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Abstract 

Background: The nematode Parascaris univalens is one of the most prevalent parasitic pathogens infecting horses 
but anthelmintic resistance undermines treatment approaches. The molecular mechanisms underlying drug activity 
and resistance remain poorly understood in this parasite since experimental in vitro models are lacking. The aim of 
this study was to evaluate the use of Caenorhabditis elegans as a model for P. univalens drug metabolism/resistance 
studies by a comparative gene expression approach after in vitro exposure to the anthelmintic drug ivermectin (IVM).

Methods: Twelve adult P. univalens worms in groups of three were exposed to ivermectin (IVM,  10–13 M,  10–11 M, 
 10–9 M) or left unexposed for 24 h at 37 °C, and total RNA, extracted from the anterior end of the worms, was 
sequenced using Illumina NovaSeq. Differentially expressed genes (DEGs) involved in metabolism, transportation, 
or gene expression with annotated Caernorhabditis elegans orthologues were identified as candidate genes to be 
involved in IVM metabolism/resistance. Similarly, groups of 300 adult C. elegans worms were exposed to IVM  (10–9 M, 
 10–8 M and  10–7 M) or left unexposed for 4 h at 20 °C. Quantitative RT-PCR of RNA extracted from the C. elegans worm 
pools was used to compare against the expression of selected P. univalens candidate genes after drug treatment.

Results: After IVM exposure, 1085 DEGs were found in adult P. univalens worms but the relative gene expression 
changes were small and large variabilities were found between different worms. Fifteen of the DEGs were chosen 
for further characterization in C. elegans after comparative bioinformatics analyses. Candidate genes, including the 
putative drug target lgc-37, responded to IVM in P. univalens, but marginal to no responses were observed in C. elegans 
despite dose-dependent behavioral effects observed in C. elegans after IVM exposure. Thus, the overlap in IVM-
induced gene expression in this small set of genes was minor in adult worms of the two nematode species.

Conclusion: This is the first time to our knowledge that a comparative gene expression approach has evaluated 
C. elegans as a model to understand IVM metabolism/resistance in P. univalens. Genes in P. univalens adults that 
responded to IVM treatment were identified. However, identifying conserved genes in P. univalens and C. elegans 
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Introduction
The equine roundworm, Parascaris univalens, is one of 
the most important pathogenic parasites infecting foals, 
with a prevalence of 31–58% on stud farms [1–4]. Clini-
cal manifestations of infection include stunted growth, 
respiratory symptoms, and in severe cases lethal obstruc-
tion and rupture of the small intestines [5]. In addition, 
P. univalens are known shedders of high numbers of eggs 
[6], and larvated eggs can remain viable on grazing fields 
for many years [7]. This asserts a high infection pressure 
on farms, resulting in foals requiring several treatments 
with deworming drugs during their first year [8].

Three main classes of anthelmintic drugs, benzimind-
zoles (BZ), tetrahydropyrimidines (THP), and macro-
cyclic lactones (MLs), are registered for use in horses to 
combat parasitic infections, including Parascaris spp. 
Macrocyclic lactones are the most commonly used drug 
class in veterinary medicine due to their high efficacy, 
low toxicity, and broad spectrum of target parasites [9]. 
The primary target of MLs in parasitic nematodes are 
glutamate-gated ion channels (GluCls), where for exam-
ple the ML drug ivermectin (IVM) binds irreversibly to 
cause hyperpolarization of the pharynx and flaccid paral-
ysis of muscles in the worm [10]. Development of anthel-
mintic resistance (AR) in Parascaris spp. has evolved as a 
result of extensive drug usage [11], and resistance to MLs 
is now widespread [3, 4, 11–14].

Several ML drug resistance mechanisms have been 
proposed, e.g. polymorphisms or changes in expression 
of the GluCls target and transport protein genes (see [15] 
for review). In addition, increased expression of genes 
encoding drug-metabolizing enzymes has been shown 
to be involved in resistance [16]. Polymorphisms cause 
conformational changes and alter drug-binding sites in 
the GluCl targets in the pathogenic nematodes Cooperia 
oncophora [17] and Haemonchus contortus [18]. In addi-
tion, decreased expression of drug target genes may lead 
to a reduction of drug-binding sites and thus reduced 
drug effectiveness [19, 20]. Transport protein genes, par-
ticularly encoding P-glycoproteins (Pgps) and other ATP-
binding-cassette family members, have been implicated 
in anthelmintic drug resistance through the elimination 
of xenobiotic substances from the cell, thus prevent-
ing the drugs from reaching their target sites [21–24]. 
Multiple studies have also reported higher constitutive 

expressions of Pgps in resistant parasite strains compared 
to their susceptible counterparts [20, 21]. The metabo-
lism of drugs is biphasic. In the first phase (Phase I), the 
drug is converted by oxidation, reduction, or hydrolysis 
to a more reactive compound that can be conjugated with 
an endogenous molecule such as glutathione or glucose 
in the second phase (Phase II). As a result, a soluble, inac-
tive drug is generated that can be expelled from the cell 
[25]. Increased constitutive expression of Phase I [26] and 
Phase II metabolic genes [27] was reported in resistant H. 
contortus isolates after in vitro exposure with BZs. How-
ever, the exact roles of Phase I and II enzymes in devel-
opment of ML resistance in parasitic nematodes remain 
unknown.

