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Bayesian Analysis of Nonnegative Data Using
Dependency-Extended Two-Part Models

Mariana Rodrigues-Motta and Johannes Forkman

This article is motivated by the challenge of analysing an agricultural field experi-
ment with observations that are positive on a continuous scale or zero. Such data can be
analysed using two-part models, where the distribution is a mixture of a positive distri-
bution and a Bernoulli distribution. However, traditional two-part models do not include
any dependencies between the two parts of the model. Since the probability of zero is
anticipated to be high when the expected value of the positive part is low, and the other
way around, this article introduces dependency-extended two-part models. In addition,
these extensions allow for modelling the median instead of the mean, which has advan-
tages when distributions are skewed. The motivating example is an incomplete block
trial comparing ten treatments against weed. Gamma and lognormal distributions were
used for the positive response, although any density on the support of real numbers can
be accommodated. In a cross-validation study, the proposed new models were compared
with each other and with a baseline model without dependencies. Model performance
and sensitivity to choice of priors were investigated through simulation. A dependency-
extended two-part model for the median of the lognormal distribution performed best
with regard to mean square error in prediction.

Supplementary materials accompanying this paper appear online.

KeyWords: Bayesian analysis; Incomplete block design;Mixed-effectsmodels; Hurdle
model; Zero-augmented data; Zero-inflated data.

1. INTRODUCTION

In many areas of applied statistics, distributions are positively skewed and variance
is increasing with the mean. These phenomena violate the assumptions of normality and
homoscedasticity needed for statistical inference in traditional analysis of variance and
regression. In addition, the data may include an excess of zeros. For example, in a study
of garden bird abundance, average count, which is effectively continuous, spikes at zero
for many of the species (Swallow et al. 2016), in a study of precipitation, there are some
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months without rain (Harvey and Van der Merwe 2012; Fuentes et al. 2008; Sun and Stein
2015), and in a study of bycatch data, the endangered hammerhead shark is often missing
(Cantoni et al. 2017). Our application is an agricultural plant protection experiment, where
the weed of interest does not grow in every plot. In plant protection experiments, treatments
effectively controlling theweed either eliminate theweed, giving raise to zeros in the dataset,
or result in small positive levels of weed biomass. Non-effective treatments, on the other
hand, do not eliminate the weed but typically show large levels of weed biomass. Thus, there
is a negative relationship between probability of zero and level of biomass conditioned on
the weed being present. We wanted to model probability of zero explicitly as a function of
the conditional level of weed biomass, which was not possible using previously proposed
methods.

As iswell known, themedian ismore robust against outliers than themean.Yet,models for
means are more common than models for medians. We shall propose dependency-extended
two-part models for both the mean and the median.

Using two-part models, the probability of zero and the level of the positive observations
are modelled separately. Thus, the distribution is assumed to be a mixture of a Bernoulli
distribution and a positive distribution, which cannot take negative values. Duan et al. (1983)
used a probit link for modelling the Bernoulli event and fitted a log-linear model for the
positive part, while Zhou and Tu (2000) and Hautsch et al. (2013) used a logit link for fitting
the Bernoulli piece.

Chen and Qin (2003) and Yang et al. (2016) used an empirical likelihood, thus avoiding
exact assumptions on the distribution of the positive part of the data. In its original form,
the two parts of the two-part model can be fitted separately, using different or common
explanatory variables. This is possible since the likelihood can be written as a product of
two factors corresponding to the two parts of the model. However, if the two parts share the
same parameters (Moulton et al. 2002), or if the parameters of the two parts are constrained
to be related, such factorization is not possible (Mills 2013). In analysis of count data,
two-part models are known as hurdle models (Rose et al. 2006). Zero-inflated Poisson or
zero-inflated negative binomial models are other popular options for count data. Tang et al.
(2018) used such models and assumed a dependency between the probability of zero and
the Poisson mean, but only as a result of common predictors.

In this article, the traditional two-part model is extended to accommodate explicit func-
tional dependencies between the level of the positive part and the probability of zero. Four
models are explored: a baseline model without correlated parts (Model 0), a model with cor-
related random effects (Model 1) and two dependency-extended models (Models 2 and 3),
which includes functional dependencies between the two parts. Let t , where t = 1, . . . , T ,
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be the treatment index and s, where s = 1, . . . , S, be the block index. The models are:

Models 0 and 1:

{
log(μ f,st ) = αt + bs

logit(pst ) = βt + vs

Model 2:

{
log(μ f,st ) = γ1 + γ2logit(pt ) + bs

logit(pst ) = αt

Model 3:

{
log(μ f,st ) = αt + bs

logit(pst ) = γ1 + γ2 log(μ f,st )

In Model 0, the level of the positive part, μ f,st , and the probability of zero, pst , are
modelled by fixed treatment effects: αt , βt and random block effects: bs , vs , which are
uncorrelated. Model 1 is the same as Model 0, but with correlated block effects. In Model 2,
the level of the positive part, μ f,st , is dependent, through regression coefficients γ1 and γ2,
on the probability of zero, pst , and a random block effect, bs , whereas the probability of
zero, pst , is modelled by fixed treatment effects, αt . In Model 3, the logarithm of the level
of the positive part, log(μ f,st ), is a sum of a fixed treatment effect, αt , and a random block
effect, bs , whereas the probability of zero, pst , is dependent on the level of the positive part,
μ f,st through regression coefficients γ1 and γ2.

Models similar to Model 1 have been proposed for count data (Min and Agresti 2005;
Neelon et al. 2010; Cantoni et al. 2017) and for lognormally distributed repeated measures
data (Tooze et al. 2002). Our dependency-extended two-part Models 2 and 3 will be com-
pared with Model 1. It will be shown in Sect. 5.1 that Model 1 does not work well when
only zeros are observed for some levels of the random effects, which happens frequently
in practice. Note that Models 2 and 3 comprise fewer parameters than Model 1, which can
make them more robust and easy to fit.

