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Abstract: Food 3D printing allows for the production of personalised foods in terms of shape and
nutrition. In this study, we examined whether protein-, starch- and fibre-rich fractions extracted
from faba beans can be combined to produce fibre- and protein-rich printable food inks for extrusion-
based 3D printing. Small amplitude oscillatory shear measurements were used to characterise
the inks while compression tests and scanning electron microscopy were used to characterise the
freeze-dried samples. We found that rheological parameters such as storage modulus, loss tangent
and yield stress were related to ink printability and shape stability. Investigations on the effect
of ink composition, infill pattern (honeycomb/grid) and direction of compression on textural and
microstructural properties of freeze-dried 3D-printed objects revealed no clear effect of infill pattern,
but a strong effect of direction of compression. Microstructure heterogeneity seemed to be correlated
with the textural properties of the printed objects.

Keywords: 3D printing; faba bean; starch; protein; fibre; rheology; texture; microstructure; infill
pattern

1. Introduction

There are multiple advantages and possible applications of food 3D printing. Beyond
the possibility of creating complex structures, the technique can also be used to supply
personalised nutrition and food formulations for consumers with different preferences
and needs [1]. It can be used to enhance children’s curiosity towards vegetable-based
foods, supply more appealing foods for the elderly and people with swallowing difficulties
and produce delivery systems for the controllable release of nutrients and medication [2].
One example of a nutritious and healthy 3D-printed food that has been studied is fibre-
and/or protein-rich snacks [3]. The 3D printing technique could also be used to create
novel textures, such as plant-based steaks with textural properties resembling those of
meat [4].

One of the greatest challenges in food 3D printing is finding inks that have good
printing precision and shape stability [5,6]. Inks used for extrusion-based 3D printing
must be able to flow through a nozzle and retain their shape after printing. Rheological
characterisation of inks for 3D printing has been used in efforts to predict the printability of
a material and its dimensional stability after printing [3,7,8]. Examples of parameters inves-
tigated include storage modulus (G′), loss modulus (G′′), tan (δ) and yield stress. Storage
modulus is a measure of the elasticity of a material and its ability to store deformational
energy and can be seen as a measure of the structural strength and mechanical rigidity of a
material at rest [9]. Loss modulus represents the viscous response of the material and is a
measure of the energy dissipated as heat during deformation [9]. Tan(δ), or loss tangent,
is the ratio between G′′ and G′, i.e., the ratio of energy lost to energy stored during cyclic
deformation. Yield stress relates to the force that can be applied before the structure of the
material starts to break and flow is initiated [3].
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A correlation between shear modulus and the deformation behaviour of methylcel-
lulose gels has been reported [10], indicating that this parameter can be used to predict
printability. Multiple studies have observed a correlation between storage modulus and/or
yield stress of the ink with the degree of deformation after printing [5,11,12]. Furthermore,
it has been shown that the loss modulus value can supply additional information important
for predicting the dimensional stability of 3D-printed food structures [8].

One advantage of 3D food printing compared with the use of moulds or forms is the
possibility of using different infill patterns for the interior of the printed object in order
to alter its textural properties. The effect of the infill pattern of 3D-printed foods such as
air-fried potato snacks and chocolate has been investigated in two previous studies, both of
which showed that the infill pattern can influence the texture of printed foods [13,14].

Few studies have so far investigated the possibility of using plant-based materials for
food printing without the inclusion of thickeners such as sodium alginate, xanthan gum or
methylcellulose. Chen et al. [15] found that not including thickeners for samples 3D-printed
using soy protein isolates reduced the objects’ shape stability and hardness. Another study
showed that 3D printing quality was satisfactory, although the samples tended to swell,
when using either oat or faba bean protein concentrates without additional thickeners
at solid contents of 45% and 35%, respectively [5]. In the same study, 3D objects were
produced from rye bran inks with a solid content of 30%. The starch present in the plant
materials was assumed to act as a natural thickening agent through gelatinisation. Other
factors affecting the viscosity and printability of the inks include composition, size and
shape of insoluble particles and response to heating and shear between the materials [5].

In this study, the following two current trends—3D printing and plant-based foods—
are combined. The objective was to produce 100% faba bean-based 3D-printed food
prototypes. Edible inks composed of different fractions (faba bean fractions rich in protein,
starch or fibre) will be compared on rheological properties and printability. The influence
of the composition and infill pattern on the texture and microstructure of the 3D-printed
samples will also be investigated. This study provides new insight into how the proportion
of faba bean fractions influences the properties of 3D-printed foods.

2. Materials and Methods

The protein-, starch- and fibre-rich fractions used in this study were extracted from
dehulled and milled faba beans (Vicia faba var. Gloria) kindly provided by RISE (Research
Institutes of Sweden). A complete characterisation of the fractions can be found in [16]. A
brief summary of the composition of the fractions are the following protein-(protein 77.3%;
starch 0.3%; fibre 2.3%; fat 3.4%; ash 8%), starch-(protein 0.5%; starch 94.5%; fibre 3.6%; fat
0.3%; ash 0.2%), and fibre-rich (protein 5.3%; starch 22.5%; fibre 73.1%; fat 0.4%; ash 3.5%).
The beans were grown in central Sweden, harvested and dried in 2016. Sodium hydroxide
(NaOH) and hydrochloric acid (HCl), purchased from Merck KGaA (Darmstadt, Germany),
were used for extraction.