The genetic mechanisms underlying ML resistance in 
P. univalens are inadequately understood, and further 
research is hampered by the complex host-dependent 
life cycle. Moreover, in vivo studies using the parasite 
host would be more comprehensive, but are challenged 
by both ethical and financial constraints. Previous 
studies have only been conducted in an in  vitro set-
ting using live adult worms isolated from slaugh-
tered horses or euthanized foals from research herds 
[28–30]. However, not only is this approach laborious 
and costly, but it is also inefficient because slaugh-
ter of foals is rare and the number of research herds 
is limited. In addition, the unnatural in  vitro culture 
environment has been reported to have undesirable 
effect on gene expression of P. univalens [29]. There-
fore, there is a need for the development of in  vitro 
experimental models for P. univalens. Recently, the lar-
val stage of P. univalens has been explored as a pos-
sible in vitro model, but authors reported variation in 
gene expression between larvae and adult P. univalens 
[31]. The free-living nematode Caenorhabditis elegans 
has been used as an in vitro model for parasitic nema-
todes, particularly those belonging to the same taxo-
nomic clade, V, such as H. contortus [32–35]. Although 
P. univalens belongs to a different clade, III, previous 
studies have employed transgenic lines of C. elegans as 
models for interpretation of ML-resistance in P. uni-
valens [28, 36, 37]. Factors that support C. elegans as 
a viable model for parasitic nematodes include posses-
sion of similar drug targets [38, 39] and being cheap 
and easy to maintain in the laboratory. In addition, C. 

involved in IVM metabolism/resistance by comparing gene expression of candidate genes proved challenging. The 
approach appears promising but was limited by the number of genes studied (n = 15). Future studies comparing a 
larger number of genes between the two species may result in identification of additional candidate genes involved 
in drug metabolism and/or resistance.
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elegans has a short life cycle of 3.5 days and a plethora 
of powerful genetic tools for manipulation are readily 
available [40]. To improve the likelihood of deriving 
conclusions from P. univalens research that uses C. ele-
gans as a model organism, it is necessary to assess its 
applicability, at the very least in terms of gene expres-
sion following xenobiotic exposure.

In the current study, we investigated differentially 
expressed genes (DEGs), which encode drug targets, 
transporters, transcription regulators, or enzymes 
involved in drug metabolism in adult P. univalens after 
in  vitro exposure to the ML substance, IVM. We fur-
ther investigated the expression profile of the C. ele-
gans orthologues of the above genes in adult C. elegans 
after in  vitro exposure to IVM. Our objective was to 
evaluate whether C. elegans is a suitable model for P. 
univalens by studying and comparing gene expression 
of selected candidate genes in P. univalens and C. ele-
gans after in vitro IVM exposure. Our findings showed 
that candidate genes, including the putative drug tar-
get gene, lgc-37, responded to IVM in P. univalens, but 
marginal to no response was observed in C. elegans 
despite dose-dependent behavioral effects observed in 
C. elegans after IVM exposure.

Materials and methods
Parascaris univalens
Adult P. univalens worms collected from two anthelmin-
tic-naïve Icelandic foals at an abattoir in Selfoss, Iceland, 
were exposed to IVM in vitro. A detailed account of the 
experimental setup has been described in Martin et  al. 
[29]. Care was taken to choose only the largest worms 
(i.e. females) for the study. Briefly, worms were incubated 
for 24  h in cell culture media containing 0.1% DMSO 
supplemented with  10–13,  10–11 or  10–9 M IVM. In addi-
tion, a control group  (media+DMSO) of unexposed worms 
receiving cell culture media containing 0.1% DMSO was 
used (Fig.  1a). The experiment was performed in three 
biological replicates with at least three worms in each 
group. One worm from each subgroup was dissected. 
The anterior end (pharynx, nerve cell bodies (‘ganglia’), 
nerve ring, and part of the intestine) of the worm was cut 
into fine pieces and suspended in 1 ml Trizol (Invitrogen, 
Carlsbad, USA). After homogenization with a glass tissue 
grinder, chloroform was added and the aqueous phase 
of the homogenized suspension was isolated. The aque-
ous phase was advanced into NucleoSpin® RNA Plus 
Kit (Macherey Nagel, Düren, Germany) for RNA extrac-
tion according to the manufacturer’s instruction. Before 
preparing sequencing libraries from 500  ng total RNA, 
Fragment Analyzer (Agilent, Santa Clara, USA) was used 

Fig. 1 Illustration of the study design. Section a depicts experimental setup of Parascaris univalens. Adult worms were exposed to IVM drug 
concentrations,  10–13,  10–11,  10–9 M, and  media+DMSO (control). After viability scoring, RNA was sequenced, candidate genes selected, and 
quantitative RT-qPCR  performed on the selected candidate genes. Section b depicts experimental setup of Caenorhabditis elegans. Worm pools 
of adults at maximum reproduction were exposed to IVM drug concentrations,  10–9,  10–8,  10–7 M, and  media+DMSO (control). Quantitative RT-PCR 
was performed on the P. univalens orthologues of selected candidate genes. Relative gene expression of the candidates was compared between 
nematode species
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to determine RNA concentration and quality. Illumina 
NovaSeq S1 flow cells and 100-bp paired end v1 sequenc-
ing chemicals were used to sequence three biological rep-
licates per condition (Fig. 1a).

