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A B S T R A C T

There are two distinct types of domains, design- and cross-classes domains, with the former extensively studied under the
topic of small-area estimation. In natural resource inventory, however, most classes listed in the condition tables of
national inventoryprogramsare characterized as cross-classes domains, such as vegetation type, productivity class, and
age class. Todate, challenges remain active for inventorying cross-classesdomains because these domains are usually of
unknown sampling frame and spatial distributionwith the result that inference relies onpopulation-level as opposed to
domain-level sampling. Multiple challenges are noteworthy: (1) efficient sampling strategies are difficult to develop
because of little priori information about the target domain; (2) domain inference relies on a sample designed for the
population, sowithin-domain sample sizes couldbe too small to support a precise estimation; and (3) increasing sample
size for the population does not ensure an increase to the domain, so actual sample size for a target domain remains
highly uncertain, particularly for small domains. In this paper, we introduce a design-based generalized systematic
adaptive cluster sampling (GSACS) for inventorying cross-classes domains. Design-unbiased Hansen-Hurwitz and
Horvitz-Thompsonestimators are derived for domain totals and comparedwithinGSACSandwith systematic sampling
(SYS). Comprehensive Monte Carlo simulations show that (1) GSACS Hansen-Hurwitz and Horvitz-Thompson esti-
matorsareunbiasedandequallyefficient,whereas the latter outperforms the former for supportinga sampleof sizeone;
(2) SYS is a special case of GSACS while the latter outperforms the former in terms of increased efficiency and reduced
intensity; (3) GSACSHorvitz-Thompson variance estimator is design-unbiased for a single SYS sample; and (4) rules-of-
thumb summarized with respect to sampling design and spatial effect improve precision. Because inventorying a mini
domain is analogous to inventorying a rare variable, alternativenetwork sampling procedures are also readily available
for inventorying cross-classes domains.
1. Introduction inference aims to estimate parameters such as the total or mean of the
Survey sampling provides ecosystem ecology and natural resource
management with reliable information, much of which is used to estimate
parameters for biotic and abiotic variables of biodiversity, dynamics,
competition, energy and material cycling, not just at the population level,
but also at the domain level (Margules and Pressey, 2000; Williams and
Brown, 2019). The term domain denotes a subpopulation, that is, a subdi-
vision of a (spatial) population according to a quantitative or qualitive
condition of interest (COI) (Rao and Molina, 2015). While population
hang).
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variableof interest (VOI) for theentirepopulation, domain inferencedoes so
for a target domain, such as a county domain of a province population or a
speciesdomainof a vegetationor animal population.Domain estimatesmay
reflect the gradient, distribution, and structure of a VOI, thus enriching
present knowledge, future projection, and decision-making for natural
resource management.

There are two distinct types of domains, design- and cross-classes do-
mains (Kish, 1980). Design domains refer to the domains of a population
which are not crossed or intersected with each other, and the set of which
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comprises the complete population, e.g., county domains of a province or
state population, stratum domains of a forest population (Purcell and Kish,
1979). Separate samples with possibly separate sampling designs are
selected for each domain, and their combination forms the entire sample
from which the population estimate is usually calculated as a weighted
sum of respective within-domain sample-based estimates (Chambers and
Clark, 2012). The literature pertaining to design-domain problems is rich
and comprehensive and is typically found under the topic area of
small-area estimation and stratified sampling (S€arndal et al., 1992; Rao
and Molina, 2015). For either a direct or indirect domain estimation, ex-
amples include model-based composite estimators and synthetic estima-
tors (Ghangurde and Singh, 1978; Schaible, 1978), design-based stratified
estimators, generalized regression estimators and the hybrid calibration
estimator (Lehtonen and Veijanen, 2009, 2019). These estimators, except
the stratified estimators, depend on models and require domain sampling
frames and auxiliary data that are clear and readily available.

In natural resource inventory, however, most classes listed in the
condition tables of national inventory programs are characterized as cross-
classes domains; examples for the Forest Inventory and Analysis (FIA)
program of the U.S. Forest Service include vegetation types, productivity
classes, and age classes (FIA, 2021). To date, challenges remain active for
cross-classes domain estimation because sampling frames and spatial dis-
tributions of the domains are generally unknown. This would make a
model-dependent procedure inefficient because modeling requires explicit
domain locations for observing unit- or area-level auxiliary data (Rao and
Molina, 2015). Hence, cross-classes domain inference relies mostly on
design-based sampling with respect to the entire population as opposed to
just the domain, with multiple related challenges: (1) efficient sampling
strategies are difficult to develop because of little priori information about
the target domain; (2) a sampling design for a particular domain would
create imbalances for other domain samples and the population sample for
multiple VOIs; (3) domain inference relies on a sample designed for the
population, within-domain sample sizes could be too small to support a
precise estimation; and (4) increasing sample size for the population does
not ensure an increase to the domain, so actual sample size for a target
domain remains highly uncertain, particularly for small domains.

Systematic sampling (SYS) has been used for population and both types
of domain inferences, with a long history of serving official reporting in-
struments in different sectors around the world. The Nordic countries, the
USA, China, and many other countries have established their respective
national forest inventory (NFI) programs based on variations of SYS
(Tomppo et al., 2010; Vidal et al., 2016). Compared with simple random
sampling (SRS), SYS is usually more precise and more convenient in lo-
gistics than to measure an equal number of plots selected at random
(Heikkinen, 2006). Importantly, the spatially balanced systematic sample
benefits NFIs in that it serves as a common sample appropriate for in-
ventorying multiple VOIs instead of just one. Because of annual sample
plots of 4,400 to 15,000 in the Nordic countries and 1,200 to 3,500 in
individual American states (Hou et al., 2021), cost-efficiency relative to the
tradeoff between reducing variance and increasing sample size is key to
field campaigns at this scale. However, increasing sample size for SYS
would remarkably increase the number of sample plots and thus is not
always feasible (Thompson, 2012; Hou et al., 2015). Therefore,
cost-efficient alternatives, preferably compatible with SYS, must be sought.

