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Organic carbon transfer between surface ocean photosynthetic and heterotrophic microbes is a central but poorly understood
process in the global carbon cycle. In a model community in which diatom extracellular release of organic molecules sustained
growth of a co-cultured bacterium, we determined quantitative changes in the diatom endometabolome and the bacterial uptake
transcriptome over two diel cycles. Of the nuclear magnetic resonance (NMR) peaks in the diatom endometabolites, 38% had diel
patterns with noon or mid-afternoon maxima; the remaining either increased (36%) or decreased (26%) through time. Of the genes
in the bacterial uptake transcriptome, 94% had a diel pattern with a noon maximum; the remaining decreased over time (6%). Eight
diatom endometabolites identified with high confidence were matched to the bacterial genes mediating their utilization. Modeling
of these coupled inventories with only diffusion-based phytoplankton extracellular release could not reproduce all the patterns.
Addition of active release mechanisms for physiological balance and bacterial recognition significantly improved model
performance. Estimates of phytoplankton extracellular release range from only a few percent to nearly half of annual net primary
production. Improved understanding of the factors that influence metabolite release and consumption by surface ocean microbes
will better constrain this globally significant carbon flux.
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INTRODUCTION
The transfer of organic carbon from phytoplankton to bacteria via
a pool of labile dissolved compounds is a key process in global
carbon cycling, involving up to a third of fixed carbon [1, 2]. One
important but poorly quantified mechanism for this transfer is the
extracellular release of organic compounds by living phytoplank-
ton. Indeed, estimates of the proportion of net primary production
(NPP) released extracellularly range from 4 to 47% [3], and of the
proportion of heterotrophic bacterial carbon demand supported
by extracellular release from 2 to 50% [1]. In part, this largely
unconstrained flux can be traced to the difficulties inherent in
characterizing labile organic molecules dissolved in surface
seawater, such as short turnover times due to rapid bacterial
uptake and low concentrations due to efficient scavenging
(nmol L−1 to pmol L−1; refs. [4, 5]). Moreover, organic molecules
taken up by bacteria become rapidly untraceable because of
transformation and respiration inside bacterial cells [2]. Although
the dissolved organic carbon (DOC) link between marine
phytoplankton and bacteria has long been of interest [6–8],
identifying the specific metabolites responsible and measuring
their flux is indeed challenging.
Phytoplankton metabolite synthesis exhibits diel cycles in

the surface ocean, coordinated with the availability of light energy
[9–11]. Similar diel cycles of activity in heterotrophic bacterial
communities have also been observed [12–14], often lagging peak
phytoplankton activity by a few hours [14, 15]. Gene expression
data are providing detailed views of this diel synchronicity

between phytoplankton and bacteria in oligotrophic and coastal
marine communities. For example, phytoplankton carbon fixation
and photosystem gene expression coordinates with bacterial
substrate uptake (amino acid and sugar transporters) and citric
acid cycle gene expression [16, 17]. Extracellular release of
phytoplankton metabolites is the process most likely to underlie
these matched patterns.
Intracellular phytoplankton metabolite pools (endometabolites)

are the presumptive substrates for the heterotrophic bacteria
supported by extracellular release. Yet how faithfully phytoplank-
ton internal concentrations predict exometabolite availability
depends on the mechanism of release [3, 18]. In the simplest
mechanism, differences in metabolite concentration between
phytoplankton cells and ambient seawater drive diffusion [19] (i.e.,
passive diffusion mechanism), in which case metabolite release to
heterotrophic bacteria is largely controlled by intracellular
metabolite concentrations of the phytoplankton. Alternatively,
active excretion of metabolites to maintain cellular balance can
occur by overflow pathways [20], for example to manage redox
state [11] or photorespiration (i.e., physiological balance mechan-
ism). Finally, metabolites may be synthesized and excreted in
response to associated microbes, potentially to sustain mutual-
isms or mount defenses [21–23] (i.e., interaction response
mechanism).
Here we determined the correspondence between phytoplank-

ton intracellular pools and heterotrophic bacterial substrate
availability by examining diel patterns of endometabolites and
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transcripts, respectively. A model community was established in
which marine diatom Thalassiosira pseudonana CCMP1335 [24]
was the only source of substrates to bacterium Ruegeria pomeroyi
DSS-3 [25]. As diatoms contribute up to 40% of primary
production in the surface ocean [26], and R. pomeroyi belongs
to a taxon that often dominates diatom bloom communities
[27, 28] and responds sensitively to external resources [29–31], this
simple community represents a relevant phytoplankton-bacteria
association in the surface ocean. Over two day-night cycles, we
contemporaneously assayed phytoplankton endometabolite pools
by NMR spectroscopy and bacterial metabolite consumption using
transcript proxies, and assessed links between the two. Transcript
abundance was quantified as the number of mRNA molecules per
bacterial cell, enabled by the use of internal mRNA standards; this
approach yielded the number of transcripts harbored by a cell for
a given gene, matching absolute quantitation in the metabolite
data and eliminating ambiguities inherent in proportional
expression data [32–34]. The quantitative chemical-biological
analytical framework applied to this model system enabled us to
assess proposed mechanisms underlying temporal links between
microbial autotrophs and heterotrophs via extracellular release of
labile metabolites.

