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Abstract
Long amplicon metabarcoding has opened the door for phylogenetic analysis of the 
largely unknown communities of microeukaryotes in soil. Here, we amplified and se-
quenced the ITS and LSU regions of the rDNA operon (around 1500 bp) from grass-
land soils using PacBio SMRT sequencing. We tested how three different methods for 
generation of operational taxonomic units (OTUs) effected estimated richness and 
identified taxa, and how well large-scale ecological patterns associated with shifting 
environmental conditions were recovered in data from the three methods. The field 
site at Kungsängen Nature Reserve has drawn frequent visitors since Linnaeus's time, 
and its species rich vegetation includes the largest population of Fritillaria meleagris 
in Sweden. To test the effect of different OTU generation methods, we sampled soils 
across an abrupt moisture transition that divides the meadow community into a Carex 
acuta dominated plant community with low species richness in the wetter part, which 
is visually distinct from the mesic-dry part that has a species rich grass-dominated 
plant community including a high frequency of F.  meleagris. We used the moisture 
and plant community transition as a framework to investigate how detected below-
ground microeukaryotic community composition was influenced by OTU generation 
methods. Soil communities in both moisture regimes were dominated by protists, a 
large fraction of which were taxonomically assigned to Ciliophora (Alveolata) while 
30%–40% of all reads were assigned to kingdom Fungi. Ecological patterns were con-
sistently recovered irrespective of OTU generation method used. However, different 
methods strongly affect richness estimates and the taxonomic and phylogenetic reso-
lution of the characterized community with implications for how well members of the 
microeukaryotic communities can be recognized in the data.
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1  |  INTRODUC TION

Microbial community composition in soil can be assessed in me-
tabarcoding studies of environmental DNA (eDNA) extracts by 
amplification and sequencing of barcoding regions, often targeting 
the ribosomal operon. Richness estimates based on eDNA metabar-
coding studies indicate that global fungal species richness is at least 
ten times higher than the number of formally described species 
(Spatafora et al., 2017), including several class level lineages of cur-
rently undescribed fungi (Tedersoo et al., 2017). Non-fungal micro-
eukaryotes, collectively referred to as protists throughout the text, 
are far less studied in soil compared with fungi but are increasingly 
recognized for their diverse ecosystem functions (Geisen, 2016). 
Recent molecular studies using eDNA have dramatically increased 
our knowledge of protist diversity in different environments, even 
indicating that diversity may be higher in soil than in water (Burki 
et al., 2021; Geisen et al., 2018; Mahé et al., 2017).

Challenges in characterizing soil microeukaryotic communi-
ties from metabarcoding data include biases associated with primer 
choice, tradeoffs between number of samples and sequencing depth, 
method for estimating species richness as well as accuracy of taxo-
nomic identification of community members. Some of these aspects 
are discussed below and further explored in this paper. The two inter-
nal transcribed spacer (ITS1 and ITS2) are noncoding, hypervariable 
regions of the rDNA operon, widely accepted as marker regions for 
characterization of fungal communities (Schoch et al., 2012). However, 
due to intraspecific variation and sequencing errors, community com-
position of known and novel species cannot be directly identified from 
the massive numbers of unique reads generated by high-throughput 
eDNA sequencing (Ryberg, 2015). Instead, sequence reads are clus-
tered into operational taxonomic units (OTUs) and/or denoised into 
amplicon sequence variants (ASVs) that may serve as proxies for spe-
cies. In a comparison of OTU clustering and denoising into ASVs of 
short-read amplicon, Glassman and Martiny (2018) demonstrated that 
the two methods capture different representations of the soil micro-
eukaryotic community but that large-scale ecological patterns were 
consistently represented in both datasets. Similarly, spatio-temporal 
turnover patterns were consistently captured across datasets using 
both different sequencing technologies and different amplicon 
lengths (Furneaux et al., 2021). While strong community patters are 
highly reproducible, effects of bioinformatic tools on the generated 
species proxies and the sequences selected to represent them remains 
important for researchers that which to take metabarcoding commu-
nity analysis beyond large-scale ecological patterns.

The most common approach for OTU generation has been 
abundance-based greedy clustering of reads using fixed similar-
ity thresholds relative to a centroid sequence, as implemented 
in USEARCH (Edgar, 2013) and VSEARCH (Rognes et al., 2016). 
Clustering thresholds are often chosen based on estimates of the 
level of variation present within species (Tedersoo et al., 2014). 
However, no universal threshold accurately separates all species 
(Nilsson et al., 2008; Vu et al., 2019), and a more stringent thresh-
old may cause two sequences which belong to the same species to 

separate into different OTUs, that is, splitting of species, while a less 
stringent threshold may artificially lump multiple species together 
into a single OTU (Ryberg, 2015). In single-linkage clustering on the 
other hand, a read is joined to a cluster if it is within the set similarity 
threshold to any other read in the cluster, that is. not just compared 
with a centroid sequence. This approach has been used with simi-
larity thresholds much smaller than the expected sequencing error 
(e.g., 1 bp) to delimit more “natural” OTUs, as applied in swarm clus-
tering (Mahé et al., 2014). Very small similarity thresholds are only 
appropriate in a densely populated error space, and the presence 
of intermediate sequences can cause single-linkage clustering to 
group fairly distant sequences into an OTU (Mahé et al., 2014, 2017). 
Clustering based on similarity thresholds, whether centroid-based 
or single-linkage, does not differentiate sequencing errors from bi-
ological variation. Denoising algorithms, such as DADA2, have been 
developed to identify ASVs present in a sample, by removing se-
quencing errors using a model which incorporates the base quality 
scores and read abundances (Callahan et al., 2016). This approach 
captures both within and between species variation, even as little 
as one base pair difference, and so ASVs may be further clustered to 
serve as proxies for species (Frøslev et al., 2017). However, DADA2 
does rely on the presence of at least two identical sequences as 
seeds for generating ASVs, so the method can perform poorly when 
the majority of reads are singletons (Furneaux et al., 2021).

