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A B S T R A C T   

Recent advances in molecular ecology have dramatically improved our knowledge of soil microbial diversity and 
offers new indicators of soil quality. The usefulness of diversity indices has never been greater as the astro-
nomical amounts of data generated in the literature needs to be synthesized. Despite technical guidelines have 
been proposed to characterize soil microbiomes using high throughput sequencing, the effect of taxonomic 
resolution on diversity indices is still largely unknown. Here, we explored how downscaling to higher taxonomic 
resolution levels may affect α- and β-diversity indices of bacterial communities exposed to different soil organic 
matter management. To this aim, we collected soil samples in a long-term experimental site (Ultuna, Sweden) 
where different mineral and organic fertilizers have been applied for since 1956. We used both massive amplicon 
sequencing from phylum to species (OTU) and molecular fingerprints (PLFA, DGGE and T-RFLP). Our results 
showed that the discrimination potential increased at finer taxonomic resolution for β-diversity but not for 
α-diversity indices such as richness and evenness. Also, the relative importance of hierarchical drivers of soil 
microbial communities such as C, N and pH varied depending on the taxonomic resolution. This study also 
demonstrated that indicators generated by molecular fingerprints such as PLFA, DGGE and T-RFLP are still 
consistent to monitor the effect of agricultural management on β-diversity but not on α-diversity, which is useful 
information as it allows for a better use of results in past literature. We encourage performing such comparative 
studies on wider surveys, including different contexts and other indicators, in order to increase the efficiency and 
the robustness of the use of sequencing data in soil biodiversity monitoring.   

1. Introduction 

Soil microbes play a central role in many biogeochemical cycles on 
earth, driving global carbon and nutrient cycling with direct feedbacks 
on plant productivity (Wagg et al., 2019). Developing robust, reliable 
and sensitive biological indicators is crucial for establishing early 
warning systems of potential soil multi-functionality losses (Schloter 
et al., 2018). These indicators should not only contribute to the assess-
ment of the current status of agricultural soils and the impact of past 
management, but they should also help to determine the effectiveness of 
new practices for improving soil biological quality. The most popular 
microbial indicators in soil science were first, and are still, based on 
integrative parameters such as microbial biomass C, potential N 

mineralization, metabolic quotient or enzymatic activities (Nannipieri 
et al. 2003, Nannipieri et al., 2012). Although they are key indicators for 
studying the functioning of soils, they do not inform on microbial 
diversity. 

Until the mid 90′s, little research had been conducted to quantify the 
relationships between microbial diversity, soil quality, and ecosystem 
sustainability (Kennedy and Smith, 1995). Since then, the development 
of molecular fingerprinting partially fulfill this need for knowledge. 
Among these methods, phospholipid fatty acids (PLFA), Denaturing 
Gradient Gel Electrophoresis (DGGE) and Terminal Restriction Frag-
ment Length Polymorphism (T-RFLP) have been probably the most 
commonly used in routine to study soil microbial ecology, with almost 
8000 publications (Web of Knowledge, 2020). However, these 
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fingerprints are limited by their low resolution, which restrict the 
investigation to the most dominant groups of microorganisms. Besides, 
they cannot be used to determine genetic affiliation, unless com-
plemented by a cloning and Sanger sequencing procedure including a 
time consuming clone library construction. These major methodological 
constraints have been overcome thanks to the emergence of the so-called 
next-generation sequencing (NGS) about 15 years ago (Daniel, 2005). 

The constant improvement of molecular biology techniques in soil 
sciences has dramatically improved our knowledge of soil microbial 
diversity and offers new indicators of soil quality. A global-range survey 
of the soil biodiversity research community across Europe showed that 
microbial diversity determined by molecular methods are now the top 
indicators for monitoring progress towards policy goals for soil quality 
(Stone et al., 2016). According to the “logical sieve” procedure devel-
oped by Ritz et al. (2009), microbial diversity measurements were only 
in the middle rankings for technical factors [FT] but scored in the top five 
for discrimination potential [SD] and high for relevance to function 
[FSF]. However, it should be noted that the relationship between the soil 
microbial diversity and soil functions is still not clear. Given the rele-
vance of these molecular techniques for soil microbial monitoring, it is 
crucial to establish standard operating procedures (SOPs) such as those 
recommended by the FAO for soil chemical and physical properties (http 
s://www.fao.org/global-soil-partnership/glosolan). 

To ensure the reproducibility of results and respond to the need for 
harmonizing the huge microbial data provided by molecular tools, one 
should first resolve practical issues. Before sequencing, each step of the 
DNA metabarcoding workflow can potentially introduce its own sources 
of artifacts and biases (Zinger et al., 2019). For instance, DNA extraction 
methods can alter microbial diversity measurements and even mask 
long-term fertilization effects (Changey et al., 2021). Also, microbial 
diversity indexes can be affected by read annotation stringency (Del-
mont et al., 2012), inappropriate primers (Clarke et al., 2014), reagent 
contaminations (Salter et al., 2014) or sequencing adapters (Taberlet 
et al., 2018). In addition, there are other potential biases such as the 
denoising procedure, sequencing depth, reference sequence database or 
data normalizations. Even the choice of the diversity indicator used to 
quantify and compare microbial taxonomic diversity has been ques-
tioned (Haegeman et al., 2013). Although guidelines have been pro-
posed to design of metagenomic surveys and characterize community 
composition and function of soil microbiomes (Vestergaard et al., 2017), 
there are still no reference on the taxonomic level at which analyses of 
diversity indicators should be performed. 

One might expect that most soil microbial diversity studies per-
formed with High-Throughput Sequencing (HTS) tend to use informa-
tion at the lowest taxonomic rank (i.e. species or OTU level when 
possible). Indeed, DNA-based assignment of microorganisms to fine 
taxonomic resolution is equally expensive as assigning them to coarser 
levels (assuming the same criteria of quality or sequencing depth). 
However, a rapid survey of about one hundred articles published in soil 
microbiology during the last 5 years (Web of Knowledge, 2020) shows 
that most of these studies (83%) use different, and paradoxically high 
taxonomical levels to illustrate the composition of microbial commu-
nities: more than 95% used the phylum, 43% the genus and 35% the 
class. This obvious disparity in the literature certainly stems from the 
difficulty of synthesizing the astronomical amount of data produced at a 
very fine taxonomic scale. One can therefore wonder about the most 
appropriate level of aggregation to answer questions of microbial ecol-
ogy. In this respect, it has been suggested that high bacterial taxonomic 
ranks can be relevant for bacterial taxonomy, evolution and ecology 
(Philippot et al., 2010). Practically speaking, this lack of congruity be-
tween studies concerning the taxonomic level at which analyses of di-
versity indicators are calculated may limit our capacity to monitor 
microbial diversity of soils. 