MATERIALS AND METHODS
Diel experiment
An axenic strain of marine diatom Thalassiosira pseudonana CCMP1335
was cultured at 18 oC in three replicate 15-L polycarbonate bottles
containing 10 L of L1 medium [35] in which NaH13CO3 (Cambridge Isotope
Laboratories, CLM-441) was the source of inorganic carbon (labeling
efficiency, 78% of C atoms). The light cycle consisted of 16 h light, during
which light intensity varied gradually between 0 and 150 µmol photon
m−2 s−1 with a maximum intensity at noon, followed by 8 h of dark. Axenic
T. pseudonana cultures were pre-incubated for 6 days to achieve cell
numbers required for metabolite analysis. The cultures were inoculated
with bacterial strain Ruegeria pomeroyi DSS-3 that was grown overnight at
30oC on ½ YTSS liquid medium and washed three times in L1 medium
(final concentration, 106 bacterial cells mL−1). Co-cultures (n = 3) were pre-
incubated for two days, after which samples were collected every 6 h over
the next 48 h for bacterial mRNA sequencing, phytoplankton and bacterial
cell counts, and phytoplankton endometabolome analysis.

Bacterial effect experiment
T. pseudonana CCMP1335 and R. pomeroyi DSS-3 co-cultures were
prepared as in the diel experiment except that additional treatment was
established in which the diatom remained axenic (n= 3 for each). Diatom
cells were collected at the 48 h sample time and metabolite concentrations
were compared between treatments. Incubation periods, culture media,
sample processing protocols, and metabolite analysis schemes were the
same as those used in the main experiment.

Light effects experiment
One-week stationary-phase axenic T. pseudonana CCMP1335 grown under
similar conditions were sequentially filtered through GF/F filters (Whatman,
Maidstone, UK) and 0.2-µm-pore-size PCTE membrane filters (Poretics,
Swedesboro, NJ) to remove cells. R. pomeroyi DSS-3 cells prepared as
described above were added to the diatom-free filtrate and incubated
under light intensities of 150 (100% treatment), 75 (50% treatment), or 0
µmol photon m−2 s−1 (0% treatment), corresponding to light levels at
noon, mid-morning and mid-afternoon, and night in the diel experiment
(n= 3 for each). Temperature monitoring indicated only a minor
temperature increase of 0.5oC in the 100% treatment relative to 50%
and 0% treatments. After 4 h, samples were collected for bacterial RNA
analysis and cell counts.

Diatom endometabolome analysis
Diatom cells were collected by filtering 500 mL of culture onto 2.0-µm-
pore-size PCTE membrane filters (Isopore; MilliporeSigma, Burlington, MA)
using <10 inHg pressure and stored at −80oC until processing. Cells were
removed from filters by sonication in ultra-pure water (MilliporeSigma) and

concentrated by freeze-drying [36]. Pellets were mixed with 600 µL of
sodium phosphate butter (pH 7.4) with an internal standard of 2,2-
dimethyl-2-silapentane-5-sulfonate-d6 (DSS) (1 mmol L−1), vortexed for 5
min, and centrifuged at 20,800 rfc for 10 min, after which supernatants
were transferred to 5-mm NMR tubes (Bruker, Billerica, MA). Processing was
conducted at 4oC. A blank sample was also included for quality control.
Metabolites were analyzed by NMR spectroscopy using a Bruker AVANCE III
800 MHz 5 mm TCI cryoprobe, 800 MHz 1.7 mm TCI cryoprobe, and 600
MHz 5 mm TXI probe. Pulse programs of 1H-13C heteronuclear single
quantum correlation (HSQC; Bruker program hsqcetgpprsisp2.2), 1H-13C
HSQC-total correlation spectroscopy (HSQC-TOCSY; hsqcdietgpsisp.2), and
1H-13C heteronuclear multiple bond correlation (HMBC; hmbcetgpl2nd)
were used. Data were deposited to Metabolomics Workbench (Project ID,
PR001019). Data processing was carried out with TopSpin 4.0.3 (Bruker),
and peak intensity was extracted using rNMR 1.1.9 [37]. Metabolites were
annotated based on chemical shift (HSQC) and coupling information
(HSQC-TOCSY and HMBC). The Human Metabolome Database (HMDB) [38]
and the Biological Magnetic Resonance Bank (BMRB) [39] were used as
reference databases, and additionally the Carbohydrate Structure Database
(CSDB) [40] for polysaccharides. Three compounds of interest that are not
in these databases were annotated either by obtaining original spectra
from chemical standards (DHPS and DMSP; ref. [41]) or based on literature
values (homarine; ref. [42]). A confidence level of annotation was assigned
to each metabolite [43] (Table S1) where 1= putative compounds with
functional group information; 2= partially matched to HSQC chemical shift
information in the databases or literature; 3=matched to HSQC chemical
shift; 4=matched to HSQC chemical shift and validated by HSQC-TOCSY
or HMBC; 5= validated by original spectra from chemical standards.
Detailed parameter settings are presented in Table S2, with additional
information in Metabolomics Workbench. Spectra were standardized to
DSS, peak intensities were normalized to cell counts, and data were auto-
scaled and presented as Z-scores. Since we did not conduct additional
spiking experiments to quantify compounds, we only focus on the
difference of the values between samples, and not between compounds.
Temporal variations in metabolites were analyzed by extracting peaks
using variance-sensitive clustering [44]. The optimal cluster number was
selected based on minimum centroid distance and the Xie-Beni index
values for the dataset [44]. Background signals originating from labware
and solvent were also corrected. Background signals originating from
bacteria trapped on the 2.0-µm filters were extremely low in the diatom
endometabolite fraction (Supplementary Methods). Periodicity of the
temporal patterns for compounds was analyzed using a rhythmicity
analysis package RAIN (1.18.0; ref. [45]) in R software (version 3.6.1).
Heatmaps were created using the CirHeatmap function (version 1.7) in
MATLAB (Mathworks, Natick, MA) [46].

