

Sensitivity = TP/(DT + OT), (7)  

where TP is the number of trees correctly detected (true positives), DT is 
the total number of trees found by the proposed ITD algorithm, and OT is 
the number of trees present in the reference data which were not found 
by the proposed method (omissions). 

Fig. 7. Parabolic function Ra (z) in blue (equa-
tion (3)), square root function Rb (z) in green 
(equation (4)) that compose the stem curve 
model fit to the stem profiles of two different 
trees (Tree A and B). The average (effective fit) of 
Ra (z) and Rb (z), which is used to estimate the 
effective diameter values and stem volume, is 
shown in red. Trees A and B have different 
number of diameter measurements along the 
stem. (For interpretation of the references to 
colour in this figure legend, the reader is referred 
to the web version of this article.)   
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TLS-derived DBHs, stem profiles and total volumes were used as 
reference to assess the accuracy of MLS-derived estimates of these three 
forest attributes. In this study, TLS-derived values were preferred over 
other methods of reference data collection once the measurement of 
stem profiles and volume though destructive methods was not feasible. 
Thus, in each zone, the performance of the proposed method was eval-
uated by comparing the MLS-derived and TLS-derived DBHs, stem 
profiles and total volumes of each detected tree by computing the RMSE 
- equation (8) - and bias - equation (9). The relative RMSE and bias were 
calculated in relation to the reference mean values of each variable. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=1
(ŷi − yi)2

/

n

√
√
√
√ , (8)  

bias =
∑N

i=1
(ŷi − yi)

/

n, (9)  

where yi and ŷi are the target’s variable reference and estimated values, 
respectively, for unit i and n is the total number of units. 

To compare the stem profiles obtained with the two methods, we 
defined a comparison range that comprehends the height interval of the 
stem where both MLS and TLS measurements are available. Inside the 
comparison range, we calculated the average diameter for each 1-meter 
interval, thus reducing the local influence of outliers in both the MLS 
and reference datasets. 

Finally, we evaluated the difference of the diameter distributions 
obtained with the different sensors in each detection zone (5 cm classes). 
For that, we used the error index e (Reynolds et al., 1988) proposed by 
Packalén and Maltamo (2008), as in equation (10), 

e =
∑N

i=1
0.5 × |fi/N − f̂ i/N̂ |, (10)  

where fi and f̂ i are the number reference and MLS-detected trees in 
diameter class i, respectively. N and N̂ are the total number of reference 
and MLS-detected trees, respectively. 

3. Results 

3.1. Individual tree detection 

Table 2 shows a summary of ITD’s precision and sensitivity in 
different zones. The ITD performance varied according to the tree’s 
distance from the road. From 0 to 10 m, we noticed the lowest precision 
and sensitivity in the study. This is mostly due to the high number of 
large branches and the proximity to the sensor. From 0 to 10 m from the 
road, we observed bigger branches compared to areas further into the 
stand. This factor, combined with the proximity to the sensor, meant 
that such branches were heavily scanned, causing some of them to be 
classified as separate trees (commission errors). At the same time, 
omission errors were caused by the high proportion of branches in the 
trees in this zone, which made discriminating between branches and 
stems not always possible. For instance, some stems might have been 
visible but could not be considered circular due to the amount of noise 

around them. In these cases, the stems were filtered out of the point 
cloud. 

The ITD had the best performance in the intermediate zones. Similar 
figures were observed from 10 to 20 m, 20–30 m, and 30–40 m, with 
both precision and sensitivity exceeding 90%. In these zones, the 
branches are smaller compared to the first zone, which made discrimi-
nating between branches and stems easier. Besides, in the intermediate 
zones, the point density is not as high as at 0–10 m from the road, 
causing fewer commission errors. 

