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Abstract
Phenotypic variability of a genotype is relevant both in natural and domestic popula-
tions. In the past two decades, variability has been studied as a heritable quantitative 
genetic trait in its own right, often referred to as inherited variability or environmen-
tal canalization. So far, studies on inherited variability have only considered genetic 
effects of the focal individual, that is, direct genetic effects on inherited variability. 
Observations from aquaculture populations and some plants, however, suggest that 
an additional source of genetic variation in inherited variability may be generated 
through competition. Social interactions, such as competition, are often a source of 
Indirect Genetic Effects (IGE). An IGE is a heritable effect of an individual on the trait 
value of another individual. IGEs may substantially affect heritable variation underly-
ing the trait, and the direction and magnitude of response to selection. To understand 
the contribution of IGEs to evolution of environmental canalization in natural popula-
tions, and to exploit such inherited variability in animal and plant breeding, we need 
statistical models to capture this effect. To our knowledge, it is unknown to what 
extent the current statistical models commonly used for IGE and inherited variability 
capture the effect of competition on inherited variability. Here, we investigate the po-
tential of current statistical models for inherited variability and trait values, to capture 
the direct and indirect genetic effects of competition on variability. Our results show 
that a direct model of inherited variability almost entirely captures the genetic sensi-
tivity of individuals to competition, whereas an indirect model of inherited variability 
captures the cooperative genetic effects of individuals on their partners. Models for 
trait levels, however, capture only a small part of the genetic effects of competition. 
The estimation of direct and indirect genetic effects of competition, therefore, is pos-
sible with models for inherited variability but may require a two- step analysis.
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1  |  INTRODUC TION

Some genotypes show less variable phenotypes compared to others in 
response to perturbations in the genome or environment. The genetic 
mechanism that leads to insensitivity of a phenotype to genetic and 
environmental perturbations is known as “canalization” (Waddington, 
1942). Evolution of canalization is often associated with stabilizing 
natural selection for an optimal phenotype, as such selection favors 
mechanisms that reduce variance around the optimum so that more 
extreme phenotypes do not occur (Edgell et al., 2009; Flatt, 2005; 
Waddington, 1942; Wagner et al., 1997). Long- term stabilizing selec-
tion of a trait is therefore expected to reduce phenotypic variation.

Depending on the source of perturbation, canalization can be 
either genetic or environmental. In the following, we focus on envi-
ronmental canalization. Environmental canalization is commonly in-
ferred from the size of the environmental variance (Ve) of a genotype. 
In other words, genotypes that produce more stable phenotypes 
have lower Ve, and a decrease of Ve due to selection indicates canal-
ization (Flatt, 2005; Gibson & Bradley, 1974; Wagner et al., 1997).

Phenotypic variability of a genotype is relevant not only in natural 
populations but also in agriculture. In animal and crop production, low 
variability of traits is often of economic importance. In the pig indus-
try, for example, excessive variability in size and weight of animals is 
penalized by slaughterhouses, so that delivering animals within a pre-
ferred range has an economic benefit (Hennessy, 2005; Mulder et al., 
2008). In aquaculture, fish that deviate too much from the average 
size are usually not sold, which reduces revenues (Khaw et al., 2016; 
Marjanovic et al., 2016). Low Ve in crops is desirable, as it indicates 
stability against unpredictable conditions (Edwards & Jannink, 2006). 
Selection for trait uniformity in animal and plant breeding is an anal-
ogy of evolution of canalization in natural populations.

The phenotypic variability of a genotype, measured either repeat-
edly on the same individual or on multiple individuals belonging to the 
same family, has been studied as a quantitative trait in its own right. 
This concept was first introduced by Waddington (1942) and has been 
an integrative part of quantitative genetics ever since, with growing 
interest over the last two decades, largely due to the development of 
methods to estimate the genetic variance in Ve (Mulder et al., 2009; 
Rönnegård et al., 2010; SanCristobal- Gaudy et al., 1998; Sorensen 
& Waagepetersen, 1942, 2003). Inheritance of the phenotypic vari-
ability of a genotype is often referred to as “inherited variability” or 
“heritable variation in environmental variance” (Hill & Mulder, 2010; 
Mulder et al., 2007; SanCristobal- Gaudy et al., 1998). There is strong 
evidence of genetic variation in Ve. The study by Mackay and Lyman 
(2005), who compared bristle number of different isofemale lines of 
Drosophila, is one of the best evidences that genotypes differ in Ve, 
that is, that environmental canalization has a genetic component. In 
addition, a number of studies in plant and animal populations showed 
that variability often has a substantial genetic component (reviewed 
by Hill & Mulder, 2010 and Iung et al., 2020).

