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A B S T R A C T   

Understanding and modelling plant interactions is an important field in quantitative forest ecology. Many 
spatially explicit techniques have been devised for shedding light into these processes. One of these methods 
includes the application of kernel functions, which describe the decay with increasing distance of interaction 
effects of each plant of a given community on others. In forest inventory, a method referred to as relascope 
sampling is often applied to collect information on the state and change of tree resources: somewhat unex-
pectedly, the mathematical principles of this technique have been turned into measures of competition for use in 
ecological modelling. In this study, we combined methods from quantitative ecology and sampling theory by 
defining a parameter-parsimonious relascope kernel function, thus generalising the concept of individual-tree 
basal-area factors. By using both relative and absolute growth rates as response variables in the regression we 
compared the performance of the relascope kernel with an alternative, the exponential kernel function. Our 
results indicated that the relascope kernel can indeed be applied to both types of growth rates in individual-based 
models. Using individual-tree basal-area factors, it is even possible to anticipate the performance of the relascope 
kernel. In most cases the estimation efficiency was greater, when absolute growth rate was the response variable. 
The exponential kernel was more efficient than the relascope kernel, but at the expense of parameter parsimony 
and estimation robustness. Our study has shown that simple, parsimonious models, inspired by another field of 
natural sciences, such as the relascope kernel, can effectively encapsulate the interaction dynamics of forest 
ecosystems.   

1. Introduction 

Traditionally, the fields of forest inventory and forest ecology 
traditionally had little common ground except for the occasional coop-
eration for work on estimators of ecologically important summary 
characteristics (Motz et al., 2010; Newton, 2007; Krebs, 1999). Forest 
inventory has always been more dedicated to estimating the current 
state of forest resources and associated changes. However, forest ecol-
ogy, like many other scientific disciplines, largely developed its own 
sampling theory and procedures to study the dynamics of individuals 
and populations (Green, 1992), although there were exceptions (see 
Gregoire et al., 1995; Gregoire and Schabenberger, 1999). This was due 
to the vast diversity and heterogeneity of forest ecology where sampling 

and experimental design often, but not always, overlap (Gregoire, 1998; 
Newton, 2007; Montgomery, 2013). 

One intriguing overlap between forest inventory and forest ecology is 
an offshoot of relascope sampling (also referred to commonly as angle- 
count or (horizontal) point sampling). The method was originally 
invented in 1948 by Walter Bitterlich, an Austrian forest scientist, to 
accelerate and improve the estimation of stand basal area and timber 
volume in forest stands and was later extended by others (Bitterlich, 
1984; Grosenbaugh, 1952; Gregoire and Valentine, 2008). The method 
is applied also in resource monitoring as part of several national forest 
inventories (Tomppo et al., 2010). The concept is based on angular 
measurements made using a small hand-held device referred to as the 
relascope. The method is used in many parts of the world (e.g West, 
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2015, Section 8.4.2); it has particular advantage where topography is 
highly variable, since the original relascope device has an automated 
slope correction ability to avoid bias due to varying slopes. 

Interestingly, the relascope idea has been taken up by quantitative 
forest ecology, particularly in ecological modelling. A common problem 
in forest modelling is to quantify tree interactions. These interactions are 
often termed competition, although competition is only a small part of 
the total interaction between trees. Traditionally, the quantification of 
competitive effects has been subdivided as (1) the identification of 
competitors of a given subject tree and (2) the quantification of the 
competition load, using information of both the competitors and the 
subject tree (Gadow and Hui, 1999; Burkhart and Tomé, 2012; Weis-
kittel et al., 2011). Two forms of competitive processes have been 
identified in forests, symmetric and asymmetric (e.g Binkley, 2004; Ras-
mussen and Weiner, 2017; Ouyang et al., 2019; Pommerening and 
Grabarnik 2019, Section 2.1.1). In the former, trees have competitive 
effects directly proportional to their sizes. In asymmetric competition, 
trees have disproportionately large competitive effects with respect to 
their sizes. For much of the life of a forest, above-ground asymmetric 
competition for light tends to predominate as taller trees shade smaller 
but the reverse cannot occur. 

Interestingly, researchers in ecology found that aspects of relascope 
sampling can be used effectively in the identification of competitor trees. 
Due to its design, the method includes trees in the sample with a prob-
ability directly proportional to their sizes (or, formally, to their stem 
cross-sectional areas at breast height, which generally correlates well 
with overall tree size). Thus, it tends to prioritise the inclusion of larger 
trees that are likely to be the asymmetric competitors of other trees 
(Daniels, 1976; Lorimer, 1983; Tomé and Burkhart, 1989). The choice of 
the angle used to select trees in a relascope sample influences which 
trees are included. The larger the angle, the fewer and the larger are the 
trees that tend to be selected. In practice, these angles are defined 
through what is known as the basal area factor of the sampling device 
being used (West 2015, Section 8.4.2); this is described fully in Section 2 
of this article. 

