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A B S T R A C T   

There is global interest in spectroscopy and the development of large and diverse soil spectral libraries (SSL) to 
model soil organic carbon (SOC) and monitor, report, and verify (MRV) its changes. The reason is that increasing 
SOC can improve food production and mitigate climate change. However, ‘global’ modelling of SOC with such 
diverse and hyperdimensional SSLs do not generalise well locally, e.g. at a field scale. To address this challenge, 
we propose deep transfer learning (DTL) to leverage useful information from large-scale SSLs to assist local 
modelling. We used one global, three country-specific SSLs and data from three local sites with DTL to improve 
the modelling and localise the SOC estimates in individual fields or farms in each country. With DTL, we 
transferred instances from the SSLs, representations from one-dimensional convolutional neural networks (1D- 
CNNs) trained on the SSLs, and both instances and representations to improve local modelling. Transferring 
instances effectively used information from the global SSL to most accurately estimate SOC in each site, reducing 
the root mean square error (RMSE) by 25.8% on average compared with local modelling. Our results highlight 
the effectiveness of DTL and the value of diverse, global SSLs for accurate local SOC predictions. Applying DTL 
with a global SSL one could estimate SOC anywhere in the world more accurately, rapidly, and cost-effectively, 
enabling MRV protocols to monitor SOC changes.   

1. Introduction 

Soil stores more carbon (C) than all terrestrial vegetation and the 
atmosphere combined (Schlesinger, 1977; Field and Raupach, 2004). 
Soil organic carbon (SOC) is central to human welfare. It can improve 
ecosystems health, biodiversity, and food security (Lal, 2004) by helping 
to retain and release nutrients in the soil and to develop structure and 
soil biodiversity (Lehmann and Kleber, 2015). Soil can be a source or a 
sink of C; it can be emitted to the atmosphere as carbon dioxide, 
accelerating climate change, but also, depending on the environment 

and management, it can trap C from the atmosphere to help mitigate 
climate change. Accurate and cost-effective measurements of SOC are 
needed for the measurement, monitoring, reporting and verification 
(MRV) of its status and to provide information on the response to land 
management interventions and policy design. 

Visible–near-infrared (vis–NIR) spectroscopy is a rapid, non- 
destructive, non-polluting, and cost-efficient method for characterising 
soil properties such as SOC (Stenberg et al., 2010). Numerous efforts 
have been made in previous decades to develop soil spectral libraries 
(SSLs) over large areas and with diverse soil samples: at national 
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(Viscarra Rossel and Webster, 2012; Shi et al., 2015; Wijewardane et al., 
2016; Gogé et al., 2012; Demattê et al., 2019; Peng et al., 2013), con-
tinental (Orgiazzi et al., 2018), and global scales (Viscarra Rossel et al., 
2016). The SSLs consist of soil properties (response variables or targets), 
corresponding spectra and metadata. Together, they are used to develop 
models to estimate the properties of soil samples using only their 
spectra. The spectroscopic measurements, modelling and estimation are 
relatively rapid and inexpensive. Thus, such libraries can help to sup-
plement, reduce or, in some cases (e.g. measures of mineralogy), negate 
the need for conventional soil analysis with laboratory methods that are 
more time consuming and expensive(Liu et al., 2018). However, spec-
troscopic modelling using large SSLs is challenging (Gogé et al., 2014; 
Guerrero et al., 2014; Clairotte et al., 2016). The models developed tend 
to generalise poorly at a local scale (e.g. fields, farms or smaller regions), 
even when the local sites are within the library’s scope (Wetterlind and 
Stenberg, 2010). Despite the significant and continuous investment to 
create large SSLs that represent soil variation at different scales, the poor 
generalisation of spectroscopic models developed with large SSLs di-
minishes their value for solving ‘real-world’ problems and therefore 
hinders the practical application of vis–NIR soil spectroscopy. 