This question has been addressed for decades in the fields of ecology 
and biogeography of macroorganisms through the concepts of Higher 
Taxon Approach (HTA) or taxonomic sufficiency (Ellis, 1985). This 

approach consists in the identification of organisms to the taxonomic 
level needed to meet the requirements of the study. A recent meta- 
analysis performed on different ecosystem types (aquatic and terres-
trial) and biological groups (e.g., microorganisms, invertebrates, verte-
brates and plants) showed that higher taxonomic ranks are sufficient for 
representing biodiversity patterns (de Oliveira et al., 2020). Strong 
within-taxon congruence was demonstrated at family, genus and species 
levels for bacteria living in a large lake system (Vilmi et al., 2016). A 
study on bacterial and fungal biogeography conducted in in subarctic 
ponds showed that taxonomic downscaling indicated a notable change 
in the relative importance of biodiversity determinants with stronger 
local environmental filtering, but decreased importance of climatic 
variables (Yeh et al., 2019). To our knowledge, the congruence of di-
versity indicators obtained at different taxonomic levels has never been 
examined in soils contrary to aquatic ecosystems, although it may gives 
valuable information for the applications of sequencing to soil biodi-
versity monitoring. 

This study focuses on the relationship between soil organic matter 
(SOM) and bacterial diversity. It is known that SOM quantity and quality 
greatly influence soil microbial diversity (e.g. Fierer and Jackson 2006; 
Maestre et al., 2015; Wiesmeier et al., 2019). The study had two ob-
jectives. First, we hypothesized that the finer the taxonomic resolution, 
the better the differentiation among bacterial communities of soils 
subjected to different SOM managements. Second, we compared di-
versity indicators obtained with molecular fingerprinting techniques 
that are of lower resolution but still very popular. Therefore, we 
analyzed the bacterial communities of samples collected in one of the 
oldest long-term field experiments in Europe, initially designed to study 
the effects of different organic and mineral fertilizers on crop production 
and soil properties. We used both molecular fingerprints (PLFA, DGGE 
and T-RFLP) and massive amplicon sequencing (Illumina® Technolo-
gies) at different taxonomic resolutions (from phylum to species or 
OTU). The ability of the different methods to discriminate the effect of 
fertilization treatments on soil bacterial communities was evaluated by 
comparing α- and β-diversity indexes and the relationships with envi-
ronmental variables. 

2. Materials and methods 

2.1. Experimental site and soil sampling 

Soil samples were taken from the Ultuna Long-Term Soil Organic 
Matter Experiment (Uppsala, Sweden; 60̊N, 17̊E). The experiment was 
started in 1956 on a post-glacial clay loam soil classified as an Eutric 
Cambisol (Herrmann and Witter, 2008). The mineral fractions consist of 
37% clay, 41% silt and 22% sand. In this experiment, samples were 
taken from the plots (2 × 2 m) that had been treated with mineral ni-
trogen (N) fertilizers and/or organic amendments (biennial addition of 
8 Mg ash-free organic matter ha− 1 y-1). These treatments resulted in a 
wide range of soil soil physico-chemical parameters (Table 1, data from 
Lerch et al., 2011). The treatments were initially replicated in four 
blocks but in the present study, only three replicates per treatment were 
used. Eight sub-samples from 0 to 7 cm depth were taken from each plot 
in June 2009, sieved < 2 mm, mixed per replicate block and stored at −
20 ◦C prior DNA or PLFA extraction. 

2.2. Phospholipid fatty acids (PLFA) 

Lipid fractions were obtained after extraction from 10 g soil (dry 
weight equivalent) using the method described by Frostegård et al. 
(1993). Phospholipids were separated using a solid-phase extraction 
column (Extract-Clean® Silica, Grace). After methylation, fatty acid 
methyl esters (FAME) were identified using the retention time of chro-
matograms and mass spectral comparison on a Hewlett-Packard 6890 
gas chromatograph equipped with either a Flame Ionisation Detector 
(GC-FID) or an Agilent 5973 Electronic Impact (70 eV) quadruple Mass 
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Spectrometer (GC–MS). A standard qualitative bacterial acid methyl 
esters mix (Sigma-Aldrich) that ranged from C11:0 to C20:0 was used for 
the identification of sample FAME based on retention time. The relative 
abundance of each fatty acid was used to compare the community 
structure between the samples (Lerch et al., 2009). All fatty acids 
contributing <0.5% to the fatty acids pool were removed before anal-
ysis. In order to compare to the other methods focusing on bacteria, the 
fungal biomarker C18:2w(9,12) was removed from the analyses. 

2.3. DNA extraction and quantification 

The DNA extraction was performed on 250 mg (dry weight equiva-
lent) of soil using the NucleoSpin Soil kit (Macherey-Nagel, Düren, 
Germany) following manufacturer instruction and using SL2 and SX 
buffers. The total DNA concentration in each sample was quantified with 
a Qubit™ fluorometer (Invitrogen, NZ). In addition, the purity of the 
DNA was estimated by measuring the 260/280 nm and 260/230 nm 
ratios using a NanoDrop spectrophotometer (Thermo Scientific, Wil-
mington, DE, USA). 

2.4. Denaturing Gel gradient Electrophoresis (DGGE) 

The DGGE analysis of the bacterial community was performed ac-
cording to Muyzer et al. (1993). Briefly, the V3 region of the 16S rDNA 
was amplified using primers 338F and 518R (See Table A.1). Each PCR 
tube (25 μL) contained 12.5 µL of Taq PCR Master Mix Kit (Qiagen, 
USA), 1.25 μL of each primer, 2 µL of DNA template and 8 µL of nuclease 
free water. PCR reaction was performed in a thermocycler (Biorad T100, 
France) with the following program: 95 ◦C for 2 min, followed by 15 
cycles at 95 ◦C for 1 min, 60 ◦C for 1 min and final extension step 72 ◦C 
for 2 min followed by 15 cycles at 95 ◦C for 1 min, 65 ◦C for 1 min and 
72 ◦C for 2 min and 10 cycles at 95 ◦C for 1 min, 55 ◦C for 1 min, 72 ◦C 
for 2 min and an additional extension time at 72 ◦C (10 min). DGGE was 
performed on 6% polyacrylamide gels with a gradient of 45% to 65% 
denaturants (urea/formamide). Denaturation gradient was 30–60% 
(urea/formamide) and migration of 25 µL of PCR products was per-
formed for 6 h at 150 V. Gels were stained with ethidium bromide and 
were imaged Gel-Doc (BioRad, USA) exploitation system. Data analysis 
was realized using the software Quantity One (BioRad, USA) according 
to (Ranjard et al., 2000). Bands with a relative abundance below 0.5% 
were removed from the matrices. 

