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Estimation and mapping of surface water quality are vital for the planning and sustainable management
of inland reservoirs. The study aimed at retrieving and mapping water quality parameters (WQPs) of
Owabi Dam reservoir from Sentinel-2 (S2) and Landsat 8 (L8) satellite data, using random forests (RF),
support vector machines (SVM) and multiple linear regression (MLR) models. Water samples from 45
systematic plots were analysed for pH, turbidity, alkalinity, total dissolved solids and dissolved oxygen.
The performances of all three models were compared in terms of adjusted coefficient of determination
(R2.adj), and the root mean square error (RMSE) using repeated k-fold cross-validation procedure. To
determine the status of water quality, pixel-level predictions were used to compute model-assisted esti-
mates of WQPs and compared with reference values from the World Health Organization. Generally, all
three models produced more accurate results for S2 compared to L8. On average, the inter-sensor relative
efficiency showed that S2 outperformed L8 by 67% in retrieving WQPs of the Owabi Dam reservoir. S2
gave the highest accuracy for RF (R2.adj = 95–99%, RMSE = 0.02–3.03) and least for MLR (R2.adj = 55–9
1%, RMSE = 0.03–3.14). Compared to RF, SVM showed similar results for S2 but with slightly higher
RMSEs (0.03–3.99). The estimated pH (7.06), total dissolved solids (39.19 mg/L) and alkalinity
(179.60 mg/L) were within acceptable limits, except for turbidity (33.49 mg/L) which exceeded the ref-
erence thresholds. The S2 and RF models are recommended for the monitoring of surface water quality of
the Owabi Dam reservoir.
� 2021 National Authority for Remote Sensing and Space Sciences. Production and hosting by Elsevier B.
V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
1. Introduction

Water is a key resource for humans and the environment
(Marobhe et al., 2007). Globally, about 3% of the total water
resource constitute freshwaters, but only 5% of the freshwaters is
available for human use (Usharani et al., 2010). About 40% of the
world’s population is estimated to be experiencing water scarcity,
a figure perceived to rise because of population growth. Human-
induced environmental changes have threatened the quality of
surface water thereby preventing the attainment of the United
Nations Sustainable Development Goals on water quality (World
Health Organization, 2004). In sub-Saharan Africa, about two mil-
lion people die from water-borne diseases (Karikari et al., 2007).
In Ghana, most of the waterbodies are suffering from high levels
of pollution due to poor settlement planning, poor farming tech-
niques and illegal small-scale mining activities (Ntow, 2001). The
Owabi Dam, located in the Kumasi Metropolis provides about 20%
of the domestic water and fishing livelihoods for the inhabitants
(Boadi et al., 2018). The dam is fed by several other streams in the
metropolis and usually carry waste materials which are emptied
into the reservoir after a heavy downpour, causing high levels of
water pollution and resulting in higher costs of water treatment
by the OwabiWaterWorks (Badu et al., 2013). In addition, the pres-
ence of pollutants like heavy metals, pesticides and fertilizers from
agricultural activities disrupts the aquatic ecosystem (Du Laing
et al., 2009) and this results in high acidity content, increased sedi-
ment load and high concentration of chemical and harmful organ-
isms which render the water unsafe for human consumption
(United Nations world water assessment programme, 2009).

Previous studies have assessed the quality of surface water in
Owabi Dam by looking at the physicochemical properties such as
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changes in water quality as well as the heavy metal levels and
nutrient loads (e.g. Akoto et al., 2008, 2017; Akoto and Abankwa,
2014; Boadi et al., 2018). Whilst these studies have used conven-
tional field methods to estimate water quality in the reservoir,
the use of remote sensing (RS) has rarely been explored for water
quality estimation in the Owabi Dam.