The design-based network sampling is a viable option. Named by
Thompson and Seber (1996), network sampling dates to Sirken (1970,
1983) with Chaudhuri’s (2000) exposition based on the foundation laid by
Thompson (1990, 1992) and Thompson and Seber (1996); Rao (1999) also
elaborated on this topic. Networking and adaptiveness are two grand fea-
tures attributed to network sampling, as demonstrated in Section 2.2.1 for
spatial sampling and in Section 3 for regional scale examples. Unlike SYS or
other conventionaldesign-based samplingapproacheswhoseestimatorsare
based on unit-level observations, estimators used with network sampling
are based onnetwork-level observations. Adaptiveness refers tonetworking
contingent on the COI, neighborhoods and an initial sample selectedwith a
conventional design, leading to the final sample in the form of networks
2

grown out of the initial sample. However, most network sampling proced-
ures, such as the adaptive cluster sampling (ACS) with the initial sample
selected by SRS (Thompson, 2012, Chapter 24) and the systematic adaptive
cluster sampling (SACS)with the initial sample selected bySYS (Thompson,
2012, Chapter 25), were devised for inventorying rare VOIs, except the
generalized SACS (GSACS) which was devised for inventorying general
VOIs (Xu et al., 2021). Instead of adding sample units to the initial sample,
GSACS works in reverse by removing sample units from the initial sample,
and thereby solves SACS problems of oversampling, uncertain sample form,
and sample imbalance for alternative VOIs. GSACS is compatible with SYS
and does not necessarily modify NFI field protocols or designs.

Consequently, theobjectivesof this studyarefivefold: (1) toproposeand
illustrate network sampling with GSACS for inventorying cross-classes do-
mains; (2) to derive Hansen-Hurwitz (HH) and Horvitz-Thompson (HT)
estimators for use within GSACS for domain totals; (3) to analytically
compareestimatorswithinGSACSandwithSYS; (4) toempirically compare
the sampling distributions of the respective estimators; (5) to summarize
rules of thumb with respect to design strategies for variance reduction.

2. Sampling designs and estimators

2.1. Systematic sampling (SYS)

SYS, as thoroughly detailed in Thompson (2012, Chapters 12 and 25),
is the basis for GSACS which was devised particularly for inventorying
cross-classes domains in Section 2.2. Consistent with Thompson (2012,
p.158), Fig. 1 illustrates a typical SYS design for a spatially rectangle area
of interest containing a forest compartment.

The rectangle area is firstly tessellated with population units of a given
size and shape, for example, a square in the Chinese NFI system. The pop-
ulation of these units is then partitioned into primary sampling units (PSUs)
such that each PSU consists of a collection of secondary sampling units
(SSUs) regularly spaced over the area. Subsequently, a sample is selected
from the collection of PSUs, although actual measurements are made on
SSUs. Because the sample is randomly drawn from the collection of PSUs,
the population size, N, denotes the total number of PSUs, and the sample
size, n, denotes the number of selected PSUs;M denotes the total number of
SSUs in a PSU; thusMN is the total number of population units. In practice,
the key is that whenever any SSU of a PSU is included in the sample, all the
SSUs of that PSU are included, too (Thompson, 2012, p.157).

We focus on the total, τ, becausemany other parameters are expressed
as a function of τ, and thereby readily available, e.g., the population
mean per population unit, μ ¼ τ

MN, and the population mean per PSU,
μPSU ¼ τ

N. When a sample is selected draw-by-draw from PSUs (i.e., red
units in Fig. 1) by SRS without replacement, the unbiased estimator, bτ1, is
expressed as (S€arndal et al., 1992, Remark 4.2.1, p.130; Thompson,
2012, pp. 159–160, 343–344)

bτ1 ¼ N
n
�
Xn
i¼1

XM
j¼1

yij

¼ N
n
�
Xn
i¼1

Yi

(1)

where yij is the observed VOI value in the jth SSU of the ith PSU; and Yi ¼

PM
j¼1

yij is the total of the y-values in the ith PSU.

The variance of bτ1 (S€arndal et al., 1992, Remark 4.2.1, p. 130;
Thompson, 2012, pp. 159–160, 343–344) is

Varðbτ1Þ¼N � n
Nn

�
PN

i¼1ðNYi � τÞ2
N � 1

(2)

An unbiased estimator of this variance is therefore



Fig. 1. Demonstration of partitioning into primary and secondary sampling
units for systematic sampling.
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dVarðbτ1Þ¼N � n
Nn

�
Pn

i¼1ðNYi � bτ1Þ2
n� 1

(3)
To prevent ambiguities with simple random cluster sampling (SIC),
characteristics underlying SYS are stressed. First, SYS and SIC share the
same estimators above (Thompson, 2012, Chapter 12). Although they seem
on the surface to be opposites, one spacing out the sampling units and the
other bunching them together, the two designs are of the same structure.
Either case, because every SSU is observed within a selected PSU, the
within-PSU variance does not enter Eq. (2) or Eq. (3). Although SIC is likely
to be inefficient for homogeneous clusters, it is usually much cheaper to
survey clusters of units than to survey spatially scattered SYS units. Second,
the SYS variance above is design-unbiased, as clarified by Remark 4.2.1 in
S€arndal et al. (1992, p. 130) and Chapter 12 in Thompson (2012, pp.
159–160). SYS variance just has one term that takes among-PSUs variance
into account. Third, for SYS, we in principle can dispensewith the notion of
the SSUs and regard the PSUs as the sampling units and then use the total of
the y-values of the SSUs within it. Thereby all properties of estimators are
obtainable with the design by which the sample of PSUs is selected.
2.2. Generalized systematic adaptive cluster sampling (GSACS)

2.2.1. Network sampling design
GSACS was enlightened by Thompson’s statement about SACS: “A

neighborhood could, in fact, consist of a set of noncontiguous units,
spread out, for example, in a systematic grid pattern about the original
3

unit (Thompson, 2012, p.341).” Thorough SACS design descriptions and
terminologies GSACS follows are available in Thompson (2012, p. 339).