2.5. Terminal-restriction fragment length polymorphism(T-RFLP) 

For T-RFLP, bacterial 16S rRNA genes were amplified using primers 
63F and 1389R (Marchesi et al., 1998; Osborn et al., 2000) (See 
Table A.1). A Biorad T100 thermal cycler was used for the amplification 
with the following program: initial denaturation at 94 ◦C for 2 min, 
followed by 30 cycles of 94 ◦C for 30 s, 57 ◦C for 45 s, and 72 ◦C for 90 s, 
followed by a final extension time at 72 ◦C for 10 min. Restriction 
fragments of amplified 16S rRNA genes were obtained using enzyme 
AluI (Thermo Fisher) following the protocol described by Blaud et al. 
(2015). Samples were electrophoresed on an ABI 3730 PRISM® 

capillary DNA sequencer (Applied Biosystems) using LIZ500 internal 
size standard (Applied Biosystems). Genetic profiles obtained were 
analyzed using GeneMapper® v. 3.7 software (Applied Biosystems). The 
terminal restriction fragments (T-RFs) were binned with a 0.5 bp in-
terval. T-RFs with a relative abundance below 0.5% were removed from 
the matrices. 

2.6. Amplicon sequencing and bioinformatics analysis 

The 16S rRNA fragment was amplified from each DNA sample using 
the surrounding conserved regions’ V3–V4 primers (Klindworth et al., 
2013) with overhang adapters: FwOvAd_341F and ReOvAd_785 
(Table A.1). For each sample, 5 ng of DNA template were used for a 25 
μL PCR mix with 5 μL of each primers (1 μM), 12.5 μL, of HiFi Hot Start 
Ready Mix (Kapa Biosystems) and ultra-pure water. PCR were per-
formed on a T100 thermal cycler (Biorad, USA) as follows: 95 ◦C for 3 
min, followed by 27 cycles of 98 ◦C for 20 s, 61 ◦C for 10 s, and 72 ◦C for 
15 s. A final extension step was performed at 72 ◦C for 5 min. All 
amplicon products were purified using AMPure magnetic beads (Agen-
court Bioscience, USA), quantified with Qubit™ fluorometer (Thermo 
Fisher Scientific) and mixed in equimolar concentrations (5 ng µL). The 
library construction (Nextera XT DNA Library Preparation Kit) and the 
sequencing (Illumina MiSeq 300 bp paired-end with V2 chemistry with a 
sequencing depth of 1 million reads) were performed at the Curie 
Institute (Paris, France). After a quality control, 16S paired-end se-
quences were merged into contigs with PEAR (v0.9.10) (Zhang et al., 
2014). Data were subsequently imported into the FROGS pipeline (Find 
Rapidly OTU with Galaxy Solution) implemented on a galaxy instance 
(v.2.3.0) (http:// sigenae-workbench.toulouse.inra.fr/galaxy/) (Escudié 
et al., 2018). Sequences were dereplicated before being clustered using 
SWARM algorithm (v.2.1.5) (Mahé et al., 2014) with a first denoising 
step using an aggregation distance equal to 1 and a second one equal to 
3. Chimera were removed using VSEARCH (Rognes et al., 2016). Filters 
were applied to remove clusters which are not present in at least 3 
samples or with an abundance below a 0.005% threshold (Bokulich 
et al., 2013). The taxonomic assignation of each OTU was performed 
using the BLAST tools against (Camacho et al., 2009) the database SILVA 
132 16S (Pruesse et al., 2007). Phyloseq (1.26.1) R package was used to 
identify community composition analysis, to normalize and to generate 
α-diversity indexes (richness and evenness) after a rarefaction curve 
using the transform counts method (McMurdie et al., 2013). 

2.7. Statistical analysis 

All statistical analyses were carried out using R software version 
3.3.1 (R Development Core Team, http://www.R-project.org). To 
compare each method of soil bacterial community analysis, we first 
compared α-diversity indexes. Here, we used the number of OTU as 
community richness and Simpson-Yule index as evenness. The two latter 
parameters were also used to characterize PLFA, DGGE and T-RFLP 
profiles although we are aware that richness and evenness values ob-
tained from molecular fingerprints are not reliable descriptors of the 
bacterial community (Blackwood et al., 2007). The evenness was 

Table 1 
Soil physico-chemical characteristics (C, N, C/N, pH) of Ultuna Long-Term experiment field collected in 2009. Mean values ± standard deviation (n = 3) are shown. 
Different lowercase letters indicate significant (P < 0.05) differences among treatments.  

Soils treatments* Code C (mg g− 1) N (mg g− 1) C/N ratio pH (H2O) 

Unfertilised B 11.1 ± 0.2f 1.18 ± 0.02 g 9.4 ± 0.2 e 6.2 ± 0.1c 

Ca(NO3)2 C 14.0 ± 0.6 e 1.45 ± 0.04f 9.6 ± 0.1 d 6.7 ± 0.1 a 

Straw F 16.1 ± 0.9 d 1.56 ± 0.08 e 10.4 ± 0.1b 6.4 ± 0.1b 

Straw + Ca(NO3)2 G 19.8 ± 0.8c 1.87 ± 0.06c 10.6 ± 0.1 a 6.6 ± 0.1 a 

Green manure H 16.9 ± 0.3 d 1.73 ± 0.03 d 9.8 ± 0.1 d 6.1 ± 0.1c 

Farmyard manure J 23.0 ± 0.4b 2.27 ± 0.01b 10.1 ± 0.1c 6.5 ± 0.2 ab 

Sewage sludge O 28.6 ± 0.9 a 3.08 ± 0.09 a 9.3 ± 0.03 e 4.9 ± 0.1 d  

* Soil chemical data are for spring 2009 (Lerch et al., 2013). Initial in 1956: soil C 1.5 mg g− 1 soil. pH 6.5. 
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estimated using the Simpson-Yule index: E = 1/
∑

