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Data Assimilation of Growing Stock Volume Using a Sequence of Remote
Sensing Data from Different Sensors

Assimilation de donn�ees de volume de bois �a l’aide d’une s�equence de
donn�ees de t�el�ed�etection provenant de diff�erents capteurs

Nils Lindgrena,b , Håkan Olssona , Kenneth Nystr€oma , Mattias Nystr€oma , and G€oran Ståhla

aDepartment of Forest Resource Management, Swedish University of Agricultural Sciences, Umeå SE 901 83, Sweden; bHolmen Skog,
Kaserngatan 4, Umeå 903 47, Sweden

ABSTRACT
Airborne Laser Scanning (ALS) has implied a disruptive transformation of how data are gath-
ered for forest management planning in Nordic countries. We show in this study that the
accuracy of ALS predictions of growing stock volume can be maintained and even improved
over time if they are forecasted and assimilated with more frequent but less accurate
remote sensing data sources like satellite images, digital photogrammetry, and InSAR. We
obtained these results by introducing important methodological adaptations to data assimi-
lation compared to previous forestry studies in Sweden. On a test site in the southwest of
Sweden (58�270N, 13�390E), we evaluated the performance of the extended Kalman filter
and a proposed modified filter that accounts for error correlations. We also applied classical
calibration to the remote sensing predictions. We evaluated the developed methods using a
dataset with nine different acquisitions of remotely sensed data from a mix of sensors over
four years, starting and ending with ALS-based predictions of growing stock volume. The
results showed that the modified filter and the calibrated predictions performed better than
the standard extended Kalman filter and that at the endpoint the prediction based on data
assimilation implied an improved accuracy (25.0% RMSE), compared to a new ALS-based
prediction (27.5% RMSE).

RÉSUMÉ

Le balayage laser a�eroport�e (ALS) a engendr�e une transformation perturbatrice de la façon
dont les donn�ees sont collect�ees pour la planification de la gestion foresti�ere dans les pays
nordiques. Nous montrons dans cette �etude que la pr�ecision des pr�edictions de l’ALS du
volume croissant des stocks peut être maintenue et même am�elior�ee au fil du temps si elles
sont pr�evues et assimil�ees �a d’autres sources de donn�ees de t�el�ed�etection plus courantes
mais moins pr�ecises comme les images satellites optiques, la photogramm�etrie num�erique
et l’InSAR. Nous avons obtenu ces r�esultats en introduisant d’importantes adaptations
m�ethodologiques �a l’assimilation des donn�ees par rapport aux �etudes foresti�eres
pr�ec�edemment r�ealis�ees en Su�ede. Sur un site d’essai dans le sud-ouest de la Su�ede
(58�270N, 13�390E), nous avons �evalu�e les performances du filtre de Kalman �etendu et d’un
filtre modifi�e qui tient compte des corr�elations d’erreur. Nous avons �egalement appliqu�e
l’�etalonnage classique aux pr�edictions de t�el�ed�etection. Nous avons �evalu�e les m�ethodes
d�evelopp�ees �a l’aide d’un ensemble de neuf acquisitions diff�erentes de donn�ees de
t�el�ed�etection provenant d’un m�elange de capteurs sur quatre ans, en commençant et en
terminant par des pr�edictions bas�ees sur l’ALS du volume de bois. Les r�esultats ont montr�e
que le filtre modifi�e et les pr�edictions calibr�ees fonctionnaient mieux que le filtre de Kalman
�etendu standard, et qu’au point final, la pr�ediction bas�ee sur l’assimilation des donn�ees
impliquait une pr�ecision am�elior�ee (25.0% RMSE), par rapport �a une nouvelle pr�ediction
bas�ee sur l’ALS (27.5% RMSE).
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Introduction

Sustainable forest management at the level of forest
estates requires spatial data about the state and change
of forest conditions. In the Nordic countries, most of
the forests are managed for producing raw material
for forest industries while maintaining favorable con-
ditions for biodiversity, recreation, and carbon seques-
tration. Traditionally, maps for forest management
planning delineate the forests into stands, and key for-
est characteristics are stored in associated databases
(Koivuniemi and Korhonen 2009). The forest maps
have most often been constructed by using a combin-
ation of aerial photo interpretation and field survey-
ing. Databases are often kept up-to-date through
growth models and manual updating of changes, but
the data tend to deteriorate in accuracy with time,
eventually requiring expensive new mapping and
field inventory.

With the introduction of Airborne Laser Scanning
(ALS), key forest characteristics like tree height, basal
area, and growing stock volume can be automatically
predicted with high accuracy. This has implied a para-
digm shift in inventory practices for forest manage-
ment in the Nordic countries (Naesset et al. 2004;
Kangas et al. 2018) whereby the amount of expensive
fieldwork has been substantially reduced. In addition
to ALS, there are several other remote sensing data
sources that might be used for automated prediction
of forest variables like, e.g., growing stock volume.
Less good prediction accuracies have however reduced
their use in operational forest management planning.
Rahlf et al. made a sensor comparison in Norway and
obtained plot level accuracies for growing stock vol-
ume of 31% RMSE for 3D digital photogrammetry
(DP) and 42% for TandDEM-X InSAR compared to
19% for ALS. Yu et al. (2015) did a comparison study
in Finland and obtained plot level accuracies for
growing stock volume of 19% for DP, 22% for
TandDEM-X InSAR, and 16% for ALS. Wallerman
and Holmgren (2007) did at the same test site in
Sweden as the present study obtain stand-level accura-
cies for growing stock volume of 18% with ALS, but
only 33% with SPOT HRG optical satellite data. Since
optical satellite data, InSAR and digital photogram-
metry most often are more frequently available than
ALS, and often at a lower cost, it may be of particular
interest to study how such RS data sources can be
used to keep ALS-based predictions up-to-date. Thus,
frameworks that can utilize all relevant RS data sour-
ces for maintaining high accuracy in forest stand
registers across time would be useful.