In Models 0, 1 and 3, log(μ f,st ) = αt + bs . However, the logarithm of the conditional
level in Model 2 can be written similarly, as with this model, log(μ f,st ) = α′

t + bs , where
α′
t = γ1 + γ2αt . In terms of the probability of zero, pst , all models use logistic regression.

Models 2 and 3 have considerably fewer parameters than Model 1 and are therefore apt
to work well for small datasets. Specifically, Model 2 assumes no random effects on the
probability of zero. Model 3 uses only two parameters for the logit part, which can be
beneficial when the number of zeros is either small or large. However, the great advantage
of Models 2 and 3 is that they provide a mathematical description of how the probability of
zero and the positive part are related. Similar to a model proposed by Neuhaus et al. (2018)
for outcome-dependent visit processes, the parameter γ2 governs the strength and direction
of the association between the conditional mean or median and whether or not data are
observed.

For the positive part, we used the lognormal distribution and the gamma distribution.
Using the lognormal distribution, attention characteristically shifts from the mean to the
median (Goldberger 1968), which is invariant under distributional transformation (Rao and
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D’Cunha 2016) and less sensitive to outliers. The lognormal distribution is often a bet-
ter assumption than the normal, especially in biology, where the lognormal distribution
arises asymptotically as a consequence of biological mechanisms (Koch 1969). In several
disciplines, e.g. geology, food technology, social sciences and economics, the lognormal dis-
tribution is used when effects are multiplicative rather than additive (Limpert et al. 2001).
The gamma distribution is another useful distribution when data are positively skewed and
heteroscedastic, although rarely used with excess of zeros (Musal and Ekin 2017). Specifi-
cally, when the standard deviation is proportional to the mean, this distribution motivates a
model with constant coefficient of variation (Lee et al. 2006, p. 71).

Our research was motivated by difficulties encountered in weed science when analysing
agricultural field experiments using traditional statistical methods. In order to assume nor-
mality and homoscedasticity, data are often log-transformed before analysis. However, when
some observations are zero, i.e. when no weed is observed, some small positive constant
must first be added to the observed values. This procedure destroys the multiplicative scale
and introduces an undesirable arbitrariness, since the choice of the constant may affect
the conclusions. Modelling heteroscedasticity is another option (Damesa et al. 2018), but
also such modelling, for example, using the power-of-the-mean model (Carroll and Ruppert
1988), would be problematic when only zeros are observed for some treatments, since the
variance would be estimated to zero for those treatments.

Two-partmodelswith dependency between the two parts are rare in the literature, perhaps
due to the cumbersome maximization of the likelihood (Feuerverger 1979). We suggest
instead using Bayesian methodology. Bayesian analysis of two-part models has previously
been proposed by Rodrigues-Motta et al. (2015), who assumed the positive distribution
to be a member of the biparametric exponential family, and Harvey and Van der Merwe
(2012), who recommended Bayesian methods for inference on means and variances in a
two-part model with a lognormal distribution. However, these authors did not assume any
extension between the two parts. Bayesian models have also been proposed for zero-inflated
longitudinal nonnegative data (Swallow et al. 2016; Biswas and Das 2020) and zero-inflated
count data (Neelon et al. 2010; King and Song 2019; Bertoli et al. 2020). Specifically,
Biswas and Das (2020) and Neelon et al. (2010) proposed models with correlated random
effects, which in this regard are similar to our Model 1. Tiao and Draper (1968) and Besag
and Higdon (1999) pioneered Bayesian analysis of experiments with incomplete blocks.
Several authors, with various focus, have explored Bayesian methods for agricultural field
experiments, for example, Donald et al. (2011), who modelled spatial correlation, Forkman
and Piepho (2013), who studied prediction of random effects of treatments, Singh et al.
(2015), who reported a Bayesian analysis of a crop variety trial with an incomplete block
design, andTheobald et al. (2002), who investigatedBayesian analysis ofmulti-environment
crop variety trials. However, none of them considered two-part mixed-effects models.

In analysis of designed experiments, random effects are common, since effects of units
involved in randomization should be modelled as random (Piepho et al. 2003). As a means
of decreasing residual error variance, agricultural field trials frequently include incomplete
blocks, i.e. blocks that do not include all treatments. Effects of incomplete blocks are usually
modelled as random, since this allows recovery of inter-block information about treatment
differences (Piepho and Edmondson 2018).
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Dependence between the zero and the nonzero components of a hierarchical model has
also been touched upon in spatio-temporal literature. In this field, Fuentes et al. (2008)
considered a zero-inflated log-Gaussian process model and modelled the probability of no
rain in terms of the amount of the rainfall, inducing dependency between those parts. In a
similar study, Sun and Stein (2015) modelled partly precipitation by means of a space-time
Gaussian random field varying along time or space and time, and partly the logit of the
probability of precipitation as a function of space and time. However, no relationship was
imposed between the parts.

This article has two aims. The first is to present new methodology for analysis of zero-
augmented positive observations by introducing dependencies between the probability of
zero and the level of the positive part, beyond correlation of random effects. Because of
these dependencies, zeros convey information about the mean or the median of the positive
part, and the other way around. This assumption makes sense in weed experiments, and
presumably also in many other areas of research. The second aim is to propose methods
for modelling medians, not just means, since medians are less affected by skewness and
extreme values.

Section 2 presents, as a motivating example, the creeping thistle weed dataset. Section 3
details the models, and Sect. 4 describes the Bayesian approach for fitting them. Section 5
evaluates themodels and the choice of priors through cross-validation and simulation studies
and identifies the best model for the creeping thistle dataset. Section 6 uses this final model
for the statistical analysis. Section 7 concludes with a discussion.