The majority of studies focusing on the inheritance of quantita-
tive traits consider only the direct genetic effects of an individuals’ 
own genes (DGE) on the trait value of the individual itself. However, 
most individuals are not solitary but rather social organisms, and 

with social interactions, such as competition and cooperation, the 
trait value of an individual may be influenced not only by the indi-
viduals’ own genes but also by the genes of its social partner. This 
heritable effect of a social partner on the trait values of the focal 
individual is known as an indirect genetic effect (IGE; referred to 
as associative effects in Griffing, 1967). IGEs have been studied in 
animals (e.g., Ellen et al., 2014), plants (e.g., Brotherstone et al., 2011; 
Mutic & Wolf, 2007), and microorganisms (Crespi, 2001), and both 
in natural (e.g., Wilson et al., 2011) and in domestic populations (e.g., 
Khaw et al., 2016; Muir, 1996). A number of studies have shown that 
social interactions can contribute substantially to heritable varia-
tion underlying a trait, and may change both the magnitude and the 
direction of response to selection (Bijma, 2011; Bijma et al., 2007; 
Ellen et al., 2007; Griffing, 1976, 1977; Hamilton, 1964a, 1964b).

So far, social interactions have been studied mainly in relation 
to their effects on trait values of individuals. However, in aquacul-
ture populations, it has been observed that competition for feed and 
formation of a social hierarchy also increases the variation of trait 
values among individuals (Cutts et al., 1998; Hart & Salvanes, 2000; 
Jobling, 1995). Phenotypic studies show that populations displaying 
less competition tend to grow more uniformly and have higher aver-
age performance (Cutts et al., 1998; Hart & Salvanes, 2000; Jobling, 
1995). These observations suggest that phenotypic variability may 
also be affected by social interactions, with IGEs harboring genetic 
variation in variability that has been overlooked so far. Previously, 
studies in Atlantic salmon (Sonesson et al., 2013), rainbow trout 
(Janhunen et al., 2012; Sae- Lim et al., 2015), and Nile tilapia (Khaw 
et al., 2016; Marjanovic et al., 2016) identified a large direct genetic 
component in the variability of body weight.

The relationship between competition and phenotypic variabil-
ity is not unique for aquaculture but can also be observed in plants. 
Plant breeders have successfully improved the productivity of 
crops by selecting, partly unintentionally, less competitive pheno-
types, which has resulted in more uniform crops (Austin et al., 1980; 
Denison et al., 2003; Donald, 1968).

Until recently, we lacked the tools to investigate whether IGEs 
also contribute to genetic variation in variability. IGE- models come 
in two types; variance- component models and trait- based models 
(Griffing, 1967; Moore et al., 1997; reviewed by Bijma, 2014 and 
McGlothlin & Brodie, 2009). Variance component models cannot 
explain the observed relationship between competition and vari-
ability because phenotypic variance is independent of the average 
level of the IGE. Trait- based models, in contrast, lead to a relation-
ship between competition and variability, but on the population 
level, this relationship is identical for competition and cooperation, 
which does not reflect the pattern observed in real populations. On 
the other hand, current models of inherited variability treat variabil-
ity as a property of a single individual, ignoring the component due 
to competition.

We recently proposed a quantitative genetic model that allows 
for a relationship between IGEs and inherited variability (Marjanovic 
et al., 2018). In this model, competition between social partners 
leads to divergence of their phenotypes (e.g., body weight) over 
their lifetime. Hence, the model allows for indirect genetic effects 
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to lead to differences in variability of trait values, on both group and 
population level, similar to observations in real populations.

To understand the contribution of IGEs to the evolution of en-
vironmental canalization in natural populations, and to exploit such 
inherited variability in animal and plant breeding, we need statistical 
models to capture this phenomenon. The model of Marjanovic et al. 
(2018) can be used to estimate effects of competition, but it requires 
time- series data, which are often not available. The use of existing 
statistical models for IGE and inherited variability applied to a single 
phenotype, such as the final phenotype of a time series, would allow 
the study of a much broader range of cases. However, to our knowl-
edge, it is unknown to what extent such models capture the effect 
of competition on inherited variability.

Here, we investigate the potential of existing statistical models 
for inherited variability and for trait values, to capture the direct and 
indirect genetic effects of competition on variability. To address this 
issue, we conducted a simulation study in which competition be-
tween social partners (i.e., IGEs) leads to inherited variability of trait 
values, using the model of Marjanovic et al. (2018). Subsequently, we 
analyzed these data with four models. The ability of those models to 
capture direct and indirect genetic effects on variability was tested 
by comparing estimated genetic effects from each of the models 
with simulated direct breeding values for trait level, and with direct 
and indirect breeding values for competition.

2  |  MATERIAL S AND METHODS

2.1  |  Quantitative genetic model

In this section, we summarize the quantitative genetic model of 
Marjanovic et al. (2018) that integrates IGEs and inherited variability. 
This model was used to simulate a population in which competition 
affects variability. We use individual growth rate of fish, modeled 
over time, as an example to illustrate the model.