Data assimilation (DA) has been suggested as a
methodological framework of this kind (Ehlers et al.
2013). DA is a group of techniques that have been
extensively used in areas such as robotics and meteor-
ology (Rabier 2005). They are useful when repeated
predictions are available in a time sequence, and
where the true state of the system evolves across time.
A frequently used DA method is the Kalman filter
(Kalman 1960). This DA method splits the problem
into two parts: (i) merge and (ii) update steps.
Following an update, there is typically a new iteration
of the filter in which a new data set is merged and a
new update step follows. The merging of predictions
are done by inverse variance weighting, and the pre-
dictions involved are assumed to be independent. The
updating uses a forecasting model, which updates the
assimilated model of the forest until it is merged with
a new prediction, based on newly collected data. In
the standard Kalman filter, a linear updating function
is required, and thus the variance of the updated state
can be estimated without approximation. A common
adaption of the Kalman filter is the Extended Kalman
Filter (EKF) (Kalman and Bucy 1961). EKF is used
when the updating step involves a non-linear func-
tion, as is the case for forecasting models for many
forest variables (Weiskittel et al. 2011; Ehlers et al.
2013; Nystr€om et al. 2015). EKF uses Taylor lineariza-
tion to update the variance.

Previous studies of DA for forest management
planning have shown a great potential for the method
in simulation studies (Ehlers et al. 2013), but in
empirical studies, it has been difficult to obtain
equally good results (Nystr€om et al. 2015; Lindgren
et al. 2017). The study by Nystr€om et al. (2015) used
a time series of predictions based on data from digital
aerial photogrammetry and EKF. In this case, DA led
to modest improvements compared to only using the
last prediction. The study by Lindgren et al. (2017)
applied EKF for assimilating a time series of 19 pre-
dictions from TandDEM-X InSAR radar satellite data
across four years. The study revealed some potential
for DA, but far from the theoretical potential that
should have been obtained if all assumptions under-
pinning EKF had been met.

A major problem in empirical studies appears to be
strongly correlated prediction errors between subse-
quent predictions. Thus, the predictions are not inde-
pendent, as stipulated by the theory behind the
Kalman Filter and the EKF. This was investigated by
Ehlers et al. (2018) who showed that errors of RS-
based predictions correlate positively and rather
strongly between successive predictions for all kinds
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of RS sensors. Even moderate error correlations have
been observed to be a factor that seriously affects the
efficiency of DA (Stewart et al. 2008; Ehlers et al.
2018). Overlooking such correlations leads to several
problems when applying DA, both because the theor-
etical efficiency will not be achieved and because
standard DA methods will compute non-optimal
weights and thus less accurate assimilated predictions.
A sequential composite estimation algorithm, account-
ing for error correlations, was presented by Ehlers
et al. (2018), where the time period in the study (four
years) was assumed to be short enough so that growth
would be relatively small and the updating step of DA
could be ignored. The study revealed the importance
of properly handling error correlations in forestry
applications of DA. The study also showed that error
correlations between predictions based on the same
sensor tended to be stronger than correlations
obtained when comparing two different sensors.
Different RS-sensors acquire data from the forest in
different ways, and thus they are affected by different
properties of trees and other biophysical features,
which also is indicated by the different accuracies for
the predictions made (Rahlf et al. 2014; Yu et al. 2015;
Wallerman and Holmgren 2007). A mix of RS sensors
might therefore provide complementary information
about the forest.

The methodology applied to make predictions
based on RS data may also affect the correlations.
Common methodological approaches are regression
analysis, Random forest, or kNN (Reese et al. 2003;
Naesset et al. 2004; Nilsson et al. 2017; Ayrey and
Hayes 2018) trained with field plot data. The differen-
ces in prediction accuracy between parametric and
non-parametric methods are often small (Chirici et al.
2020). The regression analysis has the advantage that
extreme values outside the reference data can be
extrapolated (Nilsson et al. 2017) and is probably the
most common method. Ideally, it provides unbiased
predictions throughout the entire range of RS pre-
dictor data. However, regression analysis provides
unbiased predictions conditional on the RS data, but
not conditional on the true levels of the characteristic
being predicted (Weisberg 2014). Thus, e.g., for a
given true level of volume measured in the field,
regression-based predictions will not be unbiased. A
well-known property of regression analysis is the cen-
tral tendency, which implies that for small true values,
predictions tend to be too large and for large true val-
ues predictions tend to be too small. This is an add-
itional source of correlated prediction errors, as
suggested by Ehlers et al. (2018). Classical calibration

is a means to make predictions approximately
unbiased conditional on the true levels of the predicted
characteristic (Krutchkoff 1967; Osborne 1991). This
calibration is based on an error model which character-
izes predicted values in relation to true values (e.g.,
biomass on field plots, e.g., Persson and Ståhl 2020).
Classical calibration will remove the central tendency,
and thereby reduce error correlations, thus it has the
potential to improve the efficiency of DA.

In the present study, we evaluated the efficiency of
DA for a time series of nine RS-based predictions
from a mix of different sensors across four years,
starting and ending with ALS-based predictions.
Predictions based on RS data from 3D digital aerial
photographs (DP), Synthetic Aperture Radar satellite
data processed for interferometry (InSAR), and optical
satellite sensors (OS) were sequentially assimilated in
between the ALS-acquisitions to keep the initial ALS-
based prediction up-to-date. The target characteristic
was growing stock volume at the level of sample plots
sized 314m2. We introduced a modified version of an
EKF filter (EKFm) for the DA, in which error correla-
tions were incorporated in the computation of optimal
weights. We compared our modified DA filter with a
standard EKF and assessed the performance of filters
with and without classical calibration applied to
reduce the effect of prediction error correlations due
to the central tendency of regression analysis. In add-
ition to the overall performance of DA, an issue of
interest was whether or not predictions based on DA
were improvements compared to the use of ALS only
when comparing the endpoint predictions of growing
stock volume.

Materials and methods

Study area and reference data

The study area was the Remningstorp estate located
in the southwest of Sweden (58�270N, 13�390E). The
area is located in the hemiboreal biome. The soils in
the area are dominated by till, the mean annual tem-
perature is 7.1 �C and the annual precipitation is
665mm. The forests at the estate are dominated by
planted Norway spruce (Picea abies) and Scots pine
(Pinus sylvestris), with some birch (Betula spp.) and
occasional oak trees (Quercus spp.). The area is highly
productive, and growth rates are generally higher than
the Swedish average. An active forest management
strategy has been adopted on the property, with plant-
ing, pre-commercial thinning, and two to three com-
mercial thinnings before final felling. About 30% of
the current growing stock volume is harvested at each
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commercial thinning. A map of the sample plots on
Remningstorp and its location in Sweden is presented
in Figure 1.

