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Abstract
Thin, hair- like lichens (Alectoria, Bryoria, Usnea) form conspicuous epiphyte com-
munities across the boreal biome. These poikilohydric organisms provide important 
ecosystem functions and are useful indicators of global change. We analyse how en-
vironmental drivers influence changes in occurrence and length of these lichens on 
Norway spruce (Picea abies) over 10 years in managed forests in Sweden using data 
from >6000 trees. Alectoria and Usnea showed strong declines in southern- central re-
gions, whereas Bryoria declined in northern regions. Overall, relative loss rates across 
the country ranged from 1.7% per year in Alectoria to 0.5% in Bryoria. These losses 
contrasted with increased length of Bryoria and Usnea in some regions. Occurrence 
trajectories (extinction, colonization, presence, absence) on remeasured trees corre-
lated best with temperature, rain, nitrogen deposition, and stand age in multinomial 
logistic regression models. Our analysis strongly suggests that industrial forestry, in 
combination with nitrogen, is the main driver of lichen declines. Logging of forests 
with long continuity of tree cover, short rotation cycles, substrate limitation and low 
light in dense forests are harmful for lichens. Nitrogen deposition has decreased but 
is apparently still sufficiently high to prevent recovery. Warming correlated with oc-
currence trajectories of Alectoria and Bryoria, likely by altering hydration regimes and 
increasing respiration during autumn/winter. The large- scale lichen decline on an 
important host has cascading effects on biodiversity and function of boreal forest 
canopies. Forest management must apply a broad spectrum of methods, including 
uneven- aged continuous cover forestry and retention of large patches, to secure the 
ecosystem functions of these important canopy components under future climates. 
Our findings highlight interactions among drivers of lichen decline (forestry, nitrogen, 
climate), functional traits (dispersal, lichen colour, sensitivity to nitrogen, water stor-
age), and population processes (extinction/colonization).
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1  |  INTRODUC TION

The circumboreal forest constitutes 27% of global forest cover 
(Hansen et al., 2010). It is characterised by short growing seasons 
and cold winters with several months of snow cover, to which or-
ganisms have evolved various adaptations (Boonstra et al., 2016). 
Both natural (fire, wind, insects) and human- induced disturbances 
(forestry, other land use) shape the structure, dynamics and func-
tion of the boreal forest, with about two- thirds under some type of 
management, mainly for industrial wood production (Gauthier et al., 
2015). These forests are also under strong pressure from environ-
mental hazards, including habitat fragmentation, air pollution and 
climate change, with severe consequences for biodiversity and eco-
system services (Esseen et al., 1997; Moen et al., 2014; Pohjanmies 
et al., 2017). Global warming is stronger at the high latitudes of the 
boreal biome than in southern biomes, implying multiple risks to for-
est organisms (IPCC, 2013; Venäläinen et al., 2020).

Lichens, associations between fungi (mycobionts) and algae or 
cyanobacteria (photobionts), occur in forests worldwide and serve 
important ecosystem functions (Asplund & Wardle, 2017; Coxson 
& Howe, 2017; Porada et al., 2014, 2018). These are poikilohydric 
organisms, with metabolic activity that is dependent on water sup-
plied from rain, dew or humid air and further influenced by species- 
specific functional traits (Ellis, 2012; Ellis et al., 2021; Gauslaa, 2014; 
Green et al., 2011). Lichens are also well known for their sensitivity to 
air pollution such as sulphur (S), nitrogen (N) and heavy metals (Allen 
et al., 2019; Carter et al., 2017; Conti, & Cecchetti, 2001; Johansson 
et al., 2010; van Herk et al., 2003). Forestry has also caused wide-
spread loss of lichens in boreal (Esseen et al., 2016; Hauck, 2011), 
temperate (Hauck et al., 2013; Nascimbene et al., 2013) and tropical 
forests (Benitéz et al., 2019). Given this list of vulnerabilities, lichens 
are excellent bioindicators of climate change in polar, alpine and tem-
perate regions (Colesie et al., 2018; Ellis, 2013, 2019; Sancho et al., 
2019), yet their responses in boreal areas are less known (Esseen 
et al., 2016; Hauck, 2009; Nascimbene et al., 2019).

Lichens are common throughout the boreal biome and form 
rather homogeneous communities on the forest floor and in can-
opies (Ahti, 1977; Payette & Delwaide, 2018). This study focuses 
on hair lichens within the filamentous genera Alectoria, Bryoria 
and Usnea, which are dominant epiphytic species in boreal forests 
(Esseen et al., 2015). These lichens show a clear vertical zonation, 
with dark Bryoria in the upper canopy and pale Alectoria and Usnea 
in the lower canopy (Coxson & Coyle, 2003). This zonation is mainly 
shaped by their colour and the function of species- specific sun- 
screening fungal pigments in the cortex (Färber et al., 2014). Niche 
differentiation is also linked to anatomical and morphological traits 
that influence uptake, storage and loss of water (Esseen et al., 2015, 
2017; Gauslaa, 2014). Hair lichens dominate canopies in unmanaged 
boreal forests (Boudreault et al., 2015; Dettki, & Esseen, 1998). In 
fact, these lichens were so abundant that a century ago they were 
considered a serious problem for forestry, erroneously assumed to 
reduce tree growth, or even kill trees (Romell, 1922). Yet, these li-
chens do not significantly impair tree growth but instead provide 

important ecosystem functions, such as food for ungulates, par-
ticularly reindeer/caribou and small mammals, nesting material for 
birds, as well as microhabitat and food for invertebrates (Asplund & 
Wardle, 2017; Pettersson et al., 1995). Hair lichen abundance is also 
an easily visible indicator of general diversity of epiphytic lichenized 
and non- lichenized fungi. These lichens are particularly sensitive to 
air pollution (Geiser et al., 2019, 2021) and forestry (Esseen et al., 
1996, 2016; Hauck, 2011; Lesica et al., 1991; Stevenson & Coxson, 
2007). Overall, however, we lack information about the speed and 
scale of changes in hair lichen populations and how different global 
change drivers interact and influence species with different func-
tional traits.