In this model, we consider groups of two individuals. Each individ-
ual is both a focal individual in the model for its own phenotype, and 
a social partner in the model for the phenotype of its group mate. In 
aquaculture, the growth of individuals is affected by the difference in 
body weight between interacting individuals, with higher body weight 
giving a competitive advantage to an individual in terms of growth 
(Doyle & Talbot, 1986). Therefore, the phenotypic value for the growth 
rate of the focal individual is affected by the ordinary direct genetic and 
environmental effects of the focal individual itself, and by the differ-
ence in body weight between the focal individual and its social partner. 
The degree to which the difference in body weight affects the pheno-
type of an individual is measured by a regression coefficient b,

where Pt, i is the body weight of focal individual i at time point t, Pt−1, i is 
the body weight of i at the previous time point, �GR is the mean growth 
rate of the population, AGR,i is a (direct) breeding value for the growth 
rate of individual i, Ep, GR,i and Et,GR,i are permanent and temporary 

non- heritable (“environmental”) effects of individual i, and bij is a re-
gression coefficient.

The absolute value of bij describes the strength of the social in-
teraction. The sign of b is a measure of cooperation, where a nega-
tive b indicates competition, while a positive b indicates cooperation. 
A negative b, for example, indicates that an individual grows slower 
when its partner has a higher body 

(
Pt−1,j − Pt−1,i > 0

)
.

In this model, b is not a fixed parameter, but a composite genetic 
trait that can evolve over generations. The b exhibits genetic varia-
tion due to a direct genetic effect of the focal individual (AD,i), repre-
senting “genetic resistance to competition,” and an indirect genetic 
effect of its social partner, representing the “genetic cooperative 
effect” (AI,j). Hence, the model allows for variation among individuals 
in sensitivity to competition, so that some individuals may suffer less 
from the presence of a large social partner than others. Similarly, the 
model allows for variation among individuals in competitive effect. 
Some individuals may be large at the expense of their group mate, 
whereas other large individuals may not suppress the growth of their 
social partner. Thus, for focal individual i with social partner j, the 
regression coefficient bij is given by

where b represents the average regression coefficient, which is a 
population parameter that is negative under competition and pos-
itive under cooperation. The AD,i and ED,i are the direct genetic and 
environmental effect of individual i on bij, while AI,j and EI,j are the 
indirect genetic and environmental effect of individual j on bij. As 
common in quantitative genetics, A and E are defined relative to a 
mean of zero. A negative value of AD indicates that the individual 
is sensitive to competition (as compared to an average individual), 
while an individual with positive AD is resistant to competition. 
Similarly, an individual with negative AI is competitive, in the sense 
that it suppresses the body weight of its partner by a relatively large 
amount, while an individual with positive AI is cooperative. Note that 
b is non- symmetric, that is, bij ≠ bji, as individuals may differ in their 
breeding values for b. In other words, an individual that is strongly 
affected by its social partner, does not necessarily also have a strong 
effect on its social partner.

Therefore, in the total model (Equations 1 and 2), there are three 
breeding values –  an ordinary direct breeding value for growth rate (
AGR

)
, a direct breeding value for b (AD) representing genetic resis-

tance to competition, and an indirect breeding value for b
(
AI

)
 repre-

senting a genetic cooperative effect.

2.2  |  Simulation

2.2.1  |  Population structure

We simulated a family- structured population using the model pre-
sented above (Equations 1 and 2). Our objective was to test whether 
currently available models for IGE and inherited variability cap-
ture the effect of IGE on variability, rather than to investigate the 

(1)Pt,i − Pt−1, i = �GR + AGR,i + Ep, GR,i + Et,GR,i + bij
(
Pt−1,j − Pt−1,i

)

(2)bij = b + AD,i + ED,i + AI,j + EI,j
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statistical power of those models. For this reason, we simulated large 
data sets to avoid that limited power would blur the results.

We first simulated a base population of 100 sires and 10,000 dams, 
all unrelated. Each animal in the base population was assigned a breed-
ing value for growth rate, and a direct and indirect breeding value for 
b, drawn from a multivariate normal distribution. Next, the offspring 
population was created by mating each sire with 100 randomly chosen 
dams. Body weight records were simulated on the offspring generation 
only. For the simulation of data on trait levels, each dam produced 10 
offspring, resulting in 1000 offspring per sire, and a total of 100,000 
offspring. For the simulation of data on inherited variability, we simu-
lated a larger data set because analysis of variability was performed on 
records grouped by family (see below). Thus, to create records on the 
variability of body weight, each dam produced 100 offspring, resulting 
in 10,000 offspring per sire, and a total of 1 million offspring.

