
Received: 4 June 2020 Revised: 2 October 2021 Accepted: 3 December 2021

DOI: 10.1111/agec.12702

ORIG INAL ARTICLE

Does neighborhood matter? Spatial proximity and farmers’
technical efficiency
Wondmagegn Tirkaso1 Atakelty Hailu2

1 Swedish University of Agricultural
Sciences (SLU), Department of
Economics, Uppsala, Sweden
2 University of Western Australia (UWA),
School of Agriculture and Environment,
Perth, Australia

Correspondence
WondmagegnTirkaso, SwedishUniversity
ofAgricultural Sciences (SLU),Depart-
ment ofEconomics, Box 7013, SE-75007
Uppsala, Sweden.
Email:wondmagegn.tafesse@slu.se,
wondewin@gmail.com

Abstract
This article examines the effects of neighborhood on the farmer’s technical effi-
ciency (TE) level, adopting a stochastic frontier and spatial Durbin regression
models. Our study exploits a three-wave household-level panel data from the
Ethiopian Rural Socioeconomic Survey (ERSS) collected between 2011 and 2015.
We find that farmers have an average TE score of 53%, implying a substantial
potential for improvement in the production level. We further find that there
is a positive and statistically significant spatial interdependence in TE levels
between farms in neighboring communities. Input use, education, and other
demographic characteristics are found to have significant positive direct and
indirect effects. The findings suggest that policies and programs targeting pro-
ductivity improvements in agriculture need to consider spatial spillover effects.
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1 INTRODUCTION

The evidence that neighborhood influences economic
agents’ decisions has received considerable attention in
recent years (e.g., Bandiera & Rasul, 2006; Bramoulleť
et al., 2009; Conley & Udry, 2010; Krishnan & Patnam,
2014; Sacerdote, 2001). Economic agents usually have cer-
tain, but limited knowledge about their resources and
activities, which ultimately shapes their decision-making
behavior through available social interaction opportuni-
ties. The communication channels could be either through
imitation from the neighbor (endogenous effects), due
to exogenous characteristics of the neighbor (exogenous
effects), or as a result of common unobserved characteris-
tics (e.g., see Anselin, 2013; L. F. Lee, 2004; Manski, 2000).
Early empirical studies have shown that farmer behav-

ior towards new agricultural technology adoption, acqui-
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sition of formal and informal education, and information
flow is significantly influenced by the existing social inter-
action with other farmers around the neighborhood (e.g.,
Abdulai & Huffman, 2014; Aker & Mbiti, 2010; Conley &
Udry, 2010; Genius et al., 2014; Krishnan & Patnam, 2014;
Maertens & Barrett, 2013; Yamauchi, 2007). This is particu-
larly common in subsistence farming regimes where poor
technology adoption, lower educational levels, risk aver-
sion behavior, resource constraints, and higher transaction
costs are key features. A study in Mozambique showed
that farmers are more likely to adopt a new crop when
some farmers in their network also adopt but are less
likely to adopt whenmany others do so (Bandiera & Rasul,
2006). In the absence of well-functioning financial mar-
kets, the demand for insurance in the farm sector is influ-
enced by the payout experience of others within the farmer
network (Karlan et al., 2014). Another empirical study in

374 wileyonlinelibrary.com/journal/agec Agricultural Economics. 2022;53:374–386.

mailto:wondmagegn.tafesse@slu.se
mailto:wondewin@gmail.com
http://creativecommons.org/licenses/by-nc/4.0/
https://wileyonlinelibrary.com/journal/agec
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fagec.12702&domain=pdf&date_stamp=2022-02-02


TIRKASO and HAILU 375

rural Ethiopia showed that social networks reduce transac-
tion costs and increase farmers’ bargaining power, helping
farmers earn higher returns when marketing their prod-
ucts (Kassie et al., 2013).
In this study, we examined the spatial interdepen-

dence of technical efficiency score (TE) between farms
in neighboring communities using a sample of Ethiopian
farmers. Identifying a theoretically consistent parameter
estimate for the neighborhood effect usually poses an
empirical challenge. Notably the issue of the so called
“reflection problem” draws much attention in spatial net-
work analysis (e.g., see Brock & Durlauf, 2001; Lin, 2010;
Manski, 1993, 2000). This problem is related to uniquely
identifying the endogenous, exogenous, and correlated
effects associated with social interaction. The endogenous
effect reflects how a farmer’s TE is shaped by its neighbor’s
TE, while the exogenous effect relate to how the farmer’s
TE is affected by the exogenous characteristics of others
in his/her neighborhood. The correlated effect is related
to separating social interaction from other confounding
effects, which are attached to non-random distributions of
the group where TE level of the farmer is influenced by
unobserved factors, commonly shared by the same group
members, rather than social interaction among them.Hav-
ing similar individual characteristics or institutional envi-
ronment with a group are examples of correlated effects.
In this article, we seek to identify the effects of the

neighborhood on farmer’s TE level by controlling house-
holds and community-level socioeconomic, demographic,
and institutional characteristics. Our empirical strat-
egy is based on the following steps. First, we predicted
the individual farmer’s TE score using a time-varying
stochastic frontier model (SFM) (e.g., Battese & Coelli,
1992; Kumbhakar, 1990; Kumbhakar & Wang, 2005). The
standard time-varying SFM’s could be limited in han-
dling potential endogeneity problems in the production
function.1 Thus, we addressed this empirical challenge
by estimating a copula-based SFM (Amsler et al., 2017;
Amsler et al., 2016; Karakaplan & Kutlu, 2017; Tran &
Tsionas, 2015). Second, we have estimated the effect of
neighborhood and other covariates on the predicted TE
score using the spatial Durbin model (SDM) (Anselin,
2013; J. P. LeSage & Pace, 2010; Lin, 2010). Relying on
SDMwith consideration of endogenous effects, exogenous
effects, and individual fixed effects allows for consistent
estimation of the parameters (e.g., see Boucher et al., 2014;
Hsieh & Lee, 2016; Lin, 2010).
Our study is generally motivated by two fundamen-

tal justifications. First, there are spatial externalities due
to knowledge spillovers that tend to increase the prob-
ability of learning, adopting efficiency improving tech-
nologies and farming techniques from the nearby farm-