mRNA analysis
For the diel experiment, samples were sequentially filtered through 2.0-µm
pore-size PCTE filters (Isopore; MilliporeSigma) to remove diatom cells and
0.2-µm pore-size PES filters (Supor; Pall, New York) to retain bacterial cells.
RNA was extracted from the bacterial filters with a phenol-chloroform-
isoamyl method [47], which has a better RNA recovery for co-culture
samples. Two internal mRNA standards (size, 1,000 nt) were added to each
sample before extraction for determining their recovery in the sequence
data [48]. For the direct light experiment, samples were filtered through
the 0.2-µm pore-size filters to retain bacterial cells. RNA was extracted
using the RNeasy Mini Kit (QIAGEN, Hilden, Germany) after cutting filters
into pieces under sterile conditions and shaking with 0.5 mL of 0.1-mm
zirconia/silica beads (BioSpec Products, Bartlesville, OK) in 1 mL of
Denaturation/Lysis Solution (Life Technologies, Carlsbad, CA) for 15min.
For both sample types, filtration was completed within 15 min of
collection, filters were flash frozen in liquid nitrogen and then stored at
−80oC, DNA was removed (Turbo DNA-free Kit, Ambion, Austin, TX), rRNA
was depleted (Ribo-Zero rRNA Removal Kit; Illumina, San Diego, CA), and
mRNA was purified (RNA Clean & Concentrator-5; Zymo Research, Irvine,
CA). The number of bacteria extracted was ~109 cells.
Sequencing using NextSeq 550 (Illumina) SE50 averaged 19.2 x 106 reads

per sample (Table S3). rRNA reads were identified by blast+ (NCBI 2.7.1 and
2.8.1 for the direct light experiment and the diel experiment, respectively)
against an rRNA sequence database and removed; rRNA contamination
averaged 17.5% of reads. Recovery of the two internal standards was
highly consistent (Pearson’s r= 0.96; p < 0.001; n= 26), accounting for
2.2% of mRNA reads per library (Table S3). Remaining reads were mapped
to the R. pomeroyi genome and quantified using HTSeq [49]. Differentially
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expressed genes were identified in pairwise comparisons of sampling
times (diel experiment) or light levels (direct light experiment) using
MATLAB for absolute analysis and DESeq2 [50] for relative analysis. One of
the replicate samples from the initial time point of the experiment was lost;
otherwise, n = 3 for all analyses. All other statistical analyses were
conducted using MATLAB. Fold-change values and temporal pattern
categories for all genes are reported in Table S4.

Cell counts
A 0.5 mL aliquot of culture fixed with glutaraldehyde (final concentration,
1%) was kept at −80oC until analysis. Samples were thawed, stained with
SYBR Green I (Thermo Fisher Scientific, Waltham, MA; final concentration, 5
x 10−4 dilution of commercial stock), and injected into a CytoFLEX flow
cytometer (Beckman Coulter, Brea, CA). For phytoplankton counts, samples
were analyzed without staining. Data were analyzed using CytExpert
(Beckman Coulter) and cell density was calculated based on a separate run
of a known concentration of bead standards (Beckman Coulter).