Beyond 40 m from the roadside, as distance to the sensor increases, 
we observe high precision and decreasing sensitivity. In these zones, few 
or no commission errors were observed, which justified the high preci-
sion values. However, as trees get more distant, the chances of occlusion 
increase and point density decreases, making it more likely that fewer 
points would hit the stems, and thus more difficult to discriminate be-
tween stem and crown. 

3.2. DBH, stem profile, and DBH distributions 

The prediction accuracy of DBH varied through the different zones 
(Fig. 8), with the RMSE and bias ranging from 1.81 cm (6.38%) to 4.84 
cm (16.9%), and − 0.41 cm (-1.35%) to 0.82 cm (2.86%), respectively. In 
some zones, e.g., from 0 to 10 m, the presence of outliers and the lower 
accuracy of the reference data in this zone influenced the accuracy of the 
predictions more. However, most errors were between ± 10%. In 
addition, the variation of RMSE in the different zones is a consequence of 
the presence or absence of scan arcs around the DBH height (1.3 m). 
Some trees do not have arcs near 1.3 m, which causes their DBH values 
to be a result of the stem curve built from diameter values at higher parts 
of the tree and creates the observed outliers. 

The stem profile estimates (Fig. 9) had slightly lower RMSE than the 
DBH estimates, ranging from 1.58 cm (6.26 %) to 2.18 cm (8.76%). The 
bias ranged from − 0.44 cm (-1.58%) to 0.22 cm (0.84%). We assessed 
the accuracy only in the scanned regions of the stem (comparison range), 
so these error values concern only the stem regions with both MLS and 
TLS data. On the other hand, DBH estimates were retrieved from a stem 
curve model, since not all the trees were scanned at 1.3 m height. For 
this reason, the DBH-related accuracy contains not only errors from the 
stem profiling, but also errors from stem curve fitting. 

The error index of diameter distributions ranged from 0.11 to 0.33 
(Fig. 10), with no trees below 10 cm DBH being correctly estimated, 
regardless of the zone. However, our study area had a few small trees 
(DBH < 10 cm), which does not allow a proper evaluation of the esti-
mations in this stratum. The largest e was observed from 0 to 10 m. The 
smallest e values were found from 30 to 60 m, where e was equal to 0.11. 

3.3. Volume 

The stem volume estimates had the highest relative RMSEs in this 
study, ranging from 0.08 m3 (10.1%) to 0.19 m3 (25.7%) and bias from 
− 0.03 m3 (-4.07%) to 0.19 m3 (8.25%) (Fig. 11). The highest RMSE and 
bias are in the first zone (0–10 m). The stem volumes are more likely to 
be overestimated in the zones closer to the road, whereas values further 
into the stand tend to be systematically underestimated. 

We also compared the total reference and estimated total volumes of 
each zone (Table 3). For these estimates, the accuracy was highly 
correlated with the ITD performance in each zone, with the volume of 
omitted or commissioned trees being the main error source. For 
instance, both commission errors and the systematic overestimation of 
stem volumes observed from 0 to 10 m caused the total volume for the 
zone to be overestimated by 13% in average. On the other hand, omis-
sions might have caused the underestimation observed from 50 to 60 m, 
where 66.6% of the total reference volume was detected. The area-level 
estimates performed better in the intermediate zones, where the ITD had 
the best overall performance. In the intermediate zones, the mostly 
small trees are omitted, which did not seem to influence the total volume 

Table 2 
Individual tree detection (ITD) precision and sensitivity according to the dis-
tance range from the road.  

Zone Precision Sensitivity 

0–10 m  82.8%  85.7% 
10–20 m  96.5%  96.7% 
20–30 m  98.8%  94.2% 
30–40 m  92.5%  92.5% 
40–50 m  98.0%  86.1% 
50–60 m  100.0%  62.7%  
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estimates. 

4. Discussion 

4.1. Algorithm performance 

The sensor configuration was tailored to detect tree stems along 
forest roads. Its high repetition rate combined with the sensor’s incli-
nation provided detailed cross sections of stems and enabled collection 
of data from both the ground and upper canopy. In this study, we pro-
posed an algorithm for individual tree detection designed for such a 
sensor configuration, identifying the cross sections (or arcs) in the point 
cloud and aggregating those into single trees. 