2. AN AGRICULTURAL WEED EXPERIMENT

Our motivating example is an agricultural weed trial with ten experimental treatments.
The experiment aimed at comparing nine different mixtures of plant protection products
(treatments 2–10)with regard to their efficacy on theweed creeping thistle (Cirsiumarvense)
in a field with spring barley (Hordeum vulgare). In addition to the active treatments, the
experiment included a control treatmentwith no application of plant protection (treatment 1).
The design comprised four replicates with ten plots each, which all received different treat-
ments. Within each replicate, the plots were grouped into two incomplete blocks of five
contiguous plots each, following an alpha design (Patterson and Williams 1976). Repli-
cate 1 comprised blocks 1 and 2, replicate 2 comprised blocks 3 and 4, and so on.

In agricultural experiments, it is common to partition the replicates into incomplete blocks
of adjacent plots. In this way, homogeneous intra-block variance is achieved. This strategy is
successful if combined with an efficient design that ensures that as many pairs of treatments
as possible occur together in blocks. The alpha design is such a design (Verdooren 2020).

Table 1 provides an overviewof the dataset.Means,medians and standard deviationswere
computed by treatment and block. These computations weremade both with zeros excluded,
i.e. when Y ∈ (0,∞), and with zeros included, i.e. when Y ∈ [0,∞). For treatments 4, 8
and 9, no creeping thistle was observed, i.e. only zeros were recorded. Similarly, no creeping
thistle was observed in block 7. Standard deviations vary between treatments, as a result
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Table 1. Summary of the creeping thistle dataset

Treatment % of Biomass mean (sd) of Biomass median of

zeros Y ∈ (0, ∞) Y ∈ [0,∞) Y ∈ (0, ∞) Y ∈ [0, ∞)

1 0 125 (76.63) 125 (76.63) 119 119
2 25 68.67 (52.54) 51.50 (54.95) 71 43
3 50 43.00 (36.77) 21.50 (32.66) 43 8.5
4 100 – 0.00 (0.00) – 0
5 50 44.50 (47.38) 22.75 (37.53) 44.5 5.5
6 0 61.50 (19.12) 61.50 (19.12) 53.5 53.5
7 50 47.50 (45.96) 23.50 (38.16) 47.5 7.5
8 100 – 0.00 (0.00) – 0
9 100 – 0.00 (0.00) – 0
10 0 166.25 (186.30) 166.25 (186.30) 107.5 107.5

Block % of Biomass mean (sd) of Biomass median of

zeros Y ∈ (0, ∞) Y ∈ [0,∞) Y ∈ (0, ∞) Y ∈ [0, ∞)

1 20 127.50 (29.86) 102.00 (62.61) 130 120
2 80 80.00 (*) 16.00 (35.78) 80 0
3 60 63.50 (20.51) 25.40 (36.26) 63.5 0
4 20 15.50 (1.00) 12.40 (6.99) 15 15
5 60 256.50 (252.44) 102.60 (188.86) 256.5 0
6 20 102.00 (75.76) 81.60 (79.91) 70 69
7 100 – 0 (0.00) – 0
8 20 46.75 (26.64) 37.4 (31.13) 50.5 47

Percentages of zeros out of four replicates per treatment and five plots per block. Biomass means, medians and
standard deviations (g m−2) were computed with zeros excluded, i.e. when Y ∈ (0, ∞), and with zeros included,
i.e. when Y ∈ [0, ∞). * There is only one observation larger than zero in block 2

of block effects and residual error heterogeneity. The huge differences between blocks in
standard deviation are mainly due to differences between treatments.

Figure A1 in Web Appendix A of the supplementary materials shows all observations by
treatment. This figure indicates positive skewness. Table A1 of Web Appendix A includes
the dataset. The small size of this dataset (40 observations), combinedwith a high proportion
of zeros (47.5%), is challenging.

3. MODEL DEVELOPMENT

Let yst ∈ [0,∞) be the observation in treatment t = 1, . . . , T in block s = 1, . . . , S.
The blocks are incomplete, since they include subsets of treatments. Given λ and pst , the
density function of the response is given by the mixture distribution

g(yst |λ, pst ) = p
I{yst=0}
st × [(1 − pst ) f (yst |λ)]I{yst>0} , yst ≥ 0, (1)

where pst ∈ [0, 1] is the probability of observing a zero, and λ ∈ � ⊂ R
p. This construction

was presented by Rodrigues-Motta et al. (2015) for p = 2 with f (yst |λ) in (1) being a
member of the biparametric exponential family (Bar-Lev and Reiser 1982; Bose and Boukai
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1993) and parametrized by λ = (μ f,st , φ), where μ f,st represents the conditional mean or
conditional median and φ is a dispersion or precision parameter, depending on the choice
of f (.|λ). When μ f,st is the conditional mean, the marginal mean is

μg,st = E[Yst ]
= pst E[Yst |Yst = 0] + (1 − pst )E[Yst |Yst > 0]
= (1 − pst )μ f,st . (2)

From (1), the cumulative distribution G(.|λ, pst ) of Yst ∈ [0,∞) is given by

G(yst |λst , pst ) =

⎧⎪⎨
⎪⎩
0 if yst < 0
pst if yst = 0
pst + (1 − pst )F(yst |λ) if yst > 0

(3)

where F(.|λ) is the cumulative distribution corresponding to f (.|λ) in (1). Let ỹg,st be
the median of the marginal distribution g(.|.), for treatment t in block s. According to
(3), if pst ≥ 0.5, then ỹg,st is 0. Otherwise ỹg,st is given by the quantile y f,st satisfying
F(y f,st |λ) = (0.5 − pst )/(1 − pst ).

3.1. MODELS

Let Yst ∈ (0,∞) have density function f (. | μ f,st , φ) parametrized by a location param-
eter μ f,st and a dispersion parameter φ. Recall that pst is the mixture parameter in g(. | .)
given in (1). Models 0–3 specify μ f,st and pst in four different ways, as follows.