pi2 (Magurran, 1988), 
where pi is the proportion of a given peak, band, T-RF or amplicon. After 
normality and homoscedasticity verifications (Shapiro and Bartlett test), 
ANOVA (significance was declared at P < 0.05) were performed on 
richness and evenness indexes and Tukey HSD test was used for pairwise 
comparisons using “agricolae” package. The β-diversity was estimated 
by using the relative abundance matrices and multivariate analyses. The 
dissimilarities (Bray-Curtis distances) among soil treatments were 
assessed using Principal Coordinate Analysis (PCoA) were performed 
followed by Between-Class Analysis (BCA) using the “ade4TkGUI” 
package. In addition, significant difference among treatments was 
determined using a Mantel test performed on 105 permutations (vegan 
2.2.1 R package) (Oksanen et al., 2011). After testing the multivariate 
homogeneity of group dispersions (Anderson, 2006), PERMANOVA 
were performed using the “adonis” function (vegan 2.2.1 R package) to 
test the link between bacterial community composition obtained with 
the different method and the environmental variables (9999 permuta-
tions). All graphic representations were performed using SigmaPlot 14.0 
software. 

3. Results 

3.1. Soil bacterial α-diversity 

The bacterial richness (number of OTUs) obtained by Illumina Miseq 
sequencing doubled with the taxonomic resolution (Fig. 1.A). PLFA and 
DGGE profiling gave similar number of variables to the OTUs at the 
phylum level and T-RFLP profiling was similar to the class level. The 
intra-group variation tended to decrease with the taxonomic resolution, 
representing half of the total variability at the species (OTU) level 
(Fig. S1). With molecular fingerprints, significant (P < 0.05) differences 
among soil treatments were only found for DGGE and T-RFLP but the 
hierarchy among groups was not the same as that obtained with 
amplicon sequencing (Table 2). With NGS techniques, significant (P <
0.05) differences in the number of OTU among soil treatments were 
observed at all taxonomic level, except at the genus level. The same 
hierarchy was observed from the order to the species (OTU) level, with 
the lowest richness in the green manure treatment (H) and the highest in 
the straw + Ca(NO3)2 (G) and farmyard manure (J). The richness z- 
scores decreased with taxonomic resolution for the unfertilized (B) or 
green manure amended (H) soils but increased for Ca(NO3)2 fertilized 
(C) and straw (F) amended soils (Fig. S2). 

The average evenness values obtained by sequencing tended to 
decrease linearly with the taxonomic resolution (Fig. 1B). Profiles ob-
tained by molecular fingerprints were much more even than OTU dis-
tributions. Similar values were calculated for PLFA and T-RFLP while 
the highest evenness was found for DGGE profiles. The variation coef-
ficient of the evenness index was the lowest for PLFA method and the 
highest for NGS at the species (OTU) level (Fig S1.B). DNA based fin-
gerprints showed similar values as amplicon sequencing at the phylum 
to the genus level (Fig. A.1). The intra-group variation was the lowest for 
T-RFLP and NGS at the species (OTU) level. Significant (P < 0.05) dif-
ferences among soil treatments were observed both with molecular 
fingerprints and amplicon sequencing at all taxonomic level, except for 
the order (Table 3). However, the hierarchy among treatments were not 
the same according to the method. The highest value in the PLFA data 
was observed for the straw treatment (F) and the lowest for sewage 
sludge (O). The DGGE profiling showed the highest value for the un-
fertilized plot (B) and the lowest for farmyard manure treatment (J). The 
highest value in the T-RFLP data was found for the green manure 
treatment (H) and the lowest for sewage sludge (O). The patterns were 
very similar between phyla and classes in the NGS data, with the highest 
evenness values for the Ca(NO3)2 and sewage sludge treatments (C and 
O). At the family, genus and species (OTU) level, the highest evenness 
value was observed for the farmyard manure (J) treatment. The even-
ness z-scores decreased with taxonomic resolution for the unfertilized 

soil (B) and soils amended with farmyard manure (J), sewage sludge (O) 
or green manure (H). Inversely, evenness z-scores increased for the Ca 
(NO3)2 fertilized (C), the straw (F) and the green manure (H) amended 
soils (Fig. A.2). 

3.2. Soil bacterial β-diversity 

The analyses of Bray-Curtis inter-group distances (Fig. 1.C) obtained 
with amplicon sequencing showed that dissimilarities among samples 
was the highest at the class and genus level and the lowest at the phylum 
level. They were the lowest for PLFA and the highest for DGGE. For all 
methods, inter-group dissimilarities were higher than intra-group ones 

Fig. 1. Richness (A) and Evenness (B) of all samples (n = 21) and Bray-Curtis 
inter-group distances (C; n = 128) as function of the number of variables ob-
tained with molecular fingerprints (white boxes) or amplicon sequencing (grey 
boxes) at different taxonomy levels (P: Phylum; C: Class; O: Order; F: Family; G: 
Genus; S: Species). Different lowercase letters indicate significant (P < 0.05) 
differences among methods. 
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(data not shown). The coefficient of variation of the total and intra- 
group distances tend to decrease with the taxonomic resolution, with 
a minimum reached at the species (OTU) (Fig. A.1.). The analyses of z- 
scores of the inter-group distances shows that, whatever the method or 
resolution, the sewage sludge treatment (O) had very different bacterial 
communities (highest distances) compared to the other treatments 
(Fig. A.2.). For few treatments like the farmyard amendment (J) or non- 
fertilized soil (B), z-scores are highly influenced by the method or the 
resolution. 

The first two axes of the between class analysis (Fig. 2) explained 
76%, 54%, 64% for PLFA, DGGE and T-RFLP, respectively and between 
80 and 82% for amplicon sequencing (depending on the taxonomic 
level). For all methods used, the analysis of multivariate homogeneity of 
group dispersions showed no differences and the Monte Carlo test 
revealed significant (P < 0.001) shifts in bacterial community structure 
associated with long-term fertilization. Amplicon sequencing gave the 
highest differentiation among treatments. On the first (horizontal) axis, 
the unfertilized soil (B) and the sewage sludge (O) treatment were 
separated from straw + Ca(NO3)2 and the farmyard manure (G and J) 
while on the second (vertical) axis, the soil (C) fertilized with Ca(NO3)2 
was separated from the straw and green manure amended soils (F and 
H). Correlations of Hellinger distances between closest taxonomic levels 
were all significant except between the Phylum and Order levels (Fig. 3). 
It should be noted that molecular fingerprints profiles were significantly 
correlated with amplicon sequencing data at all taxonomic level except 
the class and the phylum for PLFA (Table A.2.). 