1 A detailed brief on the sources of endogeneity is presented in Section 2.

ers (e.g., Ertur & Koch, 2007; Genius et al., 2014; Manski,
2000). Second, there are spatially interdependent unob-
served or latent variables such as work culture, infrastruc-
ture, and various amenities that could potentially affect
farmers TE level (e.g., LeSage & Pace, 2009). These imply
that there are at least two lines of mechanisms through
which neighborhood could affect farmers TE level. First,
the probability of adopting new farming technologies by
a farmer is higher if other farmers initially adopted the
same technology in the neighboring communities. This
process is expected to improve the TE level of adopters fol-
lowing the integration of new technologies or farming sys-
tems. Second, farmers could learn about new farming tech-
niques and optimal input uses from their closest skilled
neighbor, such as farmers with better educational level,
through formal and informal interaction to improve effi-
ciency. Therefore, analysis of farm efficiency in ways that
incorporate neighborhood effects would contribute to pol-
icy design and implementation aimed at improving farm
performance in Ethiopian agriculture. Particularly, results
are expected to provide information useful to integrating
spatial dimensions into agricultural education, technology
adoption programs and policies aiming at increasing pro-
ductivity while optimizing the benefits from limited public
resources.
We investigate spillover effects by exploiting a recent

and unique geo-coded three wave (2011, 2013, and 2015)
household-level panel data from the Ethiopia Rural
Socioeconomic Survey (ERSS) (World Bank, 2016). This
dataset contains information on, among other things, agri-
cultural output, farm size, input use, output and input
prices, employment, and income from farm and non-farm
sectors.
The rest of this article is organized as follows. Section 2

presents the empirical strategies, starting with the elabora-
tion of a time-varying Stochastic Frontier Analysis (SFA),
which is used to predict the average individual-level TE
scores and the spatial regressionmodels to examine neigh-
borhood effects. In Section 3, we present a brief description
of the data used in this study. Section 4 presents results and
discussion. In Section 5, we conclude the article and draw
some policy lessons.

2 EMPIRICAL STRATEGY

Our empirical analysis consists of twomain parts. First, we
specify a stochastic frontier model to estimate the frontier
production function. This specification allows predicting
the corresponding farm level TE. Later, we employ a spatial
regression model, that is, SDM, for examining the poten-
tial spatial interdependence in the predictedTE scores. The
subsequent sections provide a detailed description of each
model.
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TABLE 1 Variable definitions

Variable Definition
Frontier related variables
Agricultural output Value of total agricultural output (ET Birr)
Land Total land (Hectare)
Labor Planting season household labor (Days)
Farm equipment The monetary value of agricultural equipment (ET Birr)
Nitrogen use The total amount of nitrogen use in the farm (Kilograms)
Phosphorus The total amount of phosphorus use in the farm (Kilograms)
Rainfall Average 12-month total rainfall (mm) for January to December
Temperature Annual Mean Temperature (Degree Centigrade × 10)
Soil type Nutrient availability (No or Slight Constraint = 1, Moderate

Constraint = 2, Severe Constraint = 3, Very Severe Constraint = 4)
Inefficiency related variables
Age Age of the household head (years)
Gender Gender of the household head (Male = 1, Female = 0)
Family size Household size (number)
Education Highest grade of the household head education (years)
Market distance Household distance to nearest market (Kilometers)
Extension services Dummy for extension services in the household (Yes = 1, No = 0)
Improved seed Dummy for use of improved seed (Yes = 1, No = 0)
Business Share The share of business-related income out of the total income (%)
Pesticide use Dummy if the household uses pesticide (Yes = 1, No = 0)

2.1 Stochastic frontier analysis

Our analysis begins by specifying a log-transformed
stochastic frontier model as follows:

𝑦𝑖𝑡 = 𝛼𝑖 + 𝑓 (𝑥𝑖𝑡; 𝛽) + 𝑉𝑖𝑡 − 𝑈𝑖𝑡 (1)

where 𝑦𝑖𝑡 is a scalar output of individual farmers i in period
t. The parameter 𝛼𝑖 is an intercept that varies across indi-
viduals, while 𝑓(𝑥𝑖𝑡; 𝛽) is a production function that fol-
lows a Cobb-Douglas specification.2 The term 𝑥𝑖𝑡 denotes
the 1 × K vector of exogenous inputs such as land, labor,
fertilizer, and the value of farm equipment used by the
farmer i in period t.3 Additionally, the vector includes
variables representing temperature, precipitation, and soil
types. Table 1 presents detailed descriptions of the output
and input variables. The term 𝛽 is a K×1 vector of technol-
ogy parameters for the corresponding inputs. The term,𝑉𝑖𝑡

2We preferred the Cobb-Douglas specification since the likelihood-ratio
test against the translog functional form shows that the Cobb-Douglas is
not too restrictive (not rejected). Table 3 presents the corresponding test
statistics.
3We used the real monetary value of farm equipment by multiplying the
physical quantity of the equipment with corresponding prices at the com-
munity level. This allows us to aggregate diverse farm equipment using
monetary value.

represents anN×1 vector of idiosyncratic error components
or noise, while 𝑈𝑖𝑡 an N×1 vector for the one-sided ineffi-
ciency term.
TheMaximum likelihood technique is a commonly used

method to estimate stochastic frontier production func-
tion (e.g., Kumbhakar, 1990; Kumbhakar & Wang, 2005;
Kumbhakar et al., 2014; Y. H. Lee & Schmidt, 1993). How-
ever, this approach is limited in dealing with the poten-
tial endogeneity problem in Equation (1). For instance, a
farmer may choose the amount of fertilizer used depend-
ing on the level of productivity, which could be determined
by the soil quality, weather conditions or other influences
on production that are not observed by the researcher.
For example, a farmer may have an idea on parts of the
stochastic noise components, for example, information on
the weather forecast that could influence input choice in
the production process. In this context, the iid assump-
tion on the two error components in the standard SFA
framework could be violated and results in biased and
inconsistent estimates. Thus, we believe that the frontier in
Equation (1) should accommodate potential endogeneity
problems.
Instrumental variable (IV) based estimation of SFA is