Recentdevelopments inRS technologyhavemadeavailablewall-
to-wall auxiliary data to support the monitoring of terrestrial and
aquatic resources (Saadi et al., 2014; Feyisa et al., 2014;
Gholizadeh et al., 2016; Mollaee, 2018). For example, Abdelmalik
(2018) estimated the inland water quality parameters (WQP) in
north-eastern region of Egypt using Advanced Space-borne Thermal
Emission and Reflection Radiation (ASTER) imageries, and Mollaee
(2018) also demonstrated how phytoplankton chlorophyll concen-
tration could be monitored in the Western Basin of Lake Erie using
RS data. The use of Landsat 8 (L8) for water quality estimation has
produced satisfactory results inmanystudies, for example inMexico
(González-Márquez et al., 2018) and China (Zheng et al., 2015). Sim-
ilarly, Sentinel-2 (S2) data provided accurate estimates of WQPs for
example in Brazil (Pompêo et al., 2021) and China (Liu et al., 2017).
Despite the wider use of RS data in water quality studies, models
relating satellite reflectance to in-situ WQP differed considerably.
Thus, depending on location and the modelling technique, results
of mixed accuracies have been obtained (Gholizadeh et al., 2016).
This problempartly emanates fromthe inconsistency between stud-
ies regardingwhich spectral features or bands are useful for estimat-
ing the target parameter (Sagan et al., 2020). Generally, traditional
linear regression (parametric) models have been used to construct
functional relationships between parameters of water quality and
reflectance data from satellite images (Coskun et al., 2008; Saadi
et al., 2014; 2018). Nevertheless, machine learning (non-
parametric) models such as random forests, support vector machi-
nes, neural networks etc. have been shown to provide better accura-
cies due to their ability to automatically learn from data, explain
hidden patterns and non-linearity in reflectance data and
optically-active WQPs (Naghibi et al., 2015; Prasad et al., 2020;
Sagan et al., 2020). Hence, the suitability of satellite image data
andmodelling technique is of primary concern for the development
of adaptive water quality monitoring capacity for the Owabi Dam.
Additionally, the sole use of model-based for pixel-level prediction
of WQPs to evaluate the status of water quality is largely uncertain,
since the errors in themodels can propagate to the population level.
However, the combination of probability samples (from the sam-
pling design) and the strength of the model can provide confident
point estimates and spatio-temporalmappingofWQPs in the frame-
work of model-assisted estimation (Gregoire, 1998; Särndal et al.,
2003; Valentine et al., 2009).

The scopeof this study is limited to the explorationofRSdatapar-
ticularly S2 and L8 for estimating water quality of the Owabi Dam
reservoir, and to determine the current status of water quality. To
achieve this, we assess the performance of three statistical models
(random forests, support vector machines and linear regression) in
retrieving water quality parameters of the Owabi Dam reservoir
from S2 and L8 satellite imageries. The specific objectives were (i)
to establish statistical relationships between remotely sensed data
andwater quality parameters; (ii) to construct a spatial distribution
map of water quality parameters; and (iii) to estimate the status of
water quality of the Owabi Dam reservoir.
2. Materials and methods

2.1. Study area

The Owabi Reservoir (Fig. 1) is located at 23 km northwest of
Kumasi in the jurisdiction of the Kumasi Metropolitan Assembly
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(KMA) on longitude 1� 420 N and latitude 6� 440 W (Akoto et al.,
2017). The reservoir is centred in the Owabi Wildlife Sanctuary,
an inner Ramsar site covering an area of about 13 km2. The average
area of the reservoir is 3.5 km2 and it is drained by the following
rivers: Owabi, Sukobri, Atafua, Akyeampomene, Pumpunase and
Afu. To date, the reservoir is managed by the Ghana Water Com-
pany Limited (Owabi Headworks).

2.2. Field sampling design for the water quality assessment

The field water sampling was conducted in the dry season (23rd
December 2019) using a systematic square grid design (Fig. 1) and
assuming no marked variations in the flow direction. Initially, 47
sample points spaced evenly at 150 m apart in both north–south
and east–west directions were generated in the Quantum-GIS
environment (version 3.10.2). The location of each sample point
on the reservoir was observed with a Garmin GPS (Garmin 65, Gar-
min�) with horizontal accuracy of 5 to 10 m under normal
conditions.

At each point, surface water samples at a depth of 1 m were col-
lected in a 10 m radius circular plot using labelled dry-rinsed plas-
tic containers (Akoto et al., 2017). The samples were stored in an
ice-box at a temperature of 4 �C, and further analysed for pH, tur-
bidity, alkalinity, total dissolved solids (TDS) and dissolved oxygen
(DO) at the laboratory of Owabi Headworks. The pH, TDS and DO
were determined by potentiometry, turbidity was measured using
turbidimeter, and titrimetric methods were used to determine the
alkalinity. The laboratory analyses followed similar procedures of
Boadi et al. (2018) and summary of the measured WQPs is given
in Table 1.