2.1. Extraction

To separate the cotyledon and hull, the faba beans were dehulled (Hi-Tech Machinery
Manufacturing Co. Ltd., Heze, Shandong, China) and then milled (Ultra-Centrifugal Mill
ZM-1, Retsch, Haan, Germany) into flours with a mesh size of 0.5 mm. Only the cotyledon
flour was used for further extraction. The extraction was performed as described previously,
with some slight modifications [16]. In brief, faba bean flour was dispersed at a distilled
water:flour ratio of 10:1 (v/w) and the pH was adjusted to 9.0 using 2 M NaOH. The protein
was separated by centrifugation (Thermo Scientific, Sorvall Lynx 4000, Waltham, MA, USA)
at 3700× g (20 ◦C, 30 min) and precipitated at pH 4 using 1 M HCl. The protein was then
washed once, the pH adjusted to 7 and the protein freeze-dried (Martin Christ, Epsilon
2-6D LSC Plus, Osterode am Harz, Germany). For starch and fibre extraction, the pellet
from the first centrifugation step was re-dispersed in distilled water, the pH adjusted to
9.5 and the mixture stirred at room temperature for 24 h. Thereafter, the mixture was
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left to stand without stirring at 4 ◦C for 24 h before being centrifuged (3700× g, 20 ◦C,
5 min). The supernatant was discarded and the pellet re-dispersed in distilled water. This
centrifugation step was repeated until pH 7 was reached. To separate the starch from the
fibre, the final pellet was dispersed in distilled water and filtered through a 70 µm nylon
filter. This filtration step was repeated 12 times, followed by drying of the starch-rich filtrate
at 40 ◦C for 48 h and freeze-drying of the fibre-rich filter cake. After drying, all fractions
were sieved (Retsch, AS200 basic, Haan, Germany) through a 150 µm (protein and starch)
or 250 µm (fibre) mesh (Retsch, Testsieve, Haan, Germany).

2.2. Swelling Power and Water Soluble Index

The swelling power (SP) of the samples was determined in triplicate following a
modified version of existing methods by Muñoz et al. and Schoch [17,18]. In brief, 0.5 g of
sample was weighed into a 15 mL centrifuge tube with a screw cap and 10 mL of distilled
water was added. The tubes were placed in a shaking water bath at 60 ◦C for 10 min.
The tubes were removed and left to cool to room temperature in an ice water bath before
centrifugation at 7000 g for 20 min. The supernatant was decanted and left to dry at 105 ◦C
overnight. The dried sample was used to calculate the water soluble index (WSI) and the
mass of the sediment was used to determine the swelling power. These were calculated
using the following equations:

WSI(%) =
Mass dried supernatant

Mass of dry fraction
× 100 (1)

SP(
g
g
) =

Mass sediment
Mass of dry fraction

(2)

2.3. Preparation of Inks

The composition of the different inks (fibre-rich, protein-rich, starch-rich, protein-
and starch-rich; see Table 1) were chosen based on a pre-study, providing printable inks
covering a relatively wide range of composition. The mixture of flours to water ratio was
adjusted for each ink. The criteria for the inks were that they should be printable and
produce a standing object. The pastes used for 3D printing and stress sweep measurements
were prepared by first mixing the starch with 70% of the total amount of diH2O used. The
starch dispersion was then heated in a water bath at 60 ◦C for 10 min. Thereafter, the
mixture was removed from the water bath, the fibre and protein added and the mixture
mixed thoroughly by hand using a spatula. For rheological characterisation, the fibre was
added and the sample mixed before addition of the protein and additional mixing. After
the addition of fibre and protein, the final 30% of diH2O was added before mixing to a
homogenous paste. To further homogenise the sample and eliminate larger air bubbles, the
paste was extruded three times through a 5-mL Luer syringe without a needle before being
added to the 3-mL cartridges used for printing. The cartridges were sealed and left at room
temperature for 1 h before printing and rheological measurements.

Table 1. Composition of the different inks used for 3D printing.

Ink Protein Fraction
(%)

Starch Fraction
(%)

Fibre Fraction
(%) Water (%)

Fibre-rich 7.8 7.8 7.8 76.7
Starch-rich 4.5 18.2 4.5 72.8
Protein-rich 21.7 5.4 5.4 67.5
Protein- &
starch-rich 25.0 12.5 0 62.5
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2.4. Rheological Characterisation of Inks

The viscoelastic properties of the inks were analysed by stress sweep measurements
using a Discovery HR-3 rheometer (TA Instruments, New Castle, DE, USA) equipped with
a 40 mm aluminium plate. The stress was increased logarithmically from 0.001 to 10,000 Pa
at a frequency of 0.1 Hz and a temperature of 22 ◦C. The edges of the sample were covered
with paraffin oil to limit evaporation and a 300 s resting time was applied before starting
the measurements. The yield stress was defined as the stress at which 5% loss of the original
storage modulus was observed. The analysis was performed in duplicate.

