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Abstract
Meiosis is a specialized cell division that is key for reproduction and genetic diversity in sexually reproducing plants. 
Recently, different RNA silencing pathways have been proposed to carry a specific activity during meiosis, but the pathways 
involved during this process remain unclear. Here, we explored the subcellular localization of different ARGONAUTE (AGO) 
proteins, the main effectors of RNA silencing, during male meiosis in Arabidopsis thaliana using immunolocalizations with 
commercially available antibodies. We detected the presence of AGO proteins associated with posttranscriptional gene 
silencing (AGO1, 2, and 5) in the cytoplasm and the nucleus, while AGOs associated with transcriptional gene silencing 
(AGO4 and 9) localized exclusively in the nucleus. These results indicate that the localization of different AGOs correlates 
with their predicted roles at the transcriptional and posttranscriptional levels and provide an overview of their timing and 
potential role during meiosis.
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Introduction

Meiosis is a special type of cell division key for the produc-
tion of gametes and the reshuffling of the genetic information 
during sexual reproduction (Bolcun-Filas et al. 2018). Dur-
ing meiosis, one round of DNA synthesis is followed by two 
rounds of cell division, segregating homologous chromo-
somes during the first division and sister chromatids at the 
second division (Marston et al. 2004; Mercier et al. 2015). 
The mechanisms regulating meiosis have been widely stud-
ied at the cellular, genetic, and molecular levels in a variety 
of organisms (Marston et al. 2004). In plants, more than 
90 genes have been identified comprising different meiotic 
processes that include double-strand break (DSB) formation, 
chromosome segregation, or meiotic recombination (Huang 

et al. 2019). Intriguingly, several species across the tree of 
life use RNA interference/RNA silencing to ensure genome 
stability and regulate gene expression during gametogenesis 
(Goh et al. 2015; Hall et al. 2003; Hammond et al. 2013; He 
et al. 2009; Holmes et al. 2007; Lepere et al. 2009; Mod-
zelewski et al. 2012; Wang et al. 2015). In plants, different 
RNA silencing pathways are active during meiosis (Huang 
et al. 2019, 2020 ; Yelina et al. 2015). For example, in maize 
and rice, the miRNA pathway regulates the production of 
21-nt and 24-nt phased siRNAs that accumulate and regulate 
gene expression in premeiotic and meiotic stages (Dukowic-
Schulze et al. 2016; Komiya et al. 2014; Zhai et al. 2015). 
In Arabidopsis, the miRNA pathway is crucial for the 
development of male gametes (Borges et al. 2011) and it is 
known to affect chromatin condensation and the number of 
chiasmata (Oliver et al. 2016, 2017). The other main RNA 
silencing pathway in plants, the RNA-directed DNA meth-
ylation (RdDM) pathway, affects chromatin condensation, 
the number of chiasmata and chromosome segregation (Oli-
ver et al. 2016, 2017) and protects euchromatic regions from 
meiotic recombination in Arabidopsis (Yelina et al. 2015). 
In Arabidopsis, meiocyte-specific sRNAs between 23–24 nts 
are positively correlated with genes that have a meiocyte-
preferential expression pattern (Huang et al. 2019), which 
could correlate with the observed role of DNA methylation 
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in the regulation of gene expression in meiocytes (Walker 
et al. 2018). Furthermore, in maize ARGONAUTE (AGO) 
proteins associated with RdDM activity have been linked 
to apomixis-like phenotypes (Singh et al. 2011). Addition-
ally, in Arabidopsis, a non-canonical RNA silencing pathway 
containing members from different RNA silencing pathways 
plays a role in DSB repair (Wei et al. 2012). AGO proteins 
are the effectors of the different RNA silencing pathways and 
have dedicated members that act at the posttranscriptional or 
transcriptional levels. Nevertheless, their dynamism and sub-
cellular localization during meiosis in plants are unknown. 
Here, we analyzed the subcellular localization of the main 
AGO proteins in Arabidopsis during different meiotic stages, 
shedding light onto their potential roles during this process.