ITD is the key task in many MLS applications and is often the first 
result reported in several studies. The ITD method we proposed had a 
performance in the zones from 10 to 40 m (Table 2) comparable with 
that of other state-of-the-art methods: Liu et al. (2021) reported 96.7% 
precision and 93.5% sensitivity in a natural forest site with approxi-
mately 411 trees per hectare. Different precisions and sensitivities were 
found in the benchmark study by Hyyppä et al. (2020c), depending on 
the type of forest and MLS sensor. In obstructed forest (approximately 
420 stems/hectare), the authors reported precisions and sensitivities of 
100% and 79% respectively with backpack MLS, 100% and 76.7% with 
hand-held MLS, and 100% and 81.4% with under-canopy ULS. In sparse 
forest plots, with around 410 stems/hectare, the ITD performed better. 
Under these conditions, precisions and sensitivities of 100% and 92.9% 
respectively were found with all three systems, the backpack and hand- 

held MLSs and the under-canopy ULS. In these studies, the sensors were 
moving inside the forest plot, with a maximum distance from tree to the 
closest sensor of 20 m. In our study, depending on the zone, trees could 
be up to 60 m from the closest sensor location, which explains the lower 
ITD accuracy in zones far from the road. 

The accuracy of DBH estimates (Fig. 8) achieved with our method 
ranged from 1.82 cm (6.38%) to 4.84 cm (16.9%) in the different zones. 
These estimates were less sensitive to the distance from the road, which 
made it possible to obtain accurate DBH estimates in all six zones. Our 
results are in-line with accuracies reported by other authors with 
different vehicle-mounted MLS systems. For instance, Bienert et al. 
(2018) used a highly accurate car-mounted MLS to estimate DBH with 
3.7 cm RMSE, using field-measured DBHs as references. In addition, 
Liang et al. (2018b) reported an RMSE of 11.2% in DBH predictions with 
ATV-mounted MLS in boreal forests with approximately 600 stems/ha. 
Finally, Pierzchała et al. (2018) used a ATV-mounted MLS system 
composed by a Velodyne VLP-16 sensor, a stereo camera, an IMU, and a 
GPS to measure DBHs with RMSE equal to 2.4 cm. 

The lowest RMSE in DBH estimation was found at 20–30 m from the 
road, a zone where we did not observe any outliers, which implies that 
the accuracies in the other zones could potentially be improved by using 
refined methods of outlier correction and different sensor set-up. For 
instance, a more efficient branch filtering method could improve not 
only the accuracy of DBH estimates but also tree detection, e.g. in zones 
where the large amount of unfiltered branches prevent the stems from 
being detected due to the algorithm’s inability to identify circles in such 
cases. In addition, a reduced gap between two consecutive scan lines 

Fig. 8. Reference vs. estimated DBH. The red line is the 1:1 line, where reference and estimated values are equal. The orange lines represent a 10% deviation from 
the 1:1 line. RMSE = Root Mean Square Error. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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could increase the amount of diameter measurements along the stem 
and the chances of having a measurement around 1.3 m, which would 
make both DBH and stem volume estimates more accurate regardless of 
the zone. 

e is a measure of disparity between two distributions generated with 
different methods. In our study, the variation in e could be partially 
explained by the DBH estimates’ error: tree-level errors caused stems to 
be allocated in the wrong diameter classes, thus increasing e when 
comparing the estimated and reference DBH distributions. For instance, 
in our study the highest e (0.33) was found in the 0–10 m zone, with one 
of the highest RMSEs (4.84 cm) and biases in DBH estimation (0.48 cm). 