Here, we have analysed how global change drivers influence 
changes in occurrence and length of hair lichens over 10 years in 
the lower canopy of Norway spruce (Picea abies (L.) Karst.; hence-
forth referred to as Picea) in managed forests in Sweden. Our anal-
ysis is based on >6000 trees surveyed 1993– 2012 in the National 
Forest Inventory (NFI). We focus on changes in habitat quality by 
monitoring lichens when the host is present. This allowed us to ex-
amine how global change drivers interact and affect extinction and 
colonization processes. We hypothesized the following: (1) that li-
chen occurrence declines due to industrial forestry, driven by short 
logging cycles and an unfavourable microclimate (i.e. low light) in 
dense forests (Esseen et al., 2016); (2) that Alectoria, being asso-
ciated with old forests (Esseen et al., 1996), declines faster than 
Bryoria and Usnea; (3) that lichen occurrence and thallus length (the 
length of the vegetative body) increase and recover in southern- 
central regions in response to reduced anthropogenic N deposition 
since 1980 (Engardt et al., 2017). Alectoria and Bryoria are more 
sensitive to N deposition than Usnea (McCune & Geiser, 2009) and 
should respond faster to N reductions; (4) that climate change has 
genus- specific effects on lichen occurrence. Here, a warmer and 
wetter climate, with more rain and less snow, should favour the 
occurrence of Alectoria and Usnea, as rainfall drives growth in these 
lichens (Phinney et al., 2021). In contrast, Bryoria, adapted to cold 
and dry climates with low rainfall (Esseen et al., 2017), should de-
crease in such climates.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

The study area covers the whole of Sweden and spans latitudes 
55– 69°N (c. 1500 km). Sweden has 279,000 km2 of forest, of which 
235,000 km2 is productive (site productivity ≥1 m3 ha−1 year−1; SLU, 
2021). Ninety- four percent of the productive forest is managed 
while 5.7% is formally protected (SCB, 2020). A large proportion 
of the protected forest forms intact landscapes along the eastern 
slopes of the Scandinavian Mountain range (Svensson et al., 2020). 
The study area covers large gradients in climate, vegetation, and an-
thropogenic impact. The climate ranges from cold temperate moist 
with snow in the north to warm temperate moist in the south, with 
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warm summers in most of the country. The boreal zone covers most 
of the study area (Figure 1a) and is dominated by coniferous trees 
(Picea, Pinus sylvestris L.). The hemiboreal zone, a transition between 
the boreal and temperate zone, covers most of southern Sweden. 
The temperate zone forms a narrow belt in the south and southwest. 
It has broad- leaved, deciduous trees (Betula spp., Fagus sylvatica L., 
Acer spp., Fraxinus excelsior L., Quercus spp., Tilia cordata Mill.) but 
also host conifers.

The current land use in Sweden is dominated by forestry (58% 
of the land area), followed by agriculture (8%; SLU, 2021). Reindeer 
husbandry is practiced in ~50% of the country and overlaps with for-
estry, which results in conflict of interest between traditional indig-
enous land use and modern industrial forestry (Horstkotte & Moen, 
2019). Commercial forestry on a larger scale started with some se-
lective cutting of large trees in the south- central parts in the 18th 
century and harvest of trees for charcoal in the region of Bergslagen, 
central Sweden, followed by a northward expanding timber fron-
tier during the 19th century (Östlund & Norstedt, 2021; Östlund 
et al., 1997). The high- grading of large timber trees in old- growth 
and multi- layered forests was followed by a period of uneven- aged 
forestry and was then gradually replaced by even- aged forestry at 
around the mid- 20th century (Lundmark et al., 2013). Current for-
estry is dominated by clear- cutting followed by planting of conifer 
monocultures, which are regularly thinned. Rotation cycles range 
from c. 50 years in the south to c. 120 years in the north (Fries et al., 

2015). Eighty- two percent of the productive forest is ≤100 years old 
(SLU, 2021). Picea dominates by volume (41%), followed by P. sylves-
tris (39%) and Betula spp. (12%). The growing stock has increased 
with 106% since the 1920s, at which time the growing stock had 
decreased during the late 19th century. This trend mainly results 
from the efficient, production- oriented forestry, including cutting 
of unproductive stands, ditching, thinning, N fertilization and plant-
ing of seedlings on clear- cuts (Östlund et al., 1997). Global warming, 
N deposition and elevated CO2 concentration have probably also 
enhanced forest growth (Elfving & Tegnhammar, 1996; Venäläinen 
et al., 2020).

The southern and central regions have earlier been exposed to 
high levels of SO2 pollution, which has substantially decreased since 
1970 (Vestreng et al., 2007). N deposition has currently greater 
impact on forests and exceeds 10 kg N ha−1 year−1 in southern re-
gions (Pihl Karlsson et al., 2011), while deposition is low in northern 
regions.

2.2  |  The Swedish NFI

We extracted data from the Swedish NFI, which is a broad- scale 
monitoring program that provides information about wood re-
sources, ecosystem services, biodiversity, and carbon sequestration 
(Fridman et al., 2014). The design includes stratification into five 

F I G U R E  1  (a) Map of Sweden with five 
regions and National Forest Inventory 
plots clustered in tracts, with ≤4 (region 5) 
or ≤8 plots per tract (region 1– 4). Region 
1, northern boreal; 2, middle- northern 
boreal; 3, southern- middle boreal; 4, 
mainly hemiboreal; 5, temperate. (b) 
Alectoria sarmentosa (Witch's hair), a pale 
hair lichen associated with old coniferous 
forests in the boreal biome
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regions, with different sampling intensities and clustering of sam-
ple plots in square- formed tracts (4– 8 plots per tract; Figure 1a). 
The plots are circular with a radius of 10 m (314 m2) and are located 
around the tract perimeter (the length of tract side varies from 
300 to 1200 m among regions). About 200 forest, vegetation and 
site variables are recorded on each plot. The NFI has a systematic 
program for quality assurance, including training, calibration, and 
control inventory (Fridman et al., 2014). The data in this study were 
collected by ~150 field personnel.