On the Remningstorp estate, 10m radius sample
plots were distributed in a regular grid, resulting in
211 plots. These plots were inventoried in 2010 and
2014 and positioned with a sub-meter accuracy GPS.
On each plot, stem diameters for all trees above a
diameter threshold of 4 cm were measured and a sub-
sample of these trees was selected and measured for
height. Site Index (SI) was assessed from forest floor
vegetation and other site characteristics (H€agglund
and Lundmark 1977). Models predicting the height of
trees from stem diameter were estimated and used for
predicting the height of the trees that were not sub-
sampled for height. Height and diameter were then
used to calculate stem volume for each tree, according
to models by Brandel (1990). Finally, tree-level vol-
umes were aggregated to sample plot totals and recal-
culated to values per hectare.

This study focused on plots where no, or only light,
management actions had been carried out during the
four-year study period. Managed (or severely dam-
aged) plots were identified by comparing the meas-
ured basal area of each plot in 2010 and 2014. A
maximum of 5m2/ha reduction in the basal area was
set as a threshold for a plot to be included in the
study. In addition, a few plots with known extreme
conditions (species trials with Lodgepole pine, Pinus
contorta, otherwise not occurring in southern Swedish
forests) were excluded, which left 148 plots for the
study. A certain reduction of the basal area was
accepted, as natural mortality of trees, sometimes fol-
lowed by salvage logging, is a normal part of the

development of a forest. This was done in analogy to
the way that plots were selected for developing
growth forecast models (c.f. Appendix to Nystr€om
et al. 2015).

The plots were categorized by dominating tree spe-
cies, according to the classes used in the growth fore-
cast models: Pine, Spruce, Deciduous, Mixed
coniferous, and Mixed coniferous/deciduous. The cat-
egories Pine, Spruce, and Deciduous all contain more
than 65% of the total growing stock volume of this
species. Mixed coniferous stands contain more than
65% coniferous trees but <65% of either spruce or
pine. Mixed coniferous/deciduous implies that the
deciduous proportion is between 35 and 65%. From
Table 1 it can be noted that average volume was
larger for plots dominated by coniferous trees than
for deciduous trees and that growth was much larger
for spruce plots than for the other categories. Spruce
was the dominating tree species category in the
study area.

For the years between 2010 and 2014, interpolation
was used to obtain reference values for growing stock
volume, for each plot and year. Linear interpolation
was applied, assuming equal amounts of growth each
year. Age was also updated one year after each grow-
ing season. Growth occurs mainly in spring and early
summer in Sweden, and the interpolated yearly growth
was added in case the RS data acquisition had
occurred later than June 15. We denote the period
from June 16 to June 15, the following year, for “state
year” to separate it from the calendar year. Apart from
volume and age, SI and tree species composition are
required for the growth forecasting models used to
update predictions in the DA framework. These were

Figure 1. Map of the study area in south-western Sweden. The Remningstorp forest estate covers 1,500 hectares of managed for-
est. A regular grid with 10m radius sample plots was distributed over the property. The sample plots were measured in 2010 and
re-measured in 2014.
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taken from the field measurement in 2010, and they
were assumed constant throughout the four-year
study period.

Remote sensing data

Four types of RS-data from nine acquisitions were uti-
lized in the study: two were ALS, two were DP, three
were InSAR and two were OS. The RS-data acquisi-
tions were selected to be roughly equally spread in
time and to have properties suitable for predicting
growing stock volume. ALS data were used at the start
and the end of the study period. This set-up was
applied to mimic a realistic scenario in which an
initial ALS-based prediction is kept up-to-date
through estimates from other, cheaper, sources of RS
data in forests where no management has occurred.
ALS data were acquired in 2010 and 2014, at approxi-
mately the same time as the field inventories were car-
ried out. An important property of ALS data is the
season of the year the acquisition was made. If
deciduous trees have leaves, growing stock volumes
often tend to be overestimated in case no information
about tree species is included in the modeling (Bohlin
et al. 2017; Nilsson et al. 2017). Both the ALS cam-
paigns were carried out during periods when decidu-
ous trees had their leaves on. Pre-processing of the
ALS-point clouds was done using Terrascan (Soininen
2010) and LASTools (Isenburg 2020) to remove flight
line overlap and invalid points. Points were then clas-
sified into ground and non-ground returns. Non-
ground points were normalized to the height above
ground level by subtraction from a DEM. Points inter-
secting the area of each of the sample plots were
extracted and plot-level metrics were calculated using
FUSION (McGaughey 2014) in a classical area-based
approach (Naesset 2002).

The DP data used were three-dimensional (3D) point
clouds, mainly representing the upper part of the canopy
obtained by matching aerial images taken with stereo
overlap. In combination with a high-resolution Digital

Elevation Model (DEM), they provide a good source of
information to predict forest variables (Bohlin et al.
2012). The variable that is most accurately predicted
from DP is height, as density-related metrics from DP
are less useful for forest variable prediction compared to
density metrics from ALS (Ali-Sisto and Packalen 2017;
Bohlin et al. 2017). The Swedish National Land Survey
acquires aerial images every second year for southern
Sweden and images covering Remningstorp were avail-
able from 2012 and 2014 (Lantm€ateriet 2019). Pixel size
and camera type differed between the two-time points:
in 2012 the Z/I camera was used and in 2014 the Vexcel
Ultracam, with the ground sampling distances of 0.48
and 0.24m, respectively. The digital photos were taken
with 60% stereo overlap along flight lines and 40% over-
lap between flight lines. The photos were processed into
3D point clouds using SURE (Rothermel et al. 2012),
and the point clouds were height normalized with a
DEM with 2� 2m grid size from the Swedish National
Land Survey (Lantm€ateriet 2019). In analogy to the ALS
processing into area-based metrics, FUSION was used to
process the point clouds into suitable metrics for each
sample plot. Details about the DP processing is given in
Nystr€om et al. (2015).

The OS data used in the study were acquired from
the SPOT 5 HRG satellite sensor. Images for each
year of the study period were provided by the
Swedish National Land Survey (Lantm€ateriet 2020).
SPOT 5 HRG records radiances in the green, red (R),
near-infrared (NIR), and shortwave infrared (SWIR)
wavelength bands. The ground sampling distance is
10m for all bands except the SWIR band, which has a
20m sampling distance; however, for this study, it
was resampled to a 10m distance. In addition to the
individual bands, the NDVI was calculated as
NDVI ¼ ðNIR� RÞ=ðNIRþ RÞ: All pixels intersecting
a given sample plot were extracted from the raster
images, and OS metrics for the specific plot were
calculated as area-weighted means.