Large SSLs contain valuable information for local SOC modelling. 
They can help to reduce the need for expensive soil analysis for SOC 
monitoring at farms or fields. But how to effectively extract such in-
formation from the SSLs to accurately estimate SOC (and other soil 
properties) locally? Developing robust methods to leverage the useful 
information in large SSLs is important. This challenge has been the focus 
of research over the past decades (Naes et al., 1990; Shenk et al., 1997; 
Ramirez-Lopez et al., 2013). Several researchers have proposed methods 
to localise the modelling with SSLs, but with limited success, because 
their performance with different data, in various applications, and when 
the localisation is from a large (e.g. global) to a small (e.g. an agricul-
tural field) level, is generally inconsistent (Seidel et al., 2019; Li et al., 
2021; Tsakiridis et al., 2021). Spiking augments a SSL with a few 
labelled local data to form an augmented SSL for the modelling (Wet-
terlind and Stenberg, 2010; Brown, 2007; Sankey et al., 2008; Viscarra 
Rossel et al., 2009). It can also be implemented by making multiple 
copies of the local data to increase the weight of local data in the 
augmented SSL and thus their leverage in the modelling. The method is 
called spiking by extra-weighting (Guerrero et al., 2014, 2016). Methods 
based on spiking are easy to implement but they are very sensitive to the 
size of the SSL, the local data and there is no clear indication of the 
‘extra-weights’ required, leading to their inconsistent performance 
(Gogé et al., 2014). Other methods subset a SSL based on spectral sim-
ilarity using memory-based learning which selects neighbours of the 
local spectra in a SSL using distance metrics (Ramirez-Lopez et al., 2013; 
Shenk et al., 1997) or additionally constraining the SSL with 
geographical information (Shi et al., 2015). Spectroscopic models are 
then developed using the SSL subsets. Because these methods rely on 
spectral similarity, they only perform well when the SSLs hold spectra 
that are very similar, in terms of their information content, but also of 
their ‘noise’ characteristics, to the local data. Viscarra Rossel and 
Webster (2012) used regression trees to localise models by partitioning 
the entire SSL into ‘branches’ using conditions and then fitting local 
linear models at each ‘leaf’ separately. However, localising to a specific 
local farm/field can be difficult since the ‘leaves’ may not relate to the 
local site. 

Transfer learning is a set of methods for localising models. It lever-
ages information from a source problem with large volumes of data to 
assist a target problem with limited data because they are difficult or 
expensive to obtain. Transfer learning has successful applications in 
different domains (Mateo-García et al., 2020; Wurm et al., 2019; Gao 
and Cui, 2020; Guo et al., 2019; Cui et al., 2018; Zoph et al., 2016; Kang 
et al., 2021). It might also provide a solution for localising spectroscopic 
models by transferring whatever-related information is in the more 
extensive and diverse SSL to the estimation of the soil properties at the 
local site. There are different categorisations of transfer learning (Pan 

and Yang, 2009; Tan et al., 2018; Weiss et al., 2016), but generally, it 
can be categorised as instance-, representation-, parameter-, and 
relational-based transfer learning (Pan and Yang, 2009). There has been 
little exploration of these approaches in soil spectroscopy or soil science, 
more generally. Lobsey et al. (2017) developed a method that presents a 
form of instance-based transfer learning for localising spectroscopic 
models. This method, RS-LOCAL, performs a data-driven search by 
resampling an SSL, and recursively calibrates the response to the spectra 
in each subset using partial least squares regression (PLSR). The algo-
rithm then retains only the most relevant data from the SSL for the 
modelling. Lobsey et al. (2017) compared RS-LOCAL to all other methods 
for localising the modelling (described above) and showed that it out-
performed them. 

Most recently, studies have reported on the transfer learning of 
representations (or learned features) using convolutional neural net-
works (CNNs), as a possible solution for localising spectroscopic models 
(Liu et al., 2018; Padarian et al., 2019). The transfer is performed by 
training a CNN on the more extensive SSL, then fixing the front layers 
and re-training the remaining ones on the local data. The representa-
tions learnt in the front layers are then transferred for the localised 
modelling with a CNN for the localised estimation. These studies report 
on the transfer of spectral information from a continental SSL (Orgiazzi 
et al., 2018) to the country level (Padarian et al., 2019), or more local 
situations (Liu et al., 2018), and only somewhat better results than other 
machine learning and statistical models. We found no research on the 
transfer learning of global or country SSLs for localising spectroscopic 
estimates of SOC at the farm- or field-scale. 

A large SSL that captures soil variation globally is rich in informa-
tion, but is also complex. If we could develop robust methods for transfer 
learning, large SSLs might enable rapid, cost-effective and accurate local 
estimates of SOC. The challenge is to develop such methods. Here, we 
hypothesise that for the spectroscopic modelling with deep learning, 
transferring instances and representations will more effectively improve 
the localisation and estimation of SOC than transferring only represen-
tations. Thus, our aims are to (i) transfer information from large SSLs 
with different complexity to localise the estimates of SOC. We used one 
global SSL and SSLs from three different countries, (ii) investigate three 
types of deep transfer learning (DTL) to transfer instances, transfer 
representations, and transfer both instances and representations, (iii) 
compare the DTL to estimates derived with models that use the entire 
SSLs and models that use only local data from each field or farm. To our 
best knowledge, there is no published research on the use of DTL that 
considers the transfer of instances or instances and representations. 