The proportions of OTU present in all samples (core microbiota), 
shared with few groups (2 to 6) and specific to a particular soil treatment 
varied with the taxonomic level considered (Fig. 4). The results showed 
a decrease of the apparent core microbiota from 62% to 16% from the 
phylum to the species (OTU) level. Inversely, the proportion of OTUs 
partially shared among treatments increased from 33 to 75% between 
the higher and the lower taxonomic ranks. Specific OTUs were not 
detected at the phylum and class levels but their proportion increased 
from 4% to 9% between the order and the species (OTU) levels. Most of 
the specific OTUs were found in the sewage sludge (O) and farmyard 
manure (J) treatments (Fig. A.2). 

3.3. Relationship between bacterial diversity and soil parameters 

A positive correlation (P < 0.01) was found between C/N ratio of the 
soil and the richness at the order (r2 = 0.65), family (r2 = 0.56) and 
species (OTU) levels (r2 = 0.55). The number of T-RFs was also posi-
tively correlated to the pH (P < 0.01; r2 = 0.63). The C/N ratio was 
positively correlated (P < 0.01, r2 = 0.59) to the evenness at the species 
(OTU) level but negatively correlated (P < 0.05, r2 = -0.53) at the 
phylum level. With PLFA fingerprinting, a positive correlation (P < 0.05, 
r2 = 0.49) was found between soil pH and the evenness of the profile. 
With T-RFLP fingerprinting, a positive correlation (P < 0.001, r2 = 0.82) 
was found between soil pH and the evenness and a negative one (P <
0.001, r2 = -0.54) with the soil N content. For all methods, the PER-
MANOVA based on Bray-Curtis dissimilarities gave significant (P <
0.001) relationships between the microbial community structure and 
the type of fertilization (Table 4). The strongest relationships were found 
at the species (OTU) (r2 = 0.77) and phylum (r2 = 0.74) levels and the 
lowest relationships at intermediate taxonomic resolutions (r2 between 
0.61 and 0.65). In comparison, molecular methods had an r2 between 
0.69 and 0.70. 

When testing a PERMANOVA model using soil physico-chemical 
variables, the higher taxonomic resolution increased the number of 
significant relationships. At the phylum level, the microbial community 
composition was correlated with N, pH and C/N ratio while at the genus 
and species (OTU) level, it was correlated to C, N, pH, C/N ratio and also 
the interaction of C and N and C and pH. The PLFA matrix was signifi-
cantly correlated to N, pH, the interaction of C and N contents. DGGE 
and T-RFLP matrices were additionally correlated with C and C/N ratio 
and the interaction of C and pH. DGGE matrix also revealed significant 
effect of the interactions between C, N, pH and C/N ratio. 

4. Discussion 

4.1. Changes in diversity indexes across taxonomic resolutions 

Globally, the results obtained from amplicon sequencing showed a 
doubling of richness at each taxonomic level. This trend matches that of 

Table 2 
Number of FAME, DGGE bands, T-RFs and OTU obtained by amplicon sequencing (from Phylum to Species) Means values ± standard deviation (n = 3) are shown. 
Different lowercase letters indicate significant (P < 0.05) differences among treatments.   

Fingerprinting Amplicon Sequençing 

Soils treatments PLFA DGGE T-RFLP Phylum Class Order Family Genus Species 

Unfertilised 16 ± 1 21 ± 2b 45 ± 2 a 19 ± 1 a 43 ± 3 ab 85 ± 4 abc 131 ± 3 bc 201 ± 3 676 ± 28b 

Ca(NO3)2 16 ± 1 23 ± 1b 46 ± 3 a 17 ± 1 bc 40 ± 1 bc 83 ± 1c 127 ± 1 cd 206 ± 3 709 ± 10 ab 

Straw 17 ± 2 26 ± 2 a 44 ± 3 a 16 ± 1c 38 ± 2c 84 ± 1 bc 131 ± 2 bc 207 ± 7 713 ± 27 ab 

Straw + Ca(NO3)2 16 ± 1 27 ± 2 a 46 ± 4 a 19 ± 1 a 44 ± 1 a 89 ± 3 a 134 ± 3 ab 209 ± 6 755 ± 56 a 

Green manure 16 ± 1 19 ± 1c 48 ± 2 a 18 ± 1 ab 43 ± 2 ab 81 ± 3c 124 ± 4 d 194 ± 13 619 ± 29c 

Farmyard manure 15 ± 1 26 ± 2 a 38 ± 5b 18 ± 2 ab 44 ± 3 a 89 ± 3 a 137 ± 2 a 214 ± 6 738 ± 20 a 

Sewage sludge 16 ± 1 21 ± 3b 35 ± 4b 17 ± 2 abc 44 ± 3 a 85 ± 4 abc 129 ± 2c 202 ± 3 705 ± 11 ab 

P value 0.66 0.021 0.011 0.029 0.015 0.025 0.006 0.062 0.002  

Table 3 
Evenness (in %) of PLFA, DGGE or T-RFLP profiles and OTU obtained by amplicon sequencing (from Phylum to Species). Mean values ± standard deviation (n = 3) are 
shown. Different lowercase letters indicate significant (P < 0.05) differences among treatments.   