Assigning taxonomy to OTUs may allow for functional analysis of 
community composition, but is highly dependent on curated refer-
ence datasets such as the PR2 for protists (Del Campo et al., 2018; 
Guillou et al., 2012) and UNITE for fungi (Kõljalg et al., 2013). In the 
well-established fungal sequence database UNITE, OTUs are derived 
using a range of thresholds from 97% to 99.5% similarity across the 
ITS2 region and referred to as species hypotheses (SH) with unique 
numbers and known species names when available (Kõljalg et al., 
2013). The development of PacBio sequencing technology (Pacific 
Biosciences, Menlo Park, CA, SA) has allowed longer eDNA ampli-
cons, including both variable spacers and more conserved functional 
rDNA regions, to be sequenced from complex samples. In the ab-
sence of matching reference sequences, taxonomic assignment of 
novel lineages is possible based on phylogenetic inference using the 
more conserved rDNA small subunit (SSU; Jamy et al., 2020) and/or 
large subunit (LSU) sequences (Furneaux et al., 2021; Tedersoo et al., 
2017). The benefit of phylogenetically supported taxonomic assign-
ment of OTUs is particularly relevant in communities consisting 
mostly of poorly characterized lineages (Kalsoom Khan et al., 2020).

For this study, we revisited two permanent transects at the 
Kungsängen Nature Reserve (Sernander, 1948; Zhang, 1983). 
Kungsängen is a seminatural grassland located in Uppsala, Sweden, 
home to a large population of the plant Fritillaria meleagris (Liliaceae) 
in Sweden, where it was naturalized in the 18th century after being 
used as a popular garden flower since the 17th century (Linnaeus, 1921 
[1753]; Zhang, 1983). At the site we collected plant community data 
across the abrupt change in meadow plant community from the wetter 
part towards the river, visually distinct from the mesic-dry part fur-
ther inland. Soil samples were collected on both sides of this transition 
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zone, with and without F. meleagris, for the first belowground commu-
nity observations from this study site. More importantly, we tested 
if belowground community compositional shift across the transition 
from wet to mesic-dry parts of the meadow was consistently captured 
with different OTU generation methods. Further, the effect of OTU 
generation method on the characterized community of soil microeu-
karyotes was explored for richness estimates, taxonomic and phylo-
genetic resolution and detection limits of rare taxa. While long-read 
metabarcoding is becoming an increasingly popular methodology in 
eDNA community analysis (Burki et al., 2021; Furneaux et al., 2021; 
Jamy et al., 2020; Leho Tedersoo et al., 2017) available bioinformatic 
tools for sequence clustering are primarily developed and tested for 
short-read amplicon datasets. Our study addresses this knowledge gap 
by outlining a phylogenetic context for analyzing differences in soil mi-
croeukaryotic communities captured with three different sequence 
clustering methods applied to the same long-read amplicon dataset.

2  |  MATERIAL AND METHODS

2.1  |  Field site

Kungsängen Nature Reserve (N59°50’, E17°40’) is a 12.5-hectare re-
serve in a larger meadow located in the south of Uppsala, Sweden, 
along the east shore of the Fyris River (Figure 1). The eastern mesic-dry 
part of the meadow is managed by annual hay making in late July, while 

the western part is managed less frequently because of high soil mois-
ture due to its low elevation and proximity to the Fyris River (Zhang, 
1983; Zhang & Hytteborn, 1985). To investigate vegetation in the field, 
28 permanent plots (2 × 2 m) were laid out across an east–west tran-
sect in the meadow in the 1940s (Sernander, 1948). Along this transect 
1, plots are located from 1.07 and 2.57 m above sea level. In the 1980s, 
three additional parallel transects (2–4) were laid out (Zhang, 1983).

In 2016–2017, two of the four permanent transects (1: plots 
1–28 in June 2016 and 4: plots 61–76 in June 2017) were revis-
ited, and the plant community was inventoried using the 5-degree 
Hult-Sernander-Du Rietz logarithmic scale (5, 50%–100% cover; 4, 
25%–50%; 3, 12.5%–25%; 2, 6.25%–12.5%; 1, <6.25%). The tran-
sects spans the length of the meadow from the river in the west to 
the edge of the reserve in the east. Although sampling plots are not 
marked in the terrain, the starting point of the transect, its direction, 
and distance between plots is very well documented in the original 
publication (Sernander, 1948). Members in our team were involved 
in subsequent inventories of the meadow performed in the 1980s 
(Zhang, 1983), ensuring that the locations of the sampling plots are 
within a few meters of the original plots.

2.2  |  Soil sampling

Soil samples were collected to test for compositional differences in 
the soil microeukaryotic community in response to both large-scale 

F I G U R E  1 The Kungsängen Nature Reserve field site is located. (a) south of the city of Uppsala, in central Sweden (red circle). (b) It is part 
of a large meadow on the east side of the Fyris River, a green line indicating reserve borders. Red dots indicate soil sampling locations on 
either side of the soil moisture transition border (red line) intersecting two permanent plant community transects T1 and T4 (dashed lines). 
Map source: © Lantmäteriet, i2012/921
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environmental differences, that is, wet versus mesic dry soil condi-
tions, and small-scale habitat differences, that is, presence or ab-
sence of a F. meleagris plant. A visual vegetation shift marks the soil 
moisture transition from the wet area to the mesic-dry area further 
inland. The soil type at the site ranges from light clay with fine sand 
to heavy clay, with a higher clay content in the wet compared with 
the mesic dry part of the meadow (Zhang, 1983). This transition bor-
der falls close to plot 16 on transect 1 and plot 68 on transect 4 (red 
line in Figure 1). Soil samples were collected on June 7th, 2016, from 
five locations 30 m apart on each side of the soil moisture transition 
border separated by 30 m across the transition border. Soil sampling 
locations intersected transect 1 and 4 between plots 14 and 67 in 
the mesic-dry and plots 17 and 69 in wet area (Figure 1). At each 
location, two soil samples were taken using a soil corer when pos-
sible (5 cm diameter × 10 cm depth) or with a hand shovel when soils 
were too wet for using a soil corer (as was the case for most of the 
samples on the wet side). When using a shovel, sampling depth and 
soil volume were estimated to correspond to that of the soil cores. 
The first sample at each location was collected around a F. meleagris 
plant and the second at 0.5 m distance from the sampled F. meleagris 
plant. For the second sample (referred to as non-Fritillaria soil), we 
also ensured that no other F.  meleagris plant was within 0.5  m of 
the sample. The corer/shovel was wiped with 70% ethanol-soaked 
tissue paper between each sampling. In total, 20 soil samples were 
collected: five Fritillaria/non-Fritillaria soil sample pairs from the wet 
side and five pairs from the mesic-dry side. The most common plant 
species were recorded at each sampling location for cross reference 
to the more complete plant community data recorded for plots along 
the transects (Table S1).