With GSACS, the systematic sample selected in Section 2.1 is used as
an initial sample for providing priori unit locations from which networks
are formed according to a clearly defined neighborhood and a COI, C.
This C specifies a domain for estimation, and thus is the key to con-
structing inferences for cross-classes domains, elucidated in Section 2.5.
Because the priori unit locations now become readily known, simple
means such as remote sensing or a field visit without requiring major
field sampling efforts work for the assessment against C.

A GSACS sample is formed in a recursive manner such that every
single unit in the initial sample is a seed to be checked against C. The
neighbor of a seed is spatially separated or disjoint, constrained to be a
sampling unit to the left, right, top and bottom following the systematic
pattern identical to the initial sample. If C is met, respective neighbors of
this seed are evaluated as well. A valid neighbor is then included with
that seed in the same network and treated as a new seed for another
iteration of this process. This recursive process exhaustively searches and
grows towards other units permissible under the constraints of neigh-
borhood and C, and stops automatically when all PSU-intersected net-
works are included in the GSACS sample. Thereby, SSUs in the initial
sample not meeting C are adaptively removed from an inventory. In
practice, subject to a domain of interest, this assessment against C can be
done in various ways that are less costly than surveying the entire unit.

The design procedures of GSACS essentially achieve a transformation
from disparate units to connected networks (Thompson and Seber, 1996).
From the perspective of network sampling: (1) a population constitutes
networks insteadof units, andGSACSpertains to sampling thepopulationof
networks rather than the population of units; (2) a network is intersected by
onlyonePSU,i.e.PSU-specific, indicatingthattheSSUsofaPSUcomprisethe
poolforallnetworksspecifictothisPSUtotakeform;(3)GSACSonlyrequires
the locations of the initial SYS sample but does not have to require a SYS
sample observed in thefirst place; (4) unit locations in the initial systematic
sample are thepool fromwhichGSACSnetworks are formed, indicating that
thesenetworks canonlygrow fromthe initial sample; (5)networksmay take
different forms based on the same initial sample, subject toC (Fig. 2) which
facilitates constructing inferences for multiple cross-classes domains from a
single common initial sample, a useful feature for monitoring different do-
mains based on collected data such as FIA database; and (6) only
network-level observations enter the GSACS estimators, indicating that
non-networked units in an initial sample do not require observation.

2.2.2. Derivation of estimators
Consistent with network sampling procedures in Thompson (1991,

2012), we derived both Hansen-Hurwitz (HH) and Horvitz-Thompson
(HT) estimators for use within GSACS. The HH-estimator takes the form

bτ2 ¼ N
n
�
Xn
i¼1

XK
k¼1

ykIik
xk

¼ N
n
�
Xn
i¼1

XK
k¼1

ykIik

¼ N
n
�
Xn
i¼1

γi

(4)

where xk ¼
PN
i¼1

Iik is the number of PSUs in N intersecting the kth network

(Thompson, 2012, pp. 344–355), and in GSACS xk ¼ 1 since only one PSU

can intersect the kth network; γi ¼
PK
k¼1

ykIik is a PSU-specific sum of y-values

in respective networks intersected by the ith PSU, and yk is the sum of
y-values in the kth network; Iik is an indicator variable. Iik ¼ 1 when the kth

network is intersected by the ith PSU, and Iik ¼ 0 otherwise.bτ2 is unbiased, because it can be expressed equivalently as bτ2 ¼



Fig. 2. Formation of GSACS networks subject to COI for carbon inventory. Pop.id is the Population ID listed in Table 1; COI specifies a cross-classes domain for estimation.
A domain comprises sampling units whose carbon values in metric ton are equal to or larger than COI, so domain estimates reflect the gradient of carbon as COI increases.
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N
n �
PK
k¼1

ykrk
xk
, where the indicator variable rk follows a hypergeometric dis-

tribution with expectation, EðrkÞ ¼ nxk
N (Thompson, 2012, pp. 350–351),

and thus

Eðbτ2Þ ¼ N
n
�
XK
k¼1

ykEðrkÞ
xk

¼ N
n
�
XK
k¼1

yk
xk

nxk
N

¼
XK
k¼1

yk

¼ τ

Because bτ2 is the sample mean of the Nγi for a simple random sample
of size n, the variance of bτ2 follows from the usual results on simple
random sampling (Thompson, 1991, Appendix A), obtained readily as

Varðbτ2Þ¼N � n
Nn

�
PN

i¼1ðNγi � τÞ2
N � 1

(5)

An unbiased estimator of this variance is therefore

dVarðbτ2Þ¼N � n
Nn

�
Pn

i¼1ðNγi � bτ2Þ2
n� 1

(6)

One may identify a straight connection between Eq. (5) or Eq. (6) and
SIC, which is reasonable. As demonstrated in Section 2.4, SYS turns out to
be a special case of GSACS while SYS and SIC share the same estimators
(S€arndal et al., 1992, Remark 4.2.1, p. 130; Thompson, 2012, Chapter
12), revealing a clear tie among GSACS, SYS and SIC.