The breeding values for growth rate and direct and indirect 
breeding values for b of the offspring were simulated as the average 
breeding value of the sire and dam, plus a Mendelian sampling term 

drawn from N

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

0

0

0

⎤
⎥⎥⎥⎥⎦
,
1

2

⎡
⎢⎢⎢⎢⎣

σ2
AGR

0 0

0 σ2
AD

0

0 0 σ2
AI

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠
. In addition, each off-

spring was assigned a permanent and temporary environmental ef-
fect on body weight, and a direct and indirect environmental effect 

on b. These were drawn from N

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

σ2
Ep,GR

0 0 0

0 σ2
Et,GR

0 0

0 0 σ2
ED

0

0 0 0 σ2
EI

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

 . 

In the default scenario, the genetic and environmental covariances 
were all set to 0.

Groups of two members were created by randomly assigning a 
social partner to each offspring, which resulted in 50,000 groups for 
the analysis of trait levels, and 500,000 groups for the analysis of 
trait variability. Subsequently, phenotypes for 10- time points were 
obtained for all individuals by using Equations 1 and 2. Body weight 

at the last time point was used as the trait of interest and may, for 
example, reflect harvest weight in fish. Simulations were conducted 
using the R software (R Development Core Team, 2011).

2.2.2  |  Parameters

The parameters were chosen to represent the growth of fish as an 
example. Table 1 shows the parameters used in the simulations. 
Starting weight of the individuals was set to 10 g. Mean growth rate 
(μGR) was also 10 g. The genetic standard deviation of growth rate 
(�AGR

) was set to 1 g. (See Marjanovic et al. (2018) for examples of the 
typical behavior of populations for these parameter values). 
Repeatability was set to 0.7, and heritability of growth rate to 0.5 in 
the absence of social interactions (b = 0). Phenotypic variance was 
calculated as �2

P
 = σ2

AGR
∕h2 and was equal to 2 g2, permanent environ-

mental effect on growth (σ2
Ep,GR

) as 0.2 �2
P
 = 0.4 g2 and temporary en-

vironmental effect (�2
Et,GR

) as 0.3 �2
P
 = 0.6 g2 (Table 1).

The b values used in the simulation were −0.05 (competition), 
0 (no social interaction), or 0.05 (cooperation). The total standard 
deviation of b was set to 60% of 0.05; �b = 0.03. Therefore, stan-
dard deviations of genetic and environmental components of b 

had to satisfy 
√

�
2
AD

+ �
2
AI

+ �
2
ED

+ �
2
EI
= 0.03. All standard deviations 

were assumed equal; hence, each of them had a value of 0.015 
(Table 1).

In addition to the default values of �AD
, �AI

, and �AGR
, we also simu-

lated data where these values were 3× larger or 3× smaller (Table 1). 
These values were used to test the effect of the magnitude of the 
genetic variance on the estimates. In total, we tested 21 scenarios 
with different values of �AD

, �AI
, �AGR

, and b (Table 2).
Finally, we investigated how a non- zero genetic correlation affects 

estimated correlations, by simulating data with correlations of −0.5 or 
+0.5 between �AD

, �AI
, �AGR

, and default values for the other parameters.
For the analysis of inherited variability, each scenario had 100 repli-

cates. For the analysis of levels of a trait, each scenario had 10 replicates.

TA B L E  1  Parameters used in the simulation

Parameters Default values Alternate values

Mean growth rate, �GR 10 g

Starting weight 10 g

Genetic standard deviation for growth rate, σAGR
1 g 3 g or 0.3 g

Cooperation effect, b −0.05, 0, or 0.05

Direct and indirect genetic standard deviation, �AD
= �AI

0.015 0.045 or 0.005

Direct and indirect environmental standard deviation, �ED = �EI
0.015

Phenotypic variance, �2
PGR

a 2 g 18 g or 0.18 g

Permanent environmental variance, σ2
Ep,GR

b 0.4 g 3.6 g or 0.036 g

Temporary environmental variance, σ2
Et,GR

b 0.6 g 5.4 g or 0.054 g

a
�
2

PGR
 was calculated assuming b = 0 i.e., as �2

PGR
=

σ2
AGR

h
, where h = 0.5.

b
�
2

Ep,GR
 was calculated as 0.2 �2

PGR
, and �2

Et,GR
 as 0.3 �2

PGR
.
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2.3  |  Statistical models

We estimated genetic effects for body weight at the last time 
point and its variability, using two models for each trait. For inher-
ited variability, these were (i) a direct sire model, and (ii) an indirect 
sire model. For the trait, these were (iii) a direct sire– dam model, 
and (iv) an indirect sire– dam model. We used sire models and data 
grouped by family for inherited variability, because this is a simple 
and robust approach to estimate genetic parameters and genetic ef-
fects for VE, and avoids the need for complex models such as double 
hierarchical generalized linear models (Rönnegård et al., 2010). For all 
four models, genetic effects were estimated using residual maximum 
likelihood (REML) implemented in ASReml 4.1 software (Gilmour 
et al., 2015). Subsequently, we estimated Pearson correlations be-
tween the estimated genetic effects from each model and each of 
the simulated breeding values. Estimated genetic effects from sire 
models were correlated with simulated breeding values of sires, while 
estimated genetic effects from sire– dam models were correlated 
with simulated breeding values of both sires and dams. Table 3 gives 
an overview of the estimated correlations. Models are explained in 
detail below.