Image pairs of TanDEM-X InSAR radar data were
used to derive digital surface models (DSMs) by

Table 1. Mean and standard deviation per species category for the sample plots used in the study, measured in 2010 and 2014.
Species class n Age [years] 2010 Volume [m3/ha] measured 2010 SI [m] Growth [m3/ha] Volume [m3/ha] measured 2014

(Mean/standard deviation)
Pine (Scots Pine) 29 85/33.6 212.8/72.2 22.8/4.5 6.5/6.9 238.8/80.3
Spruce (Picea Abies) 76 43/13.9 245.7/153.9 29.6/2.2 17.2/8.8 314.7/174.1
Deciduousa 26 42.8/24.6 93.9/56.3 29.4/3.1 7.2/5.6 122.8/59
Mixed coniferousb 6 96.4/44.0 251/45.8 24.0/5.7 11/10.4 295/48.5
Mixedc 11 55.9/39.3 122.4/80.2 27.4/4.4 5.8/3.8 145.5/79
All plots 148 54.2/30.5 203.7/133.3 27.9/4.2 12.3/9.3 252.7/154

“All plots” refers to the entire set of 148 plots. Site Index (SI) and age were taken from field measurements in 2010. Growth is the difference between
growing stock volume measured in 2014 and 2010, respectively, divided by the number of growing seasons (four).

aThe deciduous class consists of over 65% of the total basal area with deciduous trees, mostly of Birch (Betula SPP), followed by Oak (Quercus Robur).
bMixed coniferous is a mixture of Pine and Spruce summing to at least 65% of the total basal area.
cMixed is a mixture of deciduous and coniferous trees where neither category has more than 65% of the total basal area.
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interferometric processing (Moreira et al. 2004;
Krieger et al. 2007; Persson and Fransson 2017).
Three acquisitions, spread out over the study period,
were selected. The main criterion was to select image
pairs with a mean height of ambiguity between 35
and 80m, which is a suitable property for forest vari-
able prediction (Soja and Ulander 2013; Lindgren
et al. 2017). The three image pairs were acquired with
different polarization properties and during different
phenology seasons (see Appendix). The image pairs
were processed to derive the interferometric phase
height and coherence (Persson and Fransson 2017).
The phase height was normalized to the height above
ground using the Swedish national ALS-based DEM
(Lantm€ateriet 2019). The raster data were resampled
to 5� 5m pixels, and InSAR metrics were derived as
weighted averages of pixels overlapping the field plots.
For more details, see Lindgren et al. (2017).

Table 2 provides a summary of the RS-data used in
this study, presented in chronological order.
Additional details about the RS-data can be found in
the Appendix.

Regression modeling of forest attributes

Plot-level growing stock volumes based on each set of
RS data were predicted using regression analysis. The
modeling process followed the same methodology for
all RS data acquisitions. First, preliminary ordinary
least squares models were fitted to the data, assuming
a linear relationship between the plot level growing
stock volume and the RS metrics. Transformations of
independent variables were applied when judged
appropriately through studies of residuals plotted ver-
sus fitted values and individual RS metrics. Metrics
were selected using a forward selection approach,
studying AIC for including the appropriate number of
explanatory variables into the model. Final models
were fitted using the gls function of the nlme-package
in R (Pinheiro et al. 2020), with the variance modeled
based on the size of the predicted value to account for
heteroscedasticity. This procedure was carried out for

each of the nine datasets; thus, nine different predic-
tion models were developed.

Error characterization and classical calibration of
predictions

The predictions were assessed with regard to their
random and systematic errors, conditional on the true
biomass on the field plots, applying the following
error characterization model (e.g., Tian et al. 2016;
Persson and Ståhl 2020) to each dataset:

ŷi, t ¼ At þ Btyi, t þ �i, t [1]

Here, ŷi, t is the predicted value for plot i at time
point t, yi, t is the corresponding field reference (true)
value, At and Bt are model parameters providing
insights about the relationship between predicted and
true values, and �i, t is a random error term, assumed
to has zero expectation. Based on the field data and
the corresponding RS-based predictions, we estimated
the parameters of the error characterization model for
each of the nine datasets, i.e.,

^̂y i, t ¼ Ât þ B̂tyi, t [2]

The “double hat” notation implies that this model
predicts the predicted values from the regression
model, based on the true plot volume as a predictor
variable. This suggests that the systematic errors can
be removed by classical calibration (Osborne 1991)
by rearranging (2) so that calibrated predictions are
obtained as:

ŷi, t, c ¼
ðŷi, t � ÂtÞ

B̂t
, [3]

where ŷi, t, c is the calibrated prediction. The calibrated
predictions are approximately unbiased throughout
the range of predicted values, provided (1) is a valid
model. The variances of the calibrated predictions are
approximately

var �i, tð Þ
B2
t

(1), but note that B must not be
zero (or very close to zero) for this variance formula
to be applicable. However, in the study, we did not
apply this formula directly but estimated the variances
empirically based on the residuals obtained from the
calibrated predictions. Error characterization and cali-
bration were made specifically for each data
acquisition.

Data assimilation

In several previous studies of DA in forestry
applications (Ehlers et al. 2013; Nystr€om et al. 2015;

Table 2. Remote sensing data was used in the study.
Acquisition No. and
data type

Acquisition
date Season

Pixel size or
point density

1 ALS 2010-08-29 Leaf-on 14.5 points/m2

2 OS 2011-06-06 Leaf-on 10 m
3 InSAR 2012-02-23 Leaf-off 5 m
4 DP 2012-05-23 Leaf-on 7.4 points/m2

5 InSAR 2012-08-28 Leaf-on 5 m
6 OS 2013-07-17 Leaf-on 10 m
7 InSAR 2013-11-18 Leaf-off 5 m
8 DP 2014-07-26 Leaf-on 11.2 points/m2

9 ALS 2014-09-14 Leaf-on 29.6 points/m2

Season refers to if deciduous trees had dropped their leaves or not.
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Lindgren et al. 2017), the EKF filter has been applied
using the following:

� Initiation: A prediction, ŷi, t1, is obtained from
RS-data at the starting time point.

� Updating step: The prediction is updated through
a growth model.

� Merging step: Another RS-dataset is acquired and
a prediction based on these data is merged with
the updated first prediction based on the variances
of the two predictions. The variance of the merged
prediction is updated accordingly.

� The filter proceeds with another update step,
where the updating starts from the merged predic-
tion and its corresponding variance. The cycle of
merging and updating steps then continues.