2.5. 3-D Printing

The model of the cube (14 × 14 × 14 mm) used for printing was created using the
digital design tool Tinkercad (Autodesk Inc., San Rafael, CA, USA) and exported as an STL
file to the bioprinter. The cubes were printed at room temperature using two different infill
patterns (honeycomb, grid). For the cubes with a honeycomb pattern, the pattern available
in the bioprinter software was used. The grid pattern was created using Cellink Heartware
(Version 2.1.6, Cellink, Gothenburg, Sweden, 2021) combined with the open source slicing
software Slic3r (Version 1.3.0, 2021).

Samples were printed on petri dishes using a BIO X bioprinter (Cellink, Gothenburg,
Sweden). Pressure and pre-flow were adjusted for each ink individually. The number of
layers was 24, the infill density was 25% and the tip diameter of the nozzle was 580 µm.
After printing, the samples were left for 5 min at room temperature and then stored at
−18 ◦C until freeze-drying.

2.6. Freeze Drying

Frozen 3D-printed objects were further frozen at −50 ◦C for 48 h, followed by freeze-
drying (Martin Christ, Epsilon 2-6D LSC Plus, Osterode am Harz, Germany).

2.7. Visual Inspection

The freeze-dried cubes were evaluated and compared using six criteria; colour, infill
pattern, wall straightness, wall texture, layer distinction and uniformity.

2.8. Colour Measurements

Cube colour was measured with L*a*b colour space using a colorimeter (CR-300,
Minolta, Japan). The built-in light source was carefully placed on the wall of the cube, on
the side without the infill pattern, until the end of measurements.

2.9. Texture Analysis

Compression tests were performed on the freeze-dried samples using a texture anal-
yser (Stable Micro Systems, TA-HDi, Surrey, UK) equipped with a 500 N load cell and
a 36 mm cylindrical aluminium probe. The samples were compressed to 60% at a rate
of 1 mm/s. The compression tests were performed in two directions, from the top (infill
pattern facing the direction of compression) and from the side (infill pattern facing 90◦ from
the direction of compression). The compression tests were performed in triplicate.

2.10. Image Analysis for Particle Size after Compression

Compressed matter collected from the texture analysis was spread out on a black
background to emphasise contrast and images (1800 × 4000 pixels) of the compressed cube
particles were taken at a height of 30 cm. Fiji-Image J was used for image analysis. Using
the software, the individual crushed pieces were counted and measured in terms of length,
width and area. A ruler was used to standardise the scale bar (0.095 mm per pixel).

2.11. Scanning Electron Microscopy

Freeze-dried samples were fractured, sputter-coated with gold (Au) (Cressington Scien-
tific Instruments, Sputter coater-108 auto, Watford, UK) and examined using a scanning elec-
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tron microscope (Hitachi, FlexSEM 1000II, Tokyo, Japan) at 5 kV. Images (1280 × 960 pixels)
were recorded digitally at two different magnifications, giving a pixel size of 0.992 µm/pixel
and 0.198 µm/pixel.

2.12. Statistical Analysis

Results from the rheology and texture analysis were analysed by analysis of variance
(ANOVA) and pairwise comparison (Tukey) using R studio (Version 1.2.5033, RStudio Inc.,
MA, USA). The size distribution of the fragments after compression in the texture analysis
was visualised with ggplot2, with geometry density and log scale, using R studio (Version
1.2.5033, RStudio Inc., Boston, MA, USA). Principal component analysis (PCA), loading
and score plot, were created using Simca17, Satorious Stedim Data Analytics AB.

3. Results
3.1. Characterisation of Isolated Fractions

The extraction method and raw material have been used in a previous study. Hence,
the composition of the extracted fractions (starch, protein and fibre) and original flour was
assumed to be similar to that reported in that study [16]. Starch displayed the highest yield
in terms of both quantity and proportion obtained, meaning that starch was the fraction
with the smallest losses during extraction (Table 2). The swelling power was negatively
correlated with WSI. Under heating, fibre swelled the most, followed by starch, original
flour and protein (Table 2).

Table 2. Properties of faba bean cotyledon flour and isolated fractions; starch, protein and fibre.

Extracted Yield
(%) *

Moisture
Content (%)

Water Soluble
Index (%)

Swelling Power
(g/g)

Original flour NA 10.9 ± 0.2 d 31.6 ± 0.1 c 2.4 ± 0.0 a,b

Protein 55.5 ± 3.7 b 6.4 ± 0.1 b 84.1 ± 0.4 d 1.1 ± 0.1 a

Starch 82.6 ± 0.1 c 4.0 ± 0.3 a 2.0 ± 0.1 b 3.7 ± 0.0 b

Fibre 30.1 ± 1.3 a 7.4 ± 0.1 c 0.5 ± 0.1 a 12.1 ± 0.8 c

* Proportion of fraction isolated from the original flour. NA—not applicable. Different letters (a, b, c, d) within
columns indicate significant differences (p < 0.05).