Stem profiles describe stems’ shape and can be used to calculate stem 
volume. However, a manual diameter measurement of the higher part of 
the stem is impractical in operational forest inventory, since the trees 
would need to be felled before the measurements are conducted. 
Therefore, different TLS and MLS solutions have been proposed as non- 
destructive and efficient alternatives to stem profile measurement, and 
the method we describe in this study provided stem profiles with com-
parable accuracies (Fig. 9). For instance, a benchmark study by Liang 
et al. (2018a) found RMSEs of stem curve estimation ranging from 0.9 
cm to 5.0 cm when comparing 13 multi-scan TLS-based algorithms 
under different forest conditions. Hunčaga et al. (2020) compared the 
accuracies of stem profiles obtained with different sensors, finding 
RMSEs equal to 1 cm, 1.3 cm and 1.9 cm in stem profiles obtained with 
TLS, hand-held MLS and close-rage photogrammetric point clouds, 
respectively. In addition, Hyyppä et al. (2020a) assessed the accuracy of 
stem curves obtained with under-canopy ULS, reaching RMSEs equal to 
1.2 cm and 1.4 cm in sparse and obstructed forest plots, respectively. 

Finally, MLS-derived stem profiles can also be obtained with RMSEs 
ranging from 5.0% to 18.7% (Hyyppä et al., 2020b; Liang et al., 2018b) 
depending on, among other things, the type of MLS system and forest. 

A drawback of the proposed method is that the stem profiles it pro-
vided were limited to the detectable portion of a tree’s stem. In other 
words, even though we could obtain accurate estimates of the stem di-
ameters at different heights regardless of the tree’s distance from the 
road, the number of detected stem sections varied amongst trees, in our 
study ranging from a few units to tens. A challenge of working with 
largely varying stem profiles is finding a model capable of describing the 
stem curve accurately regardless of the number of available sections. To 
overcome this challenge, we used stem curve equations by Hyyppä et al. 
(2020b) (equations (3) and (4)), which were robust with both numerous 
and few stem profile measurements due to the low number of parame-
ters to be calculated, thus preventing overfitting in stem profiles with 
only a few sections. 

The accuracy of the stem volume estimates in our study varied from 
0.08 m3 (10.6%) to 0.12 m3 (15.9%) in most of the zones, except at 0–10 
m, where the RMSE was 0.20 m3 (32.0%). The higher RMSE at 0–10 m 
can be at least partially explained by the lower accuracy of the reference 
in the same zone (Table 1). The bias of stem volume was mostly related 
to the distance from the road, varying from − 0.03 m3 (-3.25%), at 
30–40 m, to 0.06 m3 (10.2%), at 0–10 m. Closer to the road (e.g. 0–10 
m), branches were often classified as stem points, which caused them to 
be included in the circle fitting and diameter estimation procedures. For 
this reason, the stem volumes closer to the road were systematically over 
estimated (Fig. 11). Further from the road (e.g., at 50–60 m) the sys-
tematic underestimation was often due to the few sections used to 

Fig. 9. Reference (TLS) vs. estimated (MLS) stem profile. The red line is the 1:1 line, where reference and estimated values are equal. The orange lines represent a 
10% deviation from the 1:1 line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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estimate the stem curves in these areas. In other words, further from the 
sensor, the stem profiles may not represent the whole stem accurately 
and therefore lead to the observed underestimation. 

Despite higher error at 0–10 m, our method performed in-line with 
other state-of-the-art methods for stem volume estimation. For instance, 
Hyyppä et al. (2020c) estimated stem volumes with relative RMSE 
ranging from 10% to 15% while benchmarking backpack and handheld 
MLS and depending on the MLS system used. Second, Liang et al. 
(2018a) reported relative RMSEs of volume estimates varying from 
16.7% to 60.4% with different TLS-based algorithms in multi-scan 
setups. Third, Bienert et al. (2018) used car-mounted MLS to estimate, 
among other variables, merchantable and total stem volumes, reporting 
RMSEs equal to 0.4 m3 and 0.6 m3, respectively. Finally, the benchmark 
study by Liang et al. (2018a) compared different TLS systems and pre-
sented average RMSEs of 0.12 m3, 0.21 m3 and 0.18 m3, in the easy, 
medium and difficult plots, respectively,. 