RNA sequencing analysis
Reads were quality assessed using blastp [41] in a pipeline 
available at https:// github. com/ SLUBi oinfo rmati csInf 
rastr ucture/ RNAseq_ nf. Mapping and quantification of 
reads against the predicted reference P. univalens tran-
scriptome (https:// paras ite. wormb ase. org/ Paras caris_ 
univa lens_ prjna 386823/ Info/ Index/) were performed 
using Salmon v.0.11.3 [42]. Salmon output was matrix-
summarized using R package tximport [43] for DESeq2 
v.1.22.2 R package to determine DEGs as  log2foldchange). 
Wald test derived P-values from DESeq2 were modi-
fied for multiple testing using the Benjamini-Hochberg 
approach-based p.adjust function in R base [44]. Differ-
entially expressed genes were defined as those with an 
adjusted P-value < 0.05. Functional annotations of DEGs 
were identified by a BlastP search (e-value ≤  10−5) of 
their respective protein sequences against the Swiss-Prot 
database.

To determine the number of genes shared by different 
drug concentrations, gene IDs were used to build com-
parative Venn diagrams in R v.3.6.1 using the venn.dia-
gram function of the VennDiagram package [45]. The get.
venn.partition function was used to retrieve gene IDs 
corresponding to each Venn diagram partition.

Principal component analysis
To analyze differences in the response to IVM exposure 
among individual worms, principal component analysis 
(PCA) was employed using scaled read counts > 0 for 
10,830 genes from each worm (n = 12). The prcomp func-
tion in R was used on the scaled read count to perform 
PCA. To determine how much variation each principal 
component (PC) accounts for in the data, standard devia-
tions generated by PCA were used to compute variances. 
The percentage variances were visualized in a scree plot 
using barplot function in R. The top two PCs, which 
account for most variation in the data, were used to build 
a PCA plot using ggplot2 R package.

Selection of candidate genes
The ten most DEGs in P. univalens were identified for 
each IVM concentration and considered as potential can-
didate genes. In addition, genes shared by two or more 
IVM concentrations were considered as potential can-
didates. Using the BiomaRt package in R, the potential 
candidate gene IDs were used to retrieve their respective 
ontologies and C. elegans orthologues from WormBase 
ParaSite (https:// paras ite. wormb ase. org). From the pool 

of potential candidates, the selection of candidate genes 
was based on the presence of an orthologue gene in C. 
elegans and that they were functionally characterized as 
drug targets or involved in at least one of the following 
processes: xenobiotic metabolism, metabolite transporta-
tion, and gene expression regulation.

The similarity of P. univalens and corresponding C. 
elegans orthologues from WormBase were verified on the 
I-TASSER web-server [46] using their respective amino 
acid sequences.

Caenorhabditis elegans
Caenorhabditis elegans culture and maintenance
Wild-type N2 Bristol strain of C. elegans obtained from 
Caenorhabditis Genetics Center (CGC) was used in this 
study.

Worms were grown and maintained on OP50 Escheri-
chia coli seeded Nematode Growth Media (NGM) at 
20 °C as per standard methods [47].

Worm synchronization
Unless otherwise stated all M9 buffer [48] used was 
supplemented with 0.005% Tween20 to avoid worms/
embryos adhesion to plastic ware.

Caenorhabditis elegans of different life stages were 
cultured on 10-cm-diameter NGM agar plates for 
72  h to gravid adults. Worms were harvested with ice-
cold M9 buffer into 15-ml Falcon tubes and synchro-
nized by bleaching with 1.3% NaOCl and 0.5  M KOH, 
according to methods described by Porta-de-la-Riva 
et  al. [49]. Embryo floatation was performed with 60% 
sucrose-0.1 M NaCl mixture (ratio: 1:1) and subsequently 
re-suspended in M9 buffer. Hatching into L1 larvae was 
done on NGM agar plates without bacteria for ~ 20 h to 
obtain a synchronous L1 population.

Approximately 860 synchronized L1 larvae per 10-cm-
diameter OP50 E. coli seeded NGM plate were incubated 
at 20  °C for 76  h to an adult population at maximum 
reproduction stage (Fig. 1b).

Caenorhabditis elegans ivermectin exposure
Synchronized N2 adults at maximum reproduction 
(~ 300 worms/ml) were initially incubated in S-complete 
media supplemented with  10–9,  10–11,  10–13  M IVM 
(+ 0.025% DMSO final concentration), and  media+DMSO 
(control). However, because the above-mentioned IVM 
concentrations had no discernible effect on the worms’ 
behavior, the concentrations were increased to  10–7,  10–8, 
 10–9  M IVM (+ 0.025% DMSO final concentration). All 
treatments were set up in biological quadruplets supple-
mented with 1 mg/ml OP50 E. coli and incubated for 4 h 
at 20 °C (Fig. 1b).

https://github.com/SLUBioinformaticsInfrastructure/RNAseq_nf
https://github.com/SLUBioinformaticsInfrastructure/RNAseq_nf
https://parasite.wormbase.org/Parascaris_univalens_prjna386823/Info/Index/
https://parasite.wormbase.org/Parascaris_univalens_prjna386823/Info/Index/
https://parasite.wormbase.org
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Behavioral assays
After 4 h incubation at 20  °C, worms were phenotypi-
cally scored for each IVM concentration and control at 
room temperature. Scoring was based on three assays 
and performed with minor modifications as previously 
described by Johnson et al. [50].

The pharyngeal pumping assay was performed on 
three randomly selected worms per biological repli-
cate. Worms were placed on 6-cm-diameter NGM plate 
containing a lawn of OP50 E. coli. Under an 80× mag-
nification stereomicroscope (Nikon, Amstelveen, The 
Netherlands), the number of pharyngeal pumps per 
minute for each worm was counted.