3.2. Rheological Characterisation of Inks

The inks used for 3D printing were characterised by stress sweeps (Table 3). The G′

value in the linear viscoelastic region ranged between 2 and 30 kPa. It was highest for the
starch-rich sample and lowest for the protein- and starch-rich sample containing no fibre.
The G′′ value was lowest for the protein- and starch-rich sample, whereas no significant
difference was observed between the other samples. All samples showed tan (δ) << 1,
indicating elasticity-dominating behaviour. The lowest loss tangent value was observed for
the starch-rich sample and the highest for the protein- and starch-rich sample. Yield stress
was highest for the starch-rich sample while all the other samples showed significantly
lower values. The air pressure used for printing the different inks was highest for the
starch-rich sample.

3.3. Printability

Twenty-five percent of the cubes printed using the protein and starch rich inks had
to be discarded because of ‘ink-fail’, i.e., unstable flow resulting in poor infill pattern or
low shape stability. The other inks produced more stable and uniform cubes, and ink-fails
occurred at similar frequency (fibre-rich 0%, starch-rich 5.9%, protein-rich 5.3%). Around
80% of the printer fails caused by the ink were with the honeycomb infill pattern. The
protein- and starch-rich cubes were the most troublesome to print and only produced
“satisfactory” cubes.
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Table 3. Results of stress sweep measurements and printing pressure for each ink. The storage
modulus (G′), loss modulus (G′′) and tan(δ) values were calculated as averages over the linear
viscoelastic region. The apparent yield stress was defined as the stress at 5% loss in G′.

Sample G′ (kPa) G′′ (kPa) Tan (δ) Apparent Yield Stress
(Pa)

Printing Pressure
(kPa)

Fibre-rich 17.37 ± 0.81 b 1.48 ± 0.06 a 0.085 ± 0.000 c 27.6 ± 2.9 b 69 ± 2 c

Starch-rich 29.48 ± 1.03 a 1.68 ± 0.08 a 0.057 ± 0.001 d 130.2 ± 5.2 a 183 ± 9 a

Protein-rich 7.51 ± 0.47 c 1.63 ± 0.08 a 0.218 ± 0.001 b 17.9 ± 2.4 b 85 ± 7 b

Protein- & starch-rich 2.12 ± 0.21 d 0.61 ± 0.04 b 0.284 ± 0.008 a 18.6 ± 3.2 b 86 ± 11 b

Different letters (a, b, c, d) within columns indicate significant differences (p < 0.05).

3.4. Visual Inspection of 3D-Printed Samples

The 3D-printed samples were examined visually after freeze-drying (Figure 1). For
texture analysis, a requirement was that all samples retained their shape and infill pattern
after printing and drying. The different recipes produced different looking cubes that could
be distinguished from each other. The cubes produced with the fibre-rich and starch-rich
inks were light in colour, with very straight cube walls, distinct layers and a very sharp
and defined infill pattern. The cubes from the protein-rich and protein- & starch-rich inks
were darker in colour, with wall surfaces that were smooth and glossy. The printed layers
were more distinct for the cubes with lower protein content and higher starch and/or fibre,
indicating the structural role of fibre and starch. The protein- and starch-rich cubes (no fibre)
showed a slight tendency to collapse due to gravitational forces and the stress build-up
from deposition of additional layers on top of the lower ink filaments. This resulted in
slightly curved walls of the cube. Samples containing fibre showed better shape stability,
which was reflected in the sharpness of the infill pattern. The infill pattern was least sharp
for the protein- & starch-rich cubes, followed by the protein-rich cubes, where swelling
of the filaments was evident. The holes in the infill pattern, particularly at the corners
and along the edges, were much smaller in the protein- & starch-rich and protein-rich
prototypes than in the fibre-rich and starch-rich prototypes.

Processes 2021, 9, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 1. 3D printed cubes (14 × 14 × 14 mm) after freeze-drying. 

3.5. Colour Measurements 
The colorimeter measurements confirmed the findings of the visual inspections that 

increased proportion of starch and decreased protein content caused a lighter cube (higher 
L), whereas higher protein content caused the cubes to be more yellow (higher b value) 
(Table 4). 

Table 4. L*a*b* colour values of cubes made from the different inks (L: lightness; a: red/green 
value; b: blue/yellow value). 

Sample L a B 
Fibre-rich 83.9 ± 0.5 c −9.4 ± 0.1 b 42.2 ± 0.3 b 

Starch-rich 85.1 ± 0.5 c −10.5 ± 0.2 a 40.0 ± 0.2 a 
Protein-rich 79.1 ± 0.6 b −7.2 ± 0.3 c 46.1 ± 0.3 c 

Protein- & starch-rich 75.4 ± 1.1 a −6.1 ± 0.4 d 47.9 ± 0.3 d 
Different letters (a, b, c) within columns indicate significant differences (p < 0.05). 