Regarding total volume estimates, the RMSE (Table 3) ranged from 
7.97% to 10.5% in most zones, except for the first and last zones, where 
commission and omission errors caused over and under estimations, 
respectively. These values are comparable with the accuracy of different 
LiDAR-based methods at the area level. For instance, Puliti et al. (2020) 
found a deviance of 32.2% at the plot level, 28.9% at the stand level, and 
3.5% at the forest level when comparing under-canopy ULS- and field- 
based volume estimates. Maltamo et al. (2019) used accurate tree po-
sition data from harvester and ALS-based metrics to train k-NN (k 
nearest neighbor) estimators of total volume, reaching 9% RMSE in 
stand-level validations. Finally, Liang et al. (2018a) reported an average 
of 94% of total volume being detected with different TLS-based 

algorithms. 

4.2. Applicability 

One advantage of using car-mounted MLS instead of other ground- 
based LiDAR systems is the data collection efficiency provided by the 
car-mounted platform and the forest roads. The MLS survey used in this 
study took 2 h, scanning approximately 7 km of forests on both sides of 
the road. Therefore, at least 20 km of forest roads could be scanned in 
one day. When using the estimates from two zones (e.g., from 20 to 30 m 
and 30–40 m), the survey yields two sections, 20 m × 20 km, totaling 80 
ha of scanned forest per day. In comparison, using traditional forest 
inventory methods, the same crew would measure approximately 10 
circular plots, with a radius of 10 m, per day, yielding approximately 
0.31 ha of inventoried area. 

The choice of zones to use as reference data depends mostly on the 
edge effect and accuracy loss due to the distance from the sensor. First, it 
is important to make sure that the trees used as reference to train models 
are not under edge influence. Harper et al. (2015) suggested that boreal 
forests are less affected by both natural and human-caused edges, with 
the edge effect influence rarely exceeding 20 m in parameters such as 
basal area and canopy cover. Second, the low accuracy of the predictions 
in the zones from 40 to 60 m indicates that these areas are less suitable as 
reference for, e.g., remote sensing-based models. With the proposed 
sensor configuration, the data acquired at 20–40 m from the road or 
stand’s edge had the highest overall accuracy, being the most recom-
mended for use as reference for model calibration. 

The algorithm we describe is easy to implement. The parameters 

Fig. 10. DBH distributions and error index according to the distance from the roadside obtained with MLS (pink) and TLS (cyan), with overlaps in dark cyan. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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used, including angular step width and average distance between scan 
lines, were mostly derived from the survey’s setup, enabling imple-
mentation in different forest conditions without the need of further 
parametrization. However, the difference in the accuracy of the 
analyzed variables in the different zones suggests that the algorithm’s 
performance could be enhanced by using zone specific parameters. 

5. Conclusions 

In this study, we propose an algorithm to extract stem attributes from 
a car-mounted MLS circulating on forest roads, with focus on quantita-
tive forest attributes such as DBH and stem volume in boreal forest 
conditions. Furthermore, we analyzed its performance at different dis-
tance ranges from the roadside. The results indicate that the proposed 
method can be an alternative for efficient reference data collection in 
forest inventories. With the presented sensor set up and algorithm, we 
were able to reduce the bias despite the proximity to the road by 
reaching beyond the forest area under edge effect. In addition, the ac-
curacy of DBH and stem profile estimates remained stable from 10 to 60 
m from the road, with the presence of few outliers. However, the ac-
curacy of individual tree detection and stem volume estimates decreases 
as the distance from the road increases. Finally, future work might focus 
on improving branch filtering and explore how the predictions can be 
used to train remote sensing-based models in large-scale forest 
inventories. 
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