The HT-estimator takes the form

bτ3 ¼XK
k¼1

ykzk
αk

¼
XK
k¼1

ykzk
n
N

¼ N
n
�
XK
k¼1

ykzk

(7)

where αk ¼ 1�
�
N � xk
n

���
N
n

�
¼ n

N, since xk ¼ 1; zk is an indicator
4

variable with zk ¼ 1 if any PSUs of the initial sample intersect network k,
and zk ¼ 0 otherwise (Thompson, 2012, pp. 344–347).

Because zk follows a Bernoulli distribution with expectation EðzkÞ ¼
αk, VarðzkÞ ¼ αk � α2k , and Covðzk; zjÞ ¼ αkj � αkαj for k 6¼ j (Thompson,
2012, p. 351), then (1)

Eðbτ3Þ ¼XK
k¼1

ykEðzkÞ
αk

¼
XK
k¼1

ykαk

αk

¼
XK
k¼1

yk

¼ τ

i.e. bτ3 is unbiased; and (2) the variance of bτ3 alternatively expressed
by Thompson (2012, p. 346) in GSACS reduces to

Varðbτ3Þ¼XK
k

y2k
α2
k

VarðzkÞþ
XK
k¼1

XK
k 6¼j

ykyj
αkαj

Cov
�
zk ;zj

�

¼
XK
k

y2k
n2

N2

�
n
N
�n2

N2

�
þ

XK
k¼1

XK
k 6¼j

ykyj
n2

N2

�
n
N
�n2

N2

�

k;j2samePSU

þ

XK
k¼1

XK
k 6¼j

ykyj
n2

N2

�
nðn�1Þ
NðN�1Þ�

n2

N2

�

k;j 62samePSU

¼N�n
n

0BBB@XK
k

y2kþ
XK
k¼1

XK
k 6¼j

ykyj

k;j2samePSU

�
1

N�1

XK
k¼1

XK
k 6¼j

ykyj

k;j 62samePSU

1CCCCA
(8)

An unbiased estimator of this variance is therefore

dVarðbτ3Þ¼N�n
n

�

0BBBB@
XK
k

y2kzk
αk

þ
XK
k¼1

XK
k 6¼j

ykyjzkzj
αkj

k; j 2 samePSU

�
1

N�1

XK
k¼1

XK
k 6¼j

ykyjzkzj
αkj

k; j 62 samePSU

1CCCCA
(9)

where EðzkÞ ¼ αk and EðzkzjÞ ¼ αkj. Note there are two circumstances for
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the joint probability, αkj, in GSACS: for networks k; j 2 same PSU,
EðzkzjÞ ¼ αkj ¼ αk ¼ αj ¼ n

N; and for networks k; j 62 same PSU,

EðzkzjÞ ¼ αkj ¼
�
N � 2
n� 2

���
N
n

�
¼ nðn�1Þ

NðN�1Þ.

2.3. Connections within GSACS estimators

Interests exist in comparing the two types of GSACS estimators,
because differences in their efficiency and behavior would translate to
cost spent on and reliability obtained from an inventory. Surprisingly, the
two point estimators are equivalent in use, i.e.

bτ2 ¼ N
n
�
Xn
i¼1

γi

¼ N
n

XK
k¼1

ykrk
xk

¼ N
n

XK
k¼1

ykrk

¼ N
n
�
XK
k¼1

ykzk

¼ bτ3
However, this does not necessarily mean they are identical in theory,

because the indicator variables rk and zk are still different, one following
a hypergeometric distribution and the other a Bernoulli distribution. It is
the joint effect of both N

n and xk ¼ 1 that enables this fortunate identity.
That said, the hypergeometric distribution indeed reduces to the Ber-
noulli distribution when n ¼ 1 (Johnson et al., 2005), and in that case,
this identity becomes straightforward both in theory and use.

For Varðbτ2Þ and Varðbτ3Þ, a comparison is not readily intuitive though.
Therefore, we rewrite Varðbτ2Þ to a form close to Varðbτ3Þ, as follows

Varðbτ2Þ ¼ N � n
Nn

�
XN

i¼1
ðNγi � τÞ2
N � 1

¼ N � n
Nn

� 1
N � 1

�
XN
i¼1

ðNγi � τÞ2

¼ N � n
Nn

� 1
N � 1

�
"XN

i¼1

ðNγiÞ2 �
1
N

 XN
i¼1

Nγi

!2#

¼ N � n
Nn

� 1
N � 1

�
(
1
N

"
ðN � 1Þ

XN
i¼1

ðNγiÞ2 �
XN
i¼1

XN
i6¼l

NγiNγl

#)

¼ N � n
Nn

� 1
N � 1

�
(
1
N

"
ðN � 1ÞN2

XN
i¼1

γ2i � N2
XN
i¼1

XN
i 6¼l

γiγl

#)

¼ N � n
Nn

� 1
N � 1

�
(
N

"
ðN � 1Þ

XN
i¼1

γ2i �
XN
i¼1

XN
i6¼l

γiγl

#)

¼ N � n
n

�
 XN

i¼1

γ2i �
1

N � 1

XN
i¼1

XN
i 6¼l

γiγl

!

(10)

where the identities,

XN
i¼1

ðNγi � τÞ2 ¼
XN
i¼1

ðNγiÞ2 �
1
N

 XN
i¼1

Nγi

!2

¼ 1
N

"
ðN � 1Þ

XN
i¼1

ðNγiÞ2 �
XN
i¼1

XN
i 6¼l

NγiNγl

#

5

are used.
Comparing Eq. (10) and Eq. (8) analytically, we reach four findings.