2.3. Satellite data acquisition and processing

We utilized the S2 and L8 satellite imageries for the estimation
of WQPs of the Owabi Dam reservoir. Image tiles with minimum
cloud cover of less than 10%, covering the spatial extent of the
reservoir and corresponding to the period of field water sampling
were used. Level-1 data products of S2 and L8 were obtained freely
from the earth explorer platform of the United States Geological
Survey (https://earthexplorer.usgs.gov). The dates accessed for
the datasets were 23rd December 2019 and 24th December 2019
for S2 and L8 respectively.

To achieve higher accuracies, pre-processing of image tiles such
as atmospheric and geometric corrections were considered crucial
in deriving significant relationships between field data and remo-
tely sensed biophysical parameters (Copping, 2004; Appiah
Mensah et al., 2019). The atmospheric correction was done by
using the zero-brightness method, which involved the conversion
of pixel values from digital numbers to surface reflectance values
(Eq. (1)). The geometric correction was applied to correct for the
topographic effects on the angular displacement of the sun (Eq.
(2)).

SR ¼ BM DNð Þ þ RA ð1Þ

STR ¼ SR
sin SEð Þ ð2Þ

where SR is the surface reflectance values after atmospheric correc-
tion; BM denotes the band-specific multiplicative value; DN is the
digital number; RA is the reflectance additive band value; STR is
the surface reflectance values corrected for the sun angular dis-
placement; and SE is the sun elevation. Values of the above input
parameters were extracted from the metadata files in the S2 and
L8 image data.

The red-edge and short-wave-infrared bands of S2 were
resampled to the native resolution (i.e. 10 m) using the bilinear

https://earthexplorer.usgs.gov


Fig. 1. The spatial location of (a) Ghana in West Africa, (b) the regional boundaries in Ghana, (c) the elevation of the study region and (d) Owabi Reservoir and the sampling
sites.
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interpolation technique. Using the sample plot coordinates, the
spectral values of individual bands were extracted as area-
weighted values (i.e. the average of pixel values within 10 m radius
around the sample point) for each plot. The extraction was done
using the ‘raster’ package in R (R Core Team, 2019). Two of the plots
827
had spectral values contaminated with clouds and so, were
removed from the final dataset. The spectral bands of the two sen-
sors consisting of the visible and infrared bands (Table A.1, Appen-
dix, supplementary material) were used as predictors in the
regression analyses.



Table 1
Summary statistics of measured WQPs of Owabi Reservoir. Min is minimum, Max is maximum, Sd is standard deviation, Cv is coefficient of variation and n is sample size.

WQP *Statistics (n = 45)

Mean Min Max Sd Cv (%)

pH 7.06 6.74 7.90 0.26 3.68
Turbidity (mg/L) 33.21 31.94 40.13 1.72 5.18
Alkalinity (mg/L) 182.59 115.11 194.96 16.78 9.19
TDS (mg/L) 39.68 29.38 41.57 2.56 6.45
DO (mg/L) 3.92 3.83 4.40 0.12 3.06

*The statistics are computed from 45 samples instead of 47 due to presence of clouds in the spectral values of two sample locations.
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2.4. Modelling the relationship between measured WQPs and spectral
values

To establish statistical relationships between measured WQPs
and remotely sensed spectral values for the Owabi Dam reservoir,
three regression models were applied; a parametric, multiple lin-
ear regression (MLR) and two other non-parametric, random for-
ests (RF) and support vector machine (SVM) models. All three
models were fitted separately for S2 and L8 data and had a general
formulation with the WQPs as response variables and the spectral
bands as predictors. The model-specifics are described in the pro-
ceeding sections.