Materials and methods

Plant material

Plants used for immunolocalization analysis were grown in 
a phytotron under long-day conditions (16-h light/8-h dark 
photoperiod), at 24–25 °C and 45% relative humidity.

Bioinformatic analysis

sRNA data was downloaded from the SRA repository pro-
ject number PRJNA510650 (Huang et al. 2019). sRNA 
alignments were performed using bowtie (Langmead et al. 
2009) with the following parameters –t –v2 that allows 
two mismatches to the alignments. Alignment files were 
subsequently analyzed in Galaxy (Afgan et al. 2018). For 
sRNA categorization as miRNAs, sRNA libraries were 
aligned to individual indexes generated for each genomic 
category and compared total sRNAs mapping to the 
TAIR10 chromosome sequences. The miRbase version 
22.1 (https:// www. mirba se. org/) was used for miRNA 
alignments (Kozomara et al. 2019). Transcriptomic data 
correspond to the CATMA arrays data from GEO acces-
sions GSE10229 and GSE13000 (Libeau et al. 2011) and 
RNA sequencing data from the GEO accession GSE86583 
(Walker et al. 2018). CATMA array data were extracted 
using the CATdb database (http:// urgv. evry. inra. fr/ cgi- bin/ 
proje cts/ CATdb/ catdb_ index. pl) were normalized data 
were extracted for both GSE10229 (http:// urgv. evry. inra. 
fr/ cgi- bin/ proje cts/ CATdb/ consu lt_ expce. pl? exper iment_ 
id= 195) and GSE13000 (http:// urgv. evry. inra. fr/ cgi- bin/ 
proje cts/ CATdb/ consu lt_ expce. pl? exper iment_ id= 46). 
RNA sequencing data were downloaded, adapter trimmed, 
and filtered by length and quality using Trim Galore! 
(https:// www. bioin forma tics. babra ham. ac. uk/ proje cts/ 
trim_ galore/). For gene expression analysis, paired reads 
were aligned to the Arabidopsis TAIR10 genome using 

bowtie2 (Langmead et  al. 2012) using default param-
eters. Count reads were obtained using HTSeq-COUNTS 
(Anders et al. 2015) with the following parameters: –mode 
union –stranded no –minequal 10 and –nonunique none. 
The obtained count tables were used in DESeq2 (Love 
et al. 2014) to infer significant expression with fit type 
set to parametric. All these tools were used on the Galaxy 
platform (Afgan et al. 2018).