Based on the relascope idea Stöhr (1959) and Spurr (1962) defined 
an angle summation method that can be used particularly to quantify the 
competition load suffered by individual trees; it depends on the spatial 
distribution and relative sizes of neighbouring trees. This approach is 
headed more in the direction of the second part of studying competitive 
effects, that is, the actual quantification of competition load. Key to 
doing this is the derivation of an individual-tree basal-area factor; a 
similar method was used by Rouvinen and Kuuluvainen (1997). McTa-
gue (2010) and McTague and Weiskittel (2016) suggested an 
individual-tree basal-area factor that employs elements of both the 
original Bitterlich relascope sample and the Spurr method whilst serving 
as an estimator of basal area and timber volume at the same time. 
Similar concepts were also suggested by Stage and Ledermann (2008). 

In recent years, kernel functions have been increasingly favoured as 
modern successors to the traditional concept of competition indices that 
have been used in the past to quantify competition load. Kernel func-
tions are important elements of individual-based models and typically 
applied for modelling plant interaction and birth processes (Adler, 1996; 
Schneider et al., 2006; Pommerening and Grabarnik, 2019, Chapter 5). 
Like basal area factors, they also depend on the size of trees and their 
distance to other trees or to a sample point. Apart from a solid mathe-
matical foundation and great flexibility, kernel functions offer the 
benefit of merging the two separate steps involved in the calculation of 
competitive effects (Pommerening and Maleki, 2014). Therefore the 
kernel-function concept has the potential to generalise individual-tree 
basal area factors. Consequently in this paper, we have proposed, ana-
lysed and tested a new way of modelling tree interaction by combining 
the relascope with the kernel-function concept. 

The objective of this study was, firstly, to model and analyse a new 
kernel function which is based on the relascope concept. Secondly, we 
aimed to analyse and discussed the merits of the new relascope kernel and 

compared its efficacy when used in modelling both absolute and relative 
growth rates (of individual-tree stem diameter and basal area) with that 
of a reference function, the more sophisticated exponential kernel function 
(Pommerening et al., 2011; Pommerening and Maleki, 2014). In the 
analysis, we used eight different, spatially explicit data sets representing 
rather different forest types from different parts of the world. 

2. Materials and methods 

2.1. The concept of the relascope kernel 

Consider Fig. 1, where tree j, with stem diameter dj measured at 1.3 
m above ground level is located at distance rj from a point i. That point is 
the centre of a circle of which the circumference passes through the 
centre of the stem of tree j. Consider lines from the point that are 
tangential to the circumference of the tree stem with an angle between 
those lines of θ. A tree is included in a point sample if, for a chosen angle 
θ, it is at or closer to the point than the distance rj. It then simply follows 
that 

rj =

dj
2

sin θ
2
. (1) 

Angle θ depends on a basal-area factor, β*, defined in Eq. (2). Usually 
in forest practice, the same factor is employed for all trees in a forest 
stand; that stand basal area factor is then used to estimate stand basal 
area from a count of the number of trees included in a sample (West, 
2015, section 8.4.2). 

β* =

π d2
j

4
π r2 =

(
dj

2 r

)2

= sin2
(

θ
2

)

(2) 

This stand basal-area factor, β*, may be turned into an individual-tree 
basal-area factor, β*

i , where rj is the distance between tree j and another 
tree i as: 

β*
i =

(
dj

2 rj

)2

(3) 

Suppose that a tree with index i is referred to hereafter as the subject 
tree. The smaller tree j and the further it is from this subject tree i, the 
smaller is the corresponding value of β*

i . The properties and de-
pendencies of β*

i are reminiscent of interaction kernels (Adler, 1996; 
Schneider et al., 2006; Pommerening and Grabarnik, 2019, Chapter 5), 

Fig. 1. The principle of individual-tree basal-area factors. dj – stem diameter of 
tree j at 1.3 m above soil level, rj – Euclidean distance between tree j and tree i, 
θ - angle based on the stem-diameter range of the trees to be sampled. 
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suggesting that Eq. (3) might form the basis of a new kernel function. 
Using the kernel notation of Pommerening and Grabarnik (2019, 
Chapter 5.2.2), the individual-tree basal-area factor in Eq. (3) was 
modified to yield a kernel function (Eq. (4)) as: 

gj
(
dj, ξ

)
=

(
dj

1 + 2 distj(ξ)

)α

, (4)  

where gj(dj, ξ) is the relascope kernel function at an arbitrary location ξ in 
the forest related to tree j, which has a diameter dj and is located at 
distance distj(ξ) from ξ. From a theoretical point of view, Eq. (4) con-
stitutes a hyperbolic or fractional interaction kernel (Adler, 1996; 
Schneider et al., 2006; Pommerening and Grabarnik, 2019, Chapter 5). 
Similar to the definition of other hyperbolic or fractional kernels, the 
addition of 1 in the denominator ensures that Eq. (4) is defined for 
distj(ξ) = 0, that is, at the location of tree j. The power 2 in Eq. (3) has 
been replaced by a general model parameter, α; this parameter is 
interpretable and controls both the strength and range of the kernel 
function as illustrated in Fig. 2A. 