a reliable approach to address the endogeneity problem
(e.g., Amsler et al., 2016; Kutlu, 2010; Tran & Tsionas,
2013). However, this approach is highly dependent on the
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availability of valid instruments that need to satisfy the
exclusion restriction and the independence assumptions.
Moreover, the IV approach requires further assumptions
regarding the correct specifications of the second-
stage model, which is vital in predicting unbiased TE
components.
To ease such challenges, we estimated a Copula-based

stochastic frontier model following the works by Amsler
et al. (2017), Amsler et al. (2016), Tran and Tsionas
(2015), and Karakaplan and Kutlu (2017). This approach
accounts for the possible dependency among the endoge-
nous input and the two composed errors in the standard
stochastic frontier model. The method also relaxes the idd
assumption on the two error components in the tradi-
tional stochastic frontier analysis framework. Therefore,
the Copula function allows for constructing the marginal
distributions of the endogenous input and the error terms
independently. The joint distribution is used to derive the
likelihood function and maximized to obtain consistent
and unbiased estimates.
To explain details, suppose a nonnegative one-sided

error component 𝑈𝑖𝑡 = 𝑢 ∈ 𝑅
+
in Equation (1) is a ran-

dom variable with a cumulative density function 𝐹(𝑢) =

Pr(𝑈𝑖𝑡 ≤ 𝑢). This term is assumed to be continuous and
independent of 𝑥𝑖𝑡. However, the term 𝑈𝑖𝑡 is possibly
dependent on unknown vector of distributional parame-
ters (𝛿𝑢). Similarly, the idiosyncratic error term 𝑉𝑖𝑡 = 𝑣 ∈

𝑅 has a cumulative density function of 𝐺(𝑣) = Pr(𝑉𝑖𝑡 ≤ 𝑣)

which is assumed to be continuous and independent of
𝑥𝑖𝑡. However, the term is similarly dependent on unknown
vector of parameters (𝛿𝑣). Applying Sklar’s theorem (see
Sklar, 1973), the joint cumulative density function for 𝑈𝑖𝑡

and 𝑉𝑖𝑡 can be represented as:

𝐻 (𝑢, 𝑣) = Pr (𝑈𝑖𝑡 ≤ 𝑢, 𝑉𝑖𝑡 ≤ 𝑣) = 𝐶𝜃 (𝐹 (𝑢) , 𝐺 (𝑣)) (2)

where 𝐶𝜃(𝐹(𝑢), 𝐺(𝑣)) denotes the bivariate copula for the
joint distributions of 𝑈𝑖𝑡 and 𝑉𝑖𝑡 that can depend on
unknownparameters in vector 𝜃.We assumed that the vec-
tor 𝜃 does not hold a common elementwithin the vectors𝛽,
𝛿𝑢 and 𝛿𝑣. As mentioned before, Equation (2) relaxes the
iid assumption on the two error components in the stan-
dard SFA framework (e.g., see Amsler et al., 2016; Shi &
Zhang, 2011; Smith, 2008; Tran & Tsionas, 2015).
The log-likelihood function can be derived from the

composite distributions of the two error components𝑊 =

𝑉𝑖𝑡 − 𝑈𝑖𝑡, where the random variable𝑊 = 𝑤| −∞<𝑤<∞

is continuous. The probability density function for
𝑊 = ℎ𝜃(𝑤) can be derived as follows:

ℎ (𝑤) =
𝜕2

𝜕𝑢𝜕𝑣
𝐻 (𝑢, 𝑣) = 𝑓 (𝑢) 𝑔 (𝑣) 𝑐𝜃 (𝐹 (𝑢) , 𝐺 (𝑣)) (3)

where 𝑓(𝑢) = 𝜕𝐹(𝑢)∕𝜕𝑢, 𝑔(𝑣) = 𝜕𝐺(𝑣)∕𝜕𝑣, and 𝑐𝜃 is the
Copula density for 𝐶𝜃. Importantly, the weighting func-
tion given by 𝑐𝜃(𝐹(𝑢), 𝐺(𝑣)) in Equation (3) controls for
any potential dependence between𝑈𝑖𝑡 and 𝑉𝑖𝑡 in the main
model. The probability density function for (𝑈,𝑊) is given
by:

ℎ (𝑢,𝑤) = 𝑓 (𝑢) 𝑔 (𝑢 + 𝑤) 𝑐𝜃 (𝐹 (𝑢) , 𝐺 (𝑢 + 𝑤)) (4)

Therefore, the probability density function for 𝑊is
expressed as follows:

ℎ𝜃 (𝑤) = ∫
𝑅
+

ℎ (𝑢, 𝑤)𝑑𝑢 = 𝐸𝑈 [𝑔 (𝑈 + 𝑤) 𝑐𝜃 (𝐹 (𝑈) , 𝐺 (𝑈 + 𝑤))]

(5)
where the right-hand side of Equation (5) represents expec-
tation with respect to the distributions of inefficiency
component 𝑈. Subsequently, the joint density function in
Equation (4) allows for the construction of the likelihood
function as follows:

𝐿 (𝛽, 𝛿𝑢, 𝛿𝑣, 𝜃) =
∑
𝑖

ln 𝑐𝑐 (𝐹 (𝑈) , 𝐺 (𝑈 + 𝑤))

+
∑
𝑖

ln 𝑔 (𝑈 + 𝑤) (6)

The Copula term 𝑐𝜃 reflects the potential dependence
between the two error components𝑈𝑖𝑡 and 𝑉𝑖𝑡. Therefore,
we used the likelihood function given by Equation (6) to
derive the parameter of interests. For robustness check,
we also estimated and reported three additional time-
varying inefficiency models. These are the Kumbhakar
model (Kumbhakar, 1990), the Battese and Coelli model
(Battese & Coelli, 1992) and the Kumbhakar and Wang
model (Kumbhakar &Wang, 2005). Following Battese and
Coelli (1998), the mean technical efficiency score (𝑇𝐸𝜃) for
individual farmers can be predicted using the following
relationship:

𝑇𝐸𝜃 = 𝐸
[
exp(−𝑈)|𝑊=𝑤

]