2.3.1  |  Direct sire model for inherited variability

As a measure of the direct component of inherited variability, we 
used the log- transformed within- family variance of body weight. 

Log transformed within- family variance of one full- sib family was 
treated as a trait of the sire, so that each sire had 100 observations 
of within- family variance, each based on 100 offspring per sire– dam 
combination. This model corresponds to an ordinary model for in-
herited variability (Rowe et al., 2006), and gives estimates of half of 
the direct breeding values of a sire for inherited variability ((sD). The 
model was:

where yv,D is the vector of log- transformed within- family variance 
of body weight, µ is the overall mean, sD is a vector of direct random 
genetic effects of sires, with sD ~ N(0, �2

SD
), where �2

SD
 is the direct sire 

variance, ZDs
 is an incidence matrix linking observations to sires, and 

e is the vector of random residuals, with e ~ N(0, �2
e
).

2.3.2  |  Indirect sire model for inherited variability

Indirect genetic effects are expressed in the phenotypes of social 
partners. Therefore, to estimate indirect random genetic effects 
of sires for variability (sI), we used the log- transformed variance 
of body weight of the group mates of full- sib families descending 
from the sire. Thus, each sire had 100 records, which were the log- 
transformed variance of body weight of the group mates of each of 
the 100 families produced by a sire. The model was:

yv,D = μ + ZDs
sD + e,

yv,I = � + ZIs
sI + e,

Scenarioa
b effectb

�AD
�AI

�AGR

Default scenario 1 Competition 0.015 0.015 1

2 Neutral 0.015 0.015 1

3 Cooperation 0.015 0.015 1

Different �AD
4 Competition 0.045 0.015 1

5 Neutral 0.045 0.015 1

6 Cooperation 0.045 0.015 1

7 Competition 0.005 0.015 1

8 Neutral 0.005 0.015 1

9 Cooperation 0.005 0.015 1

Different �AI
10 Competition 0.015 0.045 1

11 Neutral 0.015 0.045 1

12 Cooperation 0.015 0.045 1

13 Competition 0.015 0.005 1

14 Neutral 0.015 0.005 1

15 Cooperation 0.015 0.005 1

Different �AGR
16 Competition 0.015 0.015 3
17 Neutral 0.015 0.015 3
18 Cooperation 0.015 0.015 3
19 Competition 0.015 0.015 0.3
20 Neutral 0.015 0.015 0.3
21 Cooperation 0.015 0.015 0.3

aParameter values that differ from those in default scenario are given in bold.
bCompetition corresponds to b of −0.05; Neutral corresponds to b of 0; Cooperation corresponds 
to b of +0.05.

TA B L E  2  Scenarios
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where yv,I is the vector of log- transformed variance of body weight 
of the group mates of the full- sib families descending from the sire, µ 
is the overall mean, sI is the vector of indirect random genetic effects 
of a sire, with (sI) ~ N(0, �2

sI
), where �2

sI
 is the indirect sire variance for 

variability, ZIs
 is an incidence matrix linking observations to sires, and 

e is the vector of random residuals, with (e) ~ N(0, �2
e
).

2.3.3  |  Direct sire– dam model for the trait

Here, we use an ordinary sire– dam model, which assumes equal ge-
netic variance for sires and dams. The model was as follows:

where yt,D is the vector of individual body weight records of off-
spring, µ is the overall mean, pD is the vector of direct random ge-
netic effects of sires and dams (“parents”), with pD ~ N(0, �2

pD
), where 

�2
pD

 is the direct sire– dam variance, ZDp
 is an incidence matrix linking 

observations to parents, and has a “1” in the column for the sire and 
in the column for the dam of the offspring producing the record, 
and e is the vector of random residuals, with e ~ N(0, �2

e
). This model 

gives estimates of half of the direct breeding values of a parent for 
body weight (pD).

2.3.4  |  Indirect sire– dam model for the trait

In this model, we link the observation on an individual to the sire and 
dam of its group mate. The model was:

where yt,I is the vector of individual body weight records of individu-
als, µ is the overall mean, pI is the vector of indirect random genetic 
effects of the parents of the group mate of the focal individual, with 

pI ~ N(0, �2
pI
), where �2

pI
 is the indirect sire– dam variance, ZIp

 is an inci-
dence matrix with “1” in the column for the sire and in the column for 
the dam of the group mate of the focal individual, and e is the vector 
of random residuals, with e ~ N(0, �2

e
).

3  |  RESULTS

3.1  |  Variability models

Both direct and indirect estimated sire effects for variability 
showed near- zero correlations with simulated breeding values of 
sire for growth (AGR, Tables 4 and 5). Therefore, variability models 
do not capture genetic variation in the trait level, which is expected.