Model 0: The location, μ f,st , and the probability of zero, pst , are modelled as

log(μ f,st ) = αt + bs , (4)

and

logit(pst ) = βt + vs , (5)

where αt and βt are fixed effects of treatment t . Furthermore, bs and vs are random
effects of block s, so that (bs, vs) ∼ N(0,�), where� is a diagonal covariance matrix
of dimension 2 × 2 given by

� =
(

σ 2
b 0
0 σ 2

v

)
. (6)

Model 0 will serve as a baseline model for comparisons in the cross-validation and
simulation studies.
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Model 1: This model is the same as Model 0, but with correlated random effects:

� =
(

σ 2
b σb,v

σb,v σ 2
v

)
. (7)

The covariance between log(μst ) and logit(pst ) is induced by σb,v , which is the covari-
ance between bs and vs .

Model 2: The logarithm of μ f,st is modelled as a linear function of logit(pst ), that is,

log(μ f,st ) = γ1 + γ2logit(pst ) + bs , (8)

where the block effect, bs , is N(0, σ 2
b ) distributed. The probability of observing a zero,

pst , is the same across blocks, given by

logit(pst ) = αt , (9)

where αt is a fixed effect of treatment t . Thus, we can write pst = pt . The covariance
between log(μ f,st ) and logit(pst ) is the variance of logit(pst )multiplied by γ2, so that
γ2 determines the sign and the strength of the covariance.

Model 3: The logit of the probability of zero, logit(pst ), ismodelled as a linear function
ofμ f,st , which is dependent on a fixed treatment effect, αt , and a random block effect,
bs . Specifically,

log(μ f,st ) = αt + bs , (10)

where bs ∼ N(0, σ 2
b ), and

logit(pst ) = γ1 + γ2 log(μ f,st ). (11)

The covariance between log(μ f,st ) and logit(pst ) is the variance of log(μ f,st ) multi-
plied by γ2. Thus, also with this model, γ2 determines the sign and the strength of the
covariance.

In Models 2 and 3, the location parameter, μ f,st , and the probability of zero, pst , are
functionally related, which they are not in Models 0 and 1. Consequently, Models 2 and 3
require fewer parameters thanModels 0 and 1, which can be advantageous for small datasets.
According to Model 2, the probabilities of zero depend only on the treatments, whereas
according to Model 3, they depend also on the blocks.

3.2. THE DISTRIBUTION OF Y ∈ (0,∞)

In Models 0–3, f (yst |λ) is either a gamma or a lognormal distribution. Parametrized by
the mean, μ f,st , and the shape or dispersion parameter, φ, the gamma distribution is

f (yst |μ f,st , φ) = 1

�(φ)

(
φ

μ f,st

)φ

yφ−1
st exp

{
−φ yst

μ f,st

}
. (12)
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Parametrized by themedian,μ f,st , and a dispersion parameter, φ, the lognormal distribution
is

f (yst |μ f,st , φ) = 1

yst φ
√
2π

exp

[
− (log(yst ) − log(μ f,st ))

2

2φ2

]
. (13)

Note that in (12),μ f,st is themean of the distribution, whereas in (13),μ f,st is themedian
of the distribution. Under distribution (13), log(yst ) is N(log(μ f,st ), φ

2), and the mean of
yst is E(yst ) = exp(φ2/2)μ f,st . Under distribution (12), however, the median has no simple
closed form. The lognormal distribution enables modelling the median instead of the mean.

To overcome estimation drawbacks due to a small number of observations per block and
treatment, the median can be modelled instead of the mean, as the former is more robust.
The median is a natural, always finite and appropriate quantity of centrality for a skewed
distribution, which is the case in our application. To assess effects of treatments on the
median, rather than the mean, f (yst |λ) should be chosen to be a lognormal distribution, as
proposed by Goldberger (1968).

The two proposed distributions of Y > 0 are both members of the biparametric expo-
nential family. Their density functions are similar in shape, but the lognormal distribution
is more skewed than the gamma distribution. The lognormal distribution arises in biolog-
ical applications when effects are multiplicative rather than additive (Koch 1969; Limpert
et al. 2001). The gamma distribution arises, for example, as a sum of time intervals between
events in a Poisson process. However, in this study, the main difference is that the gamma
distribution was used for modelling the mean, while the lognormal distribution was used for
modelling the median. Therefore, differences in results between using the gamma distribu-
tion and using the lognormal distribution are also related to differences between modelling
the mean and modelling the median.

4. BAYESIAN INFERENCE

4.1. SPECIFICATION OF PRIORS

Let IG(η1, η2) denote an inverse gamma distribution with shape parameter η1 and rate
parameter η2. Let Cauchy(η1, η2) denote a Cauchy distribution with location parameter η1

and scale parameter η2, and Cauchy(η1, η2)Iξ>x the same Cauchy distribution truncated
from below at ξ = x . Let N(η1, η2) denote a normal distribution with expected value η1

and variance η2, and N(η1, η2)Iξ<x the same normal distribution truncated from above at
ξ = x . Let Beta(η1, η2) denote a beta distribution with shape parameters η1 and η2. The
following independent diffuse priors were assumed.

For Model 0: αt ∼ N(0.01, 10), βt ∼ N(0.01, 10), φ ∼ IG(0.01, 0.01), σ 2
b ∼

IG(0.01, 0.01), and σ 2
v ∼ IG(0.01, 0.01). For Model 1: αt ∼ N(0.01, 10), βt ∼

N(0.01, 10), φ ∼ IG(0.01, 0.01). The prior distribution for � in (7) was specified as
proposed by Neelon et al. (2010), i.e. bs ∼ N(0, ν21 ) and vs |bs ∼ N(ψ, ν22 ) such that
(bs, vs) ∼ N(0,�b,v), with diffuse hyperpriors ψ ∼ N(0.01, 100), ν21 ∼ IG(0.01, 0.01),
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and ν22 ∼ IG(0.01, 0.01). The components of � in (7) can then be expressed as