=
1

ℎ𝜃 (𝑤) ∫
𝑅
+

exp(−𝑢)ℎ (𝑢, 𝑤) 𝑑𝑢

=
𝐸𝑈 [exp (−𝑈) 𝑔 (𝑈 + 𝑤) 𝑐𝜃 (𝐹 (𝑈) , 𝐺 (𝑈 + 𝑤))]

𝐸𝑈 [𝑔 (𝑈 + 𝑤) 𝑐𝜃 (𝐹 (𝑈) , 𝐺 (𝑈 + 𝑤))]
(7)

The 𝑇𝐸𝜃 in Equation (7) will be used as a depen-
dent variable in the spatial model where the identifi-
cation of neighborhood effect is examined. For nota-
tional purposes, we use u for TE score in the remaining
sections.
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2.2 Spatial regression analysis

We begin our spatial analysis by specifying the stan-
dard non-spatial pooled ordinary least square regression
model (OLS). This specification provides information on
whether the model should be further extended by a spatial
component. Thus, the baseline non-spatial specification is
given as:

𝑢 = 𝜄𝑁 𝑐 + 𝑍𝛼 + 𝜉 (8)

where u is an N × 1 vector denoting the predicted
TE scores for the N observations in the sample from
Equation (7), 𝜄 is an N × 1 identity matrix for the con-
stant term c, the vector Z represents an N × K explanatory
variables with α as the corresponding K × 1 parameter vec-
tor and ξ is a vector of disturbances. It is assumed that the
disturbance terms are independently and identically dis-
tributed with zero mean and constant variance, 𝜎2

𝜉
, that is,

𝜉𝑖 ∼ 𝑁(0, 𝜎2
𝜉
), 𝑖 = 1, … , 𝑁.

Implementing the Lagrangian Multiplier (LM) and
robust-LM (RLM) tests on the OLS residuals allows one to
decide whether to use the specification in Equation (8) or
alternative spatial models such as Spatial Autoregressive
Model (SAR), Spatial ErrorModel (SEM) or SDM (Anselin,
1988; Anselin et al., 1996; LeSage & Pace, 2009). Accord-
ingly, rejecting the null hypothesis in the OLS residuals
which is would be a confirmation for the presence of spa-
tial correlation and suggests the need to specify an alter-
native general spatial model. The specification in Equa-
tion (8) could be extended into a full spatial specification
as follows:

𝑢 = 𝜄𝑁 𝑐 + 𝜆𝑊𝑢 + 𝑍𝛼 +𝑊𝑍𝜋 + 𝜀

= 𝜌𝑊𝜀 + 𝜉, 𝜉 ∼ 𝑁(0, 𝜎2
𝜉
) (9)

where 𝜆 represents the endogenous interaction effect
among the farmers TE level, 𝜋 denotes the exogenous
interaction effect among the explanatory variables, and 𝜌
stands for the interaction effect among the spatially differ-
entiated stochastic disturbance terms. The parameters, λ
and ρ are the spatial autoregressive and the spatial autocor-
relation coefficients, respectively, while 𝛼 is a K × 1 vector
of parameters to be estimated.
The vector W is an N × N matrix showing the extent

of spatial interdependence between farms in neighboring
communities fromour sample. It should be noted that only
the off-diagonal elements of the matrix can take non-zero
values (wij > 0) indicating that farmers i and j are neigh-
bors. Constructing spatial weight or defining neighbor-
hood is a crucial step prior to the estimation of any spa-
tial models (e.g., Anselin, 2013; Elhorst, 2010; J. P. LeSage
& Pace, 2010). In our study, we have used the K-nearest
neighbor criterion in defining the spatial weight matrix

(see J. P. LeSage & Pace, 2010). Assigning a relative weight
based on the number of neighbors at a certain thresh-
old is done by row standardization of the spatial weight
matrix where the sum of the row elements equals one (see
Anselin, 2001; Pace & Barry, 1997). Such standardization
assigns weights that measure the degree of interconnect-
edness among farmers in the sample.
Recalling the elaboration in Section 1, the specification

in Equation (9) distinguishes three potential spatial inter-
action effects, namely the endogenous, exogenous and
contextual effects (Manski, 1993). The endogenous inter-
action effects denoted by 𝜆 captures whether a farmer’s
TE level is dependent on its neighbor(s) TE level, while
the exogenous interaction effect represented by 𝜋 consid-
ers whether a farmers TE level is dependent on the exoge-
nous socioeconomic characteristics of its neighbors. The
contextual effect indicted by 𝜌 identifies the effects of com-
mon unobserved characteristics that affect the TE level of
all farmers.
Estimating the parameters associated with the three

interaction effects in Equation (9) usually poses an empir-
ical challenge due to the reflection problem (Brock &
Durlauf, 2001; L. Lee, 2007; Manski, 1993). However, it is
indicated that identification of these parameters is possi-
ble with the consideration of group fixed effects in Equa-
tion (9) (e.g., see Elhorst, 2010; Lin, 2010). Therefore, our
study follows the LeSage and Pace (2009) SDM specifica-
tion with the exclusion of spatially autocorrelated error
terms (ρ = 0).4 Our SDM is given as follows:

𝑢 = 𝜄𝑁 𝑐 + 𝜆𝑊𝑢 + 𝑍𝛼 +𝑊𝑍𝜋 + 𝜀, 𝜀 ∼ 𝑁
(
0, 𝜎2

)
(10)

For robustness check, we have implemented a restric-
tion test for SAR and SEMmodels. Accordingly, accepting
the null hypothesis,H0: π= 0, would indicate that the SAR
model is adequate to describe our data. On the other hand,
accepting the null hypothesis,H0: π+ 𝜆α= 0, suggests the
SEM model is adequate for describing our data. Rejecting
both restrictions implies the SDM given by Equation (10)
to fit our data in a better way. Our final model is estimated
by employing the ML estimator given its flexibility on the
distributional assumption of the disturbance terms (L. F.
Lee, 2004; L. Lee, 2007; Pace, 2009).