A similar, but more sophisticated kernel function is the exponential 
kernel, 

gj
(
dj, ξ

)
= dα

j × e

{

−
δ⋅distj (ξ)

dβ
j

}

, (5)  

that has been used successfully in previous studies Pommerening et al., 
2011; Pommerening and Maleki, 2014). In Eq. (5), parameter α controls 
the strength of the interaction signal expressed by the kernel function 
whilst β and δ define its range (Fig. 2A). The general shape of both kernel 
functions described in Eqs. (4) and ((5) is very similar, but the expo-
nential kernel has three times the number of parameters of the relascope 
kernel. Following the terminology of Pommerening and Grabarnik 
(2019), Eqs. (4) and (5) are not strictly speaking kernel functions, which 
have a maximum value of one, but instead are local effects based on 
kernel functions; for simplicity we retain the term kernel function here. 

2.2. Estimating growth rates based on kernel functions 

One of the main benefits of the use of kernel functions in modelling is 
that their values for all the trees of a population can be aggregated 
multiplicatively or additively at any point ξ in the forest stand. This 
ultimately results in an interaction field Fig. 2B) that changes with time 

as trees grow, produce offspring and die and covers the whole horizontal 
extent of the forest stand (Pommerening et al., 2011; Pommerening and 
Grabarnik, 2019). The ultimate goal of producing an interaction field is 
also the reason why Eqs. (4) and ((5) include information only of those 
trees j that ‘emit’ interaction signals and not of those that are on the 
receiving end, that is, the subject trees i. This interaction field can now 
be employed in a second step to extract the amount of interaction each 
tree i faces at its own location. Of course, this modelling focus uses only a 
small, discretised fraction of the information that the interaction field 
offers. The whole field provides much more information and can, for 
example, be used also to estimate the probability of occurrence of pro-
cesses such as tree mortality or tree regeneration. In those cases, it seems 
reasonable to assume that trees are more likely to die and less likely to 
regenerate where the intensity of the interaction field is high (Pom-
merening et al., 2021). As such, the interaction field can also be inter-
preted as a kind of resource map describing, for example, light, water or 
nutrient availability. When using the relascope kernel the resulting 
interaction field is also an approximate estimator of tree basal area at 
any point in the forest. 

Tree growth depends mainly on the size of each tree, but also on its 
interaction with other trees which influence the availability of re-
sources, such as light, water and nutrients Burkhart and Tomé, 2012; 
Weiskittel et al., 2011). The interaction load to which each subject tree i 
is exposed at its location ξi can be calculated as the additive aggregation 
of the interaction effects imposed (‘emitted’) by all other trees, j ∕= i. 
Trees that are large and close to subject tree i naturally make a larger 
contribution to this interaction load than trees that are smaller and/or 
further way. The contribution of trees j that are very far from a subject 
tree is zero or near zero, therefore no explicit selection of competitors is 
required. The sum of interaction kernel values at ξi at any time, t, forms 
the interaction function, Hi,t, which is an expression of the interaction 
load tree i is facing at that time. To allow for asymmetric interaction it is 
advisable to divide the sum of interaction kernel values by the maximum 
kernel value at the location of tree i, which for both kernel types is dα

i , 
since disti(ξi) = 0. Adding t as the temporal index to the terms of gj(dj, ξ)
of Eqs. (4) and ((5) yielded 

Hi,t =
∑

j∕=i

gj,t(ξi)

dα
i,t

. (6) 

To ensure that the values of the interaction function lie between 
0 and 1 a further transformation was carried out (Häbel et al., 2019) to 

Fig. 2. Relascope kernel for trees with a stem diameter, 
d, of 60 (black), 20 (red) and 10 (blue) cm (A) and the 
corresponding interaction field for Eucalyptus obliqua plot 
8009 at age 45 (B). The tree locations were indicated by 
grey filled circles which have diameters proportional to 
the diameters of the trees. Kernel parameter α = 1.09247 
(see Table 1) estimated from the E. obliqua data of plot 
8009. Relative growth rate (RGR) was the dependent 
growth variable here. (For interpretation of the refer-
ences to colour in this figure, the reader is referred to the 
web version of this article).   
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give H*
i,t in place of Hi,t as 