3.6. Texture Analysis 
Differences in peak force and peak strain based on recipe, infill pattern and direction 

of compression were analysed (Figure 2). The freeze-dried cubes were compressed from 
above, either with the infill pattern facing upwards towards the probe (from the top) or 
with the infill pattern facing towards the side (from the side). The peak force was signifi-
cantly larger (3–5 times larger) when compressing from the top compared with from the 
side. 

The general shape of the force vs. strain curve for most samples was similar to that 
of crispy foods (See Supplementary material, Figures S1 and S2) [19]. A clear peak with 
an abrupt drop in force was observed for all recipes of cubes compressed from the side. 
When compressed from the top, the starch-rich and fibre-rich cubes had a broader peak, 
with a less abrupt decrease in force during fracture. Because of the infill pattern and the 
resulting porous cell structure, most samples compressed from the side showed multiple 
peaks, with the first peak being the largest. These multiple peaks were a result of the cube 
breaking layer by layer, rather than in one large fracture as when compressed from the 

Figure 1. 3D printed cubes (14 × 14 × 14 mm) after freeze-drying.

3.5. Colour Measurements

The colorimeter measurements confirmed the findings of the visual inspections that
increased proportion of starch and decreased protein content caused a lighter cube (higher
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L), whereas higher protein content caused the cubes to be more yellow (higher b value)
(Table 4).

Table 4. L*a*b* colour values of cubes made from the different inks (L: lightness; a: red/green value;
b: blue/yellow value).

Sample L a B

Fibre-rich 83.9 ± 0.5 c −9.4 ± 0.1 b 42.2 ± 0.3 b

Starch-rich 85.1 ± 0.5 c −10.5 ± 0.2 a 40.0 ± 0.2 a

Protein-rich 79.1 ± 0.6 b −7.2 ± 0.3 c 46.1 ± 0.3 c

Protein- & starch-rich 75.4 ± 1.1 a −6.1 ± 0.4 d 47.9 ± 0.3 d

Different letters (a, b, c, d) within columns indicate significant differences (p < 0.05).

3.6. Texture Analysis

Differences in peak force and peak strain based on recipe, infill pattern and direction
of compression were analysed (Figure 2). The freeze-dried cubes were compressed from
above, either with the infill pattern facing upwards towards the probe (from the top) or with
the infill pattern facing towards the side (from the side). The peak force was significantly
larger (3–5 times larger) when compressing from the top compared with from the side.

Processes 2021, 9, x FOR PEER REVIEW 8 of 15 
 

 

top. When compressed from the top, the peak force was highest for the protein-rich sam-
ple, followed by the protein- and starch-rich, fibre-rich and starch-rich samples, respec-
tively. A similar trend was observed for cubes compressed from the side. Due to the cur-
vature of the side of the cubes, the protein- and starch-rich samples were compressed only 
from the top. No clear differences in peak force were observed between infill patterns 
(honeycomb/grid). 

When compressed from the top, the highest peak strain was observed for the starch-
rich samples. No significant differences in peak strain were observed for cubes com-
pressed from the side. 

 
Figure 2. Peak force and corresponding strain (peak strain) from compression tests on 3D-printed 
samples (a) compressed from above with the infill pattern facing upwards and (b) compressed from 
above with the infill pattern facing sideways. Different letters (a, b, c) within panels indicate signif-
icant differences (p < 0.05). N.A.—not applicable. 

From ANOVA analysis of the compression test data, it was found that the infill pat-
tern did not have a significant effect (p > 0.05) on peak force or peak strain, regardless of 
the direction of compression (Table 5). Recipe was significant for all variables except for 
the strain of samples compressed from the side. A significant interaction effect (infill × 
recipe) for peak force and peak strain was found for samples compressed from the top. 

Table 5. p-values from ANOVA analysis of compression tests investigating the effect of recipe, infill 
pattern and their interaction. Significant values (p < 0.05) are highlighted in bold. 

 Peak force Peak strain  
 Top Side Top Side 

Infill 0.96 0.41 0.080 0.18 
Recipe <0.0001 0.0019 <0.0001 0.57 

Infill × Recipe 0.032 0.14 0.021 0.48 
  

Figure 2. Peak force and corresponding strain (peak strain) from compression tests on 3D-printed
samples (a) compressed from above with the infill pattern facing upwards and (b) compressed
from above with the infill pattern facing sideways. Different letters (a, b, c) within panels indicate
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The general shape of the force vs. strain curve for most samples was similar to that of
crispy foods (See Supplementary Materials, Figures S1 and S2) [19]. A clear peak with an
abrupt drop in force was observed for all recipes of cubes compressed from the side. When
compressed from the top, the starch-rich and fibre-rich cubes had a broader peak, with a
less abrupt decrease in force during fracture. Because of the infill pattern and the resulting
porous cell structure, most samples compressed from the side showed multiple peaks, with
the first peak being the largest. These multiple peaks were a result of the cube breaking
layer by layer, rather than in one large fracture as when compressed from the top. When
compressed from the top, the peak force was highest for the protein-rich sample, followed
by the protein- and starch-rich, fibre-rich and starch-rich samples, respectively. A similar
trend was observed for cubes compressed from the side. Due to the curvature of the side of
the cubes, the protein- and starch-rich samples were compressed only from the top. No
clear differences in peak force were observed between infill patterns (honeycomb/grid).