�∗ =
(

ν21 ψ ν21
ψ ν21 ψ2 ν21 + ν22

)
, (14)

where σ 2
b = ν21 , σ

2
v = ψ2ν21 + ν22 and ρ = (ψν21 )/[ν21 (ψ2ν21 + ν22 )]1/2. For Model 2: pt ∼

Beta(1, 1), γ1 ∼ N(0.01, 10), γ2 ∼ N(0.01, 10)Iγ2<0, σ 2
b ∼ Cauchy(0, 0.1)Iσ 2

b >0, φ ∼
IG(0.01, 0.01). For Model 3: αt ∼ N(0.01, 10), γ1 ∼ N(0.01, 10), γ2 ∼ N(0.01, 10)Iγ2<0,
σ 2
b ∼ Cauchy(0, 0.1)Iσ 2

b >0, φ ∼ IG(0.01, 0.01).
To ensure proper operation of OpenBUGS, expected value 0.01 was used instead of 0 for

the normal distributions. The half-Cauchy distribution, Cauchy(0, 0.1)Iσ 2
b >0, was coded as

described by Lunn et al. (2012), p. 225. The Beta(1, 1) distribution is a continuous uniform
distribution with minimum value 0 and maximum value 1. For all models, IG(0.01, 0.01)
was used as prior for φ, corresponding to a gamma distribution with mean one and variance
100. This prior can be regarded a low-information prior since variance is large. The precision
parameter measures the precision of the available information concerning the parameter of
interest. If the variance is large, then the precision is low and hence the mean cannot be used
as a precise estimate for the random variable of interest (Ntzoufras 2011).

4.2. HIERARCHICAL STRUCTURE SPECIFICATION

Let us = (bs, vs) or us = bs depending on the imposed model, and let � = (λ,p, �)

be the vector of parameters, where p is the vector of mixtures probabilities pst , and � is the
covariance matrix of the random effects. Based on the data (y;u), the complete likelihood
is

f (�; y,u) =
∏
s∈S

∏
t∈T

{
p
I{yst=0}
st × [(1 − pst ) f (yst |λ)]I{yst>0}

× 1√
(2π)2|�| exp

{
−1

2
u

s �us

} }
.

The augmented posterior distribution of (�,u) is recognizable only up to a propor-
tionality constant, and the marginal posterior distributions cannot be obtained analytically.
Therefore, the relevant MCMC steps (combination of Gibbs and Metropolis-within-Gibbs
sampling) were implemented using the BRugs package (Thomas et al. 2006), which con-
nects R with the OpenBUGS software. Convergence was monitored via MCMC chains,
auto-correlation, density plots and the Brooks–Gelman–Rubin potential scale reduction
factor R̂, all available in the R coda library (Cowles and Carlin 1996). The R code for the
Bayesian analysis is provided as supplementary materials. The full conditional posterior
distributions of treatment and block effects and dispersion components are specified inWeb
Appendix B.
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5. ASSESSMENT OF MODEL PERFORMANCE

5.1. POSTERIOR STATISTICS

Posterior statistics were averaged across blocks as follows. The mixture probability
was computed as pt = ∑

s∈St pst/
∑S

s I (s ∈ St ), where pst is defined in (1). For
the gamma distribution, the conditional and marginal means were computed as μ f,t =∑

s∈St μ f,st/
∑S

s I (s ∈ St ) and μg,t = ∑
s∈St μg,st/

∑S
s I (s ∈ St ), respectively, where

μ f,st is defined in (12) and μg,st is defined in (2). For the lognormal distribution, the con-
ditional and marginal medians were computed as μ f,t = ∑

s∈St μ f,st/
∑S

s I (s ∈ St ) and

ỹg,t = ∑
s∈St ỹg,st/

∑S
s I (s ∈ St ), respectively, where ỹg,st is defined in Sect. 3 and μ f,st

is defined in (13).
Figure 1 presents, for Models 1–3 and gamma distribution, 95% credible intervals (CIs)

for conditional means (displayed on the first row of subfigures), marginal means (on the
second row) and probabilities of zero (on the third row). The limits of the 95% CIs are
the 2.5th and 97.5th percentiles of the posterior distributions. Similarly, Fig. 2 presents,
for Models 1–3 with lognormal distribution, 95% CIs for conditional medians, marginal
medians and probabilities of zero. In these figures, CIs for conditional means and medians
are much larger using Models 0 and 1 than using Models 2 and 3. Note that the scale of
the horizontal axis differs between the models. Using Models 0 and 1, very wide CIs were
observed for treatments 4, 8 and 9, for which only zeros were obtained.

Table 2 presents posterior means and 95% CIs for model parameters. The correlation ρ

between random effects bs and vs in Model 1 is positive, implying a positive correlation
betweenmean ormedian and probability of zero.On the other hand, the estimated correlation
between mean or median and probability of zero using Models 2 and 3 is negative, as
the estimate for γ2 is negative for both these models. A negative correlation seems more
reasonable than a positive, as we would expect the probability of zero to decrease with an
increasing amount of weed.

5.2. CROSS-VALIDATION OF MODELS FOR THE WEED EXPERIMENT

A leave-one-out cross-validation was performed, using replicates as observations. In this
evaluation, Models 1–3 were compared with Model 0 and with each other. Model 0 can be
regarded as a baseline model, since the two parts of this model are independent.

Cross-validation method

The means of the posterior distributions of ỹg,st were used as predictions. With four
models and two distributions, altogether eight methods for prediction were compared. One
replicate (10 observations) at a time was left out, and the remaining data were used for
the analysis. Let μ̂

(−r)
g denote the vector of predictions, sorted by treatment, based on an

analysis of the dataset with replicate r removed. Furthermore, let y denote the vector of
observations, sorted by replicate and treatment, and μ̂g the concatenated vector (μ̂

(−1)
g ,

μ̂
(−2)
g , μ̂

(−3)
g , μ̂

(−4)
g ). Predictive performance was evaluated using the root-mean-square
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Figure 1. Posterior credible interval (CI) of 95% for conditional mean μ f,t of f (.|.), marginal mean μg,t of
g(.|.) and probability of zero pst , for treatments t = 1, . . . , 10 in Models 0–3 with gamma distribution. Note that
the scale differs between models.

error (RMSE) criterion, here defined as the square root of (μ̂g − y)T(μ̂g − y)/N , where
N = 40 is the number of observations.