2.3  |  Lichen data

Hair lichens are surveyed by the NFI in permanent plots that are 
measured with a 10- year interval. We used NFI data from two full 
inventory periods (IP; 1993– 2002, IP1; 2003– 2012, IP2) from plots 
in productive forest land (see above). Formally protected forests 
were excluded as they were not measured in IP1. Hence, our sam-
ple consists of managed forests with active forestry, but includes a 
small proportion of voluntarily set aside areas (~7%; SCB, 2020). We 
studied lichens on live Picea with DBH ≥150 mm and included all NFI 
plots with at least one such tree present. The sample tree was the 
first Picea encountered along the measurement direction in the plot. 
Therefore, a new tree could be selected in IP2, due to ingrowth, even 
if the old tree remained. The year and cause of death were recorded 
for trees that died or were cut. In such cases, a new tree was selected 
in IP2, while plots without sample trees were excluded. New plots 
were also included in IP2 when at least one Picea reached a DBH 
≥150 mm. The sample included a total of 6140 trees (Table S1).

Occurrence and maximum thallus length (a proxy of lichen mass; 
Esseen, 2006; McCune, 1990) of Alectoria, Bryoria spp. and Usnea 
spp. were recorded on branches and the stem up to 5 m above 
ground. Our study is restricted to genus level as species are diffi-
cult to identify. However, Alectoria is only represented by A. sarmen-
tosa (Ach.) Ach. (Figure 1b), a red- listed (near- threatened) species 
associated with old coniferous forests (Esseen et al., 1996). Bryoria 

is dominated by B. capillaris (Ach.) Brodo & D. Hawksw. (southern 
tendency) and B. fuscescens (Gyeln.) Brodo & D. Hawksw. (north-
ern tendency), while Usnea is dominated by U. dasopoga (Ach.) Nyl. 
(widespread), followed by U. subfloridana Stirt. (southern tendency; 
Thell & Moberg, 2011). The lichens are henceforth referred to by 
their genus names.

2.4  |  Explanatory variables

We selected eight variables of ecological importance for the stud-
ied lichens (Table 1). Four were measured in NFI plots: diameter at 
breast height (DBH) and crown limit (CRL) for each tree, whereas 
basal area (BAS) and stand age (AGE) were measured at plot level. 
We also extracted a landscape context variable (MAT, mature for-
est), defined as the percent of forest ≥60 years old in a 100 m buffer 
around the centre of the plot. By using ArcGis version 10.3, we ex-
tracted MAT from SLU Forest map (SLU, 2018), where forest age 
was estimated in 25 × 25 m cells by combining satellite and NFI data 
(Reese et al., 2003). MAT represents only 1 year (2005) as there 
were gaps in older data.

Gridded climate data (4 × 4 km) were obtained from the 
Swedish Meteorological and Hydrological Institute (SMHI, 2006; 
https://www.smhi.se/en/climate). We calculated mean annual 
temperature (TEMP) and mean total rain per year (RAIN) for each 
IP in all NFI plots. RAIN was defined as the sum of precipitation 
in days with mean temperature ≥0°C, during which lichens can be 
active. We also extracted deposition of atmospheric inorganic N 
(dry plus wet deposition; NDEP) from gridded data (20 × 20 km) 
based on the Match model (Robertson et al., 1999; https://www.
smhi.se/data/miljo/ atmos farskemi). Mean annual N deposition 
was calculated for 1998– 2002 (no data available for 1993– 1997) 
and 2003– 2012. The variables are henceforth referred to by their 
abbreviations (Table 1), and by adding ‘1’ or ‘2’ for the IPs. The 
change over time was calculated as ‘difference variables’ (e.g. 
TEMP∆ = TEMP2 − TEMP1).

TA B L E  1  Explanatory variables used in this study: scale of observations, time period and definition

Variable, unit, abbreviation Scale Time period Definition

DBH, mm, DBH Sample tree 1993– 2002, 2003– 2012 Diameter at breast height (1.3 m)

Crown limit, m, CRL Sample tree 1993– 2002, 2003– 2012 Height of the lowest live branch

Basal area, m2 ha−1, BAS 10- m radius plot 1993– 2002, 2003– 2012 Cross- sectional area of live trees at breast 
height (1.3 m)

Stand age, year, AGE 10- m radius plot 1993– 2002, 2003– 2012 Stand age weighed by basal area

Mature forest, %, MAT 100- m radius 2005 Percent forest ≥60 years within 100 m 
from plot centre

Temperature, °C, TEMP 4 × 4 km 1993– 2002, 2003– 2012 Mean annual temperature, 10- year mean

Rain, mm year−1, RAIN 4 × 4 km 1993– 2002, 2003– 2012 Annual precipitation for days with TEMP 
≥0°C, 10- year mean

N deposition, kg N ha−1 year−1, 
NDEP

20 × 20 km 1998– 2002, 2003– 2012 Annual N deposition, 5-  and 10- year mean

https://www.smhi.se/en/climate
https://www.smhi.se/data/miljo/atmosfarskemi
https://www.smhi.se/data/miljo/atmosfarskemi
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2.5  |  Data analysis

2.5.1  |  Lichen occurrence and thallus length

We first estimated the total number of live Picea ≥150 mm in each 
region and IP under a two- phase sampling design by taking stratum 
area, clustering in tracts, area of sample plots and design weights 
for the sample trees into account (Toet et al., 2007; Appendix S1). 
We then calculated the occurrence proportion of each lichen on the 
sample trees as the ratio between the estimated number of trees 
with presence of the lichen and the estimated total number of trees. 
The occurrence proportion was estimated for all region and IP com-
binations, across all regions, and separately for remeasured and new 
trees in IP2, together with corresponding 95% confidence intervals 
(CI). The estimates are approximately unbiased due to the large sam-
ple size. The mean thallus length of each lichen on occupied sample 
trees and 95% CI were estimated based on the same principles as 
described above. We evaluated changes in regions and in the whole 
country by calculating 95% CIs for the difference in occurrence and 
thallus length between IPs. The change is significant (p < .05) if the 
CI do not overlap zero.