First, Varðbτ3Þ ¼ Varðbτ2Þ holds valid when in a PSU there exists only one
network, i.e., K ¼ N, by canceling the second variance component of

Varðbτ3Þ. Second, the advantage of Varðbτ3Þ is that dVarðbτ3Þ works for n ¼
1, whereas dVarðbτ2Þ does not. Third, the first two findings are essentially
two extreme situations for Varðbτ3Þ, canceling respectively the second or
third variance component of Varðbτ3Þ. Fourth, other situations for Varðbτ3Þ
are somewhat between the first two, requiring empirical comparisons for
Varðbτ2Þ and Varðbτ3Þ with sampling simulations, as done in Section 3.
2.4. Connections between GSACS and SYS estimators

Interestingly, the SYS estimators in Section 2.1 turn out to be a special
case of the GSACS estimators when the condition of interest C is released
to be null and void, so that the domain becomes the entire population.
Then,

bτ1 ¼ N
n
�
Xn
i¼1

Yi

¼ N
n
�
Xn
i¼1

γi

¼ bτ2
and

Varðbτ1Þ ¼ N � n
Nn

�
XN

i¼1
ðNYi � τÞ2
N � 1

¼ N � n
Nn

�
XN

i¼1
ðNγi � τÞ2
N � 1

¼ Varðbτ2Þ
Likewise, dVarðbτ1Þ ¼ dVarðbτ2Þ. In fact, bτ1 is also equivalent to bτ3

because bτ2 ¼ bτ3, as demonstrated in Section 2.3. While both dVarðbτ1Þ for
SYS and dVarðbτ2Þ for GSACS are not applicable when n ¼ 1, dVarðbτ3Þ
clearly works for n ¼ 1, although connections among Varðbτ1Þ, Varðbτ2Þ
and Varðbτ3Þ are to be examined empirically in Section 3.
2.5. Cross-classes domain inference with GSACS

GSACS is adaptive sampling that takes advantage of networking
initial sample units for making an inference. Networking is subject to C,
which can be descriptive, qualitive, quantitative or even null and void,
functioning as a domain-specifier. Based on the initial sample, C adap-
tively adjusts the formation of networks enroute to an inference about the
domain parameter specified by this C; and as C changes from one to
another, the domain-specific estimate changes in tandem.

GSACS is highly flexible, suitable for inventorying both a population
and a domain. For population inference, GSACS reduces to SYS, because
SYS is a special case of GSACS subject to C being null and void. In effect,
this conditioning makes networking unconditional such that all units in
the initial sample are members of one common network. As a result, the
samples for GSACS and SYS become identical, and as analyzed in Section
2.4, the point and variance estimators are equally efficient for both
GSACS and SYS.

For domain inference, GSACS works for both the design and cross-
classes domains. For design domain, C can specify a region or stratum
in a population, e.g., a county in a province or state. Then, only units
belonging to this county in the initial systematic sample are networked so
that the estimation is only with respect to the appointed county. For a
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cross-classes domain, C can specify a VOI class in a population, e.g.,
productivity class, by operating as a cutoff threshold (Thompson, 2012,
p. 347). Such a class or domain comprises sampling units whose VOI
values are equal to or larger than C.

In this study, we focus on inventorying cross-classes domains with
GSACS. For simplicity, a cross-classes domain refers to a VOI class
defined by C. Such a domain comprises sampling units whose VOI values
are equal to or larger than C, and the inference is about the domain total
of this VOI. As detailed in Section 3, the VOI in our sampling simulations
for evaluating the sampling distributions of respective estimators is
aboveground (ABG) carbon stock in metric tons. As illustrated in Fig. 2,
when C ¼ 0:001 ton, all units in the initial sample which meet this
condition by having ABG carbon equal to or larger than 0.001 ton are
networked, and then used for estimating this domain-specific total; when
C ¼ 2 ton, the total of this domain is estimated in the same way, which
should be less than for the aforementioned class. Likewise, we can in-
ventory a sequence of carbon stock classes with not only the point esti-
mates, but also the variance estimates available, from a common initial
sample. These domain estimates reflect the gradient, distribution, and
structure of ABG carbon in a population, and compared with SYS devised
primarily for inventorying a population, GSACS enriches inferences, and
thus knowledge, with respect to both the population and domains.

3. Monte Carlo simulations

3.1. Sampling distributions for validation and comparison

Validation and comparison within GSACS and between GSACS and
SYS were conducted using Monte Carlo sampling simulations involving
three steps. First, construct an artificial population mimicking a real one,
so that the parameters of the artificial population are readily known for
the population and domains. Second, draw a sample following a pre-
scribed design and use it for estimation. Third, iterate the second step.

The sampling distribution is the distribution of these estimates over
respective iterations. As per the central limit theorem, the sampling
distribution is Gaussian, following NðEðbτÞ;VarðbτÞÞ. Because bτ2 and bτ3 for
GSACS and bτ1 for SYS are design-unbiased, suggesting EðbτÞ ¼ τ and thus
Nðτ; VarðbτÞÞ, the inferential uncertainty corresponds clearly to the
inferential precision. In this study, this precision was evaluated with the

coefficient of variation, CV% ¼
ffiffiffiffiffiffiffiffiffiffi
VarðbτÞp
EðbτÞ � 100, which in this study is also

referred as sampling error.
Table 1
Populations generated for sampling simulations.

Population ID (Pop.id) Total ABG Carbon (ton) Mortality (%) No.

1 3,088 0 n.a.
2 2,784 10 n.a.
3 2,472 20 n.a.
4 2,158 30 n.a.
5 2,781 10 161
6 2,782 10 40
7 2,778 10 18
8 2,778 10 10
9 2,464 20 322
10 2,466 20 81
11 2,467 20 36
12 2,473 20 20
13 2,158 30 483
14 2,159 30 121
15 2,157 30 54
16 2,166 30 30
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3.2. Artificial populations

We generated 16 artificial populations based on real data collected
from eucalyptus plantations in Hainan, China. In a population, each tree
occupies 5 m2 on the ground and all trees form a systematic lattice with
known coordinates and attributes including diameter, height, stem vol-
ume, ABG biomass and ABG carbon (Fig. 1). Allometric models and
diameter distributions were used for generating these attributes, with
procedures detailed in Hou et al. (2015) and Xu et al. (2021).