Model development
A model was written in R version 3.6.1 with three state variables
representing the phytoplankton endometabolome (P), the medium
exometabolome (E), and the bacterial endometabolome pools (B). The
time evolution of these pools was calculated at 0.1 h intervals. The base
model was written to represent only diffusive and fundamental
physiological processes, which is largely a passive model, given in the
following differential equations:

δtP ¼ N � T � R

δtE ¼ R� U

δtB ¼ U � C

N is the metabolite biosynthesis rate, derived from light intensity
expressed as a cosine function. T is rate at which endometabolites are
allocated for biomass and energy generation by phytoplankton cells,
calculated as a constant fraction of P from the previous interval. R is release
rate of endometabolites from the phytoplankton cell by simple diffusion. U
represents bacterial uptake rate from the exometabolome following
Michaelis-Menten kinetics. C represents catabolism rate of the metabolite
within the bacterial endometabolome, with a constant fraction lost each
interval. See Supplemental Methods for information on how variables N, R,
T, U, and C were derived.
In addition to the base model, three active terms could be added to the

model to represent processes beyond those of simple diffusion and
fundamental physiology. The first active term was fixation-irradiance
oscillation, o, which represents the process of asymmetric carbon fixation
in response to increasing versus decreasing light intensity and impacts the
calculation of metabolite production, N. During periods of increasing
irradiance (pre-noon), carbon fixation increases proportionally to irradi-
ance, but during periods of decreasing irradiance (post noon), carbon
fixation declines more rapidly than irradiance (see Supplemental Methods
for details). The second active term was homeostasis, h, representing the
increased phytoplankton excretion of metabolite, R, to maintain physio-
logical homeostasis during periods of high light intensity. When h is
incorporated into the model, R becomes a function of the rate of
metabolite production, N, following the irradiance curve, such that R
increases as N increases. The final active term was bacterial response, b,
representing a recognition response in the phytoplankton to the presence
of bacteria. The b term is multiplicative factor affecting the value of N and
representing a change in metabolite production in response to the
presence of a co-cultured bacterium.
The model was run for a simulated length of 10 d to replicate

experimental conditions. During the first 6 d of ‘axenic growth’ the values B
and U were set to zero, followed by ‘inoculation’ with addition of B and U
functions for the final 4 d of the modeled experiment. Values for P and U
from the final 2 d of model output were used to compare to experimentally
measured endometabolome and transcriptome data, respectively.
The model was fit to each matched metabolite/gene pair using an

iterative method. A sequence of values was constructed for each of the 6
variables of the base model and 3 active terms (see Supplemental Methods
for details), and the model was run for all combinations of each variable
and value. For each metabolite/gene pair, two linear correlations (Pearson’s

r) were calculated between modeled (P) and experimental diatom
endometabolite data, as well as between modeled bacterial metabolite
uptake (U) and bacterial transcript expression. Parameter sets that
produced significant correlations (p < 0.05; n= 9) between modeled and
experimental data for both endometabolite and gene were saved. The r
values for each endometabolite/gene pair were averaged and used to
compare the overall goodness of fit for each set of model parameters
(base, base plus optional active mechanisms in all possible combinations).
These r values were adjusted to account for the number of terms beyond
the base model according to the formula:

1�
1
r

� �
n� 1ð Þ

n� k � 1

� �

where n= number of samples and k= number of terms. For
models with few significant solutions, additional parameter space
was explored but did not substantially increase fit.

RESULTS AND DISCUSSION
R. pomeroyi was inoculated into axenic T. pseudonana cultures
growing under a naturally oscillating light:dark cycle. After a 2-d
pre-incubation to allow the bacteria to assimilate labile metabo-
lites that accumulated during the axenic phase, and thus
emphasize synchronized production and consumption dynamics
during diel cycles, samples were collected every 6 h for the next
48 h at timepoints corresponding to midnight, mid-morning,
noon, and mid-afternoon.

Diatom metabolome composition
1H-13C two-dimensional NMR characterization of the diatom
endometabolome during the 48 h sampling window revealed
281 major peaks. From these, 31 compounds (accounting for 156
peaks) were identified with high confidence (Table 1; see Table S1
and Fig. S1 for detailed annotation and confidence level
information). The number of diatom cells increased ~2-fold over
the sampling window, from 0.87 to 1.9 × 105 cells mL−1 (Fig. 1a);
metabolite data were normalized to cell number at each sample
time.
To group metabolite peaks that behaved similarly over the diel

cycles, cell-normalized abundance data were clustered by
variance-sensitive clustering [44] which identified four patterns
(Figs. 1b and 1c; Table 1). Group M-1 consisted of 102 peaks (36%)
for which a monotonic increase in intensity dominated the 48 h
sampling window (Fig. 1c). The twelve compounds annotated with
high confidence from this cluster included amino acids (aspar-
agine, glycine, isoleucine, leucine, and lysine), amino acid
derivatives (glycine betaine and homarine), an amino alcohol
(ethanolamine), a choline derivative (phosphorylcholine), a
glycerol derivative (glycerol-3-phosphate), and the sulfur-
containing compounds dihydroxypropanesulfonate (DHPS) and
dimethylsulfoniopropionate (DMSP) (Table 1, also see Fig. S2 for
individual compounds in each cluster). Metabolite group M-2 was
characterized by 73 peaks (26%) for which decrease in intensity
over time was the dominant pattern, and included two organic
acids (3-hydroxybutyrate and acetate). The two other metabolite
clusters exhibited diel concentration patterns that peaked in the
light and declined in the dark (Table 1, Fig. S2). Group M-3
contained 59 peaks (21%) that reached their maximum intensities
at mid-afternoon (R package RAIN, p < 0.001) and included high-
confidence annotations of the nucleoside uridine and the
carbohydrates glucose and β-1,3-glucan, the latter a subunit of
the diatom polysaccharide chrysolaminarin [51]. Group M-4
contained 47 peaks (17%) that reached their maximum intensities
at mid-morning or noon (RAIN, p < 0.01) and included high
confidence annotations for the amino acids aspartate, glutamine,
proline, and guanosine. Overall, four distinct temporal patterns in
abundance were observed among components of the T.
pseudonana endometabolome during co-growth with a
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heterotrophic bacterium under a light regime mimicking that of
the surface ocean.