The thrashing assay was performed on 12 worms, 3 
randomly selected from a pool of at least 6 worms per 
biological replicate. Scoring was performed within their 
respective treatment solutions. Worms were video 
recorded for at least a minute. For scoring, a photo-
graphic image of the pool was taken at 0 s. Worms were 
randomly assigned numbers between one and n, where 
n is the total number of worms in the pool. Assigned 
numbers were randomized thrice, and three numbers 
were drawn. Worms with the drawn number were used 
for the scoring. The number of thrashings per minute 
was recorded. A thrash was defined as a complete sinu-
soidal motion from maximum to minimum amplitude 
and back.

In the dispersal assay, three to five worms from each 
treatment group were placed on the opposite edge of 
an OP50 lawn on a 6-cm-diameter NGM plate. Plates 
were scored after ~ 35 min based on the percentage of 
worms that left the inoculation spot and reached the 
OP50 lawn.

Caenorhabditis elegans RNA extraction, quality check, 
and cDNA synthesis
The remaining approximately 300 C. elegans worms were 
retrieved from the wells, washed twice in ice-cold M9 
buffer, and centrifuged to pellet. The pellet was frozen 
in liquid nitrogen, ground with a pestle, and suspended 
in 900 μl Trizol (Invitrogen, Carlsbad, CA, USA) during 
continuous grinding. The aqueous phase of the homoge-
nized suspension was isolated using chloroform and then 
advanced into the NucleoSpin® RNA Plus Kit (Macherey 
Nagel, Düren, Germany) for RNA extraction according to 
the manufacturer’s instructions. RNA quality and quan-
tity checks were performed on TapeStation 4150 (Agi-
lent, Santa Clara, CA, USA) according to manufacturer’s 
instructions. Two micrograms of total RNA was reverse 
transcribed using SuperScript™ III First-Strand Synthe-
sis System (Invitrogen, Carlsbad, CA, USA) to generate 
cDNA, which was then used in the qPCR assays.

Primer design and optimization
Coding sequences (CDS) for the candidate genes were 
retrieved from the P. univalens genome (accession no. 
PRJNA386823) in the WormBase ParaSite database [51]. 
Primers were designed on an open-source online applica-
tion, primer3 version 0.4.0, available at http:// bioin fo. ut. 
ee/ prime r3-0. 4.0/, aiming for an amplicon size of approx-
imately 500 bp, spanning at least two exons (Additional 
file 4: Table S1). For genes with multiple transcripts, only 
CDSs for transcripts with the highest read counts in the 
RNA sequencing (RNAseq) data were chosen. Coding 
sequences were aligned in CodonCode Aligner program 
(version 9.0.1, CodonCode Corporation) and unique or 
homologous regions selected for the design of primers. 
Polymerase chain reaction (PCR) was performed on a 
thermocycler (Applied Biosystems, Waltham, MA, USA) 
in a reaction mix consisting of 12.5 μl ToughMix (Quant-
aBio, Beverly, USA), 1 μl each 10-μM primer, 9.5 μl water, 
and 1  μl cDNA as a template, synthesized from 1 µg P. 
univalens RNA extract. The PCR program was as follows: 
initial denaturation at 95 °C for 5 min, 40 cycles of dena-
turation at 95 °C for 45 s, 55 °C annealing temperature for 
45 s, elongation at 72  °C for 1 min, and final elongation 
at 72 °C for 5 min. Amplicons were submitted for Sanger 
sequencing at Macrogen (Amsterdam, The Netherlands). 
Resulting sequences were quality assessed and aligned to 
obtain consensus sequences in CodonCode Aligner. As a 
validation step, BLAST searches of consensus sequences 
against their corresponding CDS were performed using 
WormBase ParaSite. Thereafter, consensus sequences 
were used to design Reverse Transcriptase-qPCR (RT-
qPCR) primers (Additional file  4: Table  S1) using the 
same online platform as above, aiming for an amplicon 
size of 75–150 bp.

Similarly, CDS of C. elegans orthologues were retrieved 
from WormBase [52] using respective gene IDs. For 
orthologues with splice variants, primers were designed 
for CDS regions that were homologous to all variants. 
Likewise, amplicons were Sanger sequenced at Macrogen 
(Amsterdam, The Netherlands) and validated by BLAST 
searches against their corresponding CDS in the Worm-
Base database. Reverse Transcriptase-qPCR assays were 
optimized for primer concentration, annealing tempera-
ture, and efficiency (Additional file 4: Table S1).

Relative gene expression of candidate genes using reverse 
transcriptase qPCR
Samples and non-template controls were run in dupli-
cate reactions of 25  μl, composed of 12.5  μl Quantitect 
SYBR Green PCR mix (Qiagen, Hilden, Germany), 1 μl of 
each 10-μM primer, 8.5 μl water, and 2 μl (dilution factor: 
5) cDNA as template on a CFX96 Touch PCR machine 
(Bio-Rad, Solna, Sweden). The RT-qPCR program was as 

http://bioinfo.ut.ee/primer3-0.4.0/
http://bioinfo.ut.ee/primer3-0.4.0/
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follows: initial denaturation at 95 °C for 15 min, 40 cycles 
of denaturation at 95  °C for 15  s, assay specific anneal-
ing temperature for 30 s, and elongation at 72 °C for 30 s. 
For amplicon verification, a subsequent melt curve analy-
sis was performed by temperature elevation from 60 to 
95 °C, with increments of 0.5 °C for 5 s.

The Livak method [53] was used to determine the 
relative expression of the candidate genes. The gene 
expression was normalized to the geometric mean of 
two references genes for each species, i.e. actin, act-5 
(PgR070_g023) and flyceraldehyde-3-phosphate dehydro-
genase, gpd-1 (PgB20_g009) for P. univalens, and tba-1 
(tubulin, alpha) and eif-3.C (eukaryotic initiation factor) 
for C. elegans and related to  media+DMSO controls (Addi-
tional file  5: Table  S2 and Additional file  6: Table  S3). 
Gene expression was presented as  log2 fold change. As a 
validation step, the  log2 fold change values of candidate 
genes from RNAseq DEG analysis and RT-qPCR assays 
were imported into R and graphically compared in ggl-
pot2’s scatterplot.