2. Methods 

2.1. Data 

For our experiments, we used a recently compiled global SSL, the 
SSLs from three countries: China, Sweden, and the USA, and local data 
from a field or farm in each country. The global SSL encompasses a 
subset of the global spectral database described by Viscarra Rossel et al. 
(2016), the World Soil Information (ISRIC) spectral library (ICRAF, 
2021; Shepherd et al., 2003), the European LUCAS database (Stevens 
et al., 2013), the Mediterranean spectral database (i-BEC, et al. 2019), 
and the Chinese spectral library described by Shi et al. (2014). The 
country SSLs were extracted from the global SSL and the local data were 
independent of the global and country SSLs. Locations of the global SSL 
and the local samples from each country are shown in Fig. 1a and their 
spectra in Fig. 1b. Relevant information on the data are summarised in 
Table 1. The number of samples in the global and country SSLs (K) range 
from 50,422 for the global to 2,319 for Sweden. Soil organic carbon 
(SOC) contents vary widely in the SSLs from 0.04% to 35.04%, whereas 
the SOC range in the local datasets is smaller, from 0.78% to 4.54%. The 
spatial extents of the local data range from 0.1 km2 to 164.7 km2. 

From each of the local sites with N samples, we selected a subset of n 
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= 30 representative samples for the modelling described below. The 
selection was performed with the Kennard-Stone algorithm (Kennard 
and Stone, 1969; Stevens and Ramirez-Lopez, 2014) using only the 
spectra. The remaining N − n samples were unseen during the model 
development and used as the test set to validate the final models. 

2.2. Spectral preprocessing 

The measurements of the soil spectra, including spectrometers and 
protocols used for the measurements are described in Viscarra Rossel 
et al. (2016). The vis–NIR spectra in the library range from 400 nm to 

Fig. 1. (a) Location of data in the global spectral library (blue discs) and location of the local sites in China, Sweden, and the USA (red shapes). (b) Visible–near 
infrared reflectance spectra of the global SSL, the country SSLs, and local data. 

Table 1 
Information and statistical summaries of the data from the global and countries SSLs and the local data, showing the number of data in the global and country SSLs (K), 
the local sites (N), the area of the local sites, the soil types (A  = Acrisols, B  = Cambisols, W  = Planosols) (Food and Agriculture Organisation, 1998), and the 
descriptive statistics of the SOC content. S.d. is the standard deviation, Q1 and Q3 are the first and third quartiles, Min. is the minimum and Max. the maximum of the 
SOC distribution.      

SOC (%) 

SSL K   Mean S.d. Min. Q1 Median Q3 Max. 

Global 50,422   2.28 3.56 0.04 0.55 1.26 2.50 35.04 
China 5,183   1.61 1.85 0.04 0.78 1.27 1.94 31.40 
Sweden 2,319   6.14 6.99 0.08 2.08 3.56 6.49 35.04 
USA 4,155   1.20 1.98 0.04 0.22 0.52 1.30 24.16 

Local data N Area, km2 Soil type Mean S.d. Min. Q1 Median Q3 Max. 

China 135 164.7 A 1.74 0.58 0.89 1.41 1.59 2.05 4.54 
Sweden 108 0.8 B, W 2.25 0.57 1.31 1.78 2.23 2.63 4.47 
USA 216 0.1 W 1.62 0.63 0.78 1.10 1.43 2.05 3.74  
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2500 nm and have a wavelength spacing of 10 nm. In our experiments, 
we first converted the reflectance (R) spectra to apparent absorbance 
using log10(1/R) and applied the standard normal variate transform 
(SNV) to reduce multiplicative effects of scattering and particle size, and 
also to reduce differences in the intensities of the signals (Barnes et al., 
1989). Other preprocessing methods were tested but not considered 
since preprocessing had little effect on the performance of optimised 1D- 
CNNs (Shen and Viscarra Rossel, 2021). 

We performed a principal component analysis (PCA) (Wold et al., 
1987) on the spectra from the global SSL, the country SSLs, the SSL 
localised and the local data, to visualise their relationships. PCA was first 

carried out on the global SSL and the other spectra were projected onto 
its principal component (PC) space. The first three PCs were plotted and 
used for interpretation. 