2.5.2  |  Explanatory variables in all plots

We calculated summary statistics for the explanatory variables 
(Table 1) across all NFI plots with sample trees in each IP to evaluate 
the magnitude and direction of changes over time in these variables. 
Means and 95% CIs were calculated for all region and IP combina-
tions, and across all regions. However, MAT was only summarized by 
region as data represented 1 year (see above).

2.5.3  |  Explanatory variables in plots with 
remeasured trees

The trees that were remeasured (~50%) allowed us to examine how 
changes in lichen occurrence correlate with changes in variables 
over time in the plots. A lichen is either present (P) or absent (A) 
on a sample tree in each IP, and thus there are four occurrence tra-
jectories (outcomes): persistence (PP), absence (AA), colonization 
(AP, ‘gain’) and extinction (PA, ‘loss’). We used Chi- square tests to 
examine the association between trajectories and regions for each 
lichen. Extinction and colonization rates were calculated following 
Yalcin and Leroux (2018). The extinction rate was calculated as the 
ratio of the number of trees where the lichen had disappeared in 
IP2 divided by the number of trees where it was present in IP1. 
The colonization rate represented the ratio of the number of colo-
nized trees in IP2 divided by the number of trees where the lichen 
was absent in IP1. We also constructed maps to depict patterns 
of extinction and colonization. Some overestimations of coloniza-
tion and extinction rates are likely, as short thalli may have been 
overlooked.

We calculated the correlation coefficient (r) between all vari-
able pairs to identify potential associations among the variables. 
We then used multinomial logistic regression (Hosmer et al., 2013) 
to identify the variables that best correlated with the occurrence 
trajectories and to examine the relationships. In such ‘multi- 
outcome’ models the dependent variable has more than two levels, 
in our case four levels. We fitted ‘single variable’ logistic regres-
sion models for each of the seven variables measured in IP1, the 
corresponding difference variables, and MAT, as well as ‘multiple 
variable’ models. A single variable model includes one explanatory 
variable, but it may appear in several transformations. For model- 
building, we used a multivariable fractional polynomials approach 
(Hosmer et al., 2013), which finds non- linear transformations if 
sufficiently supported by the data, and removes weakly influential 
covariates by backward elimination (Sauerbrei & Royston, 1999). 
For this purpose, we used the r package mfp (Ambler & Benner, 
2015). Although this package does not support multinomial logis-
tic models, the suggestion by Hosmer et al. (2013) is that an indi-
vidualized fitting approach, where separate binary logistic models 
are fitted, is useful for finding suitable non- linear transformations. 
Without taking the sampling design into account, we used this 
approach for finding preliminary main- effects models. After this 
stage, the preliminary main- effect models were refitted taking 
the complex sampling design of the NFI into account (Appendix 
S2; cf. Ekström et al., 2018), after which we considered possible 
interactions between the main effects. Any model selected was 
considered preliminary until we evaluated its fit. We used the 
Akaike information criterion for the final model selection. Model 
performance was evaluated by calculating McFadden's pseudo R2 
(Menard, 2000).

The multiple- variable multinomial logistic models were inter-
preted with odds ratios. Consider a model with a single continuous 
explanatory variable x and a response variable Y. Then, if j is one 
of the occurrence trajectories, the probability that Y = j is assumed 
to depend on the value of x and is denoted by Pr (Y = j|x). Absence 
was used as our baseline trajectory and is labeled as Y = 0. The odds 
ratio of trajectory Y = j (e.g. extinction) versus Y = 0 for a one- unit 
increase in the explanatory variable is then given by

where Pr (Y = j|x) ∕Pr (Y = 0|x) is the odds at x that the trajectory is 
j, given that it is either j or 0. If there are other explanatory variables 
than x present in the model, these are kept fixed when computing 
ORj. The odds ratio ORj is a measure of how much more likely or 
unlikely (in terms of odds) it is for occurrence trajectory j to be pres-
ent among those trees with a one- unit increment in an explanatory 
variable x as compared to those with no increment in this variable, 
while holding the other explanatory variables fixed. The odds ratio 
is significantly different from 1 when the 95% confidence band does 
not overlap 1. The analyses were done with r version 4.0.3 (R Core 
Team, 2020).

ORj =
Pr (Y = j|x + 1) ∕Pr (Y = 0|x + 1)

Pr (Y = j|x) ∕Pr (Y = 0|x)
,
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3  |  RESULTS

3.1  |  Host trees

The number of sampled Picea decreased with 6% over time (Table 
S1). Of the trees, 52.4% in IP1 were remeasured, 17.5% were cut, 
1.8% died and 28.4% were only measured once. The proportion 
of cut trees increased from 8.8% in region 1 to 21.0% in region 4. 
Accordingly, the proportion of new trees increased along the same 
gradient. One fifth (20.8%) of the plots in IP2 were in forests subject 
to thinning.

3.2  |  Lichen occurrence

The occurrence proportion of all lichens decreased over time. 
Alectoria decreased from 0.205 ± 0.018 (mean ± error bounds 
for a 95% CI) to 0.173 ± 0.018 across the country, Usnea from 
0.388 ± 0.020 to 0.342 ± 0.021 and Bryoria from 0.532 ± 0.016 
to 0.506 ± 0.019 (Table S2). This corresponds to 1.70%, 1.25% and 
0.50% relative loss rates per year, assuming constant loss rates over 
the 10- year period. More than half of the Alectoria occurrences 
(51.6%) was lost in region 3 (Figure 2), followed by substantial de-
creases of Usnea in regions 3 (20.2%) and 4 (30.1%), whereas Bryoria 
decreased in regions 1 (13.6%) and 2 (6.3%). The geographic distri-
bution of Alectoria was substantially reduced in region 3 (Figure S1). 
The distributions of Bryoria and Usnea were more stable.