All samples were individually placed in plastic bags and kept on 
ice during sampling before storage at 4°C overnight. The following 
day, soils were homogenized in the plastic bags and subsamples of 
soil were transferred to 15 ml conical centrifuge tubes and frozen at 
−20°C, followed by freeze drying. Another subsample was weighed 
before drying at +80°C for 48 h to estimate gravimetric soil mois-
ture (Holliday, 1990; Table S2).

2.3  |  Library preparation and sequencing

Around 300  mg of freeze-dried soil was used for total DNA ex-
traction using a NucleoSpin®Soil kit (Macherey-Nagel). DNA 
concentration and purity of extracts were measured using a 
NanoDrop 2000 (Thermo Fisher Science), and concentrations 
ranged from 90 to 320  ng/µl. The entire ITS and partial LSU re-
gions of the rDNA operon were amplified using the forward 
primer ITS1 (5′–TCCGTAGGTGAACCTGC–3´) modified by remov-
ing the two GG nucleotides from the 3´end compared with the 
original ITS1 primer (White et al., 1990), and reverse primer LR5 
(5′–TCCTGAGGGAAACTTCG–3’) (Vilgalys & Hester, 1990). These 
primers were selected because they amplify most known fungi 
(Tedersoo et al., 2015) and had no known mismatches to most avail-
able sequences in Glomeromycota (Krüger et al., 2012). In addition, 

the primers capture a wide range of non-fungal microeukaryotes. 
Barcodes added to forward and reverse primers were combined in 
sample-specific barcode pairs for multiplexed sequencing (Table S3). 
Each 40 µl PCR reaction contained 20.4 µl nuclease free water, 0.4 µl 
Phusion High-Fidelity DNA Polymerase (Thermo Fisher Scientific, 
Hudson, NH, US), 8 µl 5× buffer, 0.01 µM of each primer, 200 µM 
dNTP mix, 2 µl DMSO, and 4 µl DNA template. The thermal cycle 
protocol used was a 10 min initial denaturation at 95°C, 25 cycles 
of denaturation (45 s, 95°C), annealing (45 s, 59°C) and elongation 
(90  s, 72°C), and a final elongation (72°C, 10 min). PCR products 
were visualized by gel electrophoresis. The resulting amplicons (ap-
proximately 1500 bp long) were purified with the ZR-96 DNA clean 
up kit (Zymo Research). The amount of PCR products used for the 
pooled library was estimated to approximate equimolar amounts 
based on observed electrophoresis band intensity. The pooled li-
brary was sequenced together with root samples from the site at 
SciLifeLab/NGI (Uppsala, Sweden) with six SMRT cells on the PacBio 
RSII sequencing platform. Raw demultiplexed reads for the current 
study are available in ENA (accession number: PRJEB47280).

2.4  |  Bioinformatic analysis

RSII subread files in BAX format were converted to the newer 
BAM format using “bax2bam” from PacBio SMRT tools 5.0.1, and 
reads were demultiplexed using “lima” from PacBio SMRT tools 
7.0.1 using the options “--different” and “--peek-guess”. Sequences 
which were not assigned to one of the barcode pairs used in this 
experiment were discarded. Circular consensus sequences (CCS) 
were generated from the demultiplexed BAM files using “ccs” from 
PacBio SMRT tools 5.0.1 (the last version which supports RSII data), 
resulting in 49,709 reads. Sequences were oriented in the forward 
direction by matching the forward and reverse primer sequences 
using Cutadapt v.3.0 (Martin, 2011) retaining only reads with both 
a forward and a reverse primer sequence in the correct orienta-
tion (ITS1 and reverse-complemented LR5). Further, concatamers 
(Griffith et al., 2018) were identified by searching for the primer 
sequence pairs ITS1/reverse-complemented ITS1, LR5/reverse-
complemented LR5, ITS1/ITS1, and LR5/LR5 within the forward and 
reverse strands of each of the reads, and if detected, the read was 
discarded. Remaining reads were length and quality filtered, allow-
ing for read lengths of 50–2999 bp and a maximum of 12 expected 
errors per read (to account for the probability of errors accumulat-
ing over a long fragment), the AmpliSeq pipeline or VSEARCH (ver-
sion 2.15.1; Rognes et al., 2016) depending on the OTU generation 
method used as described below.

2.4.1  |  OTU generation

Soil eukaryote community composition was estimated by generat-
ing OTUs from the filtered reads using three different algorithms. 
In this study, we use the term OTU_C to refer to the output of such 
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centroid based method, OTU_S for the output of such single-linkage 
based clustering method and for consistency, instead of ASV we use 
OTU_A to refer to the output of this denoising method. The selected 
algorithms have different principles for OTU generation and are 
all commonly used in metabarcoding studies. The OTU_A dataset 
consisted of ASVs inferred using DADA2 in the AmpliSeq pipeline 
(Straub et al., 2020). This method is designed to identify true se-
quence variants in the amplicon library by collapsing variations de-
rived from sequencing errors across all samples using the pooled 
function. The OTU_C dataset was generated by abundance-based 
greedy clustering in VSEARCH (Rognes et al., 2016) with a similarity 
threshold of 99%. Finally, the OTU_S dataset was generated using 
single-linkage “swarm” clustering with a distance threshold of 30 bp 
(approximately 2%) in GeFaST (Müller & Nebel, 2018). This thresh-
old was selected to ensure that two copies of the same biological 
sequence, each containing a maximum of 15 different errors (i.e., 1% 
error in 1500 bp), would still be clustered together even if the error-
free seed sequence was absent. For OTU_C (VSEARCH) and OTU_S 
(GeFaST), the CCS reads corresponding to each OTU were extracted 
using a custom BASH script (Data S1), and a consensus sequence 
for each OTU was calculated using PacBio's c3s (consensus of CCS; 
https://github.com/Pacif​icBio​scien​ces/c3s), which calculates a con-
sensus sequence using SPOA (Vaser et al., 2017) with base quality 
scores used as weights. This way the sequences representing all 
three types of OTUs were inferred with a quality-aware method. 
Chimeric sequences were removed from all datasets using the re-
moveBimeraDenovo function of DADA2. Global singletons (which 
are not generated by DADA2) were also removed from the OTU_C 
and OTU_S datasets before further analysis.