Cross-validation results

Using the gamma distribution, thusmodelling themean, the RMSEwas 89.7 forModel 0.
The more advanced models performed better. The RMSE was 89.5, 87.3 and 87.3, for
Models 1, 2 and 3, respectively. The dependency-extended models, i.e. Models 2 and 3,
performed better than Model 1.

Using the lognormal distribution, thus modelling the median, the RMSE was 79.2 for
Model 0. Again, the more advanced models performed better. The RMSE was 77.5, 76.4
and 78.9, for Models 1, 2 and 3, respectively. Thus, Model 2 performed best.

The cross-validation clearly showed that for this dataset, it was better tomodel themedian
using the lognormal distribution than to model the mean using the gamma distribution.
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Figure 2. Posterior credible interval (CI) of 95% for conditional median ỹ f,t of f (.|.), marginal median ỹg,t of
g(.|.) and probability of zero pt , for treatments t = 1, . . . , 10 in Models 0–3 with lognormal distribution. Note
that the scale differs between models .

5.3. SIMULATION STUDIES

To investigate the performance of the models using the median, simulation studies were
conducted based on the example of Sect. 2. The objectives of these studies were (1) to
compare the models with regard to ability to recover parameter information and (2) to check
the sensitivity of the results to the choice of prior distributions. The lognormal distribution
was used, since this outperformed the gamma distribution in the cross-validation study.

Data were generated according to the models, where the true parameter values were set to
the posterior mean estimates. These were for Model 0: α̂ = (4.12, 3.68, 3.66,−0.06, 2.32,
3.54, 3.68, 0.01, 0.04, 3.97), β̂ = (−3.38,−1.30, 0.12, 3.56, 0.00,−3.37,−0.17, 3.55,
3.65,−3.44), σ̂ 2

b = 1.242, σ̂ 2
v = 1.162, φ̂ = 0.36; Model 1: α̂ = (4.29, 3.86, 3.81,−0.01,

2.53, 3.73, 3.80, 0.01,−0.02, 4.16), β̂ = (−3.51,−1.79,−0.01, 3.77,−0.23,−3.51,
−0.54, 3.39, 3.54,−3.74), ρ̂ = 0.49, σ̂ 2

b = 1.192, σ̂ 2
v = 2.072, φ̂ = 0.37; Model 2: p̂ =

(0.11, 0.30, 0.39, 0.83, 0.68, 0.27, 0.42, 0.83, 0.83, 0.14), γ̂1 = 3.69, γ̂2 = −0.44, σ̂ 2
b =

0.862, φ̂ = 0.41; Model 3: α̂ = (4.10, 3.56, 3.37,−2.30, 2.27, 3.54, 3.41,−2.16,−2.43,
3.93), γ̂1 = 2.92, γ̂2 = −1.13, σ̂ 2

b = 1.202, φ̂ = 0.42.
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Table 2. Posterior means and 95% credible intervals for φ, σ 2
b , σ

2
v , ρ, γ1 and γ2

Model 0 Model 1 Model 2 Model 3

Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

Gamma distribution
φ 10.04 (2.90, 21.05) 9.61 (2.81, 20.65) 7.39 (2.06, 16.53) 8.80 (1.98, 20.43)
σb 1.26 (0.57, 2.82) 1.17 (0.54, 2.57) 0.83 (0.37, 1.56) 1.24 (0.45, 2.79)
σv 1.19 (0.10, 3.42) 1.93 (0.32, 5.03)
ρ 0.47 (−0.93, 1.00)
γ1 3.76 (2.80, 4.47) 2.99 (0.92, 6.01)
γ2 −0.41 (−0.88, −0.13) −1.13 (−2.00, −0.54)

Model 0 Model 1 Model 2 Model 3

Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

Lognormal distribution
φ 0.36 (0.22, 0.62) 0.37 (0.23, 0.72) 0.41 (0.24, 0.67) 0.42 (0.23, 0.91)
σb 1.24 (0.59, 2.75) 1.19 (0.52, 2.59) 0.86 (0.43, 1.62) 1.20 (0.24, 2.68)
σv 1.16 (0.11, 3.74) 2.07 (0.41, 5.29)
ρ 0.49 (−0.94, 1.00)
γ1 3.69 (2.83, 4.57) 2.92 (0.89, 5.91)
γ2 −0.44 (−1.05, −0.12) −1.13 (−2.01, −0.85)

The same experimental design was used as in the example. Thus, datasets were generated
with T = 10 treatments and S = 8 incomplete blocks with 5 treatments each. The allocation
of treatments to blocks was the same as in the original dataset. For each dataset, l =
1, . . . , 100, a total of 40 observations were generated. This was done for each model.

Let ỹ0t denote the averaged marginal median ỹg,t of treatment t , defined in Sect. 5.1,
computed using the original data of the example. Let ỹlt denote the averaged marginal
median ỹg,t of treatment t , computed in the same way but using the lth simulated dataset.
Quality was assessed using the root-mean-square error (RMSE), here defined as

RMSE =
[
1

L

L∑
l=1

(
1

T

T∑
t=1

(ỹ0t − ỹlt )
2

)]1/2

, (15)

where L = 100 is the number of generated datasets and T = 10 is the number of treatments.
The smaller the RMSE, the better the performance of the model.

Impact of the choice of model

To assess simulation objective (1), for each generated dataset l, the models were fitted
independently of the model used for sampling. In other words, Model k was fitted to each
of the 100 datasets generated using Model r , for k = 0, 1, 2, 3, and r = 0, 1, 2, 3. Table 3
presents the results. The rows of this table represent four different scenarios. For each sce-
nario, the ranking of the four models is the same. Regardless how the data were generated,
Model 2 was consistently the best model for analysing the data. The assumption of correla-
tion between the block effects, which distinguishes Model 1 fromModel 0, did not improve
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Table 3. Evaluating model performance by means of the root-mean-square error

Data simulated Model used for the analysis

Model 0 Model 1 Model 2 Model 3

From Model 0 43.4 43.7 42.4 46.2
From Model 1 52.0 52.8 50.4 53.2
From Model 2 35.7 36.1 33.0 38.0
From Model 3 52.2 54.0 47.3 54.1

the performance, since the RMSE was always larger for Model 1 than for Model 0. The
dependency-extended Model 3, with treatment-by-block-specific probabilities of zero, was
less successful than the other models. When the data were generated fromModel 2 and this
model was also used for the analysis, the smallest RMSE was achieved: RMSE = 33.0. The
results of this simulation study indicate that the dependency-extended Model 2 is the best
option for analysing experiments of this type.