Remeasured trees had higher lichen occurrence than new trees 
in IP2, particularly in Alectoria, 0.218 versus 0.130, respectively 
(Table S2). Extinction and colonization rates were high in several re-
gions (Table 2; Figure 3), indicating substantial turnover, especially 
in Alectoria and Usnea. The Chi- square test of association between 
occurrence trajectory and region was significant (p < .05) for all li-
chens, showing that trajectories varied by region.

3.3  |  Thallus length

The length of Alectoria in IP1 (mean 18.1 cm across regions) was 
twice as high as Usnea (8.6 cm), with Bryoria intermediate (13.6 cm). 
Length of Bryoria increased slightly over time in regions 3– 5 and 
Usnea in regions 2– 4, whereas Alectoria did not change (Figure S2). 
However, the change in length across the country was only signifi-
cant for Usnea.

3.4  |  Explanatory variables in all plots

The individual NFI plots spanned a large range in TEMP (−1.7 to 
8.6°C) and RAIN (335– 1290 mm). All variables showed clear lati-
tudinal trends from north (region 1) to south (region 5; Figure 4). 
The warming over time (TEMP∆) was strongest (0.4°) in northern 
regions, while RAIN∆ increased with only 13 mm. NDEP1 was 
four times higher in region 5 than in region 1, with a reduction 
over time in all regions. AGE1 increased twofold from region 5 to 
1 but was rather stable over time, due to plot turnover. AGE2 was 
21 years lower in new plots than in remeasured plots (means of 72 
and 93 years, respectively). BAS, DBH and CRL increased towards 
southern regions. Over time, BAS increased with 0.6 m2 ha−1 
and DBH with 0.9 cm across regions. CRL increased with 0.4 m, 
with the largest increase in regions 4 and 5 (0.6– 0.7 m). MAT 
decreased towards the south reflecting higher degree of forest 
fragmentation.

3.5  |  Explanatory variables in plots with 
remeasured trees

The correlations were relatively weak between most variable pairs, 
but significant due to the large sample size (Table S3). However, there 

F I G U R E  2  Estimated occurrence proportion (means and 95% CIs) of the studied lichens on Picea in two 10- year periods by five regions in 
Sweden. The diagonal hatch pattern in the second period represents remeasured trees, while the upper, open column represents new trees. 
Stars indicate changes that are significant at p < .05
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was a strong relationship between NDEP1 and RAIN1 (r = .910). The 
single- variable logistic models had highly significant (p < .001) slope 
coefficients for most variable transformations in the occurrence 
trajectories (Table S4). The trajectories correlated best with TEMP1 
and NDEP1 in all lichens (Figure 5). TEMP∆ and AGE1 had higher R2 
for Alectoria and Bryoria than for Usnea. The overall pattern of the 

trajectories for RAIN1 and NDEP1 were similar, with highest R2 for 
Bryoria. BAS, DBH, CRL, their corresponding difference variables, 
and MAT had R2 < .05 (Table S4). The difference between extinction 
and colonization probabilities in Figure 5 indicates the direction and 
magnitude of changes in lichen occurrence across the range of each 
variable.

TA B L E  2  Occurrence trajectories of studied lichens over 10- year on remeasured trees included in multinomial logistic regression models. 
Values in parentheses represent extinction and colonization rates (see Section 2 for explanation). N = 2196

Lichen Region

Occurrence trajectory, no. of trees

Net changePersistence Extinction Colonization Absence

Alectoria 1 51 17 (0.25) 22 (0.21) 85 +5

2 167 122 (0.42) 76 (0.23) 255 −46

3 26 77 (0.75) 24 (0.07) 321 −53

4 3 10 (0.77) 19 (0.02) 772 +9

5 0 1 (1.00) 0 (0.00) 148 −1

1– 5 247 227 (0.48) 141 (0.08) 1581 −86

Usnea 1 18 17 (0.49) 20 (0.14) 120 +3

2 216 78 (0.27) 122 (0.37) 204 +44

3 243 69 (0.22) 50 (0.36) 87 −19

4 110 96 (0.47) 58 (0.10) 540 −38

5 1 6 (0.86) 2 (0.01) 140 −4

1– 5 587 266 (0.31) 252 (0.19) 1091 −14

Bryoria 1 152 20 (0.12) 3 (1.00) 0 −17

2 449 90 (0.17) 54 (0.67) 27 −36

3 216 67 (0.24) 68 (0.41) 97 +1

4 83 72 (0.46) 82 (0.13) 567 +10

5 0 1 (1.00) 0 (0.00) 148 −1

1– 5 900 250 (0.22) 207 (0.20) 839 −43

F I G U R E  3  Distribution of extinction (filled red circles) and colonization (filled blue circles) of the studied lichens on remeasured Picea over 
a 10- year period (1993– 2002; 2003– 2012). N = 2196
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The multiple- variable model for Bryoria had higher explanatory 
power (R2 = .337) than models for Alectoria (R2 = .218) and Usnea 
(R2 = .186; Table S5). The models included five or six variables, but 

only two of these were difference variables (TEMP∆ and DBH∆). 
Figures 6– 8 show the odds ratios for colonization, extinction and 
persistence relative to absence when a variable is increased while 

F I G U R E  4  Summary of explanatory variables (means and 95% CIs) in two 10- year periods by five regions, except for MAT, which is based 
on data from 2005. BAS, basal area; CRL, crown limit; DBH, diameter at breast height; MAT, mature forest

F I G U R E  5  Estimated probability of occurrence trajectories for the studied lichens on remeasured Picea over 10 years for six explanatory 
variables based on single variable multinomial logistic regression models. Only models with R2 > .05 are shown. Variable transformations and 
p- values are found in Table S4. N = 2196



    |  3301ESSEEN Et al.