2.5  |  Placing OTU sequences in a phylogenetic and 
taxonomic context

2.5.1  |  Taxonomy assignment and maximum 
likelihood (ML) tree based on the 5.8S and LSU region

The LSU, 5.8S, ITS2, and full ITS (ITS1–5.8S–ITS2) regions were ex-
tracted using LSUx (version 0.99.6; https://github.com/brend​anf/
LSUx; Furneaux et al., 2021) from the OTU consensus sequences 
generated by all three OTU generation methods. Three datasets 
were used for assigning taxonomy: the SILVA LSU NR 99 dataset 
(version 138.1, eukaryotes only; Quast et al., 2012), RDP fungal LSU 
training set (version 11; Liu et al., 2012) for the extracted LSU se-
quences, and the UNITE all-eukaryotes dataset (version 8.2, includ-
ing singletons; (Nilsson et al., 2019) for the extracted ITS sequences. 
The taxonomic annotations for all three reference datasets were 
mapped to the UNITE classification system so that assignments from 
different datasets could be compared (reUnite version 0.2.0; https://
github.com/brend​anf/reUnite; Furneaux et al., 2021). Taxonomy was 
assigned using the SINTAX algorithm (Edgar, 2016) as implemented 
in VSEARCH (version 2.15.1; Rognes et al., 2016) with a bootstrap 
threshold of 0.8.

Unique 5.8S and LSU sequences from the combined (OTU_A, 
OTU_C, OTU_S) dataset were independently aligned with DECIPHER 
(version 2.18.0; Wright, 2015). The LSU alignment was truncated at 
a position corresponding to 879 in the S288C reference sequence 
due to the presence of introns after this position. The 5.8S and LSU 
alignments were then concatenated, and each sequence in the con-
catenated alignment was assigned a unique identifier based on its 
component 5.8S and LSU sequences. A preliminary ML phylogenetic 
tree was generated from the concatenated alignment using fasttree 
(version 2.1.10; Price et al., 2010) with the GTR+C model with 20 
rate categories. For sequences assigned at the kingdom level without 
conflicts between reference databases, the ML tree search was con-
strained by requiring that each kingdom form a monophyletic clade. 
Monophyly of the eukaryotic supergroups found in the samples was 
also constrained (Figure S1) according to the current consensus of 
phylogenomic studies (Adl et al., 2019; Strassert et al., 2019). The 
position of sequences which were not identified to kingdom, or 
which received conflicting kingdom assignments from the different 
reference datasets, was not constrained. The tree was rooted with 
sequences representing the protist phyla Discoba (Data S2).

The clades corresponding to animals (kingdom Metazoa, 90 
OTUs) and vascular plants (phylum Streptophyta, 42 OTUs) were 
identified from the tree, and OTUs corresponding to those se-
quences were removed from further analyses. In addition, the clade 
corresponding to kingdom Fungi was extracted and analyzed sepa-
rately from protists. For kingdom Fungi only, a refined alignment and 
phylogenetic tree were generated by realignment of the 5.8S and 
LSU regions using MAFFT-ginsi (Katoh & Standley, 2016), including 
truncation of the LSU alignment as above, followed by ML phylogeny 
construction using IQ-TREE (Nguyen et al., 2015; Stamatakis, 2014) 
using the built-in ModelFinder Plus (Kalyaanamoorthy et al., 2017), 
which selected the TIM3+F-R10 model, and 1000 ultrafast boot-
strap replicates (Hoang et al., 2018). The most abundant Holozoan 
OTU (across OTU_A, OTU_C, and OTU_S) from the dataset (an 
Ichthyosporian) was retained to root the fungal tree (Data S3).

2.5.2  |  Comparing different types of OTUs 
clustering methods

To analyze detection limits and taxonomic resolution of the three 
methods used to infer OTUs, we plotted the Fungi-only tree along 
with a heatmap of the average relative read abundance across all 
samples in separate columns for OTU_A, OTU_C and OTU_S (Data 
S3). To explore the phylogenetic resolution of the three methods, 
the ITS2 regions extracted from each sequence by LSUx (as de-
scribed above) were clustered using the same methodology outlined 
in Kõljalg et al. (2013) to generate UNITE SH at 97 and 99% sequence 
similarity: sequences were first pre-clustered at 80% sequence simi-
larity by VSEARCH, and then the sequences within each precluster 
were clustered at 97% and 99% similarity by BLASTCLUST (version 
2.2.26; Altschul et al., 1990; Dondoshansky & Wolf, 2000). In ad-
dition to these, respectively, lax and more stringent species-level 

https://github.com/PacificBiosciences/c3s
https://github.com/brendanf/LSUx
https://github.com/brendanf/LSUx
https://github.com/brendanf/reUnite
https://github.com/brendanf/reUnite
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thresholds, we also generated approximately genus-level clusters 
using a 90% (GH_90) similarity threshold (Tedersoo et al., 2014). We 
then mapped the three ITS2 clustering levels onto the phylogenetic 
tree to determine how many clusters were monophyletic and how 
well the three different OTU generation methods captured diversity 
at different threshold levels. Further, we estimated the abundance 
necessary for a taxon to be detected as an OTU_A. For this, we used 
the average read abundance of OTU_S and OTU_C sequences as-
signed to GH_90, SH_97 and SH_99 ITS2 clusters to identify the de-
tection limit of DADA2.

2.5.3  |  OTU accumulation curves

OTU accumulation curves and asymptotic species richness estimates 
were calculated using the iNEXT package (Hsieh et al., 2016) in R 
(version 4.0.4; R Core Team, 2019). For this analysis, accumulation 
curves for OTUs, SH_99, SH_97 or GH_90 were calculated sepa-
rately for the three clustering methods, the two different soil mois-
ture regimes (wet and mesic-dry) based on the number of raw reads 
obtained in each soil moisture regime and the number of samples.