2.4.1. Multiple linear regression
To fit the MLR models, standard assumptions underlying linear

regression analyses were evaluated based on tests of normality and
variance homogeneity for each response variable using the
Shapiro-Wilk and Fligner-Killeen’s tests in R, respectively. To avoid
the issues of multicollinearity among the predictors, we used the
information from both the Pearson product moment of correlation
coefficient (r) and the variance inflation method (VIF) to remove
highly correlated predictors. Predictor pairs with values of r > 0.6
and VIFs > 10 were excluded from the model. The MLR was fitted
by the ordinary least squares method and was implicitly expressed
as:

Y ¼ b0 þ b1X1 þ b2X2 þ � � � þ bpXp þ e ð3Þ
where Y is the (response variable); b0; b1,b2,. . ., bp denote the
regression parameters to be estimated; X1, X2, Xp are the
remotely-sensed spectral bands; and eis the independent and iden-
tically distributed errors with an expectation, E(e) = 0 and a con-
stant variance, Var(e) = r2.

The significance of model parameters was tested at both 1% and
5% probability levels. During the MLR model fitting, predictors
were included into the model by a stepwise approach (both ‘for-
ward and backward’ selection) using the base packages of ‘caret’
and ‘MASS’ in R to enhance best model performance by lowering
the estimation error (James et al., 2013).

2.4.2. Random forests
RF is a supervised ensemble-learning algorithm which has

shown higher predictive performance in classification and regres-
sion analyses (Breiman, 2001). RF works by generating a set of
decision trees that are aggregated to reduce the variance of predic-
tions (i.e. overfitting). Among the predictor variables, the RF model
was optimized by hyper-parameter tuning following similar proce-
dures described by Li et al. (2017) and Abdi (2020). The RF model
was fitted in R using the ‘randomforest’ package (R Core Team,
2019).

2.4.3. Support vector machines
The SVM searches for the optimum decision by generating deci-

sion boundaries (i.e. hyperplanes) in a feature space (Cortes and
Vapnik, 1995). The SVM model was optimally parameterized
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through a grid search for the best combination of ‘cost’ and
‘gamma’ values that minimized the error of prediction. In addition,
the models were fitted through radial kernel function in the ‘e1071’
package (R Core Team, 2019) to account for the non-linearity of the
spectral bands (Abdi, 2020).

2.4.4. Accuracy assessment of regression models
To evaluate the accuracy of the fitted models, repeated k-fold

cross-validation technique was applied. This was considered
appropriate due to the smaller number of observations (n = 45)
which could not allow for a split into training and testing datasets.
The cross-validation was done using 10 random subsets across
three repetitions (k = 10) and recorded the prediction error after
each iteration. The averages of the k-recorded errors were summa-
rized using the accuracy metrics (Eqs. (4)–(6)): the adjusted coeffi-
cient of determination (R2

adj), root mean square error (RMSE), and
the prediction error rate (PE).

R2
adj ¼ 1� n� 1ð ÞPn

i¼1 byi � yi
� �2

n� pð ÞPn
i¼1 byi � yi

� �2 ð4Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

byi � yi
� �2
n� p

vuuut ð5Þ

PE ¼ 100%x
RMSE
y

ð6Þ

where byi, yi and yi are the predicted, measured and average values
of the dependent variable, respectively; n represents the total num-
ber of observations used for fitting the model; and p denotes the
number of model parameters. The prediction error rate (PEÞ was
further used to compare inter-sensor relative efficiencies between
the S2- and L8-predicted WQPs under the three models.

2.5. Mapping and estimation of WQPs for Owabi Dam reservoir

The best performing model (based on the accuracy metrics) and
sensor were used to construct a 10 m spatial resolution map of
WQPs for the entire Owabi Reservoir. To compute an estimator
(mean of each WQP) for the reservoir, we applied the generalised
model-assisted estimators (Särndal et al., 2003). The map-based
estimate for each WQP in the Owabi Reservoir was computed as:

blmap ¼
1
N

XN
j¼1

byi ð7Þ

where N was the number of 10 m � 10 m population units (pixels)
in the study area and byi is the model prediction for the i-th map
unit. The map-based estimate (blmap) was adjusted for systematic
model prediction errors from the field sample as:

bBias blmap

� � ¼ 1
n

Xn

i¼1

byi � yi
� � ð8Þ
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where n is the sample size of the field plots (n = 45); byi is the model
prediction for the i-th sample unit; and yi is the observed value for i-
th sample unit. Subsequently, the model-assisted estimator for the
mean of each WQP was derived as:

blmod�assisted ¼ blmap � bBias blmap

� � ð9Þ

The corresponding standard error of the blmod�assisted was com-
puted as:

SE blmod�assisted

� � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n n� 1ð Þ

Xn
i¼1

ei � e
�� �2

vuut ð10Þ

where ei is the residual error estimated as the difference between

the observed (yi) and predicted (byi) i-th values and e
�
is the mean

of the residuals. Finally, the estimated WQPs (blmod�assisted) for the
entire study area were compared to the World Health Organization
reference values (World Health Organization, 2006) to characterize
the surface water quality status of the Owabi Dam reservoir.
3. Results

3.1. Relationships between spectral reflectance and field measured
WQPs

The accuracies of the three models for the two sensors are pre-
sented in Table 2. Regardless of the sensor, RF produced the great-
est accuracies for all WQPs. Generally, the accuracies achieved
under S2 were superior to L8. For S2, the explained variance (R2.
adj) was highest for RF and ranged between 0.95 and 0.99, fol-
lowed closely by the SVM (0.94–0.98) and least for the MLR
(0.55–0.91). For L8, satisfactory accuracies were obtained from
the RF model (0.82–0.86), and the MLR showed a moderate perfor-
mance (0.33–0.42), whiles the SVM exhibited the poorest results
(0.13–0.23). The relative prediction errors of the two sensors under
all three models showed that S2 outperforms L8 on average by 63%
(RF), 65% (MLR) and 75% (SVM). The prediction uncertainty was
largest in the estimates of alkalinity and lowest for those of dis-
solved oxygen.

The parameter estimation from the MLR models of both S2 and
L8 is given in Table 3. For L8, the red, blue and green spectral bands
were key predictors in each WQP, while the green spectral band
was the only visible band important for the S2 models. However,
with the exception of dissolved oxygen, the red-edge bands were
also key predictors in the S2 models under MLR (Table 3) and RF
(Fig. 2).

The relationships between the observed and predicted WQPs
for both S2 and L8 by the three models are shown in Fig. 3. Regard-
less of the model used, the observed and predicted values agreed
strongly well for S2 compared to L8. However, the predictions
around the mean corresponded well for the two sensors. The L8
showed stronger underestimation at larger values of pH, turbidity
Table 2
Repeated cross-validation accuracy statistics of MLR, RF and SVM models for WQPs under

MLR RF

S2 L8 S2

WQP R2.adj RMSE PE R2.adj RMSE PE R2.adj RMSE

pH 0.87 0.09 1.27 0.42 0.21 2.97 0.95 0.07
Turbidity (mg/L) 0.91 0.34 1.02 0.33 1.48 4.46 0.99 0.29
Alkalinity (mg/L) 0.89 3.14 1.72 0.39 13.85 7.59 0.99 3.03
TDS (mg/L) 0.55 1.32 3.33 0.39 2.16 5.44 0.99 0.45
DO (mg/L) 0.87 0.03 0.77 0.35 0.10 2.55 0.98 0.02
Rel-PE (%) 64.79 62.68
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and dissolved oxygen and overestimation at lower levels of alkalin-
ity and total dissolved solids. These discrepancies in L8 predictions
were largest for the SVM, followed by the MLR and least for the RF.

The residuals of the RF model indicated absence of
heteroscedastic patterns in the studied WQPs (Fig. A.2). The RF
model and S2 were selected for the spatial prediction and mapping
of WQPs of the Owabi Dam reservoir.
3.2. Mapping and estimation of WQPs for the entire Owabi Dam
reservoir

The RF model and S2 data were used to predict spatial WQPs for
each of the 10,702 10 m � 10 m resolution WQP target units in the
study area as presented in Fig. 4. Predictions of pH ranged between
6.75 and 7.63, with a model-assisted mean estimate of 7.06. The
corresponding map predictions range (and mean) were 32.0–
38.65 (33.49 mg/L) for turbidity, 130.41–194.35 (179.60 mg/L)
for alkalinity, 31.51–41.48 (39.19 mg/L) for total dissolved solids,
and 3.84–4.30 (3.94 mg/L) for the dissolved oxygen. The corre-
sponding estimated standard errors for the predicted map units
were also very small (<0.0001). Comparison of the mean estimates
of each WQP with the WHO reference limits indicated that the pH,
total dissolved solids and alkalinity were within acceptable limits,
except for the turbidity which was higher than normal (Table 4).
4. Discussion