Because the VOI value associated with a tree would eventually
diminish to zero upon the death of this tree, tree mortality can be used as
the surrogate for any VOI that relies on living status in the investigation
of spatial effects on sampling. In other words, investigating the spatial
effects of a VOI is equivalent to investigating the spatial effects of tree
mortality. Mortality (%) specifies the prevalence of a pattern, and the
cluster diameter in meters expresses the range of spatial autocorrelation.
All trees inside a cluster are dead, and a dead tree’s VOI is set to zero.

In this study, respective populations exhibit different spatial patterns
that are either random or clustered, as summarized in Table 1, and
visualized in Figs. 1 and 3. The VOI is ABG carbon stock, with spatial
patterns generated using the DNR Sampling Tools operating on tree co-
ordinates (DNR, 2021). With this comprehensive set of populations,
practitioners gain clear insight into the behavior of GSACS when applied
in practice to inventorying cross-classes domains.
3.3. Design strategy

Design plays a role in the selection of a sample and forms the basis for
making an inference. An ideal design helps to increase inferential pre-
cision with a relatively small sampling intensity where sampling intensity
refers to the sample area as a percentage of the entire area, a key factor
influencing the cost of field campaigns. The sample area is expressed as
the product of the 20 m� 20 m plot size and the number of sample plots
comprising the sample.

The number of plots in a sample is determined by partitioning the
population into PSUs as explained in Section 2.1. Two PSU strategies
were compared, one of size N ¼ 16 (4 by 4 PSUs, i.e., the red squares in
Fig. 1) and the other N ¼ 64 (8 by 8 PSUs), leading respectively to
sampling intensities of ð6:25�nÞ% and ð1:56 � nÞ%, as n increases from
1 to N for the selection of an initial sample. This partitioning emphasizes
the comparability across sampling intensities, with other conditions
being equal. Although the initial sample was selected following SYS and
of clusters Cluster radius (m) No. of Trees No. of dead trees

n.a. 101,166 0
n.a. 101,166 10,006
n.a. 101,166 20,122
n.a. 101,166 30,307
10 101,166 10,182
20 101,166 10,061
30 101,166 10,189
40 101,166 10,062
10 101,166 20,323
20 101,166 20,397
30 101,166 20,360
40 101,166 20,129
10 101,166 30,406
20 101,166 30,457
30 101,166 30,544
40 101,166 30,194



Fig. 3. Visualized populations generated for sampling simulations, with living trees in green, and dead trees in red. (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)
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Fig. 4. Identical efficiency for GSACS Hansen-Hurwitz and Horvitz-Thompson
estimators, illustrated with N ¼ 64 at C ¼ 0:001.
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then networked for GSACS estimation, in practice, GSACS does not
require initial observation of all sample plots because C deletes non-
networked plots in the initial sample from observation.
Table 2
Efficiency comparison between GSACS and SYS estimators, with GSACS at C ¼ 0:001
sampling error.

Design Pop.id SYS

n ¼ 1 n ¼ 2

Intensity (%) CV (%) Intensity (%)

N ¼ 64 1 1.56 7.31 3.12
2 1.56 7.41 3.12
3 1.56 7.21 3.12
4 1.56 7.63 3.12
5 1.56 9.45 3.12
6 1.56 9.54 3.12
7 1.56 9.50 3.12
8 1.56 11.44 3.12
9 1.56 9.57 3.12
10 1.56 11.40 3.12
11 1.56 12.81 3.12
12 1.56 10.01 3.12
13 1.56 11.58 3.12
14 1.56 15.08 3.12
15 1.56 15.87 3.12
16 1.56 15.12 3.12

N ¼ 16 1 6.25 3.32 12.50
2 6.25 3.14 12.50
3 6.25 3.28 12.50
4 6.25 3.15 12.50
5 6.25 5.48 12.50
6 6.25 2.94 12.50
7 6.25 3.49 12.50
8 6.25 3.81 12.50
9 6.25 4.12 12.50
10 6.25 6.24 12.50
11 6.25 4.82 12.50
12 6.25 4.26 12.50
13 6.25 3.87 12.50
14 6.25 4.60 12.50
15 6.25 6.65 12.50
16 6.25 7.49 12.50
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4. Results and discussion

4.1. Comparison within GSACS estimators

As expected, the point estimates for the GSACS HH-estimator and the
HT-estimator (bτ2 vs bτ3) are identical. Unexpectedly, their variances are
also identical, as depicted in Fig. 4. It turns out that both GSACS HH- and
HT-estimators are equivalent, with Varðbτ3Þ being a decomposed Varðbτ2Þ
via networks, and with Varðbτ2Þ being an aggregated Varðbτ3Þ via PSUs.
Since both estimators are equivalent, the rest of our analyses regards
them interchangeably.

Importantly, a design-unbiased variance estimator is now found for a

single systematic sample. The major advantage of Varðbτ3Þ is that dVarðbτ3Þ
works for n ¼ 1, whereas dVarðbτ2Þ does not. The interests exist in that (1)dVarðbτ3Þ works for an initial systematic sample of size one and more,

while dVarðbτ2Þ just work for that of size two and more; and (2) because

SYS is a special case of GSACS, dVarðbτ3Þ works for SYS of a single sys-
tematic sample, suggesting that a design-unbiased variance estimator for
a single systematic sample is found readily available.