Bacterial transcription patterns
We next examined concurrent bacterial transcript inventories
indicative of metabolite consumption, normalized to cell counts at
the time of sampling (Fig. 1a). The total number of transcripts
cell−1 varied significantly over the diel cycle (One-way ANOVA; n
= 26, p < 0.01) with ~2.5-fold more mRNAs in the mid-morning
and noon cells (95 ± 49 and 114 ± 53 mRNAs cell-1) relative to mid-
afternoon and night (42 ± 11 and 58 ± 25 mRNAs cell-1). Corre-
spondingly, the majority of genes had higher transcripts per cell at
mid-morning and noon relative to mid-afternoon and night (Fig.
S3). This transcript inventory is low compared to exponentially
growing Escherichia coli (1,350 mRNAs cell-1; ref. [52]) but
comparable to previous measures for marine bacteria in ocean
environments [34].

To identify genes that behaved similarly over time, the per cell
transcript inventories for each of the 4,278 protein-encoding
genes in the R. pomeroyi genome were clustered by variance-
sensitive clustering (Fig. 1b, c). Group G-1 consisted of 3,294 genes
(76%) exhibiting a diel transcription pattern with a maximum
value at noon (Fig. 1c). Group G-2 consisted of 756 genes (17%)
exhibiting a diel transcription pattern similar to G-1 but with high
values at the first night and mid-morning time points (Fig. 1c).
Group G-3 included 271 genes (6%) that did not exhibit a diel
pattern, but similar to G-2, the first night and mid-morning values
were high (Fig. 1c). We speculate that the higher transcript
inventories at initial time points of the G-2 and G-3 clusters reflect
incomplete bacterial drawdown of a metabolite accumulating
prior to the addition of bacteria.
Expression levels of R. pomeroyi genes annotated with functions

in organic carbon influx served as proxies for bacterial substrates
made available by phytoplankton extracellular release (372

Table 1. Diatom endometabolites assigned with high confidence in the diel experiment. For detailed information for compound identification and
confidence level, see Table S1 and Fig. S1.

Compound category/Sub-
category

Compound Function Group, temporal
pattern

Amine Trimethylamine N-oxide (TMAO) n.a.

Amino acid Alanine Amino acid metabolism n.a.

Arginine Amino acid metabolism n.a.

Asparagine Amino acid metabolism M-1 (p < 0.001)

Aspartate Amino acid metabolism M-4 (p < 0.01)

Glutamine Amino acid metabolism M-4 (p < 0.001)

Glutamate Amino acid metabolism n.a.

Glycine Amino acid metabolism M-1 (p < 0.01)

Lysine Amino acid metabolism M-1 (p < 0.001)

Proline Amino acid metabolism/
osmoregulation

M-4 (p < 0.001)

Amino acid/Branched-chain Valine Amino acid metabolism n.a.

Isoleucine Amino acid metabolism M-1 (p < 0.001)

Leucine Amino acid metabolism M-1 (p < 0.001)

Amino acid derivative Glycine betaine Osmoregulation M-1 (p < 0.05)

Dimethylglycine n.a.

Homarine Osmoregulation M-1 (p < 0.05)

Amino alcohol Ethanolamine Lipid metabolism M-1 (p < 0.01)

Choline Choline Lipid metabolism n.a.

Choline derivative Phosphorylcholine Lipid metabolism M-1 (p < 0.001)

Phosphocholine Glycerophosphocholine Lipid metabolism n.a.

Glycerol derivative Glycerol 3-phosphate Lipid metabolism M-1 (p < 0.01)

Nucleoside Adenosine Nucleic acids/ATP constituent n.a.

Guanosine Nucleic acids/GTP constituent M-4

Uridine M-3 (p < 0.001)

Organic acid 3-Hydroxybutyrate Carbon metabolism M-2 (p < 0.01)

Acetate Carbon metabolism M-2 (p < 0.01)

4-Hydroxyphenylacetate n.a.