H*
i,t = 1 − e

ν
Hi,t , (7)  

which introduces another model parameter, ν. 
In this study, we had data available from tree plots that differed both 

in the number of times each was measured and the interval between 
measurements. Accordingly we calculated the growth rate of an indi-
vidual tree as the difference between its sizes at two measurements 
divided by the length of the time period between them. Growth rates 
were considered in stem diameter (d) and basal area (g* = π(d/2)2) and 
both of these in terms of their absolute and relative growth rates, AGR 
and RGR, respectively. In the following equations we refer to a general 
growth variable y, which can be either d or g*. In tree modelling, basal- 
area growth rates are often preferred to stem-diameter growth rates as 
response or dependent variables, although evidence for the superiority 
of one of these growth rates is not substantial (West, 1980). The absolute 
growth rate, Δyi,t, can be estimated as 

Δyi,t = Δypot
i,t × H*

i,t, (8)  

where Δypot
i,t is the stem-diameter or basal-area growth potential that a 

tree would have, if competitive effects from other trees were absent. Eq. 
(8) is based on the hypothesis that the interaction load exerted on a tree 
by other trees in the stand reduces its growth rate from what it might 
potentially be. When basal area was used for y, stem-diameter AGR was 
derived from basal-area AGR through 

Δdi,t = 2 ×

̅̅̅̅̅̅̅̅̅

Δg*
i,t

π

√

(9) 

In the RGR case, a few transformation steps (Eqs. (10)–(12)) need to 
be taken when basal area is used for y. Related to basal area at the 
beginning of the annual growth period, the upper bound of relative 
growth rate of basal area, p+(g)

i,t , can be calculated as 

p+(g)
i,t =

Δg*
i,t

g*
i,t− 1

(10)  

and logarithmic RGR, p(g)i,t , as commonly used in plant science 

(Pommerening and Grabarnik, 2019, p. 264), can be obtained from p+(g)
i,t 

through 

p(g)
i,t = log

(
1+ p+(g)

i,t

)
. (11) 

Finally, stem-diameter RGR is calculated from basal-area RGR using 
Eq. (12) (Sumida et al., 1997). 

p(d)
i,t =

p(g)
i,t

2
(12) 

Potential growth as applied in Eq. (8) was determined from all the 
data we had available for each of the eight tree species sites we 
considered and was modelled using the Hugershoff function (Hugersh-
off, 1936 Zeide, 1993;, Eq. (7)): 

Δypot
i,t = k × yp

i,t × e− q×yi,t (13) 

The parameters of the Hugershoff function were estimated as an 
upper quantile of absolute stem-diameter or basal-area growth (see 
Section 2.3) and as a function of y. k, p and q are the model parameters 
(Häbel et al., 2019, Fig. 3). 

2.3. Estimation and validation characteristics 

For parameter estimation of the various functions being considered 
here, we largely followed the methods described by Häbel et al. (2019). 
Firstly, we estimated the parameters k, p and q of the potential 
stem-diameter or basal-area growth model (Eq. (13)) for each data set. 
This was done applying quantile regression (Koenker and Park, 1994; 
Cade and Noon, 2003; West, 2021) with the quantile set to τ = 0.975as 
shown for examples in Fig. 3. 

Secondly, the kernel parameters α (relascope kernel, Eq. (4)), α, β, δ 
(exponential kernel, Eq. (5)) and growth parameter ν (Eq. (7)) were 
estimated simultaneously through regression using stem-diameter/ 
basal-area potential and tree interaction as independent (predictor) 
variables. Mean annual stem-diameter/basal-area RGR and AGR served 
as dependent (response) variable. As in Häbel et al. (2019), we applied 
both (weighted) nonlinear least-squares and maximum-likelihood 
approach for estimating kernel and growth parameters. We checked 
various goodness-of-fit characteristics including the distribution of H*

i,t, 
the residuals and the shape of the interaction kernels to select the best 

Fig. 3. Stem-diameter, Δdi,t , (A) and basal-area, Δg*
i,t , (B) absolute growth-rate potentials (red curves) estimated from stem diameter, d, at the start of the growth 

period concerned and using quantile regression with τ = 0.975 for Pinus pinaster (Galicia, Spain). (For interpretation of the references to colour in this figure, the 
reader is referred to the web version of this article). 
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estimation for each data set. In the regression, we applied periodic 
boundary conditions (Pommerening and Grabarnik. 2019, p. 177) for 
spatial edge correction. 