4.2. Comparison between the GSACS and SYS estimators

Consistent with Section 2.4, the estimates for GSACS and SYS are
identical at the population level, indicating that SYS is a special case of
GSACS. Table 2 presents a comparison between GSACS and SYS for their
sampling distributions in the form of sampling errors. As shown, GSACS
is more efficient than SYS, because with fewer observations, GSACS is
equally precise and applies wherever SYS applies. While the sampling
errors are identical, the sampling intensity is remarkably smaller for
GSACS, on average 40% of that for SYS for N ¼ 64 and 20% for N ¼ 16.
. Intensity refers to the sampling intensity, and CV the coefficient of variation or

GSACS

n ¼ 1 n ¼ 2

CV (%) Intensity (%) CV (%) Intensity (%) CV (%)

5.13 0.66 7.31 1.32 5.13
5.20 0.66 7.41 1.32 5.20
5.06 0.66 7.21 1.32 5.06
5.35 0.66 7.63 1.32 5.35
6.63 0.66 9.45 1.32 6.63
6.69 0.65 9.54 1.31 6.69
6.66 0.64 9.50 1.28 6.66
8.03 0.63 11.44 1.27 8.03
6.72 0.66 9.57 1.32 6.72
8.00 0.65 11.40 1.29 8.00
8.99 0.62 12.81 1.23 8.99
7.02 0.61 10.01 1.21 7.02
8.13 0.66 11.58 1.32 8.13
10.58 0.63 15.08 1.27 10.58
11.14 0.60 15.87 1.20 11.14
10.61 0.58 15.12 1.15 10.61
2.27 2.63 3.32 5.26 2.27
2.15 2.63 3.14 5.26 2.15
2.24 2.62 3.28 5.25 2.24
2.15 2.62 3.15 5.25 2.15
3.74 2.63 5.48 5.26 3.74
2.01 2.59 2.94 5.19 2.01
2.39 2.55 3.49 5.09 2.39
2.60 2.52 3.81 5.03 2.60
2.82 2.63 4.12 5.26 2.82
4.26 2.56 6.24 5.12 4.26
3.29 2.45 4.82 4.91 3.29
2.91 2.41 4.26 4.81 2.91
2.64 2.63 3.87 5.26 2.64
3.14 2.52 4.60 5.03 3.14
4.54 2.38 6.65 4.75 4.54
5.12 2.28 7.49 4.56 5.12
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Both C and the networked units as the basis for inference contributed
to this interesting result above. Specifying C to be a reasonably small
value, such as C ¼ 0:001, is analogous to C ¼ 0 whereas it creates a
collateral effect that the actual number of networked sample plots
requiring observation is many fewer than when using C ¼ 0. This minor
tweaking leads to little difference in estimation but contributes to sub-
stantially reducing the number of initial sample units requiring
observation.

Although sample size can be increased to reduce variances for both
GSACS and SYS, the increase in sampling intensity to achieve the same
reduction is much smaller for GSACS than for SYS. Network sampling
pertains to selecting a sample of networks from a population of networks,
but SYS pertains to selecting a sample of units from a population of units
(Chaudhuri, 2015). Non-networked units in the initial sample are not
used with the GSACS estimator and thus are excluded from fieldwork,
whereas in SYS, every sample unit is used with the SYS estimator and
thus must be observed in the field, with no exception (Thompson, 2012).
These excluded plots are quantitatively expressed by the difference be-
tween sampling intensities for SYS and GSACS in Table 2, and visually
between Figs. 1 and 2.

Because sampling errors increase as spatial aggregation increases,
Fig. 5. GSACS reveals the gradient, distribution, and structure of carbon pools for 1
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GSACS and SYS are found both sensitive to spatial effects. However, a
useful finding is that the GSACS sampling intensity decreases as the
spatial aggregation increases, which is consistent with Xu et al. (2021).
This means that fewer sample plots are needed for aggregated pop-
ulations, or equivalently, sampling errors can be further reduced by
increasing the GSACS sample size without increasing the cost initially
budgeted for SYS. For example, with Pop.id¼ 16, SYS observed 1.56% of
the population for a sampling error of 15.12%, but GSACS attained a
smaller sampling error of 10.61% by only observing 1.15% of the pop-
ulation (Table 2). Reasonably, GSACS would be more efficient for field
campaigns, and thus interesting for constructing field observation net-
works to which expensive monitoring devices are deployed and main-
tained at appointed locations (FIA, 2021).

4.3. Cross-classes domain inference

GSACS has the advantage of being universal in making both popu-
lation and domain inferences, with results for the latter summarized in
Figs. 5 and 6. Although ABG carbon was used for demonstration, the VOI
can be generalized to other variables without impairing analyses
regarding the behavior of GSACS. Four findings are relevant: (1) in
6 populations following different spatial patterns. Herein, N ¼ 16 and n ¼ 2.



Fig. 6. GSACS requires fewer sample plots for observation as the domain size decreases. Herein, N ¼ 16 and n ¼ 2.
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respective populations, GSACS captured the variability between do-
mains; (2) as the domain size decreases, the number of plots required for
observation decreases, but the sampling error increases, consistent with
Kish (1980); (3) the domain size decreases faster for random patterns
than for aggregated patterns; and (4) given a domain, the sampling error
is smaller for random patterns than for aggregated patterns, and smaller
for less aggregated than for more aggregated patterns.