3 DATA AND DESCRIPTIVE
STATISTICS

This study uses three-period balanced panel data (2011,
2013, and 2015) from the ERSS collected at the household

4 Setting the parameter ρ = 0 offer unbiased coefficient estimates in rela-
tion to the spatial lag or spatial error model. In addition, it produces cor-
rect standard errors for the estimated coefficients. A more detailed expla-
nation can be found in Elhorst (2010) and LeSage and Pace (2009).
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level in Ethiopia (World Bank, 2016). This data set con-
stitutes information on household socioeconomic charac-
teristics, crop and livestock production, farm input use,
access to services and resources, employment and farm
and non-farm income. The ERSS holds a total number of
3996, 5469, and 5262 households in three waves, that is,
year 2011, 2013, and 2015, respectively. The first wave of the
survey was mainly conducted in rural and small-town
households across 333 unique enumeration areas (EA),
while the second and thirdwaves incorporated urban areas
and 433 EA’s across all regions of the country. After con-
sideration of missing values, outliers, household locations
and a balanced data requirement for spatial regression
models, the study used data from 5490 rural households,
that is, 1800 households in eachwave.5 Table 1 presents the
definition of the variables used in the analysis.
There are several advantages in using the ERSS data

in Ethiopia. First, the sample is representative as it
constitutes the entire regions of the country. These
are 10 politically classified regional states in Ethiopia,
that is, Tigray, Afar, Amhara, Oromia, Somalia, Bensh-
agul Gumuz, Southern Nations Nationalities and Peoples
Regional State (SNNP), Gambella, Harari, and Dire Dawa.
This allows us to explore wider and richer information
collected from households in different enumeration areas.
Second, it allows us to consider regional heterogeneity.
Third, households are referencedwith a geographical loca-
tion of their community. This information allows us to
exploit the spatial dimension in our analysis. Accordingly,
households in the data are distributed across 290 geograph-
ically distinguished rural communities, that is, enumera-
tion areas.
Descriptive statistics on the sample used are given in

Table 2. The total monetary value of agricultural output
represents the revenue from crop and livestock produc-
tion in the household.6 The corresponding mean values
for 2011, 2013, and 2015 are, respectively, 6407, 7630, and
12,209 ET Birr in real terms.7 The average values show an
increasing pattern over the study period which is in line
with the observed growth in the agricultural sector (e.g.,
see Bezawagaw et al., 2018). Summary of statistics on input
use in households are also presented. For instance, the

5 Our analysis entirely focused only on those households living in rural
areas. Also, the spatial regression models need balanced panel data to
construct an invertible weighting matrix (Elhorst, 2010).
6We use the Total Livestock Unit (LTU) coefficients for Sub-Saharan
Africa region to calculate the monetary value of livestock production (for
details see FAO, 2011) as the dependent variable in the production frontier
model. This approach allows aggregation of livestock value using specific
coefficients that are established based on the types of animal, age and
nutritional requirement.
7 1 ET Birr ≈ 0.04 USD based on the average exchange rate for the year
2015. The nominal values are adjusted to real term using the consumer
price index where the 2011 price is taken as a base year, that is, 2011=100.

average household landholding is 1.2 hectare, while plant-
ing season labor use in a year is 120 days. The average
real value of farm equipment is about 392.7 ET Birr which
shows the low level of capital use in the sector. On aver-
age, farmers also use 24 and 13 kilograms of nitrogen and
phosphorous, respectively. This figure is relatively smaller
than the average fertilizer use for the Sub-Saharan African
region (Holden, 2018). Regarding demographic character-
istics, the average household head is 46 years old and has
3.7 years of schooling, while family size is 5.4 persons per
household.
The overall farming sector in Ethiopia is characterized

by a smallholder farming practices with low levels of pro-
ductivity. The literature identifies several factors as the
root causes of low agricultural productivity (e.g., Dorosh
& Minten, 2020; Mekonnen et al., 2018). Some of them
include inadequate input usage (such as improved seed
varieties and fertiliser), poor linkages between the mar-
ket and the farming sector, backward technological set-
ups coupled with diminishing cultivated land size, and
backward institutional setup. Our data also complement
this situation where farmers are influenced by input and
market constraints.

4 RESULTS

4.1 Frontier production model

Table 3 presents estimates of the stochastic frontier model
specified in Equation (1). As baseline specifications, three
time-varying stochastic frontier models are included in
the table for comparison, namely, the Kumbhakar (1990)
model in (1), the Battese and Coelli (1992) model in (2), and
Kumbhakar and Wang (2005) model in (3). These models
will be compared and will provide insight into the valid-
ity of our preferred specification. Our estimates based on
the copula-based stochastic frontier model are presented
in column (4).
To verify whether there is an endogeneity problem,

we have implemented the Durbin–Wu–Hausman test for
endogeneity in each of the three baseline models. The
corresponding test statistics confirmed the prevalence of
endogeneity in the baseline models, that is, the coefficient
for the predicted residuals becomes statistically significant
once it is considered in the respective frontier models.
Therefore, we extend our analysis based on the Copula-
based frontier model, which is robust to potential endo-
geneity problems. A likelihood-ratio (LR) test was used to
compare the model without technical inefficiency (OLS)
against the Copula-based stochastic frontier model. The
corresponding LR test rejects the null hypothesis of no
technical inefficiency at the 99% level.
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TABLE 2 Summary of the descriptive statistics

Whole panel Year = 2011 Year = 2013 Year = 2015
Variable Mean Min Max Mean Min Max Mean Min Max Mean Min Max
Agricultural
output

8748.6 16.4 14 1565 6 407 30.6 14 1565 7630 19.4 89686 12208.6 16.4 75837.3

Land 1.21 .019 7.227 1.068 .019 3.499 1.255 .019 7.227 1.308 .019 7.23
Labor 120 0 2 304 133.36 0 2 273 108.12 0 2 304 118.6 0 1 802
Farm equipment 392.7 0 3 447.5 742.01 10 3 447.48 126.37 0 924.96 126.72 0 883.9
Nitrogen use 24.2 0 1 334 11.64 0 416.7 17.52 0 1 334 43.52 0 1 334
Phosphorus 12.59 0 180 11.63 0 180 14.14 0 180 12 0 180
Family size 5.415 1 17 5.363 1 14 5.454 1 15 5.429 1 17
Gender .826 0 1 .841 0 1 .825 0 1 .812 0 1
Education 3.715 1 13 3.507 1 13 3.944 1 13 3.72 1 13
Age 46.06 0 97 44.46 18 97 45.9 0 97 47.82 0 97
Market distance 65.88 2.9 222 65.88 2.9 221.8 65.9 2.9 221.8 65.85 3 222
Business Share .133 0 1 .296 0 1 .225 0 1 .063 0 1
Extension
services