The aim of this study was to explore the feasibility of S2 and L8
in the retrieval of WQP of the Owabi Dam. Higher accuracies
obtained from the tested models indicated parameters of water
quality could be derived from spectral reflectance data. We
obtained higher accuracies with the machine learning models (RF
and SVM) than for the traditional linear regression models. Simi-
larly, using machine learning models, Naghibi et al. (2015) and
Prasad et al. (2020) found 71% and 94% accuracies with the RF
for mapping potential groundwater in Iran and India, respectively.
Others such as deep learning has been found to provide higher esti-
mates of water quality retrieval in the Unites States (Sagan et al.,
2020). Abdi (2020) and Peterson et al. (2019) suggested that the
general better performance of machine learning models with RS
data compared to parametric models is that machine learning
models enable higher-level and non-linear statistical relations to
be uncovered. Nevertheless, sufficient accuracies of water quality
retrieval could also be obtained from a well-formulated parametric
model as demonstrated by (Adelmalik, 2016; Gholizadeh and
Melesse, 2017).

As expected, differences in spatial and spectral resolution had a
stronger effect on the accuracy of WQP retrieval under S2 and L8.
We obtained higher accuracies for S2 than for L8 (Table 2). The spa-
tial resolution of S2 (10 m) is three times higher than L8 (30 m) and
thus, L8 might be more heterogeneous in terms of spectral reflec-
tance thereby reducing its accuracy. In the spectral domain, S2 offers
S2 and L8.

SVM

L8 S2 L8

PE R2.adj RMSE PE R2.adj RMSE PE R2.adj RMSE PE

0.99 0.86 0.12 1.70 0.94 0.07 0.99 0.23 0.24 3.40
0.87 0.82 0.90 2.71 0.98 0.41 1.23 0.13 1.67 5.03
1.66 0.84 8.31 4.55 0.98 3.99 2.19 0.13 16.29 8.92
1.13 0.83 1.32 3.33 0.97 0.61 1.54 0.14 2.49 6.28
0.51 0.82 0.06 1.53 0.98 0.03 0.77 0.14 0.12 3.06

74.91



Table 3
Parameter estimates from the multiple linear regression models of WQPs. Values in parenthesis are estimated standard errors.

Sentinel-2 (S2) Landsat-8 (L8)

WQP Spectral bands Estimate Spectral bands Estimate

pH Intercept 6.32 (0.08) Intercept 11.61 (5.67)
Green 23.53 (2.47) Green 118.36 (82.13)
RE2 �5.42 (2.28) Blue �56.62 (44.54)
RE4 3.46 (1.45) Red 4.68 (98.35)
NIR �1.87 (0.87) SWIR2 �23.67 (13.93)
SWIR2 6.53 (2.83)

Turbidity Intercept 28.50 (0.23) Intercept 107.03 (29.93)
Green 142.47 (8.02) Green �96.86 (341.75)
RE3 �16.80 (1.80) Blue �72.22 (276.15)
SWIR2 50.82 (9.92) Red 637.59 (545.42)

Alkalinity Intercept 229.40 (2.21) Intercept �218.10 (383.9)
Green �1332.70 (82.81) Green �4731.17 (5569.7)
RE4 146.74 (15.79) Blue 1072.30 (3020.2)
SWIR2 �534.70 (101.19) Red �1049.30 (6669.5)

SWIR2 1195.70 (944.4)
Total dissolved solids Intercept 40.26 (0.49) Intercept �21.47 (58.63)

RE2 80.82 (8.61) Green �721.96 (850.56)
SWIR2 302.33 (29.89) Blue 163.42 (461.23)

Red �160.03 (1018.52)
SWIR2 182.47 (144.22)

Dissolved oxygen Intercept 3.53 (0.02) Intercept 6.38 (3.21)
Green 11.95 (0.47) Green 38.74 (17.28)
NIR �0.89 (0.17) Blue �6.77 (20.97)
SWIR1 0.73 (0.35) NIR 0.24 (4.23)