Statistical analysis
The average counts of behavioral assays were calculated 
in Microsoft Excel (Additional file 7: Table S4) and then 
imported into GraphPad Prism [Version 9.1.0 (221)] 
for statistical analysis and visualization. In a one-way 
ANOVA with Dunnett’s multiple comparisons test, aver-
age counts for the drug-treated worms were compared to 
 media+DMSO controls and graphically represented.

Log2 fold changes of gene expression in the IVM 
exposed biological replicates were imported into Graph-
Pad Prism [version 9.1.0 (221)] for each candidate gene 
and graphically represented. Graphical data are pre-
sented as mean values with a standard error of the mean 
(SEM) where applicable.

Results
Parascaris univalens RNAseq and differential gene 
expression
Adult P. univalens worms, collected from Icelandic 
horses, were treated with sublethal doses of IVM in vitro 
 (10–13,  10–11,  10–9  M IVM for 24  h), and non-treated 
worms served as controls (see “Materials and methods”). 
Total RNA with RIN values ranging from 6.6 to 8.7 was 
sequenced on an Illumina Nova Seq. After read qual-
ity control with fastp, the number of reads per sample 
ranged between 63 and 132 million. Read sequences are 
available at https:// www. ebi. ac. uk/ ena [European Nucle-
otide Archive (ENA), accession no. PRJEB37010]. Read 
mapping against the reference transcriptome (https:// 
paras ite. wormb ase. org/ Paras caris_ univa lens_ prjna 
386823/ Info/ Index/) yielded an average rate of 80–90% 

mapped reads, indicative of a high similarity between this 
transcriptomic data and reference transcriptome.

After PCA, 12 PCs were revealed of which PC1 and 
PC2 accounted for the most variation in the data, 35.5% 
and 14.1%, respectively (Fig. 2 and Additional file 1: Fig. 
S1). PC1 grouped worms into IVM treated and IVM 
untreated, except for worm 12. However, PC2 revealed 
variation in response within biological replicates but 
worms 1, 4 and 12 appeared away from their treatment 
groups (Fig. 2). Although effort was taken to select only 
females for the experiment, individual 2 in  10–11 M lacked 
an egg-containing uterus upon dissection. However, 
because this individual did not appear to be an outlier in 
the PCA plot (Fig. 2), it was included in the analysis.

Following DESeq2 analysis of the 1085 genes (> 0.5-
fold, adj. P-value < 0.05) differentially expressed across 
the three drug concentrations, 65% (703 genes) had 
known functions according to Swiss-Prot annotations. 
Twenty-one percent of the DEGs were found in  10–13 M, 
17% in  10–11 M, and 62% in  10–9 M (Additional file 2: Fig. 
S2). The overall amplitude of gene expression changes 
after IVM treatment was small; 84 genes were upregu-
lated more than twofold and 147 genes were downregu-
lated more than twofold. There was also a quite high level 
of variability in gene expression between the different 
worms.

Selection of candidate genes for further characteriza-
tion was based on the presence of an orthologue in C. ele-
gans, level of differential gene expression and functional 
characterization as drug target or involvement in at least 
one of the following processes: xenobiotic metabolism, 
metabolite transportation, or gene expression regula-
tion. Fifteen candidate genes were selected (11 up- and 4 
downregulated) and further categorized into six groups: 
drug target, phase I metabolic enzyme, phase II meta-
bolic enzyme, transporter, transcription regulator, and 
others (Table  1). The I-TASSER web server was used to 
verify P. univalens–C. elegans similarity for 80% and 87% 
of the candidate genes based on molecular function and 
biological process, respectively (Table 1).

Caenorhabditis elegans behavior assays after IVM exposure
Synchronized C. elegans N2 adults were initially exposed 
to similar IVM concentrations as adult P. univalens  (10–9, 
 10–11,  10–13  M). However, as there were no observable 
phenotypic or gene expression effects on C. elegans with 
such low IVM concentrations (data not shown), the drug 
concentrations were increased to  10–9,  10–8,  10–7  M, 
respectively.

Increased IVM concentration showed an observable 
effect on the worms in all behavioral assays (Fig. 3). Iver-
mectin exposure also showed a significant dose-depend-
ent reduction of the number of pharyngeal pumps per 

https://www.ebi.ac.uk/ena
https://parasite.wormbase.org/Parascaris_univalens_prjna386823/Info/Index/
https://parasite.wormbase.org/Parascaris_univalens_prjna386823/Info/Index/
https://parasite.wormbase.org/Parascaris_univalens_prjna386823/Info/Index/
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minute (Fig. 3a). In the thrashing assay, IVM concentra-
tions  (10–8 and  10–7  M) significantly reduced thrashes, 
with even immobile worms in the  10–7  M concentra-
tion demonstrated by the very low adjusted P-value 
(P ≤ 0.001) (Fig. 3b). The dispersal assay showed a similar 
dose-dependent trend, but was significant only in  10–7 M 
IVM (Fig. 3c). Worms incubated in  media+DMSO (control) 
showed no observable effects and no significant behav-
ioral differences (Fig.  3). The  10–7  M concentration was 
excluded from the qPCR assays, as we aimed for mecha-
nisms at play only in sub-lethal conditions.