2.6  |  Statistical analysis

2.6.1  |  Plant and soil microeukaryotes 
community analysis

Statistical analysis were performed in R using RStudio (RStudio 
Team, 2015). The community composition of plant species recorded 
in all plots along transects 1 and 4 was visualized by nonmetric 
Multidimensional Scaling (nMDS) using Bray-Curtis dissimilarities. 
Both plant and belowground analyses were made with the vegan 
software package (version 2.5-7; Oksanen et al., 2019). The two-
sample I-test was used to test for significant difference in mean 
gravimetric soil moisture between the two soil moisture regimes 
(wet vs. mesic-dry). The three OTU occurrence tables were trans-
formed to relative abundances for each sample and used for com-
munity analysis. nMDS ordination plots were generated using the 
“metaMDS”function in vegan. To down weight the importance of 
common taxa, the analysis was repeated using square root transfor-
mation of relative abundance data prior to calculation of the Bray-
Curtis dissimilarity. Marginal and individual PERMANOVAs were 
conducted on all three datasets and two standardizations described 
above, using the “adonis” function in the vegan to test for the mar-
ginal and overall effect of soil moisture regime (wet vs. mesic-dry) 
and presence/absence of F. meleagris on shaping belowground mi-
croeukaryotic communities at the study site.

After taxonomic assignment as described above, the three OTU 
occurrence tables were divided into two separate datasets for fun-
gal and protist communities separately (i.e., nonfungal microeukary-
otes). The ordination and PERMANOVA tests described above were 
repeated for these taxonomically distinct communities.

2.6.2  |  Using OTU_S to explore community 
composition in different conditions

Distribution and abundance of OTU_Ss were visualized across the 
contrasting soil conditions wet versus mesic-dry soil conditions and 
presence/absence of F.  meleagris using a Venn-diagram (Heberle 
et al., 2015). The relative abundance of unique and shared fungal 
and protist OTU_Ss were calculated across samples for the two 
contrasting conditions. To identify differentially abundant taxa in 
contrasting soil moisture regimes (wet vs. mesic-dry) and presence/
absence of F. meleagris, the “phyloseq-to-deseq” function in the phy-
loseq package (v 1.34.0; McMurdie & Holmes, 2013) was applied to 
OTU_S occurrence tables separately. The generated phyloseq object 
was analyzed using the DESeq2 tool (DESeq package version 1.30.1; 
Love et al., 2014). Identified taxa and their differential abundance 
were illustrated using the ggplot2 R package (Wickham, 2016).

3  |  RESULTS

3.1  |  Plant community shift across sharp soil 
moisture transition at the Kungsängen meadow

The plant community was assessed in plots along two permanent 
transects stretching from the wetter part close to the Fyris River to a 
mesic-dry part of the meadow (Figure 1). A total of 85 plant species 
were recorded along transects 1 and 4 (73 and 61 species, respec-
tively; Data S4), with the highest numbers, 24–29 plant species, re-
corded in plots 13–16 in transect 1 (Figure S2), just on the mesic-dry 
side of the moisture transition. In accordance with earlier inventories 
(Sernander, 1948; Zhang, 1983), the number of recorded plant spe-
cies dropped rapidly in the wet part of the meadow with on average 
only six species per plot across plots 17–25. There is a slight levee 
along the river where the number of recorded species increases again 
(Figure S2). nMDS ordination of the plant community along tran-
sects 1 and 4 demonstrates the distinct separation between plots 
in the mesic-dry part east of the soil sampling compared with the 
wet part west of the soil sampling (Figure 2), and with a transition 
from Carex disticha to Carex acuta dominance at the border (Zhang, 
1983). Alopecurus pratensis and Stellaria graminea were detected in 
all plots in the mesic-dry area and Poa trivialis, Phleum pratense, and 
Trifolium repens were other highly abundant species in the mesic-dry 
area (Data S4). Fritillaria meleagris was frequent in plots in the mesic-
dry part to the east of the soil sampling (and also in elevated plots 
closest to the river) but did not occur in the wetter parts of the tran-
sects (Figure S2). The distinct C. acuta dominated community in the 
wet side of the meadow has been previously reported (Zhang, 1983). 
Other frequently observed species in the wet area include Equisetum 
fluviatile, C. disticha, and Galium palustre. Soil sampling in early June 
confirmed that mean gravimetric soil moisture was significantly dif-
ferent (p < .001; t = −5.1812, nwet = 10; ndry = 10) on either side of the 
plant community transition border, with 76% and 34% soil moisture in 
the wet compared with the mesic-dry side of the meadow (Figure S3).
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3.2  |  Characterizing the belowground 
microeukaryotic community composition

3.2.1  |  Delimitation and identification of 
microeukaryotic OTUs

The three different OTU generation methods infer somewhat dif-
ferent community compositions from sequenced long-read rDNA 
environmental DNA amplicons. For instance, the methods resulted 
in very different estimates of total non-singleton OTU richness, 
ranging from 1,336 OTU_A detected based on inference of ASVs, 
compared with 2,046 OTU_S and 2,488 OTU_C for sequence 
similarity-based clustering using single-linkage or centroid-based 
clusters, respectively (Table 1). The OTU_A dataset represents 
only 28% of the raw reads while the two other methods were 
comparable, capturing 81–83% of the reads into OTUs (Table 1). 
After pooling all reads, OTU accumulation curves for the three 
methods indicate that sequencing depth was sufficient to reach 
comparable asymptotic OTU richness estimates in both mesic-dry 
and wet soil conditions (Figure S4a). For individual samples, how-
ever, increased sequencing depth would be expected to increase 
OTU detection for OTU_S and OTU_C but not for OTU_A (Figure 
S5). Further, the estimated asymptotic OTU richness increased for 
all methods when analyzing the pooled reads based on number 
of samples (Figure S4b), indicating that taking additional samples 
would be expected to increase the number of detected taxa for 
all methods. Across the three methods, 38–42% of the detected 

OTUs were taxonomically assigned to kingdom Fungi. Based on 
read abundance, the estimated proportion of fungi ranged from 
34% for OTU_As compared with just over 40% for the two other 
methods (Table 1). Protists thus dominated the sequenced micro-
eukaryotic soil community at this site.