3.1.1  |  Direct effects

The estimated direct sire effects on variability showed strong nega-
tive correlations with simulated direct breeding values for b(ADb

, 
resistance to competition) under competition, cooperation, and for 
neutral b (Table 4). Therefore, offspring of sires that are resistant to 
competition (i.e., have higher b) show lower variability of body weight. 
Correlations between estimated direct sire effects and simulated in-
direct breeding values for b (AIb

), on the other hand, were near zero, 
under competition, cooperation, and for neutral b. These results in-
dicate that cooperative effects of sires (AIb

) have negligible effect on 
the phenotypic variation among their offspring. In conclusion, these 
results suggest that current (i.e., direct) models of inherited variabil-
ity capture mostly the direct genetic effects (ADb

) of competition, but 
not the indirect effect (AIb

). In other words, they capture the sensitiv-
ity of individuals to competition, but not the competitive effects of 
individuals on the phenotypes of their group mates.

With a higher direct genetic variance in b (�AD
; compared to the 

default value), or lower indirect genetic variance in b (�AI
), correlations 

between estimated direct sire effects and simulated direct breeding 

yt,D = � + ZDp
pD + e,

yt,I = � + ZIp
pI + e,

TA B L E  3  Overview of estimated 
correlations between estimated and 
simulated breeding values

Model Estimated 
genetic effects

Simulated breeding 
values

a

Direct sire model

Indirect sire model

Analysis of the trait 

Direct sire and dam 

Indirect sire and dam 
a Estimated genetic effects from sire models were correlated with simulated 
breeding values of sires, while estimated genetic effects from sire and dam models 
were correlated (r) with simulated breeding values of sires and dams (the symbol 
p indicating a parent effect).

Analysis of the  variability 
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values for b (ADb
) were slightly closer to −1. The opposite was true 

for lower direct genetic variance in b (�AD
) and higher indirect genetic 

variance in b (�AI
). When the direct genetic variance in b was small, or 

when the indirect genetic variance in b was large, the direct model for 
inherited variability captured more indirect genetic effects, resulting 
in higher negative correlations between estimated direct sire effects 
and simulated indirect breeding values for b (AIb

 ), Table 4).

3.1.2  |  Indirect effects

Correlations between estimated indirect sire effects on variability 
and simulated indirect breeding values for b (AIb

) were strongly nega-
tive, in competition, cooperation, and neutral scenarios (Table 5). 
This result indicates that group mates of offspring of sires that have 
high AIb

, that is, sires that are cooperative, have lower variability. 
Similar to the previous model, correlations between estimated indi-
rect sire effects and simulated direct breeding values for b (ADb

) were 
small and negative under competition, and close to zero under coop-
eration and for neutral b. Thus, indirect models of inherited variabil-
ity capture mostly indirect genetic effects of competition, but not 
the direct effects (ADb

). In other words, they capture the competitive 

effects of individuals on the phenotypes of their group mates, but 
not the sensitivity of individuals to competition.

With a higher indirect genetic variance in b (�AI
), the correlation 

between estimated indirect genetic effects of a sire and indirect 
breeding values for b was closer to −1. When �AI

 was low or when 
direct genetic variance in b (�AD

) was high, correlations between esti-
mated indirect genetic effects of a sire and simulated direct breeding 
values for b slightly increased.

3.2  |  Trait models

Correlations between estimated sire and dam effects for growth, 
from both direct and indirect sire– dam models for trait values 
and simulated direct and indirect breeding values for b were near 
0 (results not shown). Trait models, therefore, do not capture ge-
netic effects of competition generated by the model in Equations 
1 and 2. This result is not surprising, as the classical sire– dam 
model does not include IGEs, while the indirect sire– dam model 
is essentially the variance- component version of an IGE model, 
which does not make a connection between the level of IGEs and 
trait variability.

TA B L E  4  Correlations between estimated direct sire effects for 
variability and simulated breeding values for growth, and direct and 
indirect breeding values for b

Scenarioa
b effect AGR ADb

AIb

1 Competition 0.02 −0.96 −0.15

2 Neutral 0.02 −0.96 0.04

3 Cooperation 0.02 −0.91 0.07

4 Competition 0.02 −0.98 −0.05

5 Neutral 0.02 −0.98 −0.02

6 Cooperation 0.02 −0.96 0.02

7 Competition −0.01 −0.80 −0.33

8 Neutral 0 −0.80 −0.04

9 Cooperation 0 −0.60 0.19

10 Competition 0 −0.80 −0.46

11 Neutral 0 −0.87 −0.22

12 Cooperation 0 −0.85 0.05

13 Competition −0.01 −0.97 −0.03

14 Neutral −0.01 −0.96 0.01

15 Cooperation −0.01 −0.91 0.05

16 Competition 0 −0.96 −0.14

17 Neutral 0 −0.96 −0.02

18 Cooperation 0 −0.91 0.09

19 Competition 0.01 −0.96 −0.16

20 Neutral 0.01 −0.96 −0.04

21 Cooperation 0.01 −0.91 0.07

aDetails of the scenarios are summarized in Table 2.