Thus, the first prediction, ŷi, t1, provides the start
for the data assimilation for a given plot i. The appli-
cation of a growth model provides an updated predic-
tion with at time t2 is: ŷi, t2, u: At this time point, a
new prediction, ŷi, t2, is prepared from RS data
acquired at this time point, and ŷi, t2 is merged with
ŷi, t2, u to obtain ŷi, t2, DA . This is achieved through a
weighting procedure:

ŷi, t2,DA ¼ ki, t2ŷi, t2, u þ 1� ki, t2ð Þ ŷi, t2 [4]

The weight, ki t2, is chosen so that varðŷi, t2,DA) is
minimized. In standard EKF, the covariance between
the two predictions is assumed to be zero, therefore
the weight is calculated as:

ki, t2 ¼
var ŷi, t2

� �
var ŷi, t2, u

� �þ var ŷi, t2
� � , [5]

and the approximate variance of the merged predic-
tion is:

var ŷi, t2,DA
� � ¼ k2i, t2var ŷi, t2, u

� �þ 1� ki, t2ð Þ2varðŷi, t2Þ
[6]

Here, varðŷi, t2, uÞ is obtained from varðŷi, t1Þ and
error propagation through the growth forecast model
(described further down). In a third time step, when a
prediction, ŷi, t3, from another RS dataset is available,
the iteration can proceed by merging this prediction
with ŷi, t3, u, which is ŷi, t2,DA updated through a
growth model. In this study, we used the standard
EKF as a reference alternative.

As pointed out in previous studies (Lindgren et al.
2017; Ehlers et al. 2018), the EKF assumption
that successive predictions are independent may be a
too strong assumption in forestry applications
based on RS data. Standard variance minimization

technique suggests that a more appropriate weighting
formula is:

ki, t2 ¼
var ŷi, t2

� �� cov ŷi, t2, u, ŷi, t2
� �

var ŷi, t2, u
� �þ var ŷi, t2

� �� 2cov ŷi, t2, u, ŷi, t2
� � [7]

and the approximate variance after data assimilation is:

var ŷi, t2,DA
� � ¼ k2i, t2var ŷi, t2, u

� �þ 1� ki, t2ð Þ2var ŷi, t2
� �

þ 2ki, t2 1� ki, t2ð Þcov ŷi, t2, u, ŷi, t2
� �

[8]

Thus, if the covariance is assumed to be zero, as in
standard EKF, the weights applied in the data assimi-
lation step will not be the weights minimizing the
variance and the variance estimate for the assimilated
prediction will be biased. We thus suggest using a
modified version of EKF in this study, based on (7)
and (8), which we denote EKFm. The difference
between EKF and EKFm is that covariances between
predictions are incorporated in the weighting.

In EKFm, the computation of covariance’s requires
a recursive algorithm, since the covariance will depend
on what “mix” of RS acquisitions is contained in ŷt, u:
As a simplification, we assume that the growth fore-
casts are relatively short and do not change the correl-
ation structure between the predictions involved. The
key to determining the covariance between an
assimilated prediction and a new prediction after sev-
eral assimilation steps is to keep track of the compos-
ition of the assimilated prediction in terms of
acquisition-specific random plot effects. This can be
done recursively by, after each assimilation step, com-
puting the composition of the assimilated prediction
in terms of what sensors have contributed. For
example, an assimilated prediction at time point
two (updated to time point three) may contain 60%
of acquisition 1 and 40% of acquisition 2. If at
time point three, this prediction is combined with a
prediction based on acquisition 3, the covariance
will be:

cov ŷt3, u, ŷt3
� � ¼ 0:6 cov ct1, ct3ð Þ

þ 0:4 cov ct2, ct3ð Þ
In the weighting for this article, the exact variances
and covariance of these formulas were replaced by
their estimated counterpart.

Growth forecasts and variance propagation

The updating step of DA involves growth forecasting.
In this study, the same forecast models as the ones
described in the Appendix to Nystr€om et al. (2015)
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were used. They followed the form:

gi, t ¼ exp b0 þ b1xi, 1, t þ :::þ bjxi, j, t
� �þ ei [9]

Here, gi,t is the net volume growth over five growth
seasons for plot i, with starting conditions corre-
sponding to time point t, and xi, j, t is the jth explana-
tory variable in the model (for plot i at time point t),
bj is the jth model parameter, and ei is a random error
term, assumed to be normally distributed with zero
expectation. The explanatory variables included in the
model were the initial plot volume predicted from RS-
data, site index (SI), age, and for mixed coniferous
forest also the proportion of Norway spruce. Separate
models were estimated for different dominating tree
species categories, based on their proportion of grow-
ing stock volume at the plot according to the classes
described in Table 1. We assumed these classes, as
well as age and SI, to be known for each plot, based
on information from stand registers. An updated pre-
diction was obtained by adding the predicted growth
to the predicted volume at the start of the period, i.e.:

ŷi, tþ1, u ¼ ŷi, t þ ĝ i, t

The variance of ŷi, t, u was approximated through
linearization of the growth model around the starting
value of the volume, according to the methods in
Nystr€om et al. (2015). To handle unequally long
updating periods, the growth predicted according to
(9) was adjusted to correspond to the specific length
of the updating period.

For small initial volumes (<5m3/ha) the growth
forecasts turned out to be very uncertain. To avoid
complications we chose to assign a fixed starting value
(5m3/ha) for the growth function in such cases.

Estimated variances and covariances

The DA procedures require that the variance be esti-
mated for each prediction. For the non-calibrated pre-
dictions, we estimated the variances from the residuals
emanating from the prediction models being devel-
oped specifically for each time point. The standard
procedure for estimating residual variance was
applied. Whereas we could have estimated variances
separately for different subgroups of the plots, we
chose not to do so to have a large enough dataset for
the variance estimation (the 148 plots). Thus, for a
given time point all predictions received the same esti-
mated variance as input to the DA.

For calibrated predictions, a similar procedure was
adopted. However, in this case, we used the residuals

obtained by comparing calibrated values with field ref-
erence values. In this case, the mean value of the
residuals was not exactly zero, but close to zero. As
for the non-calibrated predictions, all calibrated pre-
dictions at a given time-point received the same esti-
mated variance.

Covariances between predictions were estimated for
all pairs of time points using the standard formula for
empirical covariance estimation. In the case of
non-calibrated predictions, we based the covariance
estimation on the residuals obtained from the basic
predictions models. As for the variances, no grouping
of plots was made and thus all plots received the
same estimated covariance for a given combination of
time points. For calibrated predictions, the residuals
entering the empirical covariance estimation were
obtained from comparing calibrated predictions with
the field references. For purposes of presentation,
covariances and variances were also used to compute
correlations in the standard way.