3.2.2  |  OTU generation methods captured 
consistent community patterns across soil conditions

All three OTU generation methods consistently demonstrate that 
total soil microeukaryotic community composition clearly differenti-
ated based on soil condition (wet or mesic-dry), but no pattern was 
detected in relation to the presence of F. meleagris, as observable in 
nMDS ordinations (Figure 3). The observed separations were statis-
tically significant (p = .001) as indicated by a marginal PERMANOVA 
test (Table S4) and remained when the importance of rare OTUs 
was down-weighted by square root transformation of relative abun-
dances (Figure S6, Table S5). Similar to observations for the plant 
community (Figure 2), microeukaryotic community composition 
was more variable among samples in wet soil conditions compared 
with mesic-dry soil conditions (Figure 3). Mesic-dry samples clus-
tered closer together indicating that communities were more similar 
across samples (Figure 3). When analyzing fungal and protist com-
munity composition separately, we observed the same significant 
separation (p  <  .001) based on soil conditions (wet or mesic-dry), 
but not in relation to the presence of F. meleagris (Figure S7, Table 

F I G U R E  2 Non-metric 
multidimensional scaling (nMDS) 
ordination of the plant community in plots 
along transect T1 (plots 1–28, red) and 
T4 (plots 61–76 blue). Ellipses outline the 
distribution of plots from the wet part 
(green) and mesic-dry part (black). Plots 
75 and 76 are on the levee close to the 
river with somewhat deviating vegetation. 
The closest plots to the locations for soil 
microbiome sampling (enclosed by dashed 
ellipses) on the mesic-dry side were plots 
14–16 (T1) and 67–68 (T4) and on the wet 
side plots 17–18 (T1) and 69 (T4)

TA B L E  1 Number of inferred OTUs and the number of reads represented, for total microeukaryotic community and (fungi), for the three 
different clustering methods

Inferred OTUs Total OTUs (Reads) Out of total reads (%) Fungal OUT (Reads) Protists OTU (Reads)

OTU_A 1336 (14,056) 28.4 554 (4784) 662 (7238)

OTU_C 2488 (41,380) 81.3 933 (16,541) 1,168 (20,195)

OTU_S 2046 (42,353) 83.4 769 (17,130) 925 (20,653)



8 of 14  |     ESHGHI SAHRAEI et al.

S6). While still significant, the separation is visually less distinct for 
the protist community based on OTU_S and OTU_C (Figure S7d,f) 
compared with OTU_A (Figure S7b). The tight clustering of samples 
from mesic-dry conditions is recovered in both fungal and protist 
communities (Figure S7).

Overall, phylum-level taxonomic composition was also compa-
rable across the three OTU generation methods used (Figure 4). 
Based on read abundance, protist communities were dominated by 
the Ciliophora (Alveolata) in both wet and mesic-dry soil conditions 
(Figure 4a). The relative abundance of Alveolata was slightly lower 
when communities were characterized using OTU_C and OTU_S 
compared with the OTU_A dataset (Figure S8). The Rhizarian phyla 
Endomyxa, Phytomyxea, and Filosa were also observed in both 
conditions and were more abundant when reads were clustered 
into OTU_C and OTU_S compared with OTU_As (Figure 4a). In wet 
conditions, a larger proportion of reads within both Alveolata and 
Rhizaria could not be identified at the phylum level highlighting 
the potential for future studies of poorly known lineages at this 
site. The proportion of Ciliophora was smaller in wet vs. mesic-
dry conditions. In both soil conditions, Ascomycota was the most 
common fungal phylum, and together with Basidiomycota, made 
up over half of the sequenced fungal community in wet soil con-
ditions (Figure 4b). In mesic-dry soil conditions on the other hand, 
Mortierellomycota made up a larger fraction of the reads, around 
30%. Sequences assigned to Glomeromycota, which encompass all 
arbuscular mycorrhizal fungi, were rare at this site, despite known 
high abundance based on spore counts (personal observations of 
S.E.S.). Chytridiomycota were also more abundant in mesic-dry 
compared with wet soil conditions, while Rozellomycota made up 
around 10% of the reads in both conditions. Close to 20% of fungal 
OTUs remained unidentified at phylum level across all three meth-
ods (Figure 4b). Many of these unidentified lineages cluster with 
Zoopagomycota, Kickxellomycota, and Rozellomycota in the fungal 
tree (Data S3).

3.3  |  Different OTU generation methods strongly 
influence species richness estimates

Overall community composition is captured well across the three 
OTU generation methods when analyzing ecological patterns 
(Figure 3) and relative abundance at the phylum level (Figure 4). 
However, the OTU generation methods differentially capture and 
represent the taxa in these communities, so that from the same raw 
reads, different sequences are selected to represent the clustered 
raw reads in the three datasets. The dependence on abundant seed 
sequences for denoising resulted in fewer OTU_As compared with 
the two other methods and entire lineages of rare taxa remained 
undetected with this method, while a large number of OTU_As are 
recovered from abundant taxa such as Mortierellomycota (Figure 4b 
and Figure S9). The detection limits of different OTU generation 
methods were compared by generating approximately genus-level 
clusters using sequence similarity thresholds at 90% and species-
level clusters at either 99 or 97% across the ITS2 region extracted 
from all OTU representative sequences. Only 36% of all genus-level 
clusters (GH_90) in the dataset were represented by an OTU_A se-
quence, compared with 94 and 96% for OTU_C and OTU_S, respec-
tively (Table 2). The level of detection for SHs represented by up 
to 50 reads was lower for OTU_A than the other methods. In some 
cases, even close to 300 reads was not enough to detect a SH_99 
with OTU_A (Figure S10). Even the more inclusive methods did not 
capture exactly the same genus-level diversity, with just over 7% of 
all GH_90 represented by a sequence recovered by a single method 
(Table 2). However, no GH_90 was represented only by an OTU_A 
sequence.