TA B L E  5  Correlations between estimated indirect sire effects 
for variability and simulated breeding values for growth, and direct 
and indirect breeding values for b

Scenarioa
b effect AGR ADb

AIb

1 Competition 0.01 −0.15 −0.93

2 Neutral 0.01 −0.04 −0.91

3 Cooperation 0.01 0.08 −0.84

4 Competition 0.02 −0.43 −0.81

5 Neutral 0.02 −0.17 −0.87

6 Cooperation 0.01 0.15 −0.83

7 Competition −0.01 −0.04 −0.94

8 Neutral −0.01 0 −0.90

9 Cooperation −0.01 0.03 −0.84

10 Competition −0.02 −0.04 −0.98

11 Neutral −0.02 −0.01 −0.98

12 Cooperation −0.02 0.03 −0.97

13 Competition 0 −0.26 −0.69

14 Neutral 0 0 −0.61

15 Cooperation 0 0.19 −0.47

16 Competition 0 −0.12 −0.93

17 Neutral 0 −0.01 −0.92

18 Cooperation 0 0.11 −0.85

19 Competition 0 −0.15 −0.93

20 Neutral 0 −0.04 −0.91

21 Cooperation 0 0.07 −0.85

aDetails of the scenarios are summarized in Table 2.
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3.2.1  |  Direct effects

Estimated direct sire and dam effects for growth showed a strong 
positive correlation with simulated direct breeding values (~0.83) for 
all scenarios (results not shown). Correlations were lower than 1 be-
cause dam effects were based on only 10 observations; Correlations 
were near 1 when considering sires only (results not shown).

3.2.2  |  Indirect effects

Estimated indirect sire and dam effects showed a moderately negative 
correlation (−0.33) with simulated breeding values for growth under 
competition, but a moderate and positive correlation (0.26) under co-
operation. Hence, the sign of the correlation corresponded to the sign 
of b. Thus, individuals with high genetic potential for growth reduce 
the growth of their group mates under competition but increase the 
growth of their group mates under cooperation. Changes in values of 
�AGR

, �AI
, and �AD

 had only a minor effect on the estimated correlations.

3.3  |  Genetic correlations between breeding values

The above reported results are based on data where genetic correla-
tions between simulated breeding values were 0. We also investi-
gated scenarios with correlations of −0.5 or +0.5 between breeding 
values (with default values for the other parameters). Results are in 
Tables S1– S4. As expected, estimated correlations between genetic 
effects from the direct sire model and AIb

 and AGR increased, when 
ADb

 had a non- zero correlation with AIb
 and AGR (Table S1). Similarly, 

an increase in estimated correlations was observed between genetic 
effects from the indirect sire model, when AIb

 had a non- zero correla-
tion with ADb

 and AGR (Table S2), and in trait models when AGR had a 
non- zero correlation with ADb

 and AIb
.

4  |  DISCUSSION

We investigated whether current statistical models for inherited vari-
ability and for trait values capture direct and indirect genetic effects 
of competition on variability. Our results show that the ordinary direct 
model of inherited variability almost entirely captures the direct ge-
netic effect of competition on variability, as illustrated by large correla-
tions between estimated genetic effects and simulated direct breeding 
values for b. Similarly, an indirect model of inherited variability captures 
the indirect genetic effects of competition. Models for trait levels, how-
ever, capture only a small part of the genetic effects of competition.

4.1  |  Capturing b

In Marjanovic et al. (2018), we developed a quantitative genetic 
model (Equations 1 and 2) in which the regression coefficient b 

comprises both a direct and an indirect genetic effect. Using simula-
tions, we demonstrated that IGEs and variability can co- evolve, be-
cause the regression coefficient can respond to selection, similar to 
in trait- based IGE models (Chenoweth et al., 2010). Therefore, both 
direct and indirect genetic effects on b affect phenotypic variability. 
In the current direct quantitative genetic models for inherited vari-
ability, the contribution of the social partner is ignored, which is il-
lustrated by the results of this study, where the direct sire model for 
inherited variability failed to capture indirect genetic effects on b. 
In contrast, the relationship between estimated genetic effects of a 
sire for variability and simulated direct genetic effects for b showed 
a consistently linear relationship (Figure 1). Response to selection 
for higher uniformity, relying on direct genetic effect only, may be 
less effective as an entire level of potential genetic variation (the 
cooperative effect AIb

) is not exploited. In addition, the presence of 
IGEs on b may cause a response in variability to divergence from its 
expectation, particularly when they are correlated to direct genetic 
effects on b (Ellen et al., 2014).