Fingerprinting Amplicon Sequençing 

Soils treatments PLFA DGGE T-RFLP Phylum Class Order Family Genus Species 

Unfertilised 55 ± 1 de 77 ± 4 a 60 ± 2 bc 33 ± 3b 26 ± 3 cd 23 ± 2 18 ± 2c 14 ± 2b 10 ± 1c 

Ca(NO3)2 58 ± 2 bcd 72 ± 3 ab 59 ± 5c 38 ± 3 a 31 ± 1 a 26 ± 1 22 ± 2b 16 ± 1b 17 ± 4b 

Straw 60 ± 2 a 71 ± 5 ab 63 ± 1 abc 32 ± 1b 24 ± 1 cd 26 ± 2 21 ± 2 bc 16 ± 1b 13 ± 3c 

Straw + Ca(NO3)2 58 ± 1 abc 68 ± 2 ab 63 ± 2 abc 28 ± 3b 22 ± 2 d 24 ± 2 22 ± 2b 16 ± 2b 18 ± 3 ab 

Green manure 57 ± 1 cde 66 ± 3b 68 ± 3 a 30 ± 2b 22 ± 2 d 23 ± 3 21 ± 2b 16 ± 2b 10 ± 1c 

Farmyard manure 60 ± 2 ab 57 ± 2c 65 ± 6 ab 32 ± 4b 27 ± 1 bc 27 ± 1 27 ± 2 a 20 ± 2 a 21 ± 1 a 

Sewage sludge 54 ± 1 e 67 ± 2b 55 ± 2 d 41 ± 4 a 30 ± 3 ab 23 ± 2 19 ± 1 bc 16 ± 1b 13 ± 1c 

P value 0.002 0.009 <0.001 <0.001 <0.001 0.209 0.004 0.022 <0.001  
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the List of Prokaryotic names with Standing in Nomenclature (LPSN; htt 
ps://www.bacterio.net/), where 34 phyla, 116 classes, 196 orders, 415 
families, 2930 genus and 15,448 species are listed (Parte, 2018). From 
the phylum to the family rank, a linear relationship was found between 
the number of OTU in the present study and that of the LPSN (y = 0.47x; 
r2 = 0.96; P < 0.001). This linearity was subject to a break in slope at 
lower levels, as the numbers of genus and species found here represent 
only 0.11 and 0.07 of those classified in the LPSN, respectively. It could 
be the consequence of stronger selection in soils at fine taxonomic levels, 
or lower levels of contribution to the database by the soils community, as 
most of the species and genus belonging to soil environments are not 
recorded in worldwide databases yet (Nayfach et al., 2021). 

Concomitantly, we observed a decrease in the evenness of nearly 15% 
between two different subsequent taxonomic levels as we go down in the 
taxonomic hierarchy, which is evidence of increasing numbers of minor 
bacterial groups. 

We hypothesized that the increase of information provided at low 
taxonomic ranks would accentuate the differences in bacterial diversity 
among soil treatments and thus, improve the discrimination potential 
[SD] of sequencing techniques (Ritz et al., 2009). Our results do not 
confirm this trend for α-diversity indices. Here, the best discrimination 
were found at the family and at the class level, respectively for bacterial 
richness and evenness. Inversely, no differences among treatments were 
found at the genus and order level for bacterial richness and evenness, 

Fig. 2. Differences in bacterial community structure represented by Between Class Analysis (BCA) based on PLFA, TRFLP, DGGE or amplicon sequencing (Phylum to 
Species level) matrices. Grey lined ellipses represent the variability of each treatment (B: unfertilized; C: Ca(NO3)2; F: straw; G: straw + Ca(NO3)2; H: Green manure; 
J: Farmyard manure; O: Sewage sludge). Letter represent the barycenter of the replicates (n = 3) for each treatment. Monte Carlo test revealed significant differences 
among treatments (simulated P < 0.001) for all methods. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 

F. Changey et al.                                                                                                                                                                                                                                

https://www.bacterio.net/
https://www.bacterio.net/


Ecological Indicators 139 (2022) 108897

7

respectively. The high intra-treatment variability (approximately 80% 
of the total variability) found for both bacterial richness and evenness at 
these taxonomic ranks may be responsible for the lack of differences. 
Therefore, attention should be paid to the taxonomic level when using 
α-diversity indexes to compare the effect of agricultural practices. For 
example, one can conclude that there is no effect of fertilization on 
bacterial richness at the genus level, or that the lowest bacterial richness 
is found in the soil amended with straw at the phylum level, while it 
harbors one of the highest species level richnesses. These results suggest 
taking into account the taxonomic resolution when studying more 
drastic effects on soil microbial communities, such as those induced by 
toxic pollutants. For instance, a theoretical study by Bozzuto and 
Blanckenhorn (2017) conducted on fictitious community of organisms 
showed that a dose-dependent mortality effect on biodiversity can be 
masked depending on the the taxonomic resolution used. 

The trends observed with β-diversity are different and the interpre-
tation less ambiguous. Multivariate analyses performed at the phylum 
levels allow to separate most treatments, which support the idea of the 
ecological coherence of high bacterial taxa (Philippot et al., 2010). 
However, taxonomic downscaling offers a better discrimination among 
treatments. Here, we conclude that analyzing bacterial communities at 
the genus or species level provide not only a clear separation among the 
different fertilizations applied to the soil but also the highest number of 
significant relationships with environmental variables. This could be 
related to the increase of the proportion of OTU specific to a treatment 
from the order and the species levels while the relative weight of core 
microbiota was divided by 4 between the phylum and the species level. 
Soils select functions, but there are no function specific to a phylum. The 
polyphyletic distribution of many functional traits results from gene 
loss, convergent evolution but also lateral gene transfer. It has been 
demonstrated that the phylogenetical dispersion of functional traits is 
higher for the ability to use of simple carbon substrates than for more 
complex traits involving many genes (Martiny et al., 2013). Thus, the 
taxonomic level at which the discrimination among treatments is the 
most relevant also depends on the functional traits on which the effects 
of soil selection will be exerted. As other approaches using trait-based 
microbial strategies (Malik et al., 2020; Romillac and Santorufo, 2021) 
or ecological networks (Banerjee et al., 2018; Hemprich-Bennett et al., 
2021), we believe that comparing diversity indices across different 
taxonomic resolution and soil management could be useful both for the 
development of monitoring tools and knowledge improvement. 

4.2. Comparison of low resolution molecular fingerprinting with 
metabarcoding 

Molecular fingerprint methods have often been compared to each 
other or used simultaneously to investigate soil microbial communities: 
PLFA and T-RFLP (Widmer et al., 2006; Turpeinen et al., 2004; Männistö 
et al., 2007; Wang et al., 2011; Ying et al., 2013), PLFA and DGGE (Ritz 
et al., 2004; Bossio et al., 2005; Dong et al., 2008; Ben-David et al., 2011; 
Stagnari et al. 2014 ) or DGGE and T-RFLP (Nunan et al., 2005; Smalla 
et al., 2007; Matsuyama et al., 2007; Gao et al., 2012). In general, these 
studies indicate a similar discrimination potential for all methods, or a 
slightly better one with T-RFLP, given its high reproducibility. Com-
parisons of molecular fingerprinting and NGS are less documented. 
Here, the number of descriptive variables with PLFA and DGGE profiling 
were equivalent to the number of phyla measured by sequencing, while 
the number of T-RFs was similar to the number of classes. However, 
diversity patterns and discriminant potential obtained at these taxo-
nomic levels are not always consistent with those obtained with mo-
lecular fingerprints because there is no direct correspondence between a 
given fatty acid or DNA fragment and a phylum or a class of bacteria. 