Sugar/Monosaccharide Glucose Carbon/central energy metabolism M-3 (p < 0.001)

Sugar/Polysaccharide β(1,3)-glucan Carbon metabolism/storage M-3 (p < 0.001)

Sulfur compound Dihydroxypropane-sulfonate (DHPS) Osmoregulation M-1 (p < 0.001)

Dimethylsulfonio-propionate (DMSP) Osmoregulation M-1 (p < 0.001)

Temporal pattern assignments correspond to those in Fig. 1; M-1= increase, M-2= decrease, M-3= diel with a peak at mid-afternoon, and M-4= diel with a
peak at noon. Statistical significance was determined based on linear regression analysis (M-1 and M-2), and RAIN for diel cycles (M-3 and M-4). n.a., not
applicable (membership value of >0.5, see text for the detail).
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transporter genes representing 120 transporter systems). In a few
cases for which catabolic genes were known but transporter
genes were not, we used expression levels of diagnostic catabolic
genes as indicators of substrate influx (21 catabolic genes
representing 8 catabolic systems) (Table 2). The majority of influx
genes exhibited the G-1 diel expression pattern peaking at noon
(91%), among them 18 influx systems whose substrates have been
experimentally verified [30, 31, 47, 53–55]. Most of these verified
G-1 influx systems [15] had large day:night differences in
transcript numbers (mean ratio: 33.5 ± 11.7, n= 50 for all genes
making up the transport systems), with 13- to 58-fold higher per
cell transcript inventories at noon relative to night (adjusted p <
0.05) (Fig. 2). These systems mediate uptake of osmolytes (ectoine
and 5-hydroxyectoine), amines (trimethylamine, trimethylamine-
N-oxide, and spermidine), organic sulfur compounds (DHPS,
isethionate, cysteate, N-acetyltaurine, choline-O-sulfate, and
DMSP), and glycolate, xanthine, phosphonate, and ribose. The
other three experimentally-verified influx systems with G-1
patterns had modest (mean ratio: 3.7 ± 1.2, n= 9) but nonetheless
significant diel expression differences (adjusted p < 0.05) due to
high night transcript inventories rather than low noon inventories
(Fig. 2); these encode influx of taurine, glucose, and sn-glycerol-3-
phosphate. Two experimentally verified influx systems in group
G-2 encoded uptake of putrescine and glycine betaine, and one in
group G-3 encoded choline uptake. The greater expression levels
at noon relative to night were also seen in flagella synthesis genes,
implying greater bacterial motility at noon, but not for pathways

relating to ATP generation and ribosomal protein synthesis, which
had constant numbers of transcripts throughout the diel cycle
(Fig. 2). Although expression among replicates followed the same
patterns though time, variability within a given time point could
be substantial. Potential explanations include physiological offsets
among replicate diatom cultures and emergence of bacterial
subpopulations within replicates [56].
We noticed that R. pomeroyi produced two-fold fewer

transcripts for substrate acquisition in the mid-afternoon com-
pared to mid-morning (Fig. 2), despite the fact that illumination
was identical. Diel oscillations in the relationship between carbon
fixation rate and irradiance have been broadly documented for
marine phytoplankton in laboratory and field studies, character-
ized by pre-noon maxima in photosynthesis rates despite
equivalent irradiance levels post-noon [57, 58]. Thus the rapid
decrease in expression of most bacterial transporters by mid-
afternoon suggests that photosynthetic oscillations may also be
manifested in phytoplankton extracellular release.

Control for direct effects of light
Although no light-sensing proteins have been identified in the R.
pomeroyi genome, we nonetheless checked whether light could
be directly driving changes in gene expression. The bacterium was
inoculated into spent medium obtained from axenic T. pseudo-
nana cultures, representing a natural pool of dissolved metabo-
lites, and exposed for 4 h to one of three light levels that matched
co-culture irradiance at noon, mid-morning/mid-afternoon, and

Fig. 1 Diel patterns in microbial cell numbers, phytoplankton metabolites, and bacterial transcripts. a Cell numbers of co-cultured
diatoms and bacteria. b Temporal variations in metabolite peak intensity per diatom cell (left) and transcripts per bacterial cell for genes
differentially expressed between noon and night (>2 fold-change and adjusted-p < 0.05, DESeq2) (right). Values were converted to Z-scores
and data from each of the three biological replicates are shown. c Temporal patterns identified for metabolites (M-1 through M-4) and gene
transcription (G-1 through G-3). Dotted lines indicate 95% confidence intervals. The number of metabolite peaks or genes in each cluster is
given in parentheses. Grey shading in panels (a) and (c) indicates night.
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night in order to assess differential gene expression with light
exposure as the only variable. Only 61 genes in the bacterial
culture (1.4% of the R. pomeroyi genome) were significantly
enriched by one or both light levels compared to the dark
treatment (Fig. S4), indicating that the large shifts observed in
transporter system expression (Fig. 2) were not directly triggered
by light. Nonetheless, the collection of light-enriched genes was
not random. Ten genes function in protection against reactive
oxygen species (ROS) (Fig. S5, Table S5) which can be formed
when light interacts with oxygen or organic compounds [59–61].
Another 16 function in the uptake and metabolism of phosphate
(pstSCAB, phoU), and phosphonate (phnDEC, phnIGHLJN) (Fig. S5),
and were likely under the control of the similarly enriched phoB
regulatory protein [62–64]. Phosphorus acquisition transcript
enrichment was surprising, since phosphate concentrations
remain non-limiting for many weeks in this model culture system
(>10 µmol L−1) [47] and phosphorus availability was identical in all
treatments regardless. Higher uptake of phosphorus during
morning hours, when photosynthesis rates are low and competi-
tion with phytoplankton for phosphorus uptake may be less
intense, has been proposed as a niche partitioning strategy for
marine bacterioplankton [14, 65]. Based on the concomitant
enrichment of phosphorus acquisition genes and ROS-related
genes in the absence of light-sensing proteins, we speculate that
phosphorus acquisition might be regulated through the cellular
detection of ROS dynamics. ROS have known roles in bacterial
signaling through redox-sensing transcriptional regulators [66].