When traits are affected by social interactions, selection strate-
gies that account for both direct and indirect genetic effects can re-
sult in a higher response to selection (e.g., Bijma et al., 2007; Griffing, 
1976; Muir, 1996). Future breeding programs aiming to reduce vari-
ability may, therefore, need to consider both direct and indirect ge-
netic effects. Using an indirect sire model for inherited variability, 
we showed that estimated genetic effects of a sire had a high cor-
relation with the simulated indirect breeding values for b. Also, this 
relationship is remarkably linear (Figure 2).

Capturing genetic effects of competition on variability, there-
fore, is promising with models for inherited variability, but may re-
quire a two- step analysis, in which direct and indirect genetic effects 
are estimated separately, and subsequently combined into a total 
breeding value for variability, analogous to IGE models for trait val-
ues (Bijma et al., 2007). The benefit of such an approach is that it 
only requires group- structured data, but not time- series data, as the 
analysis is performed on the final phenotype.

The use of a one- step approach to estimate direct and indirect 
breeding values for b would be challenging with the experimental 
design used in this study, where groups consisted of two individuals 
and offspring of a sire were randomly assigned to groups. Since each 
individual was both a focal individual and a social partner, calculation 
of the direct and social within- family variance would require using all 
data twice. In other words, the same data would be needed to calcu-
late the variance among the offspring of each sire and to calculate the 
variance among the social partners of the offspring of each sire. In 
the present study, we followed the experimental design of Marjanovic 
et al. (2018), which has groups of only two individuals. However, the 
need for a two- step analysis can be avoided by using larger groups 
consisting of members of two families each. In such a design, the y- 
variable could be the within- group variance of each family in the group 
(two records per group), and both a direct genetic effect of the family 
and an indirect genetic effect of the partner family could be fitted. 
Alternatively, if multiple observations of body weight of two individu-
als in a group are available, direct and indirect genetic components of 
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b could be estimated using a random regression method (Marjanovic 
et al., 2018).

4.2  |  Validation experiments

To validate the results of this study and the previous study by 
Marjanovic et al. (2018), the proposed models should be tested on 
empirical data. Empirical data could give insight into whether the 
theoretical possibility that IGEs contribute to genetic variation in 
variability are also biologically relevant, and in which situations. In 
addition, it would allow testing the statistical models proposed here 
and to optimize methods and models for future studies aiming to es-
timate genetic effects of competition. Selection experiments where 
one selection strategy involves selection for direct genetic effects 
on variability only, while the other would select for both direct and 
indirect genetic effects, would also allow quantifying the contribu-
tion of IGEs to response to selection in variability.

The experiments could have a group structure with two indi-
viduals per group, similar to our study, but trials involving larger 
group sizes could also be conducted to test the single- step analysis 
suggested above and to quantify the effect of group size on the 
estimates. For groups of two individuals, data on both individuals in 
each group should ideally be collected at several time points. Such 
time- series data would allow using not only a random regression 
approach as suggested by Marjanovic et al. (2018), but also the 
direct model and the indirect model for inherited variability pre-
sented in this study could be used. A combination of time- series 
analysis and analysis of the final record would give insight into the 
mechanisms underlying inherited variability. While the presence of 
inherited variability has been demonstrated convincingly in several 
cases (Hill & Mulder, 2010), little is known of the underlying mech-
anisms, and the social environment has received little attention in 
such studies. Such experiments could be performed using zebrafish 
as a model organism, as this species shows substantial competition 
and fast growth.

F I G U R E  1  Correlations between estimated direct genetic effects of a sire for variability and simulated direct breeding values of a sire for 
growth (a), simulated direct breeding values of a sire for b (b), and simulated indirect breeding values of a sire for b (c) under competition and 
cooperation

Direct sire model for inherited variability – default scenarios

Compe��on
(a)

(b)

(c)

Coopera�on
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For estimation of direct and indirect breeding values for b in a 
commercial setting in plant and animal breeding, new phenotyping 
techniques that involve automated phenotype detection and video 
tracking of individuals in 3D space could be used in the future (see, 
e.g., idTracker, http://www.idtra cker.es/). These techniques can pro-
vide large- scale time- series data on individual trait values (e.g., body 
weight calculated from the 3D image, size, and shape plants) and 
information on social interactions between individuals. The combi-
nation of such technologies with new models for interactions among 
individuals, such as Equations 1 and 2, facilitates the integration of 
the social genetic environment into quantitative genetic descrip-
tions of inheritance and response to selection.

5  |  CONCLUSION

Our results show that a direct model of inherited variability almost 
entirely captures the genetic sensitivity of individuals to competition, 
while an indirect model of inherited variability captures the cooperative 

genetic effects of individuals on their partners. Models for trait levels, 
however, capture only a small part of the genetic effects of competi-
tion. The estimation of direct and indirect genetic effects of competi-
tion, therefore, is possible with models for inherited variability but may 
require a two- step analysis or a different data setup involving larger 
groups.
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