Cytology

Immunolocalization on meiotic nuclei was carried out by 
squash technique as was previously described by Man-
zanero et al. (2000) with some modifications (Oliver et al. 
2013). Two bioreplicates constituted by young flower 
buds from five different plants were analyzed. Young 
flower buds were fixed for 20 min in freshly prepared 4% 
(w/v) paraformaldehyde, 0.1% (v/v) Triton X-100 in phos-
phate-buffered saline (PBS, pH 7.3). Flower buds were 
then washed at room temperature for 30 min in PBS that 
was changed twice. Buffer was removed before incuba-
tion at 37 °C during 20–40 min with an enzyme mixture 
of 1% pectinase, 1% cellulase, and 1% cytohelicase (w/v) 
(Sigma), dissolved in PBS. Buds, immersed in a small 
volume of PBS, were transferred to slides with a Pasteur 
pipette, macerated with a needle, and squashed between a 
glass slide and cover slip. After freezing in liquid nitrogen, 
the cover slips were removed and the slides were trans-
ferred immediately into PBS. Prior to immunostaining 
experiments, the slides were washed twice in PBS, 0.1% 
(v/v) Triton X-100 for 5 min each. To avoid non-specific 
antibody binding, slides were incubated for 30 min in PBS 
with 1% BSA (w/v) and 0.1% Triton X-100 at room tem-
perature. The incubation with the primary antibody was 
carried out in a humidified chamber. The primary anti-
bodies used were rabbit anti-AGO1 (1:200 AS09 527), 
-AGO2 (1:100, AS13 2682), -AGO5 (1:100, AS10 671), 
-AGO4 (1:100, AS09 617), -AGO6 (1:50, AS10 672), 
-AGO9 (1:100, AS10 673), and -AGO10 (1:50, AS15 
3071) antibodies from Agrisera. All the primary antibod-
ies were diluted in PBS, 1% BSA, 0.1% Triton X-100. 
After overnight incubation at 4ºC and washing for 15 min 
in PBS with 0.1% Triton X-100, the slides were incubated 
for 1 h at room temperature with goat anti-rabbit IgG H&L 
Alexa Fluor 568 conjugated (1:200; ab175471; Abcam) 
diluted in 1% BSA, 0.1% Triton X-100 in PBS. Slides were 
then washed in PBS, 0.1% Triton X-100, before they were 
stained the DAPI, 1 μg/ml during 20–30 min and finally 
mounting with antifading medium (0.2% n-propyl Gallete, 
0.1% DMSO, 90% glycerol in PBS). Fluorescent signals 
were observed using an epifluorescence microscope Zeiss 
AxioScope A1. Images were captured with AxioCam ICc5 

https://www.mirbase.org/
http://urgv.evry.inra.fr/cgi-bin/projects/CATdb/catdb_index.pl
http://urgv.evry.inra.fr/cgi-bin/projects/CATdb/catdb_index.pl
http://urgv.evry.inra.fr/cgi-bin/projects/CATdb/consult_expce.pl?experiment_id=195
http://urgv.evry.inra.fr/cgi-bin/projects/CATdb/consult_expce.pl?experiment_id=195
http://urgv.evry.inra.fr/cgi-bin/projects/CATdb/consult_expce.pl?experiment_id=195
http://urgv.evry.inra.fr/cgi-bin/projects/CATdb/consult_expce.pl?experiment_id=46
http://urgv.evry.inra.fr/cgi-bin/projects/CATdb/consult_expce.pl?experiment_id=46
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/


155Plant Reproduction (2022) 35:153–160 

1 3

camera and were analyzed and processed with ImageJ and 
Affinity Photo software. The number of cells observed for 
each meiotic stage is shown in Supplementary Table 3. 
(Manzanero et al. 2000; Oliver et al. 2013).

Results and discussion

To discern the level of expression of RNA silencing com-
ponents in Arabidopsis meiocytes, we analyzed their rela-
tive expression in publicly available microarray (Libeau, 
et al. 2011) and RNA sequencing datasets (Walker et al. 
2018) (Fig. 1 and Supplementary Methods). Overall, sev-
eral components from the RNA silencing pathways were 
preferentially expressed in meiocytes compared to somatic 
tissues in at least three of the four datasets analyzed 

(Fig. 1a). These included the AGO proteins AGO4 and 5, 
the DICER-LIKE (DCL) proteins DCL1, 3, and 4, or the 
sRNA methyltransferase HEN1, member of the miRNA 
pathway. Interestingly, we also detected enriched expres-
sion of the methyltransferase DRM1 and the RNA poly-
merase V (Pol V) (Fig. 1a). Overall, despite differences 
between the datasets analyzed, our analysis indicated that 
different PTGS (AGO5, HYL, DCL1, and DCL4) and TGS 
(AGO4, DCL3, and Pol V) pathways might be especially 
active during meiosis. Previous analysis has shown that 
transposable element (TE)-derived sRNAs accumulate to 
relatively high levels in meiocytes (Huang et al. 2019) and 
that certain miRNAs like miR845 are active before the 
pollen microspore stage (Borges et al. 2018). To under-
stand sRNA accumulation during meiosis, we analyzed 
their categorization in publicly available sRNA sequencing 
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Fig. 1  Analysis of the expression in meiocytes of different RNA 
silencing and epigenetic pathways components and analysis of sRNA 
and miRNA accumulation in meiocytes. A Heat map of the expres-
sion values of RNA silencing and epigenetic pathways components 
in meiocyte microarray and RNA sequencing experiments. Expres-
sion values are represented as the normalized log2 ratio of the com-
parison meiocyte/leaves. Expression values of genes with known 
expression in meiocytes (DMC1, RAD51, and SYN1) are shown as a 
control of the meiocyte origin of the datasets. Datasets analyzed cor-
respond to the data from Libeau et al. (2011) (CATMA microarrays; 
GSE10229 and GSE13000) and Walker et al. (2018) (RNA sequenc-
ing; GSE86583)  B. Global accumulation of sRNAs from 21- to 24-nt 
in length from public datasets (Huang et  al 2019; PRJNA510650) 