holding other variables fixed. Adding 1°C to TEMP1 in the Alectoria 
model increased the odds of extinction in colder climates whereas 
these odds, and those of persistence, decreased in warmer climates 
(Figure 6). Odds of colonization decreased slightly at intermediate 
climates. The same addition for Usnea increased the odds of all tra-
jectories in colder climates, whereas these odds decreased in warmer 
climates in both Usnea (Figure 7) and Bryoria (Figure 8). Adding 0.1°C 
to TEMP∆ markedly increased odds of colonization and persistence 
for Alectoria in older forests, due to interaction with AGE1, but did 
not affect extinction. The same change in Bryoria decreased the 
odds of persistence. An increase of RAIN1 with 10 mm in Alectoria 
increased the odds of all trajectories in drier climates but decreased 
these odds slightly in wet climates. RAIN1 was not significant in 
multiple- variable models for other lichens. For Usnea, an increase of 
NDEP1 with 0.1 kg N ha−1 markedly increased the odds of extinction 
and persistence at low values but reduced odds of all trajectories 
at intermediate- high values. The same increase for Bryoria reduced 
the odds of all trajectories, but the odds were affected by interac-
tion between NDEP1 and MAT. Changes in forest variables had less 
impact on odds than changes in TEMP, RAIN and NDEP. However, 

MAT, with low R2 as a single variable, was included in multiple vari-
able models for all lichens. Adding 1% to MAT slightly increased the 
odds of colonization and persistence in Alectoria, all trajectories in 
Usnea, and colonization and persistence at intermediate- high values 
of NDEP1, as well as extinction at intermediate values in Bryoria. 
An increment of CRL1 in Bryoria with 1 m slightly reduced odds of 
colonization at intermediate values, increased odds of extinction at 
low values but decreased these odds at high values, while odds of 
persistence decreased at CRL1 ≥3 m.

4  |  DISCUSSION

Habitat loss, fragmentation and degradation are main drivers 
behind loss of biodiversity in forests across the globe (Fischer 
& Lindenmayer, 2007; Haddad et al., 2015). Here, we show that 
hair lichens decline in managed forests across broad spatial scales 
even when an important host tree (P. abies) in the boreal biome 
is present. Our key finding of significant declines in Sweden 
over 10 years is alarming, as these lichens already experienced 

F I G U R E  6  Odds ratio functions (solid lines, log- scale) for occurrence trajectories of Alectoria over 10 years on remeasured Picea with 95% 
confidence bands (dashed lines) when adding one unit to either TEMP1, TEMP∆, AGE1, RAIN1, MAT or DBH∆ while holding other variables 
constant in multiple variable multinomial logistic regression models. Note that AGE1 interacts with TEMP∆ and is displayed on the x- axis, 
while TEMP∆ is displayed on the x- axis for AGE1. Thin grey horizontal lines indicate an odds ratio of 1.0. Horizontal coloured lines below 
the x- axis indicate the intervals where the odds ratios of the trajectories are significantly different from 1.0. DBH, diameter at breast height; 
MAT, mature forest
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large- scale declines also before the 1990s (Bruteig, 1993; Esseen 
et al., 2016; Kuusinen et al., 1990). The speed of the Alectoria de-
cline in region 3 (~50% loss) is remarkable, as the distribution of 
this lichen had once been centred in this region of Fennoscandia 
(Ahlner, 1948). We base our interpretation of causal mechanisms 
on state and change in variables influencing lichen occurrence on 
all trees, and on logistic regression models for occurrence trajec-
tories on remeasured trees, where each tree was monitored over 
time.

4.1  |  Forestry and forest structure

Our first hypothesis, predicting that industrial forestry causes 
a decline of hair lichens is supported by the following points: (1) 
Declines were observed in all regions, and forestry is the only 
driver with significant impact across the country. (2) The esti-
mated annual loss rates of the lichens (0.5%– 1.7%) are compara-
ble to that ~1% of the forest area is logged each year, mainly by 
clearcutting of older forests. Moreover, the proportion of logged 
forests older than 120 years has increased since 2000 (Fries et al., 
2015). Logging of old, multi- layered forests with long continuity 

of cover (Svensson et al., 2019) is harmful for these lichens (Dettki 
& Esseen, 1998; Esseen et al., 1996). (3) The new trees in IP2 had 
fewer lichens than remeasured trees, showing that the transforma-
tion from naturally to artificially regenerated forests contributed 
to the decline. (4) Short rotation cycles are incompatible with ac-
cumulation of high standing crop of these lichens (Dettki & Esseen, 
2003). (5) Alectoria, with the strongest association to old forests, 
showed the steepest decline, supporting both our first and second 
hypothesis. This is not explained by growth responses as Alectoria 
grows faster than Bryoria and Usnea in lower canopy (Phinney et al., 
2021). Instead, dispersal limitation and low propagule availability 
contribute to the scarcity of Alectoria in production forests. This li-
chen disperses with large thallus fragments, which are less suitable 
for long- distance dispersal (Dettki et al., 2000; Esseen et al., 1996), 
whereas Bryoria and Usnea disperse effectively by numerous small 
fragments and symbiotic propagules (Clerc, 2011; Esseen, 1985), 
which rapidly colonise tree saplings (Hyvärinen et al., 1999). (6) 
MAT was included in the multiple- variable models for all lichens, 
suggesting that landscape fragmentation also influenced occur-
rence trajectories. The lower MAT in southern regions implies 
greater proximity to edges and increased risk for adverse effects 
on microclimate as well as higher N deposition (Harper et al., 2015; 

F I G U R E  7  Odds ratio functions (solid lines, log- scale) for occurrence trajectories of Usnea over 10 years on remeasured Picea with 
95% confidence bands (dashed lines) when adding one unit to either TEMP1, NDEP1, MAT, DBH1 or DBH∆ while holding other variables 
constant in multiple variable multinomial logistic regression models. See Figure 6 for additional explanations. DBH, diameter at breast 
height; MAT, mature forest
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Schmidt et al., 2017). It also reflects less adjacent forests func-
tioning as source of dispersal propagules (Bartemucci et al., 2022; 
Dettki et al., 2000).