Impact of the choice of prior distributions

Having identified Model 2 as the best model for the analysis, a study was performed to
assess simulation objective (2), i.e. to investigate the sensitivity of the results to the choice of
the prior distributions. For this study, the 100 datasets generated using Model 2 were used.
Alternative priors to those specified in Sect. 4.1 were considered. Among the alternative
priors, continuous uniform distributions, U(0, 50) and U(0, 100), were investigated, as
recommended by Gelman (2006). Performance was measured using the RMSE specified
in (15). Results are given in Table 4. The first row of this table includes the prior distributions
that were used in this article, yielding RMSE = 33.0, as is previously shown in Table 3.
Using other diffuse prior distributions does not change the results much. In just two of
the investigated cases, the RMSE was smaller than 33.0. When a normal distribution with
variance 1 was used for γ1 and γ2, the RMSE was 32.8. Similarly, when a U-shaped prior
for p was used instead of a continuous uniform distribution, RMSE was 32.8. In both these
cases, more informative priors were substituted for diffuse priors. When there is no pre-
knowledge, diffuse priors are preferred. The results of this study point at Model 2 being
robust to the choice of diffuse prior distributions.

For supplementary information, Web Appendix C includes tables with posterior means
computed using various sets of prior distributions, for all four models and for both distribu-
tions.

6. FINAL ANALYSIS OF THE WEED EXPERIMENT

Based on an overall assessment of the results from the cross-validation and the simulation
studies of Sect. 5, modelling the median using Model 2 was considered the best option for
the weed experiment. Using this model, treatments rank with regard to effectiveness as
follows: 4, 8, 9, 5, 7, 3, 2, 6, 10 and 1, with posterior means for the probability of zero equal



216 M. Rodrigues- Motta, J. Forkman

Table 4. Evaluating the priors of Model 2 by means of the root-mean-square error

γ1 γ2 σ 2
b φ p RMSE

N(0.01, 10) N(0.01, 10)Iγ2<0 Cauchy(0, 0.1)I
σ2
b >0 IG(0.01, 0.01) Beta(1, 1) 33.0

N(0.01, 1) N(0.01, 1)Iγ2<0 Cauchy(0, 0.1)I
σ2
b >0 IG(0.01, 0.01) Beta(1, 1) 32.8

N(0.01, 100) N(0.01, 100)Iγ2<0 Cauchy(0, 0.1)I
σ2
b >0 IG(0.01, 0.01) Beta(1, 1) 33.0

N(0.01, 10) N(0.01, 10) Cauchy(0, 0.1)I
σ2
b >0 IG(0.01, 0.01) Beta(1, 1) 33.3

N(0.01, 10) N(0.01, 10)Iγ2<0 IG(0.01,0.01) IG(0.01, 0.01) Beta(1, 1) 33.0

N(0.01, 10) N(0.01, 10)Iγ2<0 Cauchy(0, 0.1)I
σ2
b >0 IG(0.1 ,0.1) Beta(1, 1) 33.0

N(0.01, 10) N(0.01, 10)Iγ2<0 Cauchy(0, 0.1)I
σ2
b >0 IG(0.001, 0.001) Beta(1, 1) 33.0

N(0.01, 10) N(0.01, 10)Iγ2<0 Cauchy(0, 0.1)I
σ2
b >0 U(0, 50) Beta(1, 1) 33.3

N(0.01, 10) N(0.01, 10)Iγ2<0 Cauchy(0, 0.1)I
σ2
b >0 U(0, 100) Beta(1, 1) 33.3

N(0.01, 10) N(0.01, 10)Iγ2<0 Cauchy(0, 0.1)I
σ2
b >0 IG(0.01, 0.01) Beta(0.5, 0.5) 32.8

N(0.01, 10) N(0.01, 10)Iγ2<0 Cauchy(0, 0.1)I
σ2
b >0 IG(0.01, 0.01) Beta(2, 2) 33.6

to 0.83, 0.83, 0.83, 0.68, 0.42, 0.39, 0.30, 0.27, 0.14 and 0.11, respectively. Thus, treatments
4, 8 and 9 are the best treatments for eliminating creeping thistle weed, while treatment 1 is
the worst, which was expected as treatment 1 is the control.

Unlike previously published two-part models (Tang et al. 2018; Cantoni et al. 2017; Rose
et al. 2006; Tooze et al. 2002), Models 2 and 3 include an explicit functional relationship
between the two parts of the model. Under Model 2, conditional on the random effects, the
median is ỹ f,st = exp(γ1 + γ2 + bs). Its expected value with respect to the random block
effect is given by

E(Ỹ f,st |γ0, γ1, αt ) = E(E(Ỹ f,st |bs, γ0, γ1, αt ))

= exp(γ1 + γ2 αt + σ 2
b /2), (16)

because aN(0, σ 2
b ) variate bs hasmoment generating function E(exp(t bs)) = exp(t2σ 2

b /2).
Figure 3 displays the relationship between the probability of zero and the expected value of
the conditional median using the posterior means γ̂1 = 3.69, γ̂2 = −0.44 and σ̂ 2 = 0.86.
Since γ̂2 is negative, the probability of zero decreases with the conditional median, as
illustrated by the curve. As examples, the dashed and dotted lines indicate the probabilities
of zero and conditional medians for treatments 1 and 2, respectively. Although the expected
value (16) of the conditional median depends on the block variance, the ratio between the
expected values of any two treatments is independent of this variance. For example, the ratio
between the expected values of the conditional medians for treatments 2 and 1 is, by (16),