Expression of candidate genes in P. univalens and C. 
elegans after IVM exposure
Log2 fold change of candidate genes from RNAseq DEG 
analysis appeared consistent to those from RT-qPCR, 

with very few exceptions (Fig.  4). To verify differen-
tial gene expression in IVM-treated P. univalens and C. 
elegans, RNA with RIN values ranging from 6.6 to 9.8 
were used in RT-qPCR assays, and all gene expressions 
described below are based on these assays. For simplicity, 
only C. elegans gene names are used for both P. univalens 
and C. elegans. Corresponding P. univalens gene names 
can be referenced in Table 11.

In general, although IVM appears to have an effect 
on the expression levels of candidate genes in P. univa-
lens, this effect appears to vary among individual worms, 
agreeing with the observations seen in the RNAseq-based 
PCA plot (Fig. 2). In C. elegans, however, even if there is 
a strong phenotypic effect of IVM, it has marginal to no 
effect on the change in expression levels of any of the 15 
selected candidate genes (Figs. 5, 6, 7, 8).

Fig. 2 Principal component analysis plot of Parascaris univalens based on scaled read counts of 10,830 genes showing variance among individual 
worms after exposure to three IVM drug concentrations  (10−13 M,  10−11 M and  10−9 M) and  media+DMSO (control). PC1 and PC2 represent the 
largest variances in the data, further portrayed by red and black dotted ellipses, respectively
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The GABA receptor subunit gene, lgc-37, a putative 
drug target for IVM, showed a generally increased trend 
in change in expression in P. univalens after IVM expo-
sure (Fig.  5a); however, increments in C. elegans were 
marginal (Fig. 5b).

The change in expression profiles of the Phase I meta-
bolic genes in P. univalens showed non-uniform pat-
terns. The short chain dehydrogenases (SDR) dhs-2 and 
dhs-27 showed an increased change in expression while 

F13D11.4 was decreased in P. univalens (Fig.  6a). The 
expression change of Phase II metabolic genes varied. 
The glucuronosyltransferase gene ugt-54 was decreased 
in P. univalens, while transferase C13A2.7 showed a trend 
of increased change in expression (Fig. 6c). However, in 
C. elegans, all genes generally appear not to be affected by 
the IVM exposure (Fig. 6b, d).

All investigated transport protein genes were enriched 
with major facilitator superfamily (MFS) members, 

Table 1 I-TASSER web server comparison of selected candidate genes’ orthologues in Caenorhabditis elegans and Parascaris univalens 
(geneIDs begin with “Pg”)

a GO term: molecular function
b GO term: biological process
c Average weight assigned to the GO term, where the weights are determined using a combined measure of global and local similarity between the query and 
template proteins. It is a numeric value between 0 and 1, with higher values indicating more certain predictions

GeneID GO:MFa GO-scorec GO:BPb GO-score P. univalens RNAseq  log2 fold 
change

10–13 M 10–11 M 10–9 M

Drug target lgc-37 GO:0004889 0.34 GO:0006811 0.73 8.20

PgR047_g061 0.33 0.60

Phase I enzyme dhs-2 GO:0005488 0.83 GO:0055114 0.83 1.40 1.50 1.50

PgR127_g021 GO:0004303 0.36 0.87

dhs-4 GO:0004316 0.73 GO:0055114 0.81 1.90

PgR004_g112 GO:0005488 0.83 0.83

dhs-27 GO:0004316 0.81 GO:0055114 0.81 1.80 1.70 1.90

PgR007_g080 0.59 0.77

F13D11.4 GO:0050662 0.98 GO:0055114 0.80 − 1.50 − 1.60 − 1.10

PgB01_g106 0.97 0.76

Phase II enzyme C13A2.7 GO:0008171 0.52 GO:0032259 0.35 1.20 1.90

PgR018_g071 GO:0008376 0.53 GO:0043413 0.56

ugt-54 GO:0016758 0.70 GO:0030259 0.52 − 0.80 − 1.20

PgB20_g050 0.72 0.62

Transport cup-4 GO:0004889 0.45 GO:0006811 0.65 − 2.80 − 2.10

PgR075_g041 0.48 0.67

hmit-1.2 GO:0015168 0.36 GO:0055085 0.40 2.40 2.10 2.30

PgR015_g078 GO:0042900 0.32 0.38

hmit-1.3 GO:0042900 0.36 GO:0055085 0.41 2.40 2.10 2.30

PgR015_g078 0.32 0.38

slc-17.2 GO:0042900 0.57 GO:0055085 0.57 − 1.00 − 1.10

PgR047_g023 0.57 0.61

Y71G12B.25 GO:0015168 0.55 GO:0055085 0.69 1.60 1.50

PgR005X_g127 0.54 0.64

F17C11.12 GO:0042900 0.34 GO:0055085 0.51 − 1.00 0.70

PgR003_g012 0.51 0.39

Transcription regulator nhr-3 GO:0003700 0.65 GO:0006355 0.65 1.2 0.90

PgR005X_g204 0.50 0.50

Others F08F8.7 GO:0004750 1.00 GO:0006098 0.94 8.90

PgR013_g129 0.99 0.67

pkc-1 GO:0005524 0.60 GO:0014059 0.32 1.00 0.90

PgB05_g097 0.64 0.31
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except cup-4, which belongs to the ligand-gated ion chan-
nel family. Overall change in expression of transport pro-
tein genes showed a decreased trend in P. univalens and 
minor to no change in C. elegans (Fig. 7). Genes hmit-1.2/
hmit-1.3 and Y17G128B.25 showed an increased change 
in expression in P. univalens (Fig. 7a).