The low explanatory power of forest variables is partly due to 
the overriding effects of the large latitudinal gradients in climate 
and N deposition. However, it is well established that dense, pro-
ductive conifer forests with high basal area provide poor growth 
conditions for lichens (Esseen et al., 2016; Hauck, 2011). Productive 
forests with a high CRL have few large, live branches in the lower 
canopy. Dead branches may be numerous but are smaller than live 
branches. Hence, the increase in CRL in all regions suggests that 

substrate limitation contributed to the decline. Moreover, lichen 
growth in lower canopy is substantially limited not only by low light 
in dense stands, such as spruce plantations, but also by less frequent 
hydration, due to rain interception in upper canopies. Bryoria, with 
dark cortical pigments, suffers more from low light conditions than 
Alectoria and Usnea, with pale pigments, as the former has a higher 
light compensation point for photosynthesis (Coxson & Coyle, 
2003; Gauslaa et al., 2020). Alectoria and Usnea are adapted to the 
shaded lower canopy while Bryoria is adapted to the exposed upper 
canopy and open forests (Esseen et al., 2017; Färber et al., 2014). 
Successional changes as forests become older and darker cause an 

F I G U R E  8  Odds ratio functions (solid lines, log- scale) for occurrence trajectories of Bryoria over 10 years on remeasured Picea with 95% 
confidence bands (dashed lines) when adding one unit to either TEMP1, TEMP∆, MAT, NDEP1, AGE1 or CRL1 while holding other variables 
constant in multiple variable multinomial logistic regression models. Note that MAT interacts with NDEP1, which is why NDEP1 is displayed 
on the x- axis for odds ratios of MAT, whereas odds ratios of NDEP1 are displayed as contour plots with MAT on the y- axis. For NDEP1, all 
odds ratios are significant for persistence and extinction, while odds ratios for colonization are significant where MAT is below 74%. See 
Figure 6 for additional explanations. CRL, crown limit; DBH, diameter at breast height; MAT, mature forest
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upward vertical displacement of Bryoria and may partly explain de-
clines on remeasured trees.

4.2  |  Nitrogen

The decline on remeasured trees and similarly recorded declines in 
protected forests (Jönsson et al., 2017) show that other drivers also 
affected the lichens. Although thallus length increased slightly in some 
regions, we found no increase in occurrence in southern- central re-
gions in response to the reduced anthropogenic N deposition since 
~1980 (Engardt et al., 2017). Moreover, the regression coefficients for 
NDEP∆ were not significant in the multiple variable models when other 
variables were included. Therefore, our third hypothesis predicting a 
recovery following the N reductions was not supported. Instead, we 
found strong evidence that high N deposition continues to limit occur-
rence of hair lichens. NDEP1 had significant explanatory power in the 
single variable models for all lichens as well as in the multiple variable 
models for Bryoria and Usnea. However, RAIN1 replaced NDEP1 in the 
multiple model for Alectoria. These variables were strongly correlated, 
and the odds ratio plots for RAIN1 in Alectoria and NDEP1 in Usnea 
were similar. The odds of extinction in Alectoria exceeded the odds of 
colonization at high rainfall (with high N), suggesting that N deposition 
contributed to its decline. High rainfall with a sufficient and not too 
high N concentration boosts growth of this lichen (Phinney et al., 2021).

High N deposition causes an imbalance between the photo-  and 
mycobionts, loss of the integrity of the lichen symbiosis and increased 
risk for parasitic fungal attacks (Carter et al., 2017). The harmful ef-
fects of N also accumulate over time (Johansson et al., 2012), causing 
time lags in responses. Hair lichens are oligotrophic and N- sensitive 
and have critical loads (above which N is harmful) in the range of 2– 6 kg 
N ha−1 year−1 (Esseen et al., 2016; Geiser et al., 2019, 2021; McCune 
& Geiser, 2009). Our data, based on the MATCH model, show that N 
deposition exceeded 5 kg N ha−1 year−1 in most of the south- central 
regions. However, N deposition in Picea forests can be up to 6 kg N 
ha−1 year−1 higher than estimates from this model (Karlsson et al., 
2019). Hence, N deposition likely exceeded critical loads for all lichens 
in southern- central regions. Alectoria is more sensitive to N than Usnea 
(Esseen et al., 2016; McCune & Geiser, 2009) accelerating its decline. 
N deposition contribute to the low occurrence of Bryoria in southern- 
central regions but cannot explain its northern decline.

Weldon and Grandin (2021) found only weak recovery of epi-
phytic lichens over the last 20 years in southern Sweden. Our data 
suggest >30 year recovery lag of hair lichens following the improved 
air quality, in accordance with studies from central Europe show-
ing strong recovery delays in response to lower S and N deposition 
(Hauck et al., 2013; Schmitz et al., 2019).

4.3  |  Climate

The occurrence trajectories correlated with TEMP1 in the models, 
reflecting the lichens macroclimate preferences along the latitudinal 

gradient (Esseen et al., 2016). More importantly, TEMP∆ was signifi-
cant for Alectoria and Bryoria after controlling for other variables in 
multiple variable models. An increase of only 0.1° increased odds 
of colonization and persistence in Alectoria but decreased odds of 
persistence in Bryoria, whereas Usnea was not affected. Hence, our 
fourth hypothesis, predicting genus- specific responses to climate 
change, was supported. Because Bryoria needs more light for posi-
tive carbon gain (see above), it likely suffers more from respiration 
losses in low- light conditions during warmer autumns and winters 
than Alectoria and Usnea, contributing to its decline in dense forests 
and northern regions.