2.3. Machine learning 

2.3.1. Benchmark models 
Fig. 2 shows the study design and experiments conducted. First, we 

developed optimised 1D-CNNs using the global or country SSLs and the 
n local data from each country. We used these (① and ② in Fig. 2a) as 
benchmarks for our comparisons. We used the optimisation-based 

Fig. 2. Study design. (a) Flowchart for developing local, country, global and DTL 1D-CNNs. ① 1D-CNN developed on the n local data, ② 1D-CNN developed on the 
global/country SSL, ③ 1D-CNN developed on the k+n localised data from the global or country SSL, ④ 1D-CNN transferred from global/country 1D-CNN to the local 
data, ⑤ 1D-CNN transferred from the global/country 1D-CNN to the localised data. (b) RS-LOCAL-V2.0 algorithm for transferring instances. (c) Transferring repre-
sentations from a global/country 1D-CNN. Trained layers are in grey. Layers to be retrained are in white. Boxed layers are fixed during transfer. 
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framework for automated hyperparameter tuning described by Shen and 
Viscarra Rossel (2021) to train these 1D-CNNs. The framework stacks 
three types of building blocks: convolutional-blocks (Conv-blocks), 
fully-connected-blocks (FC-blocks) and an output-block to build a 1D- 
CNN. The number of the Conv- and FC-blocks and their internal 
hyperparameters are optimised to achieve an optimal architecture. In 
the Conv-blocks, the framework optimises hyperparameters: number of 
filters, kernel size, stride size in the convolutional layers, type and stride 
size in the pooling layers, activations functions, ON/OFF state of batch 
normalisation, pooling and dropout layers, and dropout rate. In the FC- 
blocks, it optimises the number of nodes in fully-connected layers, 
activation functions, ON/OFF state of the batch normalisation and 
dropout layers, and dropout rate. Other hyperparameters related to 
training: number of epochs, batch size, and optimisers, are also opti-
mised. For a comprehensive list of hyperparameters optimised, please 
refer to the automated framework (Shen and Viscarra Rossel, 2021). The 
framework also incorporates different regularisation methods to prevent 
overfitting, such as batch normalisation (Ioffe and Szegedy, 2015), 
dropout (Srivastava et al., 2014), early-stopping (Prechelt, 1998), and 
cross-validation (Hutter et al., 2019), which allow 1D-CNN to perform 
well on small datasets. We used 10-fold cross-validation to develop the 
1D-CNNs and root mean squared error (RMSE) to guide model selection. 
A SSL or dataset from a local site was randomly split into ten train- 
validation folds and a 1D-CNN was developed on each fold. 

2.3.2. Transferring instances 
We developed a new, improved version of the RS-LOCAL method 

(Lobsey et al., 2017), which we refer to as RS-LOCAL-V2.0 to transfer in-
stances from the global and country SSLs to the local site-specific data 
from each country (Fig. 2b). RS-LOCAL-V2.0 is computationally more 
efficient, includes parallelisation and part of the algorithm is imple-
mented in C++. Like the original algorithm described in Lobsey et al. 
(2017), RS-LOCAL-V2.0 is a data-mining search method that builds partial 
least square regression (PLSR) models recursively on subsets of an SSL, 
evaluates these models on a small number of labelled local data, n (in 
our case n = 30), and discards samples that consistently fall in poorly 
performing subsets until few useful samples for a given target and 
domain, k, are left. In our experiments k = 100. We found no significant 
advantage in selecting a larger subset. The selected k samples are then 
used to augment the n local data for modelling, hence the k+n localised 
data. 

2.3.3. Transferring representations 
Global and country 1D-CNNs were developed, as described above, to 

learn representations from the SSLs. The representations were trans-
ferred from the global and country 1D-CNNs in a two-step manner 
(Fig. 2c). We first fixed the weights in the front layers and then retrained 
the remaining layers on the local/localised data with 10-fold cross- 
validation by randomly splitting the data into ten train-validation 
folds. The same ten folds were used in the 1D-CNNs when transferring 
representations from the global and country to the corresponding sites. 
Thus, representations learnt in the global and country 1D-CNN’s front 
layers were used in the localised 1D-CNN. Depending on the number of 
front layers being fixed, there could be several localised 1D-CNNs for 
each local site. The one with the lowest cross-validation RMSE was 
considered the final model for transferring representations. 