Finally, in response to IVM, transcriptional regulator, 
nhr-3, showed an increased change in gene expression 
trend in P. univalens (Fig. 8a) but marginal to no change 
in expression was observed in C. elegans (Fig. 8b).

The neural signaling protein, pkc-1, showed an 
increased change in gene expression in P. univalens 
exposed to  10–11 and  10–9 M IVM (Additional file 3: Fig. 
S3A), but showed little to no change was observed in C. 
elegans (Additional file  3: Fig. S3B). Only the  10–13  M 
IVM showed marginal increased change in expression 
of ribulose-phosphate 3-epimerase gene F08F8.7 in P. 
univalens, and little to no change in C. elegans across all 
IVM concentration was observed in both species (Addi-
tional file 3: Fig. S3).

Discussion
Recent studies show that the equine roundworm P. 
univalens has developed resistance to the three major 
classes of anthelmintic drugs used and that the emer-
gence of multidrug-resistant variants is apparent [4, 12, 
54]. While the cause of drug resistance drug in parasites 
is poorly understood, the primary resistance mechanism 
to benzimidazoles has been better explored than those 
of other drug classes, particularly in clade V nematodes 
(see [15] for review). Consequently, most of the proposed 

Fig. 3 Behavioral assays for Caenorhabditis elegans. a Pharyngeal pumps per minute, b body thrashes per minute, and c dispersal after IVM 
exposure,  10–9  10–8,  10–7 M, and control  (media+DMSO). Mean number (± standard error, SE) of viability scores in treatments were compared to those 
of the control in a one-way ANOVA (Dunnett’s multiple comparisons test) to elucidate significant differences

Fig. 4 Scatter plot comparing relative gene expression  (log2 fold 
change) of Parascaris univalens candidate genes between two 
methods [ RNAseq (orange) and  RT-qPCR (blue)] after exposure to 
 10–13,  10–11, and  10–9 M IVM for 24 h
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resistance mechanisms have been derived from clade V 
nematodes and may therefore differ in Clade III nema-
todes such as P. univalens. It is critical to have a thorough 
understanding of P. univalens resistance mechanisms 
to potentiate species-specific interventions for resist-
ance control and/or alleviation. This, however, is largely 

constrained by the complexity of its host-dependent life 
cycle and a lack of in vitro experimental models.

In this study, we evaluated the usage of C. elegans as 
a model for P. univalens by a comparative gene expres-
sion approach. Of the 1085 DEGs in P. univalens after 
IVM exposure, 231 DEGs had a fold change above 

Fig. 5 Relative gene expression  (log2 fold change) of the GABA receptor subunit lgc-37 in a Parascaris univalens after exposure to  10–13,  10–11, and 
 10–9 M IVM for 24 h and b Caenorhabditis elegans after exposure to  10–9 and  10–8 M IVM for 4 h

Fig. 6 Relative gene expression  (log2 fold change) of Phase I and II metabolic genes in Parascaris univalens (a, c) after exposure to  10–13,  10–11, and 
 10–9 M IVM for 24 h. Relative gene expression  (log2 fold change) of Phase I and II metabolic genes in Caenorhabditis elegans (b, d) after exposure to 
 10–9 and  10–8 M IVM for 4 h
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twofold. This is however not unique to P. univalens as 
another clade III member, Brugia malayi, exposed to 
 10–7 M IVM for 24 h, demonstrated similar modest gene 

expression changes (14 genes upregulated and 8 genes 
downregulated more than twofold) [55]. While changes 
in gene expression greater than twofold are generally 

Fig. 7 Relative gene expression  (log2 fold change) of transport protein genes in Parascaris univalens a after exposure to  10–13,  10–11, and  10–9 M IVM 
for 24 h. Relative gene expression  (log2 fold change) of transport protein genes in Caenorhabditis elegans b after exposure to  10–9 and  10–8 M IVM for 
4 h

Fig. 8 Relative gene expression  (log2 fold change) of nhr-3 transcription regulator in Parascaris univalens a after exposure to  10–13,  10–11, and  10–9 M 
IVM for 24 h. Relative gene expression  (log2 fold change) of nhr-3 transcription regulator in Caenorhabditis elegans b after exposure to  10–9 and 
 10–8 M IVM for 4 h
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considered more important, expression changes of up to 
0.5-fold have been proposed to be as equally meaning-
ful in RNAseq assays if the false discovery rate is < 5% 
(adj. P-value 0.05), with at least three biological replicates 
used and data analyzed using the Deseq2 R program [56]. 
All DEGs in the current study followed the above recom-
mendation and were therefore treated equally. Fifteen 
DEGs were selected as candidate genes and were further 
evaluated and compared with orthologous genes in C. 
elegans exposed to IVM.

Although IVM affected gene expression in P. univa-
lens, there was little to no response in expression of the 
candidate genes in C. elegans, despite the significant 
dose-dependent behavioral effect of IVM on adult C. 
elegans worms. The premises for C. elegans as a model 
for research in parasitic nematodes have been thoroughly 
described in other studies [40, 57–59]. For example, 
Ascaris suum and C. elegans share 68.9% predicted genes 
[60], which supports C. elegans as a suitable model for 
the Ascarididae family. However, despite all the above, 
our results show differences in expression of the selected 
genes between C. elegans and Parascaris univalens after 
exposure to IVM. This observation can be attributed to 
a variety of factors. C. elegans and P. univalens are mem-
bers of different clades, V and III, respectively, and they 
also have different life cycles and evolutionary histories 
[61]. As a result, genes and gene families associated with 
parasitism are either absent or have different functions 
in C. elegans [62–64]. The chosen candidate genes in this 
study are a small subset (1.4%) of all the genes respond-
ing to IVM exposure in P. univalens. Therefore, a global 
transcriptomic approach comparing whole worm tran-
scriptomes of both C. elegans and P. univalens after IVM 
exposure may be a better method to evaluate whether C. 
elegans can be an accurate in vitro model for P. univalens.