Evaluation

To summarize, we compared two different types of
volume predictions based on RS data (calibrated and
non-calibrated) and for each of them, we evaluated
two different data assimilation methods (EKF and
EKFm). In addition, we evaluated a case where the
initial prediction in the time series (1 ALS) was
updated to the end of the study period only through
growth forecasts (called forecast from first ALS-pre-
diction). For comparison, all the predictions made at
single time points are also presented (called single
predictions). A summary of the evaluated prediction
types and filter algorithms is presented in Table 3.

Evaluations were made at plot level in terms of
RMSE and Bias, and rRMSE and rBias, in which cases
the RMSE and Bias are expressed in percent of the
mean true volume:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

r2i, t

s
[10]

rRMSE ¼ RMSE
y

� 100 [11]

Table 3. An overview of the DA methods and prediction
methods used in this study, and the cases evaluated when
the prediction types and DA methods were combined.

Calibrated Non-calibrated

EKF Case 1 Case 2
EKFm Case 3 Case 4
Forecast from 1 ALS Case 5 Case 6
Single predictions Case 7 Case 8
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Bias ¼ 1
n

Xn
i¼1

ri, t [12]

rBias ¼ Bias
y

� 100 [13]

Where yt ¼ 1
n

Pn
i¼1 yi, t, and ri, t being residuals

from the specific case evaluated, which can be from
any of the cases in Table 3, including the results from
assimilation.

We also compared the empirical RMSEs with the
theoretical DA variances according to (6) and (8). In
the case of applying the latter formulas, an average for
all plots was taken, as each plot receives an individual
estimated variance through the DA algorithm.

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

cvar ŷi, t,DA
� �s

[14]

rSD ¼ SD
y

� 100 [15]

Results

Results from assimilated predictions

For almost all time points, the EKFm resulted in
clearly lower rRMSE than the other methods
(Figure 2). This result was valid for both the

calibrated and non-calibrated predictions. In the cali-
brated case, EKFm also reduced the rRMSE compared
to using the prediction based on ALS at the final time
point. For non-calibrated predictions, EKFm and the
final ALS-based prediction had about the same
rRMSE. For non-calibrated predictions, the EKF filter
led to modest improvements compared to using the
initial ALS-based prediction and growth forecasts.
EKFm improved the accuracy of predictions, but still
the single ALS-based prediction from the final time
point was superior to both of the DA-based predic-
tions. However, whereas the general pattern was the
same for calibrated predictions the two DA-based
methods resulted in substantial decreases of the
rRMSE compared to using the initial ALS-based pre-
diction and growth forecasts. Further, both of the
DA-based predictions at the final time point were
improvements compared to using the ALS-based pre-
diction at this time point. The best accuracy was
obtained for EKFm, which reduced the rRMSE from
35% at the initial time point to 25% at the final time
point. In contrast to EKF, EKFm also performed con-
sistently better than forecasted ALS in the non-cali-
brated case. Note that the mean volume was the
volume for the particular time point of the acquisi-
tion, and since no harvests were performed on the
plots the mean volume increased during the study

Figure 2. rRMSE, using DA with EKF or EKFm, forecast from first time point (ALS), and ALS for the last time point, for calibrated
and non-calibrated predictions. Growth periods are marked with dotted vertical lines.
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period. Thus, rRMSE had a downward trend, even for
forecasted ALS. In absolute values, the RMSE
increased over time.

The rBias of predictions increased over time
(Figure 3). A positive bias means that the predictions
were lower than the average of the field references.
The bias increased every time growth was added. The
rBias was generally somewhat higher for EKFm com-
pared to EKF.

Results from single predictions and their error
correlation

Table 4 shows the results for the predictions at indi-
vidual time points, with and without classical calibra-
tion. As expected, calibration decreased the accuracy
of the individual predictions. The larger the RMSE
before calibration, the larger was the increase follow-
ing calibration. This is due to the central tendency of
regression, which was more pronounced when the
explanatory power of the data was low.

ALS acquisitions led to the most accurate predic-
tions, followed by the DP acquisitions. Both of the
ALS acquisitions had an RMSE of 63m3/ha, but as
the mean value of the field references increased due
to growth, the rRMSE was lower for the later ALS
acquisition (9 ALS). A large variation in terms of
accuracy was found among the InSAR acquisitions.
This is the sensor where the properties were varying
the most (Table 2); the season varies, in contrast to
the other sensors which were operated on leaf-on

conditions, and the set-up of the system (HOA
mainly) varied among the datasets. OS was the least
accurate, with very high rRMSEs. Since the estimated
models were evaluated on the same sample plots, the
bias was close to zero for all predictions. For more
details about the RS data and the predictive models,
see the Appendix.

Results from the calibration showed that the ten-
dency to overestimate small true values and underesti-
mate large true values was largely removed by
calibration. A boxplot of residuals plotted over catego-
ries of true volume is shown in Figure 4. The central
line in each box shows the mean value of the residuals
(Bias) for the category. When residuals were taken
directly from the regression models (non-calibrated),
the bias tended to be negative for the lower category
and positive for the higher category. The higher the
overall residual error, the larger the tendency toward
the mean in general, as can be seen when comparing
predictions based on OS data with predictions based
on ALS data.

The correlations between residuals from predictions
using different sources of RS data are shown in
Figure 5. The left part of the figure shows correlations
of residuals after calibration, and the right part the
correlations in case no calibration was applied. The
removal of the central tendency of regression-based
predictions, through calibration, reduced the
correlation.

Residuals from predictions based on the same type
of RS sensor tended to correlate stronger than

Figure 3. rBias using DA with EKF or EKFm, forecast from first time point (ALS), and ALS for the last time point, for calibrated and
non-calibrated predictions. Growth periods are marked with dotted vertical lines.
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Table 4. Accuracy for single predictions of growing stock volume, individually assessed by empirical evaluation against the
field references.

Acquisition

RMSE (m3/ha) rRMSE (%) Bias (m3/ha) rBias (%)

Calibrated Non-calibrated Calibrated Non-calibrated Calibrated Non-calibrated Calibrated Non-calibrated

1 ALS 71 63 34.9 30.8 0 0.06 0 0.03
2 OS 153 100 75.0 49.2 0 0.14 0 0.07
3 InSAR 101 82 46.6 37.9 0 �2.09 0 �0.97
4 DP 89 75 41.4 34.7 0 0.85 0 0.39
5 InSAR 154 105 67.3 45.9 0 �0.35 0 �0.15
6 OS 172 112 71.7 46.7 0 �0.03 0 �0.01
7 InSAR 147 104 61.0 43.3 0 0.46 0 0.19
8 DP 101 84 39.9 33.4 0 0.06 0 0.02
9 ALS 70 63 27.6 25.1 0 �0.11 0 �0.04

The evaluations were made at the time points of the individual acquisitions, with and without classical calibration.