For evaluating the regression results we quantified common char-
acteristics such as bias and RMSE (root mean square error). These 
characteristics always related to stem diameter. In addition and for 
better comparison between data sets we calculated relative bias and ef-
ficiency. Relative bias, B, is defined as 

B =

∑n
i=1(ŷi − yi)

ny
, (14)  

where ŷi is the ith prediction (modelled stem-diameter AGR or RGR), yi 

is the ith observation (observed stem-diameter AGR or RGR), n is the 
number of observations and y is the mean observation. Efficiency, E, is 
defined as 

E = 1 −

∑n
i=1(ŷi − yi)

2

∑n
i=1(yi − y)2 . (15) 

Efficiency values approach 1 with improving model performance. A 
value of zero indicates that the model explains no more variation than 
the mean value of the observations alone and negative values highlight 
biased estimates. For this analysis we used our own R (R Development 
Core, Team, 2020) and C++ code. 

2.4. Study data 

Spatially explicit time-series data from three plots of three eucalypt 
species were included in this study. They were originally measured as 
part of a collation of eucalypt data from Australian forest agencies 
(Mattay and West, 1994). All three plots had been established in 
even-aged, monoculture re-growth forests in Tasmania. Plot 8009 
(146◦54′ E, 43◦24′ S) included Eucalyptus obliqua L’HéR, regenerated in 
1920, contained 337 trees at 39 years of age and was then re-measured 
on six occasions at 1–5 year intervals. Plot 8055 (147◦53′ E, 43◦04′ S) 
was of E. regnans F. MUELL. and regenerated in 1940, had 535 trees at 15 
years of age and was re-measured seven times at 3–4 year intervals. Plot 
4000 (147◦40′ E, 41◦25′ S) was of E. delegatensis R. BAKER. The trees 
regenerated in 1950, had 126 trees at 29 years of age and was 
re-measured four times at 2–3 year intervals. For this study, the data 
from all three plots were analysed separately. 

Data of European beech (Fagus sylvatica L.) were collected in a total 
of 17 plots of varying size at each of the five different sites at Aarburg, 
Concise, Embrach, Zofingen and Zollikon in the Jura region, the Swiss 
plains and the Pre-Alps. These plots are part of a long-term monitoring 
network dedicated to studying growth dynamics of F. sylvatica and are 
located at altitudes below 800 m a.s.l. The time series had 4–9 re- 
measurements at variable survey intervals with an average of 7 years 
and were located in pure and even-aged F. sylvatica forests 
(Álvarez-González et al., 2010; Pommerening et al., 2021). For this 
study, the data from all 17 plots were pooled. 

Norway spruce (Picea abies (L.) KARST.) spatio-temporal data were 
recorded in 16 plots (30  m × 40 m each) at Karlstift in Austria (14◦46′ E, 
48◦35′ N) with three re-measurements. Originally, the plots were part of 
a replicated thinning experiment. The plots were located at 930 m a.s.l., 
with a mean annual temperature of 4.5 ◦C and a mean annual precipi-
tation of 950 mm. They were established in 1964 in predominantly 
even-aged P. abies that had regenerated naturally and were re-measured 
every five years until 2004 (Pommerening et al., 2011). For this study, 
the data from all 16 plots were pooled. 

Interior Douglas fir (Pseudotsuga menziesii var glauca (MIRB.) FRANCO) 
data were collected from an uneven-aged stand in the Alex Fraser 
Research Forest in British Columbia, Canada (121◦52′ W, 52◦3′ N) at 
approximately 1000 m a.s.l. The mean annual temperature was 4.2 ◦C 
and the mean annual precipitation was 450 mm. The data were 
measured in six plots starting in 1988 with re-measurements in 1992, 

1997 and 2004. Four plots were 0.10 ha in area and two, with higher 
tree densities, were of 0.05 ha. The forest site had not been cut for at 
least 20 years and was protected from large-scale fires (LeMay et al., 
2009; Häbel et al., 2019). For this study, the data from all 6 plots were 
pooled. 

The Atlantic maritime pine forests of Pinus pinaster AITON are of great 
productive and ecological importance in northwestern Spain. The spe-
cies covers 15.4% of the forest area in Galicia. P. pinaster is native to the 
area and is also grown in plantations with rotation periods of 30–40 
years. The species usually regenerates naturally and prolifically after 
clear-felling and is well adapted to forest fire ecosystems. Twenty four 
plots of 25 m × 40 m were installed in 2006 in old stands of P. pinaster 
throughout Galicia and were re-measured twice in 2007 and 2009. The 
plots were located in community forests and were chosen to include the 
natural range of the species. The mean air temperature ranges from 10.4 
◦C to 12.9 ◦C in the region, and the mean annual rainfall is 1392 mm. 
Elevation ranges from 325 m to 773 m a.s.l (Eimil Fraga, 2016). For this 
study, the data from all 24 plots were pooled. 