The putative IVM target, lgc-37 (GABA receptor sub-
unit), showed an increased expression in P. univalens, 
and Martin et  al. [29] reported a similar observation. 
Increased expression of lgc-37 has not been correlated 
to AR; however, an amino acid substitution (K169R) in 
H. contortus lgc-37 transfected in C. elegans has been 
reported to exhibit reduced sensitivity to ML [65]. Taken 
together, these findings indicate that lgc-37 is important 
and that additional research is necessary to fully under-
stand its role in P. univalens’ response to IVM.

In P. univalens, decreased expression was observed 
for the genes belonging to MFS-transport proteins slc-
17.2 and F17C11.12 and the ligand-gated ion channel 
cup-4 after exposure to IVM. The role of MFS genes 
in parasitic worms has yet to be determined, but their 
involvement in drug resistance in bacteria and yeast 
has been reported [66]. Other than the efflux role, 
MFSs mediate cellular uptake of glucose and other 

saccharides [67]. Because IVM causes worm starvation 
through pharyngeal paralysis [68–70], we speculate that 
the decreased glucose concentration, a consequence 
of starvation, may trigger decreased gene expression 
of MFS responsible for glucose or other saccharide 
uptake. The ATP-binding cassette transporters, primar-
ily Pgp efflux pumps, have been implicated in resist-
ance in parasitic nematodes [21, 22, 24]. Interestingly, 
we found no DEGs of Pgps in our RNAseq dataset, 
which is consistent with previous studies in P. univalens 
[28, 30, 31, 71]. However, other studies have reported 
induced gene expression of Pgps in IVM-resistant lar-
vae of Cooperia oncophora [72] and multi-drug resist-
ant larvae of H. contortus exposed to IVM [22].

Differential expression of several Phase I enzymes 
was observed in P. univalens after IVM exposure. 
Expressions of dhs-2 and dhs-27 were increased 
whereas the reverse was seen for dhs-4 and F13D11.4. 
However, in C. elegans, all SDR genes showed a con-
sistent minor decrease in expression levels. The role 
of SDRs in anthelmintic resistance is not well known. 
However, in several helminths, SDR genes have been 
shown to be involved in metabolic activities of BZs 
[73–77]. Even though we did not observe any major 
expressional response of SDR genes in C. elegans after 
IVM exposure, an increase in expression of dhs-23 in a 
BZ-resistant strain of C. elegans after in vitro exposure 
to BZ derivatives has been reported [35].

Expression of the Phase II enzyme, ugt-54, was 
decreased in P. univalens after IVM exposure, but no 
response was observed in C. elegans. Similarly, decreased 
expression of other members of the UGT family, ugt-3, 
ugt3a1, ugt-47, and ugt-48, have been observed in P. uni-
valens in vitro exposed to pyrantel citrate, thiabendazole, 
and oxibendazole [29, 30]. Although we did not observe 
any response of ugt-54 in C. elegans, other studies have 
shown differential gene expression of UGTs in IVM-tol-
erant strain of C. elegans after exposure to  10–6 M IVM 
[78] and in the BZ-resistant strain of C. elegans after 
exposure to BZs [35, 79, 80]. Together, it is clear that 
UGTs are important in drug metabolism in both nema-
tode species, and their role in anthelmintic resistance in 
P. univalens needs to be further elucidated.

The transcriptional regulator, nhr-3, showed increased 
change in expression in P. univalens after IVM exposure 
but a slightly decreased change in C. elegans. Increased 
expression of nhr-8 has reported to upregulate expres-
sion of Pgps and Phase I enzyme genes in C. elegans and 
resulted in a decreased efficacy of IVM [81]. A similar 
effect of IVM has also been observed in C. elegans car-
rying a transgenic construct expressing H. contortus-
nhr-8 [81], suggesting that the function of nhr-8 could 
be similar in different nematode species. Even though 
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nhr-3 does not respond in a similar way in C. elegans and 
P. univalens, the NHR family may play a role in AR.

Conclusion
In summary, this is the first time C. elegans has been 
evaluated as a model for P. univalens using a com-
parative gene expression approach. However, the 
genes selected showed dissimilar expression patterns 
between the two nematode species. This difference in 
expression could be due to caveats in the experimen-
tal design or simply the differences in life cycles of P. 
univalens and C. elegans. For example, due to the dif-
ficulties in obtaining live adult P. univalens, only three 
individuals were used per biological replicate in the 
study, compared to 300 worms for C. elegans. In addi-
tion, the unnatural in  vitro culture environment may 
influence undesired behavioral changes or gene expres-
sion in P. univalens worms [29]. Furthermore, only 1.4% 
of RNAseq-derived DEGs from P. univalens were used 
as candidate genes in this study, of which some tran-
scripts (splice variants) also showed varying expression 
patterns. Together, this limits the ability to draw firm 
conclusions regarding comparability between these two 
nematode species. However, with comparative genom-
ics, using RNAseq data from IVM exposed C. elegans 
and P. univalens, it is plausible to find potential drug 
targets with similar expression in both nematodes. This 
could provide a better understanding of drug response 
mechanisms to further investigate and combat drug 
resistance.
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