When compressed from the top, the highest peak strain was observed for the starch-
rich samples. No significant differences in peak strain were observed for cubes compressed
from the side.

From ANOVA analysis of the compression test data, it was found that the infill pattern
did not have a significant effect (p > 0.05) on peak force or peak strain, regardless of the
direction of compression (Table 5). Recipe was significant for all variables except for the
strain of samples compressed from the side. A significant interaction effect (infill × recipe)
for peak force and peak strain was found for samples compressed from the top.

Table 5. p-values from ANOVA analysis of compression tests investigating the effect of recipe, infill
pattern and their interaction. Significant values (p < 0.05) are highlighted in bold.

Peak Force Peak Strain

Top Side Top Side
Infill 0.96 0.41 0.080 0.18

Recipe <0.0001 0.0019 <0.0001 0.57
Infill × Recipe 0.032 0.14 0.021 0.48

3.7. Analysis of Fragments after Compression

Compressing the cubes from the side produced noticeably fewer and larger fragments
than compressing the cubes from the top. When compression was from the side, there
were gaps between the layers because of the infill pattern, which caused fragments to
break off into larger pieces. Figure 3 shows the size distribution of the fragments after
compressing the cube from either the top or the side, which confirmed the observation
that top compression produced smaller fragments than side compression. The size of the
fragments compressed from the top followed a general trend with three peaks. At fragment
size >0.1 mm2, a general decrease in the proportion of fragments was seen as the curve
approached zero at particle size >10 mm2. For top compression, the distibution of fragments
with area >100 mm2 was close to zero, while for side compression the geometry density
for fragments >100 mm2 was between 0.03–0.08. Compression from the side produced
larger variation in the size of the particles between the different recipes (see Figure 3b),
where it appears that the average fragment size was the largest for the starch rich samples.
For fibre-rich samples there were two peaks in the size distribution, a stronger peak at
0.05 mm2 and a second weaker peak at 30 mm2, showing a tendency for the absolute largest
fragments. The higher force required for compression was negatively correlated with
particle size (r = −0.623; p = 0.002) and positively correlated with the number of particles
(r = 0.716; p < 0.001).

Figure 4 shows the platform of the Textural analyser (TA) with the cubes requiring
the highest and the lowest force for compression, i.e., protein-rich samples with top com-
pression and starch-rich samples with side compression, respectively. Compression from
the top resulted in finer and more numerous particles that were evenly spread out on the



Processes 2022, 10, 466 9 of 14

platform, whereas compression from the side produced fewer and larger particles that were
spread out in a linear fashion on the platform (Figure 4).

Processes 2021, 9, x FOR PEER REVIEW 9 of 15 
 

 

3.7. Analysis of Fragments after Compression 
Compressing the cubes from the side produced noticeably fewer and larger frag-

ments than compressing the cubes from the top. When compression was from the side, 
there were gaps between the layers because of the infill pattern, which caused fragments 
to break off into larger pieces. Figure 3 shows the size distribution of the fragments after 
compressing the cube from either the top or the side, which confirmed the observation 
that top compression produced smaller fragments than side compression. The size of the 
fragments compressed from the top followed a general trend with three peaks. At frag-
ment size >0.1 mm2, a general decrease in the proportion of fragments was seen as the 
curve approached zero at particle size >10 mm2. For top compression, the distibution of 
fragments with area >100 mm2 was close to zero, while for side compression the geometry 
density for fragments >100 mm2 was between 0.03–0.08. Compression from the side pro-
duced larger variation in the size of the particles between the different recipes (see Figure 
3b), where it appears that the average fragment size was the largest for the starch rich 
samples. For fibre-rich samples there were two peaks in the size distribution, a stronger 
peak at 0.05 mm2 and a second weaker peak at 30 mm2, showing a tendency for the abso-
lute largest fragments. The higher force required for compression was negatively corre-
lated with particle size (r = −0.623; p = 0.002) and positively correlated with the number of 
particles (r = 0.716; p < 0.001). 

 
Figure 3. Density diagrams showing size distribution of areal size of fragments after Textural ana-
lyser (TA) (a) from the top and (b) from the side. F Fibre-rich, P Protein-rich, S Starch-rich, PS pro-
tein- and starch-rich, G Grid, H honeycomb, T Top, S side. 

Figure 4 shows the platform of the Textural analyser (TA) with the cubes requiring 
the highest and the lowest force for compression, i.e., protein-rich samples with top com-
pression and starch-rich samples with side compression, respectively. Compression from 
the top resulted in finer and more numerous particles that were evenly spread out on the 
platform, whereas compression from the side produced fewer and larger particles that 
were spread out in a linear fashion on the platform (Figure 4). 

Figure 3. Density diagrams showing size distribution of areal size of fragments after Textural analyser
(TA) (a) from the top and (b) from the side. F Fibre-rich, P Protein-rich, S Starch-rich, PS protein- and
starch-rich, G Grid, H honeycomb, T Top, S side.