derived from TEs, intergenic regions, miRNAs and tasiRNAs in 
leaves and meiocytes. Accumulation values are expressed in thousand 
reads per million (RPM × 1000).  C Accumulation values of selected 
miRNAs enriched in meiocyte sRNA libraries. Accumulation is 
expressed as the fold change of the ratio between meiocytes and 
leaves of the accumulation value for each miRNA family in reads per 
million. Enrichment was considered only for miRNAs accumulating 
more than twofold in meiocytes and with a p-value < 0.05.  D Heat 
map of the accumulation values of all the miRNA families enriched 
in meiocytes. Enrichment was considered only for miRNAs accumu-
lating more than twofold in meiocytes compared to leaves Accumula-
tion is expressed in reads per million
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data from purified meiocytes (Huang, et al. 2019). Our 
analysis showed that, as previously reported, there is a 
global decrease of 24-nt and an increase in 22 and 23-nt 
total sRNAs (Supplementary Fig. 1A). Several categories 
showed an enrichment in meiocytes, including TEs, inter-
genic regions, and several functional non-coding RNAs 
(specially rRNAs and tRNAs; Supplementary Fig. 1B). 
Other classes of sRNAs such as miRNAs and tasiRNAs 
were slightly depleted from meiocytes (Supplementary 
Fig. 1B). In the case of TEs and intergenic regions, the 
enrichment was observed specially for sRNAs of 21-, 22-, 
and 23-nts in length, while miRNAs and tasiRNAs lost 
a majority of 21-nt sRNAs (Fig. 1b). Despite miRNAs 
were not enriched in meiocytes compared to leaves (Sup-
plementary Fig. 1a and Fig. 1b), several miRNA fami-
lies were strongly upregulated in meiocytes including 
miR839, miR780.2, miR780.1, miR157, miR172, miR166, 
and miR860 (Figs. 1c and d and Supplementary Table 2). 
Overall, we identified 30 miRNA families enriched more 
than twofold in meiocytes compared to leaves (Fig. 1d). 
Within these upregulated miRNA families, there were 
miRNA families regulating important transcription factors 
including APETALA2, HD-ZIP III, Squamosa, or ethyl-
ene response factors (regulated, respectively, by miR172, 
miR166, miR157, and miR839; Supplementary Fig. 1). 
miRNA activity in meiocytes might be connected to the 
regulation of the expression of transcription factors. For 
example, HD-ZIP transcription factors are absent from 
meiotic tissues in Physcomitrella patens but accumulate 
in premeiotic tissues (Yip et al. 2016). Additionally, tran-
scription factors like Squamosa are needed for male and 
female meiosis (Unte et al. 2003). Accordingly, the role 
of certain miRNAs (like miR166, which regulates HD-ZIP 
transcription factors) could be to exclude expression of 
certain transcription factor families or to tightly regulate 
their expression in meiocytes (which might be the role of 
miR157 and the regulation of Squamosa transcription fac-
tors). In summary, our re-analysis of transcriptomic and 
sRNA sequencing analysis supported the notion that the 
RNA silencing machinery might have a meiocyte-specific 
activity.