The use of either lipid- or nucleic-based fingerprinting methods to 
estimate α-diversity metrics has been often criticized. However, a few 
studies have found similar diversity results with both metabarcoding 
and fingerprinting techniques. For example, Elsayed et al. (2014) found 

Fig. 3. Comparisons of different taxonomic resolutions of bacterial commu-
nities. The pairwise congruencies between closest taxonomic levels from Order 
to Species are illustrated using Hellinger distances. The Mantel test statistics are 
presented inside the scatterplots (“***”: P < 0.001). Note that the relationship 
between the Phylum and Order levels is not significant (data not shown). 
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that Shannon (H′) indexes of wetland bacterial communities estimated 
by T-RFLP and pyrosequencing approaches were significantly corre-
lated. More recently, it has been shown that H’ and the evenness of PLFA 
profiles of soil microbial communities were correlated to those obtained 
by metabarcoding at the phylum-level (Orwin et al., 2018). In this study, 
the evenness of molecular profiles were 3 to 4 times higher than those 
calculated with metabarcoding, indicating that all molecular finger-
prints clearly overestimate the equitability of the microbial communities 
by considering only the most dominant groups. Although significant 
differences among soil treatments were observed with all fingerprint 
techniques, we did not find any relationship between techniques for 
either richness or evenness, whatever the taxonomic rank. It is known 
that lipid based fingerprinting cannot be used to estimate the richness of 
a microbial community since it relies on the detection of only few 
biochemical markers which usually indicate the relative abundance of 
gram-positive, gram-negative, fungi and actinobacteria (Frostegård 
et al., 2011). Furthermore, the fact that these biomarkers are also sen-
sitive to changes in membrane composition for maintaining its integrity 
may lead to confounding changes in community structure and pheno-
typic plasticity (e.g. Wixon and Balser, 2013). 

T-RFLP and DGGE are known to be inherently limited by their 
detection thresholds (Dunbar et al., 2001). Should they allow a perfect 
determination of a band (DGGE) or a peak (T-RFLP), the total number of 
OTU would be limited by the length of the amplicon produced and the 

“cutting” techniques. For instance, the maximum number of DGGE 
bands that could be obtained with 338F and 518R primers would be 541 
corresponding to (180 bp × 4 bases) - (180 bp-1). For T-RFLP, the 
maximum number of peaks using 63F and 1389R primers and AluI as 
restriction enzyme would be 1322 (1326 bp-4 bp). In both cases, it is 
dramatically lower than the number of OTU obtained using Illumina 
MiSeq (2x300), for which the number of species is only limited by the 
length and region of barcode and the definition of bacterial species itself. 
We could argue that theoretically, a difference in the number of DGGE 
bands or of T-RFs may be due to a real modification of microbial rich-
ness. This case is probably true when microbial diversity changes 
dramatically under toxic pollutant exposure (e.g. Ge et al., 2011) or 
when comparing samples from very distinct habitats (e.g. Fierer and 
Jackson, 2006), but not for monitoring changes due to soil management. 
Variation in DGGE and T-RFLP evenness profiles may reveal changes in 
bacterial structure, but the changes are likely shared by different taxo-
nomic groups. Overall, we conclude that molecular fingerprinting 
cannot provide reliable α-diversity indices in the context of a change in 
agricultural practices. 

With the exception of the PLFA data, the fingerprinting methods 
were able to detect significant differences in the structure of the bacte-
rial communities due to fertilization practices. The results obtained by 
multivariate analyses were quite similar to the metabarcoding results, 
although the discrimination potential was higher with the latter. 

Fig. 4. Symmetric 7-way “Adelaide” Venn diagram (Grünbaum, 1992) depicting the core microbiota (dark grey), OTUs partially shared among 2 to 6 treatments 
(grey) and OTU specific to a treatment treatment (B: unfertilized; C: Ca(NO3)2; F: straw; G: straw + Ca(NO3)2; H: Green manure; J: Farmyard manure; O: Sewage 
sludge). Stack bars representing the proportion of OTU distributed in the core, intermediate from the phylum to species level. Only OTUs found at least in 67% of the 
replicates (2/3) were considered. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 4 
Relationships obtained by PERMANOVA (r2) among bacterial community composition characterized by PLFA, DGGE or TRFLP fingerprints or by amplicon sequencing 
(from Phylum to Species) and soil properties (C, N, C/N ratio and pH) and fertilization treatment (***: P < 0.001; ** P < 0.01; * P < 0.05).   

Fingerprinting Amplicon Sequençing  

PLFA DGGE T-RFLP Phylum Class Order Family Genus Species 

C  0.04  0.05*  0.06*  0.05  0.14*  0.09*  0.09*  0.06*  0.08** 
N  0.43**  0.19***  0.25***  0.17**  0.02  0.18***  0.17***  0.18***  0.19*** 
pH  0.14*  0.11**  0.09**  0.19***  0.12*  0.06  0.08*  0.08*  0.09** 
C/N  0.02  0.37***  0.08**  0.06  0.09*  0.05  0.07*  0.09**  0.07** 
C*N  0.10*  0.04*  0.18***  0.18**  0.11*  0.13**  0.12**  0.10**  0.13*** 
C*pH  0.02  0.08**  0.05*  0.03  0.08  0.05  0.06  0.11**  0.09** 
N*pH  0.01  0.01  0.02  0.02  0.02  0.06  0.06  0.04  0.03 
C*C/N  0.01  0.01  0.03  0.01  0.02  0.04  0.04  0.04  0.03 
pH*C/N  0.01  0.01  0.01  0.01  0.03  0.04  0.04  0.03  0.03 
C*N*pH  0.01  0.02*  0.03  0.01  0.11*  0.04  0.04  0.03  0.02 
C*N*C/N  0.01  0.01  0.02  0.02  0.05  0.02  0.02  0.02  0.03 
C*pH*C/N  0.01  0.01  0.01  0.03  0.01  0.01  0.01  0.02  0.02 
C*N*pH*C/N  0.01  0.02*  0.01  0.01  0.01  0.01  0.02  0.02  0.02 
Treatments  0.69***  0.71***  0.70***  0.73***  0.63***  0.61***  0.62***  0.65***  0.77***  
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Significant relationships were found between data matrices obtained 
with all molecular fingerprinting and sequencing data at all taxonomic 
levels using Mantel’s test (Table A.2.). This conclusion is in line with 
previous comparison studies. T-RFLP and pyrosequencing approaches 
were shown to result in similar abilities to separate bacterial community 
composition across sample locations and relate them to environmental 
variables in wetlands (Elsayed et al., 2014) and polar soils (van Dorst 
et al., 2014). Similar β-diversity patterns were found for bacterial and 
fungal communities in nest mounds of ants (Lindström et al., 2018) and 
for anaerobic bacterial and archaeal communities (De Vrieze et al., 
2018), using T-RFLP and Illumina MiSeq. PLFA and 16S rRNA gene 
metabarcoding showed broadly similar patterns of bacterial community 
composition change with land use and a similar ability to predict a wide 
range of ecosystem functions (Orwin et al., 2018). The present one 
suggest that fingerprinting methods other than PLFA remain a good 
option for investigating microbial dissimilarities among samples if re-
sources for metabarcoding are lacking. 