Processes 2021, 9, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 4. Images of the two samples that differed most after compression: (a) protein-rich recipe 
with grid infill pattern compressed from the top (PGT) and (b) starch-rich recipe with honeycomb 
infill pattern compressed from the side (SHS). 

3.8. Scanning Electron Microscopy 
The scanning electron microscopy (SEM) micrographs revealed that for all samples, 

the microstructure was strongly affected by freezing and freeze-drying. This could be seen 
from the porous structure created by ice crystals formed during freezing. At low magni-
fication (Figure 5a), the microstructure was relatively similar between recipes. At higher 
magnification (Figure 5b), the protein-rich samples showed smoother surfaces and 
rounded shapes/edges of the pores and cavities in the microstructure. In samples with 
more carbohydrates (fibre-rich, starch-rich), the structure became more irregular and the 
almost perforated-like structure observed for the protein-rich samples was less distinct. 
Starch granules were visible on and inside the surfaces of the samples containing starch. 
The walls around the air bubbles seemed potentially thicker for the protein- and starch-
rich and protein-rich recipes than for the fibre-rich and starch-rich recipes. 

 
Figure 5. SEM micrographs of the fracture surface of freeze-dried printed samples at different mag-
nification (a,b). Scale bar (a): 500 μm (0.992 μm/pixel), (b): 100 μm (0.198 μm/pixel). 

  

Figure 4. Images of the two samples that differed most after compression: (a) protein-rich recipe with
grid infill pattern compressed from the top (PGT) and (b) starch-rich recipe with honeycomb infill
pattern compressed from the side (SHS).

3.8. Scanning Electron Microscopy

The scanning electron microscopy (SEM) micrographs revealed that for all samples,
the microstructure was strongly affected by freezing and freeze-drying. This could be
seen from the porous structure created by ice crystals formed during freezing. At low
magnification (Figure 5a), the microstructure was relatively similar between recipes. At
higher magnification (Figure 5b), the protein-rich samples showed smoother surfaces and
rounded shapes/edges of the pores and cavities in the microstructure. In samples with
more carbohydrates (fibre-rich, starch-rich), the structure became more irregular and the
almost perforated-like structure observed for the protein-rich samples was less distinct.
Starch granules were visible on and inside the surfaces of the samples containing starch.
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The walls around the air bubbles seemed potentially thicker for the protein- and starch-rich
and protein-rich recipes than for the fibre-rich and starch-rich recipes.
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3.9. Principal Component Analysis (PCA)

Figure 6 shows the first two principal components (PC), which together explained
74.5% of the total variance (PC1 53%, PC2 21.5%). Protein content and variables directly
associated with protein content were correlated with PC1, while variables associated with
fibre and starch content were correlated with PC2. The PCA results confirmed some of the
observations and correlations seen in the empirical results. In Figure 6b, the samples are
grouped by their recipe and divided further within the groupings by compression direction
(side or top). Higher protein content was correlated with increased compression force
and loss factor (tan d). The protein-rich and protein- and starch-rich samples represented
one side of the PC1, and the fibre-rich and starch-rich samples represented the other side.
The fibre-rich and starch-rich samples were associated with higher water content in ink,
lighter colour, more distinct layers, straight walls and higher G′. At higher force, a greater
number of fragments was observed, which was inversely correlated to the area of particles.
Fibre content was correlated with larger fragments, very well-defined and uniform cubes
and increased G′′. Thus, higher elastic modulus may be a determining factor for wall
straightness and 3D printed cube stability.

Higher strain and higher yield stress were both associated with higher starch content.
As already mentioned, the starch-rich inks required the highest pressure to flow during
printing.
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4. Discussion

The different compositions of inks were adjusted to create printable inks with good
flow and shape stability properties. The water content of the inks was increased with fibre
and starch content, which correlated well with the swelling power of the fractions. Based
on visual inspection, the infill pattern was least distinct for the protein- and starch-rich
samples, with irregular size and shape of the holes within the pattern. The protein- and
starch-rich sample also had the highest percentage of ink-failure due to unstable flow and
low shape stability. This suggests that the fibre might have a stabilising effect, contributing
to the shape stability of the cubes. During ink production, the starch is heated to 60 ◦C,
which is below the gelatinisation temperature of faba bean starch (67–72 ◦C [20]). Heating
the starch to gelatinisation has been found to enhance the structural function of starch
in cookie systems [21]. Structure and shape instability, particularly for the protein- and
starch-rich cubes (with no fibre), may have been caused by the starch not fully gelatinising
because of insufficient heating temperature during the production of the bio-inks.