Transcript enrichment versus upregulation
Expression of the bacterial influx systems was also calculated as a
percent of the transcriptome (Fig. 3), the prevailing analysis
approach for RNAseq studies that do not use internal standardiza-
tion [67]. These calculations identified 57% of influx system genes
as having significantly enriched proportions in the noon tran-
scriptome relative to night. In contrast, per cell transcript
calculations based on the internal standards identified 94% of
influx system genes as having significantly higher transcript
inventories at noon relative to night (Fig. 3). These analyses
emphasize, on the one hand, the bacterium’s investment in
expression of a transporter relative to other cellular functions
(percent of transcriptome), and on the other, the absolute number
of templates to synthesize the transporter (transcripts per cell). This
analysis also revealed that the response of bacterial influx genes is
weighted toward higher fold-change compared to the average
across all genes for both relative and absolute analyses, implying
well-regulated substrate influx. We used per cell bacterial transcript
counts and per cell metabolite abundance in the following co-
analysis of gene expression and endometabolite data sets.

Coincidence of diatom metabolite accumulation and bacterial
transcription
Eight of the bacterial influx systems had target compounds that
were also identified with high confidence in the diatom
endometabolome, allowing us to compare diel patterns for these
matched pairs (Table 2). In all cases, bacterial gene expression
followed a diel pattern with peak expression at noon (G-1 or G-2
clusters) (Fig. 4a). The metabolite patterns were more diverse,
however. Four metabolites exhibited a continually increasing
endometabolome concentration (cluster M-1; leucine, glycerol-3-
phosphate, DHPS, and DMSP) (Fig. 4a). One metabolite exhibited a
continually decreasing endometabolome concentration (M-2;
acetate). Two exhibited diel cycles with mid-afternoon concentra-
tion peaks (M-3; glucose and uridine). One exhibited a diel cycle
with noon concentration peaks (M-4; proline).
We asked whether the three mechanisms proposed for

phytoplankton extracellular release (passive diffusion, physiologi-
cal balance, and interaction response) could explain the paired
patterns in endometabolites (the presumed source) and bacterialTa
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transcription (the proxy for extracellular release). A simulation
model was established with passive diffusion as the default
release mechanism by phytoplankton, governed solely by a
metabolite concentration gradient between the inside and

outside of cells. Beyond the base model, additional parameters
permitted two active physiological balance release mechanisms,
fixation-irradiance oscillation and cell homeostasis (for example
due to photorespiration or redox imbalance), and one active
bacterial interaction mechanism (for bacterial influence over
metabolite release rate) (Fig. 4d), and these were tested for
improved representation of the experimental data over that of the
base model. The model assumed that R. pomeroyi transporter
systems were regulated by the availability of their substrate, which
has been supported in previous studies [30, 31, 53, 55, 68], and
that substrates are taken up by the bacteria according to
Michaelis-Menten kinetics.
Models in which passive diffusion was the sole mechanism of

extracellular release best reproduced the observed concentration
pattern for acetate, which steadily decreased through time in the
diatom endometabolome (M-2 pattern); and for proline, which
had a diel pattern with a peak at noon (M-4 pattern). Adding
additional parameters to the base model did not significantly
increase fit for these compounds (adjusted r, p > 0.5; Table S6).
Glucose and uridine, which had diel peaks in concentration in the
afternoon (M-3 pattern), were best represented in models that
included one or both physiological balance mechanisms (fixation-
irradiance oscillation and cell homeostasis). Finally, leucine,
glycerol-3-phosphate, DMSP, and DHPS, the compounds exhibit-
ing monotonically increasing endometabolite concentrations (M-1
pattern), were best reproduced by the model when the bacterial
interaction mechanism was invoked, and may represent shifts to
higher steady state concentrations. In contrast to metabolite
concentrations, the experimental gene expression data for the 8
compounds all showed a diel peak at noon. While most best-fit
models reproduced this transcription pattern, they failed to

Fig. 2 Expression levels of representative R. pomeroyi genes encoding transporters or diagnostic catabolic genes (top) and, for
comparison, genes encoding flagella, ATPases, and ribosomal proteins (bottom). For each panel, the top plot shows noon to night ratios
(black circles), and the bottom plot shows average transcripts cell-1 at night, mid-morning, noon, and mid-afternoon. n= 8 or 6; error bars
indicate standard deviations. Categories of transcription temporal patterns (G-1, black; G-2, white, G-3, grey) are indicated along the x-axis.
Asterisks indicate transporters whose target substrate matches an endometabolite identified with high confidence.