Our study also included Scots pine (Pinus sylvestris L.) data from two 
monitoring plots in the remnants of the Caledonian pinewoods, namely 
Abernethy and ‘young’ Glenmore (Queens 26, plot 5) UK (4◦15′ W, 
57◦30′ N). For several millennia, vast areas of northern Scotland were 
once covered by the Caledonian pinewoods. The forest sites are situated 
at approximately 330 m a.s.l. Mean annual rainfall is 900 mm and mean 
annual temperature about 6.0 ◦C. Abernethy represents a well- 
structured old-growth, natural forest. It was first measured in 2002 
and then re-measured in 2008 on a 0.8-ha plot. ‘Young’ Glenmore was 
planted in 1926 to replace an old stand felled during World War I. The 
forest was first measured in 2003 and subsequently re-measured in 
2008, 2013 and 2018 on a 1-ha plot (Mason et al., 2007; Häbel et al., 
2019). For this study, the data from the two plots were pooled. 

For convenience we have used the prevailing species name when 
referring to each data set hereafter. 

3. Results 

3.1. Growth potentials 

An important outcome of this work is the finding that the growth 
potential had considerable influence on the estimation of the parameters 
of the kernel function. For estimating relative growth rates it was, in terms 
of the performance criteria described in Section 2.3, usually found best 
to define the growth potentials based on basal-area AGR. For estimating 
absolute growth rates it was generally only possible to define growth 
potential in terms of stem-diameter AGR, since the regressions involving 
the kernel functions when based on potential basal-area AGR would in 
that case not yield realistic model parameters, in terms of the perfor-
mance criteria described in Section 2.3. With both modelling alterna-
tives, the independent variable of the growth-potential estimation was 
stem diameter (Fig. 3). It has also proved advantageous, and made the 
model more versatile, to always model AGR growth potentials rather 
than RGR potentials irrespective of whether AGR or RGR was the final 
dependent variable in the regression. RGR-dbh point clouds often 
differed substantially in shape from the data set of one species to that of 
another, whilst AGR-dbh point clouds (as in Fig. 3) largely shared the 
same shape and their quantile data were amendable to being described 
by the same general model (Eq. (13)). 

3.2. Correlations between growth rates and individual-tree basal-area 
factors 

Individual-basal area factors (Eq. (3)) formed the starting point of 
our modelling work. Consequently, as a preparation for modelling, we 
studied the relationship between individual-basal area factors and 
relative and absolute growth rates. More specifically, as an expression of 
competition load and in analogy to Eq. (6) we calculated the sum of 
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individual-basal area factors over all trees other than subject tree i. 
Finally we divided this sum by the square of stem diameter of tree i to 
obtain a measure of asymmetric competition, i.e. 

H(β*)
i,t =

∑
β*

i

d2
i

. (16) 

H(β*)
i,t and both RGR/AGR were negatively correlated, i.e. small 

growth rates occurred more where values of H(β*)
i,t were large (Fig. 4). 

Both the RGR and AGR point clouds greatly varied from study site to 
study site. For small trees RGR is usually largest. The E. regnans data 
(Fig. 4Ca) showed the largest and F. sylvatica (Fig. 4Cb) the smallest 

relative growth rates. 
Some RGR point clouds had a larger vertical and horizontal spread 

than others. The point clouds related to the P. abies plots (Fig. 4Ac), for 
example, had a comparatively large horizontal spread and the point 
cloud of E. regnans (Fig. 4Ca) showed a large vertical spread. Noteworthy 
is the almost uniform distribution of RGR in the natural P. menziesii 
forest (Fig. 4Cc). 

The AGR point-cloud patterns were in fact not too dissimilar from the 
RGR patterns. Also here, the general pattern was that of a (negative) 
exponential distribution. When comparing AGR and RGR, the tendency 
to this distribution was for some data stronger for AGR than for RGR for 
some data, e.g. P. abies plots (Fig. 4Bc, 4Ac), F. sylvatica (Fig. 4Db, 4Cb) 

Fig. 4. Point clouds of mean annual relative (RGR) and absolute (AGR) growth rates over H(β*)
i,t (Eq. (16))..  
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and P. menziesii forest (Fig. 4Dc, 4Cc). Yet, for other data, there was 
hardly any difference in the point-cloud shapes between AGR and RGR, 
e.g. E. regnans (Fig. 4Da, 4Ca), P. pinaster (Fig. 4Bd and Fig. 4Ad) and 
P. sylvestris (Fig. 4Dd, Fig. 4Cd). 

Based on these initial results involving H(β*)
i,t we hypothesised that the 

relascope kernel function performed best with those data where the RGR 
or AGR point clouds most closely exhibited an exponential pattern. 

3.3. Regression results 

Regressions for both the relascope and the exponential kernels with 
regard to RGR as the dependent variable were determined satisfactorily 
for all eight data sets (Table 1). As expected, usually the use of expo-
nential kernels with three model parameters instead of one led to greater 
efficiencies than the application of relascope kernels. However, the 
differences were often moderately large, e.g. in the case of E. obliqua 
(20.5% gain), F. sylvatica (29.8% gain), P. abies (4.0% gain) and 
P. sylvestris (20.1% gain). The largest gain achieved by applying the 
exponential kernel instead of the relascope kernel was 47.2% for 
E. regnans. 