Although transcriptomic analyses are important to infer 
the activity of the different RNA silencing pathways in meio-
cytes, these analyses only provide a steady image of this 
tissue and ignore, for example, potential posttranscriptional 
regulation of mRNAs or the dynamism of protein accumula-
tion during the whole meiosis progression. To understand 
the subcellular localization and dynamics of the different 
AGO proteins during meiosis, we performed immunolocali-
zations of the AGO proteins that had commercially available 
antibodies (Agrisera, AGO1, 2, 4, 5, 6, 9, and 10, Fig. 2 
and Supplementary Fig. 2). Our approach allowed us to 
detect all AGOs but AGO6 and AGO10, which might be 

linked to a low accumulation of these proteins or a lack of 
sensitivity of our technical approach. In detail, AGO1 and 
its paralogs AGO2 and AGO5 displayed a similar localiza-
tion and expression pattern during prophase I, when DSBs 
are formed and repaired, with only AGO2 showing spuri-
ous accumulation in the nucleus (Figs. 2a, b, and c, and 
Supplementary Figs. 2a, b, and c). The three proteins were 
located mainly in the cytoplasm, similar to their localiza-
tion in somatic tissues (Bologna et al. 2018; Ye et al. 2012). 
From the leptotene to the diplotene stage these three AGO 
proteins formed cytoplasmic granules (Figs. 2a1, b1, and 
c1). In somatic tissues, cytoplasmic bodies are involved 
in the degradation and translation arrest of mRNAs (Mal-
donado-Bonilla 2014). In mammals, AGO proteins localize 
in P-bodies where they mediate the translational repression 
of their target mRNAs (Liu et al. 2005). The localization 
pattern observed for AGO1, 2, and 5 might indicate a similar 
role of RNA silencing in the posttranscriptional regulation 
of mRNAs, a process that is known to take place in other 
organisms like mammals (Yao et al. 2015). Additionally, this 
role might also be important for the posttranscriptional or 
translational repression of TEs (Kim et al. 2021), which are 
known to be active during meiosis (Yang et al. 2011) and 
regulated by miRNAs and easiRNAs which are potentially 
loaded in those AGO proteins (Borges et al. 2018; Creasey 
et al. 2014).

Despite the similarities between the accumulations during 
meiosis, AGO1, 2, and 5 showed differences in their dynam-
ics during this division. For example, AGO5 displayed a 
similar pattern of subcellular localization to AGO1, although 
its localization at cytoplasmic bodies apparently disappeared 
at diplotene (Fig. 2b4). AGO5 and AGO1 load different 
populations of miRNAs and siRNAs in somatic tissues (Mi 
et al. 2008), so it is plausible that AGO5 delocalization from 
cytoplasmic bodies might be connected to the absence of 
their target mRNAs or their loaded miRNAs. On the other 
hand, AGO2 showed a dual localization in the cytoplasm 
and the nucleus (Figs. 2c1-4 and Supplementary Figs. 2C1-
4) and was not detectable after metaphase I (Figs. 2c5-6 
and Supplementary Fig. 2C5). Both its nucleocytoplasmic 
localization and timing of expression are in line with its 
known role in DSB repair, which takes place during the 
first meiotic stages (Oliver et al. 2014; Wei et al. 2012). It 
is plausible that the cytoplasmic localization of AGO2 is 
connected to the loading of DSB-associated sRNAs in the 
cytoplasm, similar to the loading of RdDM-associated 24-nt 
siRNAs in AGO4 (Ye et al. 2012). Nevertheless, AGO2 
expression pattern was recapitulated in tetrads (Fig. 2c7 
and Supplementary Fig. 2C6), indicating that it might serve 
other roles in parallel to its function in DSB repair during 
meiosis. In Arabidopsis, AGO2 accumulation is regulated 
by arginine methylation (Hu et al. 2019), which is a post-
translational modification associated with the regulation of 



157Plant Reproduction (2022) 35:153–160 

1 3

the cell cycle (Raposo et al. 2018). It is plausible that the 
dynamic accumulation of AGO2 during meiosis might be 
associated with changes in its arginine methylation levels 
during meiosis progression, similar to the known regula-
tory role of this modification in the control of the C.elegans 
germline-specific AGO protein CSR-1A, which is an iso-
form that has specific accumulation during spermatogenesis 
(Nguyen et al. 2021).