E(Ỹ f,st |γ0, γ1, α2)

E(Ỹ f,st |γ0, γ1, α1)
= exp(γ2(α2 − α1)) =

(
p2(1 − p1)

p1(1 − p2)

)γ2

, (17)

since αt = log(pt/(1− pt )) by (9). The posterior mean of the slope γ2 in (8) is γ̂2 = −0.44,
and the posterior means of the probabilities p1 and p2 in (9) are p̂1 = 0.11 and p̂2 = 0.30,
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Figure 3. The probability of zero as a function of the conditional median, using Model 2. The dashed and dotted
lines indicate treatments 1 and 2, respectively.

respectively. Using these posterior means for computation of (17), the expected conditional
median of treatment 2 is 58% of the expected conditional median of treatment 1.

Model 2 provides scientific insights into the performance of the experimental treatments.
Specifically, it is not correlation between block effects that causes dependency between
the two parts of the model, as would have been assumed using Model 1. According to
Model 2, the experimental treatments have varying probabilities of zero and varying condi-
tional means, following the relationship shown in Fig. 3.

7. DISCUSSION

This article introduced dependency-extended two-part models formodelling nonnegative
continuous observations in case of zero inflation, heteroscedasticity and skewness. Such data
are encountered in many different scientific disciplines; however, we studied specifically
an agricultural field experiment with herbicidal treatments. New features were modelling
of medians instead of means and modelling of functional dependencies between the parts
(Models 2 and 3). The approach of parts correlated through random effects (Cantoni et al.
2017), which was used inModel 1, does not work well when some levels contain only zeros.
When this happens, 95% credible intervals for conditional means or medians become very
large. The same phenomenon occurs using a traditional two-part model with uncorrelated
parts (Model 0). Note that in weed control experiments, it is very common that only zeros,
i.e. no weed, are observed for highly effective herbicides. Furthermore, if the seeds of the
weed are windblown, the weed can appear in patches on the field and be missing in some
incomplete blocks.
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UsingModel 1, the level of the positive observations, i.e. the mean or the median, and the
probability of zero are modelled as functions of fixed and random effects, where the random
effects are allowed to be correlated. This is the model that is difficult to fit when only zeros
are observed for some levels of the fixed effects or some levels of the random effects. In
such cases, using the proposed Bayesian method, the vague prior information completely
dominates the likelihood. Using Model 2, the level of the positive observations is modelled
as a function of the probability of zero and a random effect, whereas using Model 3, the
probability of zero is modelled as a function of the level of the positive observations, which
is dependent on a random effect. Models 2 and 3 have the advantage, as compared to
Models 0 and 1, that all information is considered in the construction of the joint posterior
distribution. These models managed the problem of zero excess better than Model 1. For
our crop protection experiment, the cross-validation and the simulation studies indicated
that Model 2 performed best when modelling the median using the lognormal distribution.

Dependency-extended two-part models aremost useful when there are several predictors.
In this event, which includes our case of modelling effects of categorical variables, an
assumption of a functional relationship between the two parts enables a more parsimonious
model than a model without such an assumption.

All two-part models have the advantage that the positive part and the probability of
zero are separated. Thus, two-part models enable assessment of the probability of zero
and the conditional means or medians, not just marginal means or medians. In addition,
the proposed dependency-extended two-part models make it possible to show graphically
how the probability of zero decreases with the level of the positive observations. In weed
research, this means that if muchweedwere observed in the experiment, then the probability
is low that the herbicide will kill the weeds completely. This is presumably not because of
correlation between block effects (Model 1), but rather because there is some functional
relationship between biomass and probability of zero (Models 2 and 3).

Instead of using Bayesian methodology, maximum likelihood estimation can be used.
However, if only zeros have been observed for some of the treatments, then the variances
in the estimates of the effects of those treatments cannot be computed. For example, the
nlmixed procedure of the SAS System gives the error message that the Hessian matrix is
not positive definite and therefore the estimated covariance matrix may be unreliable.

The underlying problem is the following. The maximum likelihood estimator of a prob-
ability, p, is p̂ = y/n, where y is Bin(n, p). When y = 0 is observed, then p̂ = 0, which
is unrealistic and undesirable. The variance of p̂ is usually obtained from the Hessian using
the parameter estimate. This variance is p̂((1 − p̂))/n, which is also 0 when p̂ = 0, pro-
viding poor information about the precision in p̂. The maximum likelihood estimator does
not perform well on the boundary of the parameter space.

Through the use of Bayesian statistics, this problem is avoided. By multiplying the
likelihood by a prior distribution for p, a posterior distribution is obtained which does not
have all density concentrated at 0. Although the area under the posterior distribution is
largest in a vicinity of 0, the posterior distribution does not exclude that p is greater than 0.

Bayesian analysis has the big advantage that statistical inference can be made for any
function of the parameters, through sampling from the posterior distribution. In experiments
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without pre-knowledge, care should be taken to select vague priors. However, the value of
the Bayesian analysis is even larger if prior information is taken into account.

Our models can be extended further by allowing positive distributions that are not mem-
bers of the exponential family. Other link functions than the log and the logit can be used,
e.g. the identity instead of the log or the probit instead of the logit. In larger agricultural
field experiments, it would be possible to add effects of complete replicates. For other
applications than analysis of incomplete block experiments, the models must be adjusted by
including other explanatory variables. In zero-augmented spatial–temporal two-partmodels,
our dependency-extended idea could be used to relate the components of the auto-covariance
function, thereby reducing the number of parameters.

In summary, this article introduced two-part models with dependencies between the
probability of zero and the level of the positive part and showed how these can be analysed
using Bayesian methodology. Particularly Model 2, expressing the median of the lognormal
distribution as a function of the probability of zero and a random effect, performed well.
We believe the basic construction of this model can be used successfully also in other areas
of research.
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