These gains came at the expense of two more model parameters and 
greater estimation difficulties. In the majority of cases acceptable 
regression results were more straightforward to obtain for the relascope 
kernel, i.e. the regression was more robust. Estimation difficulties were 
often indicated by very large and very small model parameters (α, β, δ, 
ν). With the relascope kernel this was the case for P. menziesii and 
parameter ν. With the exponential kernel this situation occurred for δ 
with E. obliqua, E. regnans and P. pinaster. With the exponential kernel 
there was also a very small value for β with E. delegatensis. In four out of 
eight cases the absolute relative bias, B, (Eq. (14)) was smaller when the 
relascope kernel was applied rather than the exponential kernel. 

Using stem-diameter AGR potentials, the same regressions were also 
possible for AGR as the dependent variable (Table 2). The efficiency 
values were generally considerably higher in Table 2 than in Table 1. 

This result was consistent with our earlier observations made con-
cerning Fig. 4, i.e. our hypothesis stating that the performance of the 
relascope kernel can be anticipated from the point clouds in Fig. 4 is 
true. The AGR point cloud often followed the shape of an exponential 
distribution more than the RGR point cloud and with AGR there was 
usually less of a concentration of points near the origin of the system of 
coordinates. In Table 2, we also noted the same efficiency trend as for 

RGR in Table 1, i.e. the efficiencies were usually markedly higher for the 
exponential kernel. For E. obliqua, E. delegatensis and P. abies the gain of 
using an exponential kernel instead of a relascope kernel was 14.9%, 
6.3% and 7.2%, respectively. These percentages are generally lower 
than the minimum percentages calculated from Table 1. For P. pinaster 
and P. sylvestris this gain exceeded 100%. These large differences were 
attributed to the fact that the efficiencies for the two pine data sets were 
negative for the relascope kernel. The gains achieved by the exponential 
kernel were again contrasted by the much larger number of parameters 
in the exponential kernel and the associated estimation difficulties. With 
the relascope kernel, suspiciously large ν values occurred only for 
P. menziesii and P. sylvestris. By contrast, with the exponential kernel a 
suspicious β value was obtained for E. delegatensis. In addition, large δ 
and/or ν values were estimated for E. obliqua, E. regnans, P. pinaster and 
P. sylvestris. Only the absolute relative bias, B, associated with the 
relascope kernel and P. menziesii was smaller than that achieved with the 
exponential kernel. 

4. Discussion and conclusions 

Neighbourhood interactions are an important process in plant pop-
ulation dynamics and the quantification of such processes is therefore a 
core interest of quantitative forest ecology (Schneider et al., 2006; 
Berger and Hildenbrandt, 2000; Häbel et al., 2019). 

Individual-tree basal-area factors and relascope kernel functions are 
comparatively simple quantities that can play important roles both in 
forest ecology and resource management (Rouvinen and Kuuluvainen, 
1997; McTague, 2010; McTague and Weiskittel, 2016; Stage and 
Ledermann, 2008). Resource managers, forest practitioners and forest 
scientists are very familiar with the relascope concept which eases the 
understanding and application of these techniques in individual-based 
modelling. By using measures forest practitioners and resource man-
agers are familiar with, trust in new models and the applications can be 
inspired. 

After analysing data from eight very different forest ecosystems 
located in different parts of the world, our work demonstrated that the 
relascope kernel function can indeed be applied in individual-based 
models like any other kernel function and thus achieve a generalisa-
tion of individual-tree basal area factors. Relascope kernels can be even 
used for estimating two different growth rates, relative and absolute 
growth rates, as dependent or response variables. Such a comparison of 

Table 1 
Synopsis of the site and model specific parameters and statistical characteristics related to RGR. For P. pinaster the parameters of the stem-diameter growth potential 
(left) were used for the relascope kernel and the parameters of the basal-area growth potential (right) were applied in connection with the exponential kernel. For 
P. sylvestris and both kernel functions the stem-diameter growth potential was applied. For all other data sets basal-area growth potentials were used throughout. RMSE 
– root mean square error, Bias – bias, AIC – Akaike information criterion. Other symbols are explained in the text.  