4.3. Taxonomic resolution and environmental determinants of diversity 

Previous studies conducted with molecular tools on the Ultuna long 
term experiment have shown that the C, N and pH have a strong influ-
ence on microbial biomass measured either by total PLFA (Börjesson 
et al., 2014) or qPCR (Changey et al., 2021). It has also been demon-
strated that these variables are also correlated with microbial metabolic 
quotient (Enwall et al., 2007), catabolic profiles (Lerch et al., 2013) and 
community structure (Hallin et al., 2009; Blaud et al.2015). In this 
study, the taxonomic downscaling revealed that the correlation between 
bacterial richness and C/N was not observed at higher taxonomic ranks 
than order level and then to the species (OTU) level. This result suggest a 
higher influence of other environmental variables at a fine taxonomic 
level. Here, soils amended with straw + Ca(NO3)2, or farmyard manure 
had the highest C/N ratio and harbored the highest diversity, both in 
term of richness and evenness. These two treatments, that are among the 
richest in C content in the trial, were found to have the highest bacterial 
biomass (Changey et al., 2021), which suggest that richness and abun-
dance are closely related. This is in line with a recent survey across 
global biomes which shows that soil C content is associated with the 
microbial diversity–biomass relationship (Bastida et al., 2021). The soil 
pH has been shown to be one of the main variables driving soil microbial 
diversity in long term treatments (Zhalnina et al., 2015). Although not a 
true indicator of bacterial diversity, the number and the evenness of T- 
RFs was negatively correlated with pH. The phylotype richness and di-
versity obtained by T-RFLP have been shown to decrease with soil 
acidity (Fierer and Jackson, 2006). However, in the present study, T- 
RFLP was not congruent with amplicon sequencing as the number of 
OTU was not the lowest in the sewage sludge treatment.. 

Whatever the method used or the taxonomic resolution, the most 
important differences among soil treatments were found when 
comparing bacterial β-diversity. The resolution of the method used 
PERMANOVA results showed no relationship between the number of 
variables obtained and the degree of intensity between the bacterial 
community structure and the type of fertilization. All methods revealed 
that the composition of the bacterial communities were mainly influ-
enced by C, N and pH. Again, the highest differences were found for the 
sewage sludge, the farmyard manure, and to lesser extend to the green 
manure. In this study, only the major soil physico-chemical character-
istics (C, N, C/N and pH) were compared to the biological dataset. Other 
physical or chemical parameters shaping the microbial habitats may also 
influence the diversity of the microorganisms. For example, the soil 
organic matter may indirectly affect the microbial community by 
modifying the porosity of the soil, as demonstrated on the same exper-
imental plot (Kirchmann and Gerzabek, 1999). The presence of trace 
metals in the sewage sludge treatments (Witter and Dahlin, 1995; Wit-
ter, 1996) may also affect the bacterial communities. More generally, 
the chemical composition of the soil, in the labile and non-labile pool 

could explain a significant part of the variability observed in microbial 
diversity among the different treatments. This aspect could be further 
investigated focusing on a wide range of trace elemental analysis (ICP- 
MS or XRF techniques) and/or a more refined analysis using spectros-
copy or spectrometry (FTIR, NMR or GC–MS). By comparing different 
spatial scales of drivers, Yeh et al. (2018) showed that taxonomic 
downscaling increased the relative weight of local environmental vari-
ables for aquatic microbial diversity but decreased the weight of climatic 
variables. It can be hypothesized that in a soil subjected to different 
organic fertilizers, taxonomic downscaling increases the influence of 
local physico-chemical variables and decreases that of major variables 
such as C, N and pH. 

5. Conclusion 

The ongoing development of high-throughput sequencing techniques 
allows us to better understand the role of microbial diversity in soils, 
something that was impossible a few decades ago. However, the astro-
nomical amounts of data generated in the literature needs to be syn-
thesized and the usefulness of diversity indices has never been greater 
for monitoring the effects of agricultural practices and climate change 
on microbial diversity. Based on the observation that studies conducted 
with metabarcoding techniques often present different taxonomic levels, 
we explored how downscaling to higher taxonomic resolution levels 
(from phylum to species) may affect the diversity indicators of soil 
bacterial communities subjected to long term fertilization. Our results 
show that in this case, the discrimination potential increased at finer 
taxonomic resolution for β-diversity but not for α-diversity indices such 
as richness and evenness. Also, the relative importance of hierarchical 
drivers of soil microbial communities such as C, N and pH varied 
depending on the taxonomic resolution. This study also demonstrated 
that indicators generated by molecular fingerprints such as DGGE and T- 
RFLP are still consistent to monitor the effect of agricultural manage-
ment on β-diversity but not on α-diversity, which is useful information as 
it allows for a better use of results in past literature. We encourage 
performing such comparative studies on wider surveys (regional to na-
tional level) and different contexts (e.g. land use change, pollution 
exposure, urbanization) in order to increase the efficiency and the 
robustness of the use of sequencing data in soil biodiversity monitoring. 
From a fundamental point of view, studying biodiversity patterns across 
taxonomic scales may also be of fundamental interest when combined 
with high resolution physical and chemical analyses as well as func-
tional traits or ecological networks in order to better understand at 
which taxonomic level environmental drivers matter and microbial 
functions operate. 
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