Precise estimation for large cross-classes domains is less of an issue
than small and mini domains. With non-network sampling procedures
such as SYS, although increasing the sample size, n, is effective for
reducing the sampling error for small and tiny domains, this solution is
too expensive to be considered even for design domains (Hou et al.,
2021), let alone cross-classes domains. However, with the network
sampling of GSACS, increasing n for small and mini domains is feasible
and efficient because the actual measurements are made on member
units only. As shown in Fig. 6, the sampling intensity for GSACS at n ¼ 2
for C ¼ 2 just took 4% of the maximum compared to 12.5% if SYS were
used. For mini and rare domains, adaptive cluster sampling, systematic
adaptive cluster sampling, and stratified adaptive cluster sampling can
also be considered because inventorying rare attributes is analogous to
10
inventorying these domains for which these network sampling proced-
ures were devised (Thompson, 2012).
4.4. Effects of primary units

An ideal design contributes to decreasing the sampling error with a
relatively small sampling intensity. Two PSU strategies were compared,
one of size N ¼ 16 (4 by 4 PSUs) and the other N ¼ 64 (8 by 8 PSUs),
leading respectively to sampling intensities of ð6:25�nÞ% and ð1:56 �
nÞ%, as n increases from 1 to N for selecting an initial sample. While
these sampling intensities apply directly to SYS, they are smaller for
GSACS (Table 2, Fig. 7).

Three findings are relevant. First, it is explicit that the PSU strategy is
a factor that matters in reducing sampling error for GSACS and SYS.
Second, sampling intensity is more indicative than n in comparisons
across different designs. Although the sampling error seems smaller for
the PSU design of N ¼ 16 than N ¼ 64 at n ¼ 1, the sampling intensity is
only 1/4 for the latter (Fig. 7). Third, we recommend the PSU strategy
with N and n being both large, rather than both being small. The sam-
pling error for the PSU design with N ¼ 16 at n ¼ 1 is about the same for



Fig. 7. Effects of primary units on sampling errors, with C ¼ 0:001. Similar result pattern applies to GSACS as C increases.
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the PSU design with N ¼ 64 at n ¼ 4, and this correspondence remains
valid as n increases, regardless of C or spatial patterns (Fig. 7).

The third finding is a rule of thumb important for both GSACS and
SYS. With this PSU strategy, practitioners can work around the paradox
of missing design-unbiased variance estimators for SYS at n ¼ 1, instead
of compromising with alternative variance estimators like one for simple
random sampling or one that is biased (Wolter, 1984; Magnussen et al.,
2020). In this regard, incidentally, the GSACS HT-estimator appears
promising for SYS at n ¼ 1, i.e., single systematic sample, which deserves
further research in a separate study. Hou et al. (2015) and Xu et al.
(2021) investigated the size effect of SSUs, i.e., sample plots, on sampling
errors, with a conclusion that smaller SSUs should be employed. Jointly
with their conclusion, the sampling error effectively decreases as N and n
increase, and meanwhile, as SSU size decreases.
Fig. 8. Response pattern to respective populat
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4.5. Effects of spatial patterns

Spatial effects reside in the distribution of VOI values across sampling
units and is characteristic of a spatial population. The response paradigm
for different spatial effects reflects the efficiency and robustness of the
sampling procedure, and thus is the basis for formulating a rule of thumb
that practitioners can use to reduce sampling error and cost. These par-
adigms are summarized and depicted in Fig. 8.

Three findings are relevant. First, spatial effects explicitly affect the
sampling error and intensity, both at the population (i.e., C ¼ 0:001) and
domain levels (i.e., other C s). Second, the sampling error increases as the
prevalence of a spatial pattern increases, and the rate of increase is
greater for aggregated patterns than for random patterns. This response is
increasingly prominent as domain size decreases. Similar results apply to
ions on behalf of different spatial effects.
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spatial autocorrelation but with fluctuations in consistency. Third, the
sampling intensity decreases as domain size decreases, and the rate of
decrease is greater for random patterns than for aggregated patterns.
However, for small domains (e.g., C ¼ 2), sampling intensity increases as
spatial autocorrelation increases. These findings reiterate the assertion
on increasing N and n, and meanwhile, decreasing SSU size as a coun-
termeasure to neutralize spatial effects.

5. Conclusions

Eight conclusions are relevant. (1) While both the GSACS HH- and
HT-estimators are unbiased with identical efficiency, the latter works for
the sample size being n ¼ 1. (2) SYS is a special case of GSACS, with
estimators being equivalent for constructing inferences at the population
level. Yet, GSACS is more efficient than SYS, because with fewer obser-
vations, on the order of only 20%–40% for SYS, GSACS is equally precise
and applies wherever SYS applies. (3) GSACS HT-variance estimator is
design-unbiased for a single SYS sample. (4) GSACS is efficient for small
and mini cross-classes domains by increasing sample size without sub-
stantial increase in sampling intensity, indicating that valid data on a
target domain are increased at a low cost. This is because observations
used by the GSACS estimator are only obtained for networked units
rather than the entire initial sample. Precise estimation for large cross-
classes domains is less of an issue, though. (5) GSACS circumvents the
conflicts arising from design imbalance with respect to a population or
domain, because the initial systematic sample is a common ground
bridging both inference levels. GSACS is readily compatible with NFI
programs and ecological observation networks established with SYS. (6)
Sampling error for GSACS or SYS decreases as the secondary unit size
decreases down towards a tree, and as the population size and sample
size increases, which is the rule of thumb for design optimizations with
respect to the initial sample. (7) Sampling error increases as the preva-
lence of a spatial pattern increases, and the rate of increase is greater for
aggregated patterns than for random patterns. This response is increas-
ingly prominent as domain size decreases. (8) Inventorying a mini
domain is analogous to inventorying a rare VOI, and thus as alternatives
to GSACS, other network sampling procedures such as adaptive cluster
sampling, systematic adaptive cluster sampling, and stratified adaptive
cluster sampling are procedures readily available for the purpose of in-
ventorying cross-classes domains.
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