On the other hand, the TGS/RdDM-associated AGO 
proteins, AGO4 and AGO9, were located in the nuclei dur-
ing all meiotic stages (Figs. 2d and e and Supplementary 
Figs. 2D and E). Exceptionally, at metaphase I, when the 
nuclear envelope dissolves, both proteins showed a dispersed 
accumulation. This is in accordance with the known role of 
the RdDM pathway in regulating DNA methylation during 
meiosis (Walker, et al. 2018) and protecting against mei-
otic recombination in certain chromosomal regions such as 

pericentromeres (Underwood et al. 2018). Meiocytes have 
the lowest CHH methylation values of all the reproductive 
nuclei analyzed, but its activity is needed for the regulation 
of gene expression (Walker et al. 2018). We detected a low 
accumulation of AGO4 and 9 after metaphase I (Figs. 2d5-6 
and e5-6 and Supplementary Figs. 2d5-6 and 2E5-6), which 
might partially cause this reduction in CHH methylation and 
might be connected to the low presence of 24-nt sRNAs in 
meiocyte sRNA libraries (Fig. 1b). The nuclear localization 
of AGO9 and AGO4 might explain their known roles in the 
dissolution of interlocks during meiosis and the mediation 
of appropriate chromosome segregation, respectively (Oliver 
et al. 2014, 2016). Several components of the PTGS and, 
specially, the TGS/RdDM pathway including RDR6, AGO9, 
and DRM1 and 2 control the specification of female gamete 
precursors, inhibiting the formation of ectopic megaspore 
mother cells (MMC) (Mendes et al. 2020; Olmedo-Monfil 
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et  al. 2010; Rodriguez-Leal et  al. 2015). In developing 
ovules, AGO9 accumulates in cytoplasmic foci of the MMC 
companion cells and loads 24-nt sRNAs from TEs (Olmedo-
Monfil et al. 2010). Our analysis indicates a divergent role of 
AGO9 during male meiosis, since we detected accumulation 
of this protein in the nucleus of male meiocytes, indicating a 
potentially active role in the establishment of DNA methyla-
tion. Interestingly, both the pollen mother cell (PMC) and 
the MMC experience analogous reorganization of chromatin 
which has been proposed to mediate the meiotic transcrip-
tional program (She et al. 2015). Male meiotic sRNAs are 
important for the regulation of gene expression (Huang et al. 
2019) and the inheritance of epigenetic states (Long et al. 
2021). Indeed, DNA methylation levels analyzed through 
reporters indicate that non-CG methylation might be higher 
in tetrads than in microspores (Ingouff et al. 2017), suggest-
ing that the RdDM activity could be dynamic through meio-
sis where it might play a transient role consistent with the 
regulation of the meiotic transcriptional program together 
with its known role in protecting against meiotic recombina-
tion (Underwood et al. 2018; Yelina et al. 2015).

In summary, our results (summarized in Supplementary 
Fig. 3) provide an overview of the subcellular localization, 
timing, and potential role of different RNA silencing path-
ways during meiosis. Furthermore, our work complements 
previous analysis that analyzed RNA silencing activity in 
meiocytes and opens the door for future molecular analysis 
of the specific role of AGO proteins during specific meiosis 
stages, which are technically challenging to purify for their 
analysis through high-throughput sequencing techniques at 
the moment.
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