SWIR2 �10.27 (20.92)

Fig. 2. Importance of spectral bands in estimating WQPs from Sentinel-2 (S2) and Landsat 8 (L8) using random forest model (RF).
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more spectral bands than L8, particularly, the presence of red-edge
bands. Together with the visible and infra-red bands, the red-edge
bands were also key predictors in the S2 models under MLR and RF
for all WQPs except dissolved oxygen (Table 3 and Fig. 2). Mollaee
(2018) used the red-edge bands for accurate detection andmapping
of chlorophyll content and phytoplankton in the Western Basin of
Lake Erie, and Liu et al. (2017) and Pompêo et al. (2021) found signif-
icant contributions in estimating WQPs using both the visible and
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red-edge bands for in Brazil and China, respectively. Another reason
for thedifference couldbe the plot designused forwater sampling in
our study, water samples were collected within a 10 m radius
around the sampling point which is more or less the same spatial
resolution of S2. Nevertheless, the L8 provided satisfactory accuracy
and predicted strongly well around the means of the variousWQPs.
For example, by using Landsat 5 and 8 imageries, Gholizadeh and
Melesse (2017) obtained an R2 of 84% for turbidity, which was sim-



Fig. 3. Observed versus predicted values using MLR, RF and SVM models on S2 and L8 data for pH (A-C), turbidity (D-F), alkalinity (G-I), total dissolved solids (J-L) and
dissolved oxygen (M�O). The diagonal dashed-line shows a 1:1 relation.
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ilar to our result for L8 under RF (R2 = 82%). Further, the use of L8 for
water quality estimation has also produced satisfactory results in
many studies, for example in Mexico (González-Márquez et al.,
2018) and China (Zheng et al., 2015). Compared to S2, Landsat has
831
a long history allowing for spatio-temporal trends assessment of
water quality (Saadi et al., 2014; Gholizadeh et al., 2016). Addition-
ally, the 16-day repeat cycle as well as the availability of panchro-
matic band (15 m) of L8 can equally facilitate monitoring of water



Fig. 4. Generated 10 m spatial water quality maps of the Owabi Reservoir using the RF model and S2 satellite data.

Table 4
Model-adjusted map estimate of WQPs and comparison with WHO standards (2006).

WQPs blmod�assisted(range) SE blmod�assisted

� � WHO reference

pH 7.06 (6.75–7.63) 5.57 � 10�17 6.50–8.50
Turbidity (mg/L) 33.49 (32.00–38.65) 1.65 � 10�16 5.00
Alkalinity (mg/L) 179.60 (130.41–194.35) 1.97 � 10�15 200.00
TDS (mg/L) 39.19 (31.51–41.48) 4.66 � 10�16 1000.00
DO (mg/L) 3.94 (3.84–4.30) 3.43 � 10�18 –
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quality with a greater detail. We propose also that L8 can be used in
tandem with S2 to monitor the water quality of Owabi Dam reser-
voir. It is also worth to mention that spatial features derived from
texture metrics on the basis of the radiometric resolution could
enhance better retrieval of optical WQPs. However, these were not
considered in our study due to the low signal-to-noise ratio of mod-
erate L8 and S2which prevents the use of spectral shape algorithms
and bio-optical inversion estimators (Sagan et al., 2020).

The range of predicted WQPs were similar to recent studies
done on the area (Akoto et al., 2017; Boadi et al., 2018) but showed
increasing trends when compared to Akoto et al. (2008). However,
similar study is needed for the wet season to ascertain for spatio-
temporal trends in water quality of Owabi Dam.

5. Conclusion

The study has shown that WQPs of Owabi Dam can be retrieved
from satellite imageries with high accuracies. S2 and the RF model
are most suitable for estimating and wall-to-wall mapping of
WQPs of the Dam, though L8 can also be used in tandem. The
832
developed models have the potential to be used in empirical and
process-based water quality forecasting models under given cli-
mate change scenarios and for the development of integrated
water resources management plan for the reservoir. It is envi-
sioned that incorporating satellite data in WQP estimation will
not only reduce cost during field sampling, but also enhance sus-
tainable monitoring of the Owabi Dam reservoir in a consistent
and resource-efficient way.
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