Figure 4. Boxplots of residuals for three categories of true volumes on the x-axis. Each group contains roughly the same number
of observations.
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residuals from predictions based on different sensors.
The lowest correlations were found between
OS-predictions and ALS-predictions. Predictions from
sensors that capture similar properties of the forest
tended to correlate stronger, e.g., DP and ALS.
Residuals from predictions based on the two ALS
acquisitions correlated very strongly even though four
growing seasons separated them. The properties of
both ALS acquisitions were similar, e.g., the same sea-
son and similar point densities (Table 2). The correl-
ation between the two ALS acquisitions was hardly
affected at all by calibration.

Discussion

This study is the first that we are aware of that suc-
cessfully applies DA on a time series of real RS-data
from different sensors for predicting growing stock
volume. The results are promising and provide a
foundation for the future development of operational
methods for keeping forest databases up to date by
using data assimilation techniques. With the devel-
oped data assimilation methods, accurate predictions
from ALS could be maintained and even improved
over time, by using more frequent but less accurate
remote sensing data. Combined with a method for
change detection, this might provide a new paradigm
shift where forest databases for management planning
are continuously updated rather than being re-made
as currently is the case in the Nordic countries.

The assimilations were initiated with predictions
from ALS, which is a realistic case in the Nordic
countries. To best utilize data from remote sensing

sensors that are more frequently available, but less
correlated with the growing stock volume, we com-
pensated for the tendency toward the mean due to
regression analysis by applying classical calibration,
which improved the results. We used the extended
Kalman Filter (EKF) in the assimilation step, but with
a modification (here called EKFm) that accounted for
the error correlations which improved the results
greatly (Figure 2).

The two DA-based methods (EKF and EKFm)
resulted in notable decreases of the rRMSE compared
to using the initial ALS-based prediction and growth
forecasts. Further, both of the DA-based predictions
at the final time point were improvements over using
only the ALS-based prediction at this time point, if
the calibration was applied. EKFm outperformed EKF,
and unlike EKF in the non-calibrated case, it per-
formed much better than a forecast of 1 ALS
(Figure 2).

Even though EKFm accounts for correlated errors,
reducing the correlation by applying classical calibra-
tion further improved the results. Figure 6 shows
empirically evaluated accuracies versus the model-
based approximation made in the respective filters
(Equations 11 vs. 15). The discrepancies between
model-based and empirical rRMSEs were large for
EKF, and ignoring prediction error correlations was
making the variance estimates seriously biased, which
can be seen for both the calibrated and non-calibrated
case where calculated rRMSE (dashed line) differs
very much from the empirically evaluated rRMSE
(solid line). However, EKFm was a big improvement
in this respect. A consequence of using inaccurate

Figure 5. Correlation coefficients of residuals from predictions of growing stock volume using different sources of RS data. The left
plot shows residuals after calibration while the right plot shows correlations of residuals for non-calibrated predictions.
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prediction error variances in DA is that calculations
of Kalman gains (i.e., the weights) will be non-
optimal. EKFm thus provides better weights, and also
better approximations of the variance of the DA-based
predictions. The model-based and empirically eval-
uated rRMSEs were closer to each other when calibra-
tion had been applied, both for EKF and EKFm.

The importance of handling residual error correla-
tions in DA was investigated in Ehlers et al. (2018)
and has been confirmed in this study. We addressed
correlated errors in three ways: (i) in combining data
from several sensors, (ii) through modifying the filter
to handle correlations, and (iii) by reducing the error
correlations through classical calibration. We also
combined these approaches, using calibration and a
modified filter to a series of data from different sen-
sors. The developed methods led to results that are
superior to those obtained in previous studies, where
the EKF filter has been applied together with non-
calibrated predictions (Nystr€om et al. 2015; Lindgren
et al. 2017; Ehlers et al. 2018).

Results from the single RS-based predictions
showed similar accuracies (Table 4) as those obtained
in other studies (Rahlf et al. 2014; Yu et al. 2015;
Ehlers et al. 2018). The ALS predictions were at the
higher end of previously reported plot level RMSEs,
which is probably because of the leaf-on acquisition
season (Naesset 2005; Nilsson et al. 2017) in

combination with the proportion of broadleaves in the
sample plot material (Table 1). Residual plots revealed
a pattern of negative bias for deciduous-dominated
sample plots, similar to what Nilsson et al. (2017)
reported. Assimilation of an OS image after the 1 ALS
data largely removed this trend and improved accur-
acy. In addition, a reason for the high rRMSE, in par-
ticular for the 1 ALS acquisition, was also that the
mean true volume was lower than in the later part of
the time series as the volume increased over the
study period.

In most previous studies about DA for forest
inventory, a time series of data from a single type of
sensor have been used (Nystr€om et al. 2015; Lindgren
et al. 2017). Prediction errors from the same type of
sensor tend to be more strongly correlated than pre-
diction errors from different types of sensors
(Figures 5) (c.f. Ehlers et al. 2018). Thus, a way to
reduce correlations and improve the efficiency of data
assimilation may be to use combinations of data from
different sensors.

The weakest correlations were obtained between
ALS and OS. The frequency of useful OS acquisitions
has increased, but it may be questioned if additional
OS-based predictions had increased the accuracy of
the DA predictions. Ideally, any new prediction
should be both accurate and have errors weakly (or
negatively) correlated with the errors of the previously

Figure 6. Comparison of empirically evaluated rRMSEs (Equation 11) and model-based rRMSEs (Equation 15) from the filters.
Growth periods are marked with dotted vertical lines.
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assimilated predictions, but the error correlation
between the OS-based predictions was large. A richer
supply of images provides cloud-free data from early
spring (leaf-off) and autumn as well, possibly resulting
in lower error correlations. Perhaps the largest benefit
of the frequent supply of data lies in the possibility to
detect changes, which was not included in this study
but should be a part of an operational DA scheme.