Species richness estimates are heavily influenced by the OTU 
generation method used with the lowest numbers estimated with 
OTU_A for all three ITS2 sequence similarity levels GH_90, SH_97 
and SH_90 (Figure 5). While OTU_A richness was estimated to satu-
rate close to 1000 in both wet and mesic-dry soil conditions (Figure 

F I G U R E  3 Non-metric multidimensional scaling (nMDS) ordination of microeukaryotic communities recovered from wet (green) and 
mesic-dry (brown) soil moisture regimes at the Kungsängen Nature Reserve using Bray-Curtis dissimilarities calculated from relative 
abundance based on three different OTU inference methods (a) OTU_A, (b) OTU_S, and (c) OTU_C. Circles are samples with a F. meleagris 
plant and triangles are samples without F. meleagris plant
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S4), these may represent only half as many species since the intra-
species variation is collapsed to around 600 SH_99 and just over 500 
SH_97 (Figure 5). OTU richness estimates are highest for OTU_C at 
almost 1,700 followed by OTU_S at almost 1400 (Figure S4), and the 
numbers are only slightly lower when estimating species richness 
as SH_99 (Figure 5). Accepting ITS2 sequence similarity at either 99 
or 97% as a proxy for species suggests that clustering into OTU_C 
or OTU_S detects close to three times as many species compared 
with denoising into OTU_A. Of the three methods, OTU_S is also 
the method that has the largest number of SH_99 and SH_97 rep-
resented by only one OTU (Figure S11) suggesting that in the long-
reads in the current dataset the OTU_S method provides the best 
estimate of species richness, as estimated by the SH_99 clusters of 
ITS2 regions in all representative sequences.

3.3.1  |  Phylogenetic resolution of different OTU 
generation methods within kingdom Fungi

For a more detailed analysis of kingdom Fungi, phylogenetic re-
construction using the LSU and 5.8S regions of all fungal OTU rep-
resentative sequences from the three OTU generation methods 
(Table 1) was used to analyze the phylogenetic signal of estimated 
species richness for the three different OTU generation methods 
(Data S3). Within kingdom Fungi, we identified 1,590  genus-level 
clusters (GH_90), the vast majority of which were monophyletic, in-
dicating good concordance between phylogenetic inference based 
on conserved LSU and 5.8 regions and sequence similarity in the 
ITS2 region of individual sequences. The nine GH_90 clusters that 
were polyphyletic in the fungal tree were found in lineages with short 

F I G U R E  4 Phylum-level taxonomic 
assignments of microeukaryotic 
communities in wet and mesic-dry soil 
moisture regimes separated into (a) 
protists and (b) Fungi. Illustrated as mean 
fractional read abundance for the three 
occurrence tables OTU_A, OTU_C, and 
OTU_S. Phyla which represent <1.5% 
of total reads are grouped together as 
“other”

TA B L E  2 OTU sequences were clustered across the ITS2 region to represent taxa at different taxonomic ranks genus (GH_90) and 
species (SH_97 and SH_99), number of clusters, and % of these including sequences from the three OTU inference methods

Taxonomic rank (% ITS2 similarity) Total OTU_A (%) OTU_C (%) OTU_S (%) Only one method

GH_90 1590 36 95 97 120

SH_97 2000 37 95 90 234

SH_99 2356 37 92 79 482
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branch lengths separating terminal nodes (Figure S12a). In these lin-
eages, the existing variation within conserved regions, which may be 
in part due to sequencing errors, provides low phylogenetic reso-
lution, resulting in collapse to random order in the tree. The same 
pattern applies to cases of polyphyletic SH_97 and SH_99 clusters 
since different sequence regions were used for phylogenetic infer-
ence and similarity clustering (Data S3).

As expected, different OTU generation methods detect different 
levels of genetic variation within and between taxa in the sequenced 
fungal community. For rare taxa, OTU_A completely fails to even 
detect phylum level diversity, as in the case of Glomeromycota, that 
was recovered in six OTUs across OTU_C and OTU_S, all of which 
represent rare taxa in the dataset (Figure S12b). In abundant taxa 
on the other hand, intra-species variation is captured with several 
OTU_A sequences per SH_99 or SH_97 (Figure S10), while the other 
methods identify one or two variants as exemplified by a single 
Morteriella SH_99, containing 12 OTU_As (Figure S12c).

3.4  |  Differentially abundant taxa in 
microeukaryote community

Based on the consistency between number of OTU_S and SH_99, we 
conclude that the OTU_S dataset provides a better estimate of total 
species richness. We thus used this dataset for further analysis of dif-
ferences in communities associated with contrasting soil conditions. 
Across the total microbial eukaryotic community, 282 fungal and 
383 protist OTU_Ss were present in both wet and mesic-dry condi-
tions. A total of 195 fungal and 243 protists OTU_Ss were presented 
only in wet conditions, while 292 fungal and 299 protists OTU_Ss 
were detected only in mesic-dry condition (Figure S13). Based on the 
DESeq analysis, only 15 were significantly differentially abundant 
across all OTU_S (Figure S14). Four out of fifteen were protists, one 
of them belongs to genus Polymyxa and is only found in mesic-dry 
condition while the other three are found predominantly in wet soil 
condition (Data S5). Taxa in at least two of the Polymyxa genus have 
been reported as plant root endoparasites (Decroës et al., 2019; 
Neuhauser et al., 2014). Of the eleven OTU_S belonging to the fun-
gal kingdom, only one was significantly more abundant in the mesic-
dry condition. Five OTU_Ss belong to Ascomycota were identified 
until genus level (three Cistella, Psedeurotium, and Stagonospora), and 
two OTU_Ss belong to Basidiomycota, recognized to the order level. 
All these taxa were significantly more abundant in the wet condition 
(Data S5). Detection of significant association with the contrasting 
soil conditions is limited by the current sampling design with only 
ten samples from wet and mesic-dry, respectively. Additional sam-
ples would have captured more of the local community. In relation 
to the presence/absence of F. meleagris, 160 fungal and 231 protists 
OTU_Ss were detected only in F. meleagris samples, while 144 fungal 
and 159 protist OTU_Ss were observed in samples without F. melea-
gris. In total, 465 fungal and 544 protist OTU_Ss were observed in 
both with and without F. meleagris samples (Figure S15). Taking into 
account the low number of samples no OTU_Ss were differentially 

abundant based on the DESeq analysis. This is likely a result of sam-
pling large soil volumes with multiple microhabitats, where only 
some are affected by the target plant species. Our attempt to also 
sequence root associated communities, which would be expected 
to better capture specifically host plant associated microorganisms, 
failed due to low success rate of microeukaryote amplification from 
F. meleagris root samples (data not shown).