The small increase in rain had marginal effect on lichen occur-
rence. However, precipitation is predicted to increase with 10%– 
40% during this century, particularly in northern regions (Sjökvist 
et al., 2015). Alectoria and Usnea grows better in wetter and warmer 
climates and may expand northwards unless light and dispersal are 
limiting. Alectoria grows faster than Usnea across continental to 
oceanic macroclimates (Phinney et al., 2021) due to a larger inter-
nal water storage pool (Eriksson et al., 2018; Esseen et al., 2015), 
extending hydration and carbon gain. Bryoria, in contrast, has large 
external water storage pool (Esseen et al., 2017) causing suprasat-
uration depression of photosynthesis, and in situ decomposition if 
exposed to prolonged hydration (Coxson & Coyle, 2003). This lichen 
may face periodic dieback in future wetter climates (Gauslaa, 2014; 
Goward, 1998), shrinking its distribution, unless forests become 
more open.

Climate- induced disturbances such as heatwaves, windstorms, 
snow/ice, wildfire and insect outbreaks also influence epiphytic li-
chens (Boudreault et al., 2009; Esseen, 1985, 2019; Malíček et al., 
2019; Miller et al., 2018). A severe storm struck southern Sweden 
2005 resulting in large- scale windthrow, with subsequent outbreaks 
of spruce bark beetle (Valinger & Fridman, 2011), decreasing the 
number of potential host trees. Storms also damage hair lichens, as 
they are susceptible to fragmentation (Esseen & Renhorn, 1998). 
Overall, however, stochastic disturbances had less impact on lichens 
than anthropogenic stressors in the present study. Forest distur-
bances are predicted to increase in the boreal biome under future 
climates (Seidl et al., 2017; Venäläinen et al., 2020) and constitute 
potential threats to epiphytic lichens.

4.4  |  Implications

The low occurrence and short length of the lichens, compared with 
natural forests (Esseen, 2019), implies that managed boreal for-
ests have substantially lower standing crop than natural forests. 
This is reinforced by that we studied NFI plots with larger trees, 
which usually support higher lichen mass than smaller trees (Esseen 
et al., 1996). Clear- cuts and young, managed stands have none or 
low mass of these lichens (Dettki & Esseen, 1998). Loss of lichens 
has cascading effects on trophic interactions and ecosystem func-
tion across the boreal biome. Hair lichens constitute supplementary 
and emergency fodder for reindeer (and caribou) during migration 
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and winter (Heggberget et al., 2002). A rich supply of Bryoria in 
the lower canopy or on top of snowpack may be critical for their 
survival when terricolous lichens (Cladonia spp.) are unavailable 
under thick and/or hard snow and ice. These lichens have histori-
cally been important for reindeer husbandry in Fennoscandia (Berg 
et al., 2011), but the value of this component has increased due to 
the concurrent decline of terricolous lichens (Horstkotte & Moen, 
2019; Sandström et al., 2016). Loss of hair lichens will also affect 
other ungulates and small mammals and decrease abundance of 
canopy- living insects and spiders, constituting important prey for 
birds (Pettersson et al., 1995).

Sweden has had programmes for conservation of biodiversity 
in managed forests since the 1980s, focusing on retention (since 
the 1990s) and forest certification (Gustafsson & Perhans, 2010; 
Simonsson et al., 2015). Although retention of live and dead trees 
through the regeneration phase can mitigate some harmful ef-
fects of forestry on biodiversity (Fedrowitz et al., 2014; Rosenvald 
& Lõhmus, 2008), our results suggest that the current application 
of retention forestry in even- aged silviculture cannot support high 
standing crop of hair lichens. Instead, natural disturbance- based 
management strategies applied at multiple scales have large poten-
tial to maintain heterogeneity, microclimates, processes and biodi-
versity in forest ecosystems (Kuuluvainen et al., 2021; Messier et al., 
2019). However, it is a challenge to integrate such multi- scale con-
servation approaches in the intensively managed production forest 
matrix (Felton et al., 2020). A spectrum of methods must be applied 
to secure substrates and suitable microclimates for hair lichens 
and other epiphytes under future climate scenarios (Ellis & Eaton, 
2021), including: (1) uneven- aged, continuous- cover forestry, such 
as partial cutting (Stevenson & Coxson, 2007), (2) longer rotation 
cycles (Dettki & Esseen, 2003), (3) preservation of groups or large 
patches of lichen- rich trees to reduce edge influence (Esseen, 2019; 
Stevenson & Coxson, 2003), (4) variable density thinning to diversify 
substrates and microclimates (Kuuluvainen et al., 2021; Lehmkuhl, 
2004) and (5) spatial planning to protect old, lichen- rich forests such 
that propagule availability is secured throughout landscapes (Dettki 
et al., 2000).

5  |  CONCLUSION

This is the first study of drivers and changes in dominant canopy li-
chens based on a large probability sample from a latitudinal gradient 
across the boreal biome. The rapid decline in only 10 years is a stark 
warning that hair lichens gradually lose their ecological functions in 
managed boreal forests, with cascading effects on trophic interac-
tions and ecosystem function. Our analysis strongly suggests that in-
dustrial forestry, in combination with N deposition, is the main driver 
of this decline. Alectoria and Usnea decreased in southern- central 
regions where forests are more productive, denser, have shorter log-
ging cycles and are subjected to higher N deposition than northern 
regions, where only Bryoria decreased. Logging of forests with long 
continuity of tree cover and dispersal limitation contributed to the 

steep decline of the old- growth- associated Alectoria. Warming cor-
related with occurrence trajectories of Alectoria and Bryoria, empha-
sizing that poikilohydric canopy- living organisms respond directly 
to changes in microclimate as driven by climate change (De Frenne 
et al., 2021; Smith et al., 2018). Forest management must apply a 
multitude of approaches to secure the ecosystem functions of these 
important canopy components under future climate scenarios. Our 
findings highlight interactions among drivers of lichen decline (for-
estry, N deposition, climate change), functional traits (lichen colour, 
dispersal, sensitivity to nitrogen, water storage) and population pro-
cesses (extinction, colonization). Long- term monitoring (this study) 
must be combined with experimental approaches to better under-
stand how global change drivers influence hair lichens and other epi-
phytes across the boreal biome.
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