.371 0 1 .302 0 1 .398 0 1 .412 0 1

Pesticide use .088 0 1 .094 0 1 .078 0 1 .093 0 1
Improved seed .211 0 1 .186 0 1 .223 0 1 .225 0 1
Rainfall 939.65 290 1692 908.93 290 1600 964.39 345 1636 945.62 294 1692
Temperature 188.87 102 289 188.94 106 289 188.84 102 289 188.83 109 289
Soil type 1.38 1 4 1.38 1 4 1.38 1 4 1.37 1 4
Enumeration
area (EA)

147.9 1 281 147.9 1 281 147.9 1 281 147.9 1 281

Observation 5 490 1 830 1 830 1 830

The input variables, including land, labor, and nitrogen
are positive and statistically significant at the 99% level.
These results imply that labor use, besides land and nitro-
gen, has a positive effect on agricultural production. The
results also indicate that the mean annual rainfall and
temperature have statistically significant effects, having
positive and negative coefficients, respectively. The esti-
mated coefficient for the effect of time trend represented
by the Year variable is positive and statistically significant
at 99% level and suggests that the rate of technical progress
amounted to about 3% every second year (around 1.5%
annually).
The mean of estimated TE scores is 53% implying the

there is a great potential to increase agricultural produc-
tivity in Ethiopia by eliminating inefficiency. Additionally,
the production technology exhibits a decreasing return to
scale given the sum of the input coefficient estimates is
less than unity, that is,

∑
𝛽𝑖 < 1. The evidence of decreas-

ing returns to scale could be related to overutilization of
the prominent inputs such as labor or other constraints to
production. Low returns to inputs inflates the cost of out-
put expansion. This can trigger farmers to invest more in
inputs compared to what they received. Thus, farmers will
have to decrease the amount of input used to reach the

F IGURE 1 Density plots of estimated technical efficiency (TE)
scores from alternative models

point where the cost per unit of inputs is equal to returns
per unit.
The distributions of TE scores from the four models

are presented in Figure 1. The TE scores from the Bat-
tese and Coelli (1992), Kumbhakar and Wang (2005), and
the Copula-based models exhibit similar patterns with a
slightly right-skewed smooth distribution. In contrast, the
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TABLE 3 Estimates for the frontier production models

The dependent variable is log of total agricultural output
Frontier estimates (1) (2) (3) (4)
Land .240*** (.066) .191*** (.065) .201*** (.064) .230*** (.065)
Labor .104*** (.023) .084*** (.023) .083*** (.023) .094*** (.023)
Nitrogen .087*** (.024) .069*** (.023) .071*** (.023) .064*** (.024)
Phosphorus .014 (.024) −.010 (.023) −.010 (.023) .003 (.023)
Farm equipment .056*** (.019) .040** (.019) .041** (.019) .028 (.019)
Rainfall .625*** (.098) .531*** (.091) .538*** (.091) .534*** (.097)
Temperature −.783*** (.173) −.502*** (.164) −.520*** (.163) −.525*** (.172)
Soil type11 −.021 (.053) −.042 (.050) −.041 (.049) −.020 (.053)
Year .034*** (.003) .030*** (.003) .030*** (.003) .030*** (.003)
Constant 7.110*** (1.088) 6.902*** (1.016) 6.853*** (1.013) 6.825*** (1.065)
Inefficiency determinants
Family size −4.665*** (1.589) −2.988* (1.739) −.442*** (.095) −.818*** (.181)
Gender −.542 (.852) −.684 (.672) −.082 (.085) −.111 (.175)
Education −1.287** (.632) −.931 (.644) −.113** (.047) −.170* (.095)
Age .647 (.564) −1.414 (1.031) −.215** (.103) −.349* (.207)
Market distance 2.784*** (.797) .205 (.262) .033 (.037) .050 (.075)
Business share 2.973** (1.252) 2.722 (1.762) .339*** (.130) .627** (.254)
Extension services 3.060** (1.356) .027 (.577) .008 (.075) −.005 (.147)
Pesticide use −2.800*** (1.021) −6.988 (5.303) −.743*** (.187) −1.366*** (.367)
Improved seed −3.821** (1.535) −2.140 (1.451) −.263*** (.090) −.493*** (.175)
Mean Efficiency score .47 .48 .57 .53
Endogeneity test (F-test) 6394.71*** 3037.96*** 2868.23***

Likelihood-ratio (LR) test −4407.79*** −4405.27*** −4404.15*** −4375.44***

Observation 5490 5490 5490 5490

Note: Standard errors in parentheses. Results in (1) denotes the Kumbhakar (1990) estimates, results in (2) represent the Battese and Coelli (1992) estimates, results
in (3) represent Kumbhakar andWang (2005) specification, and results in (4) represent Copula based specification. The output and input variables are in log form.
∗∗∗p < .01.
∗∗p < .05.
∗p < .1.

Kumbhakar (1990) model reveals a potential misspecifica-
tion error as its TE distribution is neither right-skewed nor
smooth compared to other distributions. The estimates of
the inefficiency determinants, such as family size, educa-
tional level, distance to themarket, and extension services,
also have relatively larger magnitudes in for the Kumb-
hakar (1990)model.8 This also highlights the potentialmis-
specification error in the Kumbhakar (1990) model.
Figure 2 illustrates the spatial distributions of TE score

across administrative zones in Ethiopia. Accordingly, there
is a substantial inter-regional variation. Such spatial dis-
crepancies in farmers’ TE level across regions could be
linked to farmer’s socioeconomic heterogeneity between

8 The coefficient estimates for the inefficiency determinants in Table 3
cannot be considered as marginal effects. This is due to the non-linear
relationship between the predicted TE and its determinants (see Kumb-
hakar & Lovell, 2000). For a meaningful comparison, we have computed
the marginal effects and presented them under Table A1 in the appendix.