Fig. 3 Comparison of fold-difference values for absolute versus
relative analysis of noon:night ratios of transcripts. Absolute
analysis (x-axis) represents up- or down-regulation of the number of
transcripts per bacterial cell. Relative analysis (y-axis) represents
enrichment or depletion as a proportion of the transcriptome. Dark
blue symbols indicate the transporter genes in Fig. 2; light blue symbols
indicate other transporter genes; grey symbols indicate the remaining
R. pomeroyi genes. Dashed gray lines mark where fold-difference= 2 on
each axis (log2 units). The light yellow oval highlights genes with per
cell transcript inventories that are significantly higher at noon yet
account for a significantly lower proportion of the cells’ transcriptome.
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replicate the noon peaks in expression for acetate, glucose, and
leucine (Fig. 4b, c; Fig. S6; Table S6).
The inability of diffusion alone to reproduce the experimental

data for the majority of metabolites suggests that passive
movement of molecules through cell membranes is insufficient
to explain metabolite release [69]. Physiological balance mechan-
isms represented by the photosynthetic oscillations and cell
homeostasis parameters are consistent with evidence that light
intensity affects photorespiration rates [3, 70] as well as the
biosynthetic balance between metabolite classes (e.g., amino
acids versus storage carbohydrates; ref. [71]).
The role of bacterial recognition is more controversial, since the

underlying processes by which recognition could be achieved are
not yet resolved, nor is it clear how widespread or important such
interactions may be in natural microbial communities. Chemicals

released from bacteria or bacterial alteration of environmental
conditions, such as nutrient pools or ROS, might serve as signals
[22]. In previous research, cultured T. pseudonana exhibited
transcriptional changes consistent with a recognition response
acting via leucine-rich repeat (LRR) proteins following addition of R.
pomeroyi [22]. Similarly, marine diatom Pseudo-nitzchia multiseries
released tryptophan in response to bacterium Sulfitobacter sp. S11
[21] and the bacterium converted tryptophan to the plant
hormone indole-3-acetic acid. The model prediction of a role for
R. pomeroyi in triggering concentration increases of specific T.
pseudonana endometabolites was tested experimentally by
comparing co-cultures to axenic cultures. Three of the four M1
compounds (leucine, glycerol-3-phosphate, and DHPS) had sig-
nificantly higher concentrations in the diatom endometabolome
when incubated with bacteria relative to axenic incubations (Fig.

Fig. 4 Modeling diatom endometabolite pools and bacterial transcript inventories. a Comparison of diel patterns for diatom
endometabolite concentration (green symbols) and bacterial transcript inventory for a representative gene encoding uptake or catabolism of
the same compound (blue symbols); additional relevant genes are shown in Fig. S6 (mean+ standard deviation, n= 3 except for the first
night where n= 2). b The base model was optimized with or without optional functions. Each point represents a parameter combination (out
of 806,400 tested) for which the model output is significantly correlated with both metabolite and transcript experimental data, and points are
colored according to the Pearson’s r values for correlations between experimental data and model simulations, averaged for transcript and
metabolite datasets. c The best fit model based on average adjusted r, with individual r values given above the plots for metabolite (green
font) and transcript (blue font) inventories. Functions added to the base model to achieve the best fit include two physiological balance
mechanisms indicated as +o (irradiance-fixation oscillation) and +h (cellular homeostasis), and a bacterial recognition response indicated as
+b. *p < 0.05; **p < 0.01; ***p < 0.001. d Simulation model structure.
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S7). DMSP was the exception, with no significant difference in the
T. pseudonana endometabolome in the presence or absence of
bacteria. DMSP carries out a number of functions in phytoplankton
cells, including roles as an osmolyte [72], predator deterrent [73],
and ROS scavenger [74], and therefore its regulation in the diatom
endometabolome may be more complex than what the model
structure could represent (Table S6). Considering these eight focal
compounds, computational matching of endometabolite and
transcript abundance patterns revealed dynamics consistent with
active diatom exudation of labile compounds.

CONCLUSIONS
The quantitative importance of marine phytoplankton-bacteria
carbon flux has motivated inquiries into the factors that regulate
phytoplankton extracellular release, such as light, temperature,
and nutrient limitation [71]. Here we examined diatom internal
metabolite accumulation patterns to ask how well they predict
external release patterns. We found that blueprints for endome-
tabolite accumulation are diverse (at least four daily patterns), that
diatom release strategies vary by molecule, and that active
mechanisms involving both diatom physiological balance and
bacterial interactions may play key roles. The composition of
metabolite release by phytoplankton determines rates and
efficiencies of carbon processing by surface ocean bacteria, while
the magnitude of metabolite release determines the allocation of
recent photosynthate into dissolved versus particulate organic
carbon reservoirs, with the former having a lower likelihood of
participating in ocean sequestration.
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