4  |  DISCUSSION

In this study, we used a distinct transition zone in vegetation and soil 
moisture, as the framework to analyze how different OTU genera-
tion methods affect the detection of a shift in the composition of mi-
croeukaryotic soil communities. Interestingly, the sharp transition in 
plant community, with lower richness in wet compared with mesic-
dry soils, was not associated with a difference in observed richness 
for the corresponding microeukaryotic soil communities. However, 
both plant and soil microeukaryote community compositions were 
significantly different in wet and mesic-dry soil moisture regimes. 
We demonstrate that different OTU generation methods applied to 

F I G U R E  5 Species richness curve estimated from the bottom 
up as SH_99, SH_97, and GH_90, based on all reads combined for 
ten samples each from mesic-dry and wet soil moisture regimes. 
OTUs were inferred using three different clustering methods: 
OTU_A (green), OTU_C (orange), and OTU_S (purple) and the ITS2 
region of their representative sequences were then clustered into 
species and genus hypotheses (SH and GH), using three different 
ITS2 sequence similarity thresholds 99% for SH_99, 97% for SH_97, 
and 90% for GH_90
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the same long amplicon eDNA dataset affect the documented com-
position of soil microeukaryotic communities. Similarly, earlier stud-
ies have reported that large-scale ecological patterns are recovered 
irrespective of the OTU or ASV generation method or clustering 
threshold (for short-read data) (Glassman & Martiny, 2018), sequenc-
ing technology (Furneaux et al., 2021) or sampling effort (Castle 
et al., 2019). We conclude that large-scale ecological patterns are ro-
bustly recovered irrespective of the OTU or ASV generation method 
applied. However, for studies focused on the particular members 
of these contrasting communities, the OTU generation method se-
lected significantly affects the phylogenetic resolution and detection 
of taxa. For instance, our results show that inference of ASVs with 
DADA2 (here OTU_A) captures less than 30% of all reads, provid-
ing information on intra-species genetic variation only for abundant 
taxa while rare taxa, including entire phylum-level lineages, remain 
undetected. The overall estimated OTU richness was also lower for 
OTU_A compared with the cluster-based methods. When comparing 
OTU generation methods, others have found contrasting patterns, 
with higher richness captured with ASVs, the equivalent to OTU_A 
in this study, compared with clustering (Glassman & Martiny, 2018). 
Differences between our results and those of Glassman and Martiny 
(2018) can be attributed to the earlier study's shorter amplicon (only 
ITS2 for fungi) and higher sequencing depth generated by Illumina, 
compared with our long amplicon sequencing with lower depth using 
PacBio. In studies using short-read amplicons, denoising increased 
overall richness by capturing intraspecies genetic variation (Callahan 
et al., 2016). However, when applied to long-read amplicons from di-
verse communities, intra-species variation can only be captured for 
the most abundant taxa. While OTU accumulation curves saturated 
for all methods, we found that increasing the number of samples 
would have increased the number of detected taxa at the site. Due 
to soil heterogeneity and spatial community turnover, increasing the 
number of samples rather than the sequencing depth increases the 
estimated alpha diversity even in well-mixed, managed agricultural 
soils (Castle et al., 2019). The same pattern was previously observed 
in forest soils from West Africa (Meidl et al., 2021), highlighting the 
importance of optimizing sampling effort versus sequencing depth 
to obtain a good representation of the alpha diversity.

Single-linkage clustering with a distance threshold of 2%, on the 
other hand, captures most reads in OTU_Ss that correspond closely 
to broadly accepted fungal species-level sequence similarity across 
the ITS region, suggesting that this method provides an acceptable 
proxy for species richness. We anticipate that phylogenetic res-
olution of species-  and genus-level relationships could have been 
improved by the generation of a hybrid tree that included ITS2 align-
ments to resolve relationships within each GH_90 lineage, in a man-
ner similar to ghost-tree (Fouquier et al., 2016). Such tree could have 
been used to generate phylogenetic SH (ref) to analyze community 
composition and generate species richness estimates for these com-
munities. Apart from sequence clustering approaches, extraction 
and amplification biases remains as a major filtering step for analysis 
of total microeukaryotic soil communities. Although the primers we 
used have no known biases against Glomeromycota, we obtained 

low read abundance for this group, despite known high abundance 
of Glomeromycota spores at the site. This apparent contradiction 
may be explained by the low copy number of around ten rDNA oper-
ones in this phylum (Maeda et al., 2018) compared with other fungi 
that may harbor hundreds to thousands of copies (Lofgren et al., 
2019). In addition to copy number variation, length difference in the 
rDNA, especially ITS, can introduce bias both during PCR and se-
quencing (Leho Tedersoo et al., 2015), rendering this type of data far 
from quantitative, especially when applied to broad phylogenetically 
groups such as microeukaryotes.

Our study also provides a first insight into the belowground di-
versity of microeukaryotes in a meadow known for its rich plant com-
munity (Sernander, 1948; Zhang, 1983; Zhang & Hytteborn, 1985). 
Studies that aim to simultaneously characterize communities of 
both protists and fungi have often found that fungi dominate the se-
quenced microeukaryotic communities, for example, in tropical forest 
soil (Tedersoo et al., 2018) and soils from different habitats in temper-
ate regions (Tedersoo & Anslan, 2019). In previous studies using the 
exact same primers, sequenced soil communities from ectomycorrhi-
zal dominated forests in Sweden and West Africa have been almost 
completely dominated by reads taxonomically assigned to kingdom 
Fungi (Furneaux et al., 2021; Kalsoom Khan et al., 2020; Meidl et al., 
2021). The dominance of protists in the sequenced microeukaryotic 
community indicates that these soil systems are particularly suitable 
for diverse communities of protists. High soil moisture may be one 
explanation, but other factors like plant community, pH and total ni-
trogen have also been associated with high abundance of protists in 
soil (Oliverio et al., 2020). We anticipate that future studies may hold 
many interesting discoveries of hitherto unknown diversity at this site.
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