F IGURE 2 Regional distributions of the average technical
efficiency (TE) scores in Ethiopia
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TABLE 4 Spatial autocorrelation tests

Moran’s I statistics Geary’s C statisticsK − nearest
neighbor Statistics Std. Dev. p-Value Statistics Std. Dev. p-Value
K = 1 .329 21.772 .000 .655 12.488 .000
K = 3 .319 33.515 .000 .645 23.938 .000
K = 5 .330 42.215 .000 .644 33.400 .000
K = 7 .319 46.804 .000 .658 40.235 .000
K = 10 .285 49.583 .000 .703 41.522 .000

andwithin regions. There has been evidence that cash crop
farmers aremore likely to be technically efficient than sub-
sistence farmers (Tirkaso & Hess, 2018). In this regard,
the higher TE score in the north western, south western
and eastern parts of the country could be linked to the
dominance of cash crop production in these regions (e.g.,
oilseeds and coffee).

4.2 Technical inefficiency model

Our examination of the neighborhood effects started by
implementing the Global Moran’s I (Moran, 1948) and
Geary’s C local spatial autocorrelation tests on the TE
model (Geary, 1954). These tests use data on efficiency
scores and household locations to determine whether
observed efficiency distribution patterns expressed are
clustered, dispersed, or random. Both measures require
a spatial weight matrix and the K-nearest neighbor algo-
rithm (K-NN) was used to define Euclidean distance-based
spatial interdependence.9 The null hypothesis for these
tests is that TE scores are randomly distributed between
farms in neighboring communities, that is, there is no spa-
tial interdependence.
The test results are presented in Table 4. Accordingly,

the null hypothesis is rejected at different K- level indi-
cating the existence of spatial interdependence in TE
score between farms in neighboring communities. For
robustness purposes, the tests are implemented at five
alternative K-nearest neighbor levels and the results are
consistent across the K levels. There is significant spatial
autocorrelation in farmer efficiency scores.
Additionally, it is possible to trace and reaffirm the

presence of spatial interdependence using residual from
the pooled OLS estimate (Elhorst, 2010; Ertur & Koch,
2007). The procedure also provides a baseline estimate
for the determinants of TE scores. Therefore, we have
implemented OLS residuals-based spatial autocorrelation

9 In the context of this study, the social network or social structure of farm-
ers is represented by the Euclidean distance between farms in neighbor-
ing communities that allows the exchange of ideas, norms and resources
in closest proximity.

test which is based on the Lagrange Multiplier (LM) test
statistics as suggested by Anselin et al. (1988) and robust
Lagrange Multiplier (RLM) test statistics as suggested by
Anselin et al. (1996). The test results are presented under
Table A2 in the online appendix. The null hypotheses of
no spatial autocorrelation are rejected at the 99% signifi-
cance level in all cases. The result endorses the presence
of spatial interdependence on the TE level. Moreover, all
variables have the expected sign with key variables includ-
ing family size, education, age, market distance, pesticide
use, and improved seed use being statistically significant
at the 99% level. It should be noted that these estimates are
potentially inconsistent due to omitted variable bias and
the exclusion of spatial dimension.
Although the SDM model presented in Equation (10) is

our preferred specification, it is recommended that esti-
mates are compared with those from the SAR and SEM
models for robustness purposes (Elhorst, 2010; LeSage &
Pace, 2009). Therefore, we have estimated the two models
using the spatial weight matrix for the 10-nearest neigh-
bor. The corresponding results are presented in the online
appendix (Table A3). The spatial autoregressive coeffi-
cient, 𝜌, is positive and statistically significant in the SAR
model case confirming the endogenous lag variable effect.
Meanwhile, the spatial autocorrelation coefficient, 𝜌 is
statistically insignificant under the SEM model with the
household fixed effects are controlled. These results gen-
erally suggest estimation of the spatial model.
The spatial autoregressive coefficients have a similar

sign across the three specifications (SAR, SEM, or SDM
models) with strong evidence of spatial interdependence.
The reported LM and RLM tests also provide additional
decision guidelines to identify the preferred model among
the three.10 The test statistics favors the SDM where the
null hypotheses for both SAR and SEMmodels are rejected

10 If the OLS model is rejected in favor of SAR, SEM, or in favor of both
models, the SDM model should be estimated. Subsequently, the likeli-
hood ratio (LR) test is applied to test the hypotheses𝐻0 ∶ 𝜋 = 0 (to check
whether the SDMcan be simplified to the SARmodel) and𝐻0 ∶ 𝜋 + 𝜆𝛼 =

0 (to check whether Equation (8) can be simplified to the spatial error
model) in Equation (8). Note that both tests are based on the OLS residu-
als and follow a χ2 distribution with one degree of freedom.
11 Soil type categorywith a “Very Severe Constraint” is used as a reference.
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TABLE 5 Spatial Durbin model estimates (SDM)

The dependent variable is TE Marginal effects
Variable (1) (2) (3) Direct Indirect Total
Family size .075*** (.021) .257*** (.019) .074*** (.021) .267*** .263*** .530***

Gender −.035 (.026) .075*** (.019) −.034 (.026) .078*** .077*** .155***

Education .001 (.009) .018* (.009) −.001 (.009) .019* .019* .038*

Age .006 (.009) .010 (.011) .006 (.009) .010 .010 .020
Market distance −.312* (.185) −.039* (.020) −.308* (.186) −.040* −.040* −.080*

Business share −.143*** (.030) −.275*** (.039) −.143*** (.030) −.286*** −.282*** −.568***

Extension services .012 (.012) .044*** (.016) .012 (.012) .046*** .045*** .091***

Pesticide use .056*** (.017) .170*** (.025) .056*** (.017) .176*** .174*** .350***

Improved seed .035** (.014) .052* (.019) .035** (.014) .055* .054* .109*

Rainfall .007 (.092) −.109 (.072) −.077 (.137) −.113 −.112 −.225
Temperature .284 (.207) −.057 (.083) .290 (.207) −.059 −.058 −.117
Soil type .092** (.043) −.069** (.027) .090** (.043) −.071** −.070** −.142**