All correlation coefficients were lower in the case
of calibrated predictions, compared to non-calibrated
predictions. This was due to the removal of the ten-
dency toward the mean of the regression-based pre-
dictions. However, the more accurate the prediction,
the smaller was the effect of calibration on reducing
the correlation, as the central tendency is less pro-
nounced for accurate predictions (c.f. Table 4). The
linear error characterization model (Equation 1) might
have been too simple in some of the cases it was
applied to, since the relation may be nonlinear in the
case of saturation effects in RS data. Still, applying
classical calibration to the predictions had a notably
positive effect on the performance of the EKF and
EKFm filters in terms of reducing the empirical
rRMSE (Figure 2). Using EKF without calibration led
to worse results, for some time points, compared to
only making growth forecasts from 1 ALS. When cali-
brated predictions were used, the rRMSE decreased at
almost all time points, and DA provided a more
accurate prediction than 9 ALS alone (Figure 2).

The OS-based models had the lowest R2 and high-
est RMSE, and a dramatically increased RMSE if clas-
sical calibration were applied. But even though the
accuracy of the single OS-based predictions was
decreased by calibration, calibration was important
when OS-based predictions were part of the DA
scheme. Since OS-based predictions were almost
uncorrelated with ALS-based predictions, they reduced
the rRMSE of the DA prediction substantially when
merged with the initial ALS-based prediction
(Figure 2); the drop was almost 5% units.

Whereas calibration was applied to the RS-based
predictions of volume it was not applied to the growth
predictions. Comparing the growth rates (Table 1)
with the material used for estimating the growth fore-
cast models (Appendix to Nystr€om et al. 2015)
revealed that the growth rates were comparatively
high for the plots in this study. This is a likely reason
for the bias presented in Figure 3, which increased
each time a growth forecast had been made but
remained more or less constant when new predictions
were assimilated without a previous growth forecast.
Thus, a natural extension of this study would be to

calibrate not only the RS-based predictions but also
the growth forecasts.

We used Taylor linearization to propagate the vari-
ance through the non-linear growth forecast model.
This method works best if the model is close to being
linear. Our models were of an exponential form
(Equation 9) and thus far from being linear. Problems
with the Taylor linearization were experienced for low
volumes, which made the approximated variances
very uncertain for such cases. Better methods to han-
dle non-linear forecast models could thus be an area
for future developments, for example through using
Bayesian methods (Ehlers et al. 2013). Another devel-
opment area could be the recursive handling of cova-
riances. The algorithm we used required taking all
pairs of RS-data in the time series into account, which
leads to somewhat tedious computations. Further, we
did not handle covariance propagation due to the
growth model. A computational benefit of the EKF fil-
ter is that covariances between predictions can be
ignored and thus predictions in the past can be disre-
garded when the updated DA prediction is merged
with a new prediction. Over a limited number of time
steps, it is straightforward to handle covariances in
the way it was done in this study, but it becomes
increasingly difficult as the number of time steps
increases. It is likely that an operational EKFm
scheme should disregard historic predictions and
make use of only a certain number of latest predic-
tions, at least when computing covariances.

This study has shown that DA has the potential to
improve the accuracy of a model of the forest state
over time by continuously assimilating predictions
from various RS sensors. In an operational DA
framework, additional functionalities would be needed
in addition to the core functionalities explored
here. Examples are RS-based routines for change
detection (Kennedy et al. 2010; Grabska et al. 2020),
prediction of SI (Noordermeer 2020), and tree species
(Persson et al. 2018). Another important issue is the
cost-effective supply of reference data for the estima-
tions. For this to be realistic, automatic collection of
stem data from harvesters (Holmgren et al. 2012),
back-pack scanners, and cell phones (Liang et al.
2018), as well as cooperation between forest organiza-
tions might be needed. Also, practical use of DA
would require aggregation to larger units, such as for-
est stands (c.f. evaluation in Nystr€om et al. 2015).
This would pose additional challenges, as the error
correlation between spatially adjacent plots would
need to be estimated.
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Appendix

Details about the remote sensing data

Table A.1. Details about the ALS data.
Acquisition number Acquisition date Scanner Flying altitude (m) Point density (points/m2)

1 ALS 2010-08-29 TopEye s/N 700 400 14.5
9 ALS 2014-09-14 Riegl LMS Q680i 300 29.6

Table A.2. Details about the DP data.
Acquisition number Acquisition date Camera Flying altitude (m) Ground sampling distance (m)

4 DP 2012-05-23 Zeis/Integraph DMC 4,800 0.48
8 DP 2014-07-26 Vexcel UltraCamX 2,800 0.24

Table A.3. Details about the TanDEM-X InSAR data.
Acquisition number Acquisition date Orbit Polarization HOA

3 InSAR 2012-03-23 146 VV 79
5 InSAR 2012-08-28 146 VV 37
7 InSAR 2013-11-18 78 HH 72

Table A.4. Details about the OS data.
Acquisition number Acquisition date Satellite and sensor Path/row Ground sampling distance (m)

2 OS 2013-07-17 SPOT 5 HRG 053/231 10–20
6 OS 2011-06-06 SPOT 5 HRG 053/231 10–20

Estimated predictive models

Table A.5. Coefficients and included variables for the estimated models predicting forest growing stock volume.
Acquisition number Acquisition date Variable Coefficient SE

1 ALS 2010-08-29 Intercept 2.4 7.29
MeanH2 1.5 0.199
VR�P95 0.07 0.016

2 OS 2011-06-06 Intercept 520 83.4
B42 1,400,000 239,000
NDVI �520 79.2
B1/B4 �450 89.8

3 InSAR 2012-02-23 Intercept 46 8.94
ISH2 0.89 0.0566

4 DP 2012-05-23 Intercept 77 9.14
CUBEmean3 0.032 0.00323
P95/CV 0.24 0.112

5 InSAR 2012-08-28 Intercept 33 17.3
(ISH þ 10)2 0.35 0.0319

6 OS 2013-07-17 Intercept 790 126
B42 4,800,000 723,000
NDVI �630 104
B1/B4 �1,100 199

7 InSAR 2013-11-18 Intercept 350 69.2
(ISH þ 5)2 0.6 0.074
COH �350 84.7

8 DP 2014-07-26 Intercept 70 10.5
CUBEmean3 0.034 0.00242
VR/CV 0.035 0.0132

9 ALS 2014-09-14 Intercept 30 6.09
MeanH2 1.4 0.215
VR�P952 4.1e-05 9.1e-06

Point cloud metrics abbreviated by: MeanH: mean of points heights above ground; VR: vegetation ratio; P95: height percentile 95; CUBEmean: cube-root
of the mean of heights to the cube; CV: coefficient of variation.
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