Due to difficulties such as wall slip and material escaping the gap during viscosity
measurements of highly viscous or semi-solid materials, oscillatory tests at small deforma-
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tions were used rather than a rotational rheometer [22]. All inks showed predominantly
solid-like behaviour (G′ > G′′), with G′ values in the approximate range 2–30 kPa. A similar
range of G′ values has previously been reported for printable pastes, and significantly lower
G′ values (down to 10 Pa) for pastes forming self-standing cylinders [5,8]. The filaments
of the samples with the lowest G′ (protein- and starch-rich, protein-rich) seemed to swell
more and showed a slight tendency to collapse. These two samples also had the highest
loss tangent values, which could potentially explain their lower dimensional stability. The
starch-rich samples showed higher yield stress than the other inks. Similarly, the pressure
needed to print the starch-rich cubes was significantly higher than for the other inks. A
correlation between high yield stress and high printing pressure has been observed by
others [5].

High yield stress or high storage modulus alone is not always sufficient to create a
good ink, e.g., a previous study found that two inks with similar G′ and phase angles
showed different shape stability after printing [5]. Hence, G′ and phase angle alone are
not always sufficient to determine the suitability of a material for 3D printing. Combining
these results with the rheological characterisation of our inks, it appears that a combination
of high G′, high yield stress and low phase angle is required to provide an ink with good
shape stability after printing.

After printing and freeze-drying, the texture of the cubes was analysed by compres-
sion tests performed along two different axes of the cubes. The effect of orientation was
investigated on the cubes standing, with the infill pattern facing upwards (compressed
from the top), and lying on their side, with the infill pattern facing 90◦ from the axis of
compression (compressed from the side). A significantly higher peak force (3- to 7-fold
higher) was recorded as the cubes were compressed from the top compared with from the
side. The higher force required for top compression is likely due to the wall layers being
stacked directly on top of each other, creating a denser wall structure that requires more
force to compress. For compression from the side, there are gaps between the layers because
of the infill pattern, which will reduce the force required for compression until fracture.
The multiple peaks observed from the force vs. strain graphs for samples compressed from
the side, but not the top, was a result of the infill pattern. The multiple peaks also related
to the size and spreading of pieces after compression, as seen in Figure 3. The samples
compressed from the side spread out in a linear fashion as multiple larger pieces that likely
relate to the multiple peaks observed in the force vs. strain graphs (Figures S1 and S2).

Scanning electron microscopy of the freeze-dried samples revealed that microstructure
was strongly affected by the freezing and freeze-drying. The microstructure consisted of
cavities with an approximate diameter of 30–70 µm. A similar microstructure in freeze-
dried gelatin products has been observed by others [23]. The porous structure was more
irregular for the samples with more fibre and less protein and these samples also had less
smooth surfaces. The more irregular structure could potentially explain the lower peak
force seen for the starch-rich and fibre-rich samples. Fracture is generally believed to occur
by the propagation of cracks, which form at or close to defects and weak spots acting as
stress concentrators during deformation [19,24]. Hence, it could be hypothesised that the
increased heterogeneity of the starch-rich and fibre-rich samples contributed to their lower
peak force.

The SEM micrographs also indicated that pore walls were thicker for the protein-rich
and protein- and starch-rich samples than for the starch-rich and fibre-rich samples. Further
studies, e.g., by X-ray tomography, would have been needed to confirm this. Nonetheless,
increased cell diameter and cell wall thickness have previously been correlated to reduced
crushing/breaking stress and compression modulus of cellular corn starch and corn-based
extrudates [25–27].

Crispiness and crunchiness are textural properties directly related to microstructure
and macrostructure that influence the mechanical and fracture properties of solid food [19].
A higher force was required for compression from the top in this study, indicating that the
cubes would be perceived as harder. A previous combination of sensory evaluation and
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texture analysis of almonds showed that almonds perceived as more brittle and less hard
by sensory evaluation required less force for compression and displayed more deformation
peaks in the textural analysis [28]. In this study, the cubes compressed from the side
required less force, with more deformation peaks present, indicating that side compression
of the cube may enhance the perceived crispness and brittleness of the products and
perhaps be a preferred characteristic in a future food product.

In a laboratory taste test on the cubes of the four different recipes, the fibre-rich and
starch-rich samples were perceived as more neutral in flavour and with a crispier texture.
The protein-rich and protein- and starch-rich samples were rated similar to each other
and were less preferred than the other samples, both in terms of flavour and texture. The
protein-rich cubes were perceived by the tasters to have a hard texture that became clayey
after chewing. None of the different recipes produced cubes that were perceived as beany
in flavour.

5. Conclusions

This study showed that protein-, starch- and fibre-rich fractions extracted from faba
beans can be successfully combined to create nutritious printable inks for extrusion-based
3D printing. Inks with lower loss tangent values showed higher shape stability. Ink compo-
sition had a clear effect on textural properties of the freeze-dried 3D-printed objects, while
infill pattern (honeycomb/grid) had no effect. Increased heterogeneity of microstructure
seemed to be associated with decreased peak force during compression. Further research
is needed to evaluate the shape stability during other post-treatment steps, such as oven
baking or frying. Sensory and consumer testing will also be necessary to optimise the
product.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pr10030466/s1, Figure S1: Force vs. Strain graphs from compression tests on freeze-dried
samples compressed from the top, Figure S2: Force vs. Strain graphs from compression tests on
freeze-dried samples compressed from the side.
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