W× Family size −.079 (.060) .001 (.040) −.079 (.060)
W× Gender −.098* (.056) −.120*** (.039) −.098* (.056)
W× Education .055* (.031) .035* (.019) .055* (.031)
W× Age .066 (.052) .020 (.030) .067 (.052)
W×Market distance .018 (.028) .040* (.022) .018 (.028)
W× Business share .155 (.125) .134* (.071) .154 (.125)
W× Extension services −.013 (.063) −.017 (.029) −.013 (.063)
W× Pesticide use .067 (.092) .137*** (.047) .065 (.092)
W× Improved seed .098 (.072) .040 (.035) .097 (.072)
W× Rainfall −.061 (.107) .196** (.079) −.061 (.107)
W× Temperature −.186 (.135) −.056 (.098) −.186 (.135)
W× Soil type .106** (.046) .088*** (.032) .107** (.046)
Spatial lagged dependent variable (λ) .405*** (.021) .515*** (.017) .404*** (.021)
Year fixed effects No YES YES
Household fixed effects YES YES NO
Diagnostic tests (Wald test)
SAR vs. SDM 25.549** 37.989*** 25.680**

SEM vs. SDM 25.549** 37.989*** 25.680**

AIC 7271.307 2941.527 2944.435
Observation 5490 5490 5490

Note: Values in the parenthesis are standard errors. Estimates are based on the spatial weight matrix constructed at the 10-nearest neighbor level.
∗∗∗p < .01.
∗∗p < .05.
∗p < .1.

at a 99% significant level. The Akaike information crite-
rion (AIC) suggests Model 2 as a better specification. To
check whether the estimated spatial dependence parame-
ter is sensitive to the selected weight matrix, we estimated
Model 2 using different K-nearest neighbor classifications.
Results from these sensitivity tests are presented under
Table A4 in the online appendix.
Table 5 presents the final SDM model estimates which

are based on Equation (10). This specification contains
the spatial lag of all the explanatory variables and thus

the coefficients need to be interpreted in the right way.
Accordingly, the effects are decomposed into a direct
effect, indirect effect and total effect. The direct effect
reflects a change in farmer’s TE score, u, due to change
in the farmer’s own exogenous variables, while the indi-
rect effect shows a change in u as a result of a change
in the farmer’s neighbor exogenous characteristics. The
total effects represent the sum of direct and indirect
effects.
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We further estimated the SDM model in three differ-
ent specifications. In Model 1, we have controlled only
for household fixed effects, while both household and
time effects are controlled in Model 2. The year effects
are included in Model 3. Consideration of household level
fixed effects would accommodate the effects of any poten-
tial household level omitted variables. Similarly, the time
fixed effects capture those unobserved time-variant factors
that are common to all households in our sample. Having
these specifications allows us to choose the most complete
specification that satisfies both the theoretical and statisti-
cal properties.
The marginal effects associated with the direct, indi-

rect and total effects of the explanatory variables are com-
puted andpresented inTable 5.Accordingly, two important
interaction effects, that is, the endogenous and contextual
interaction effects elaborated by LeSage and Pace (2009);
Elhorst (2010) can be explained. The spatial autoregres-
sive coefficient, 𝜆 that represents the endogenous effect
is statistically significant at the 99% level with a magni-
tude of .52. This suggests that a farmer’s TE level depends
on its neighbors’ relative TE levels. Under contextual
interaction effects, it is found that family size, gender, age
and educational levels of the household head and pesti-
cide use are statistically significant at least at 99% level. The
same variables have indirect impacts (spillover effects). As
elaborated in sub Section 2.2, the SDM model provides
sufficient information for the identification of endoge-
nous and exogenous effects by controlling the household
level fixed effects that could confound the neighborhood
effect.

5 CONCLUSIONS AND POLICY
IMPLICATIONS

This study estimated farmers TE level in Ethiopia, and
investigated influences on efficiency including spatial
interdependence or neighborhood effects. Our empirical
strategy started by estimating a time-varying stochastic
frontier model that allows to predict farmers efficiency
scores (TE) and then estimating a SDM to investigate
the spatial interdependence of TE level between farms
in a neighboring communities. The application of this
approach provides empirical evidence on the existence of
spatial interdependence and an indication for identifying
better policies towards efficiency improvement.
The result indicates that there is evidence of significant

neighborhood effects on farmer’s TE scores. Specifically,
we found that neighborhood plays a key role to influence
farmer’s TE levels through peer effects coming from social
interaction. Further, the contextual interaction effects rep-
resented by neighbor’s specific socioeconomic characteris-

tics such as peer educational level are found to be vital in
shaping the farmer’s managerial skill set.
The main contributions of our study can be seen from

the following standpoints. First, our results suggest that
disregarding the spatial dimension in our efficiency analy-
sis would result in biased estimates. Second, we addressed
the reflection problem by distinguishing both the endoge-
nous and contextual social interaction effects. To the best
of our knowledge, previously related studies on this mat-
ter did not reconcile this problem and that could make
their estimates disputable. Third, our study shows that effi-
ciency clusters exist at sub-regional levels reflecting local
farmer interaction effects as well as local resource use
patterns (e.g., market orientation) which is indicated by
some of the parameter estimates in our final model. For
instance, it is shown that own and neighbor farmer pesti-
cide use and education levels have positive direct and indi-
rect effects on efficiency. Efficiency is also found to be pos-
itively related to the household size. Further, the level of
efficiency is found to be low over all, averaging about 53%,
and varies greatly both within and across administrative
regions.
The key results proved that policymakers should

develop spatially targeted policies and programs that
improve farmers’ TE level. Notably, access to education,
market, extension service, pesticide, and improved seed
use are not only imperative to the individual farmer TE
level but are beneficial to the neighboring farmers. This
demonstrates the role of spatial spillover effects in improv-
ing farmers’ TE level through the exchange of skills,
knowledge, and other related resources. This study also
has vital policy implications for optimal public investment
in TE-enhancing projects. In this aspect, the investment
decisions may be prioritized based on locations that could
maximize the spatial spillover effects. Overall, our study
points out that peer effects need to be considered carefully
acknowledging that their effects might be more complex
than normally expected (e.g., peer effects on technology
adoption). Specifically, it suggests the need to evaluate the
benefit (effectiveness) of efficiency targeting agricultural
programs with respect to spatial dimensions and the use-
fulness of local empirical evidence to improve such pro-
grams.
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