Model Model parameter E. obliqua E. regnans E. delegatensis F. sylvatica P. abies P. menziesii P. pinaster P. sylvestris 

Potential k 1.04010e-07 0.00025 1.04823e-06 2.59228e-06 4.96050e-07 0.00003 0.031 0.000 0.10740 
p 3.36593 1.22651 3.04996 2.21458 3.04781 1.40631 1.445 2.433 0.65553 
q 0.02751 0.04477 0.04526 0.01374 0.04340 0.02342 0.034 0.034 0.01024 

Relascope kernel α 1.09247 2.30858 1.38878 1.45426 1.48721 0.38388 1.54483 1.22863 
ν 1.70853 0.07953 0.56621 0.31304 0.90939 16.50000 0.00059 0.00404 
RMSE 0.00628 0.01688 0.01450 0.00449 0.00639 0.01508 0.01281 0.00901 
Bias − 0.00081 0.00116 − 0.00491 0.00007 − 0.00058 − 8.98951e-06 0.00005 0.00030 
AIC − 8298.96 − 22,270.37 − 1261.49 − 36,806.53 − 46,597.88 − 13,294.62 − 9751.39 − 17,189.02 
B − 0.10203 0.05457 − 0.22372 0.00844 − 0.04424 − 0.00066 0.00244 0.02778 
E 0.30529 0.47600 0.04077 0.27062 0.40359 0.18308 0.17413 0.09526 

Exponential kernel α 1.23235 3.56463 0.25131 1.26328 0.89773 0.18308 0.83534 0.83792 
β 1.58414 1.92299 2.05049 e-16 0.62516 0.60985 0.14830 1.31162 0.27224 
δ 47.65857 67.41743 0.30731 2.17004 3.66575 0.85043 27.93016 0.24686 
ν 4.21054 3.25650 2.00674 1.58203 1.10079 1.14914 1.22039 0.03153 
RMSE 0.00595 0.01134 0.01437 0.00419 0.00630 0.01395 0.01143 0.00891 
Bias − 0.00115 − 0.00055 − 0.00438 0.00015 − 0.00010 − 0.00004 − 0.00008 0.00013 
AIC − 15,638.02 − 24,406.58 − 3069.26 − 61,245.71 − 46,721.89 − 29,092.11 − 17,384.10 − 26,423.92 
B − 0.14504 − 0.02568 − 0.19965 0.01949 − 0.00770 0.00314 − 0.00405 0.01240 
E 0.37493 0.76338 0.05698 0.36462 0.42015 0.30123 0.34283 0.11642  
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performance with different growth rates as response variables does not 
appear to have been done previously. By plotting these growth rates 
over the values of the interaction function constructed from individual- 
tree basal-area factors (Eq. (16), Fig. 4) it is even possible to anticipate 
the performance and suitability of the relascope kernel for a given data 
set; this should save the analyst from spending time and effort on 
modelling what would eventually yield poor results. As expected, 

growth rates and the interaction function H(β*)
i,t were negatively corre-

lated, i.e. large values of H(β*)
i,t typically lead to a reduction of growth 

rates. 
When comparing the relascope kernel with the exponential kernel as 

a reference, it turned out that the behaviour of the relascope kernel was 
usually more robust in regressions. Judging by the efficiency results, the 
exponential kernel, however, was more exact in modelling the interac-
tion field, although earlier research has shown that the difference in 
attenuation with distance as a result of using different kernel functions 
plays a rather minor role (Schneider et al., 2006). Both performance 
aspects are related to the difference in the number of model parameters. 

Considering the very different data sets involving eight tree species, 
greater efficiencies (Eq. (15)) could in most cases be achieved when AGR 
was used as dependent variable. In that case the efficiency differences 
were also smaller between relascope and exponential kernel function 
than in a situation where RGR was the dependent variable. However, 
there were also situations where the RGR model outperformed the AGR 
model, such as in the case of the E. regnans, P. pinaster and P. sylvestris 
data (Table 1 and 2) and, again, scatter plots such as those in Fig. 4 can 
aid the decision process. Therefore the final choice of RGR versus AGR as 
dependent variable in the regression always depends on the actual data 
at hand and on the objectives of modelling. 

An interesting and helpful result of our study was the discovery of a 
clear and strong influence of the potential-growth model on the pa-
rameters of the kernel function: In the case of stem-diameter AGR, 
reliable parameters of the two kernel functions could only be estimated, 
when the growth potential (Eq. (13)) was based on stem-diameter AGR 
as well. By contrast, when stem-diameter RGR was the dependant var-
iable, the regressions led in most cases to more reliable parameters of the 
two kernel functions if the growth potential was based on basal-area 
AGR. In the same way, the finding that the modelling process is more 
straightforward when potential growth is generally based on AGR, even 
if RGR is the dependent variable of the regression, may prove helpful in 
future modelling work; this influence of the growth potential needs to be 
considered in future modelling efforts. 

Kernel functions play a crucial role in individual-based modelling 
where they are used to model interaction, birth and sometimes even 
death processes. Our study has shown that simple, parsimonious func-
tions such as the relascope kernel can be quite effective and an impor-
tant starting point for quantifying the interaction dynamics in forest 
ecosystems. 
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