2.3.4. Deep transfer learning (DTL) 
We transferred instances from the global and country SSLs as 

described above to generate the k+n localised data and then developed 
optimal 1D-CNN to estimate SOC at the local sites from each country 
(DTL-I) (③ in Fig. 2a) using 10-fold cross-validation by randomly 
splitting the k+n data into ten train-validation folds. When transferring 
representations from the global and country 1D-CNNs (described 
above), we evaluated the 1D-CNNs from the ten folds on the n local data 
and selected the fold with the smallest RMSE as the base model for the 

transfer because we assumed that it learnt the most useful representa-
tions for the particular local site. This significantly reduced the number 
of models to be transferred, by 90%, making the study computationally 
more feasible. We then transferred the representations of the base model 
to the n local data from each country (DTL-R) (④ in Fig. 2a) using the 
same ten folds as the local model. We also transferred instances and 
representations by combining the two approaches, that is, we trans-
ferred the representations from the global and country 1D-CNNs to the 
k+n localised data from RS-LOCAL-V2.0 (DTL-IR) (⑤ in Fig. 2a) using the 
same ten folds as DTL-I. 

In total, nine models were developed for the local site in each 
country. They are the local 1D-CNN with the n local data, the global 1D- 
CNN with the global SSL, country-specific 1D-CNN with the local site’s 
corresponding country SSL, 1D-CNNs developed on the k+n localised 
data from the global and country SSLs (DTL-Ig, DTL-Ic, respectively), 1D- 
CNNs developed by transferring representations from the global and 
country 1D-CNNs to the n local data (DTL-Rg, DTL-Rc, respectively), 1D- 
CNNs developed by transferring instances and representations from the 
global and country 1D-CNNs to the k+n localised data (DTL-IRg, DTL- 
IRc, respectively). 

2.4. Evaluation statistics 

The final models were evaluated on the independently local test data 
(N − n, see above). We used the RMSEto measure inaccuracy, the mean 
error (ME) to assess bias, and the concordance correlation coefficient 
(ρc) (Lin, 1989) to enable comparisons between models and sites, with a 
single parameter that encompasses both bias and imprecision. ρc mea-
sures the difference between measured and estimated values and their 
deviation from a 45-degree line of perfect agreement. It ranges from − 1 
to 1, with 1 denoting perfect agreement. 

For the different DTL approaches tested at each local site, we also 
assessed the change in RMSE compared to the local models by: 

ΔRMSE = (RMSELocal − RMSEOther)/RMSELocal × 100 (1)  

where RMSELocal is the RMSE from local 1D-CNN. RMSEOther is the RMSE 
from the different DTL methods tested. ΔRMSE gives the RMSE change 
in percent units. A positive ΔRMSE means a better accuracy than the 
local 1D-CNN, while a negative ΔRMSE means a poorer accuracy. 

3. Results 

3.1. Transferring instances from SSLs using RS-LOCAL-V2.0 

The statistical distributions of SOC (conditional distribution) in the 
global/country SSLs and the local data were markedly different (Table 1 
and Fig. 3a). However, SOC distributions of the k data selected with RS- 
LOCAL-V2.0 were more similar to those of the local data (Fig. 3a). DTL-I 
from the SSLs using RS-LOCAL-V2.0 minimised the difference between 
the conditional distributions of the SSLs and n local data. Computation 
time for transferring instance using RS-LOCAL-V2.0 is proportional to the 
size of SSL. With the global SSL the transfer was completed in 7–8 min 
using Intel Xeon processors with 50 cores. 

The first three PCs are shown in Fig. 3b. The larger variation of the 
global SSL compared to the country-specific SSLs highlights the greater 
diversity of soil data in the global library. The RS-LOCAL-V2.0 search 
selected data from similar and surrounding space to that occupied by the 
local data (Fig. 3b), thereby potentially aligning the marginal distribu-
tions of the global/country SSLs and the local data. Some local data from 
Sweden and the USA were outside of the PC space occupied by their 
respective countries SSLs, indicating that these country SSLs do not hold 
soils that represent all of those found in the local data. In contrast, by 
transferring instances from the global SSL with RS-LOCAL-V2.0, we could 
select data that closely represent the local data (Fig. 3b). 
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3.2. Large-scale 1D-CNNs for transferring representations 

The global and country-specific 1D-CNNs were optimised on the 
global and country-specific SSLs respectively. The models were devel-
oped in 2 to 22 days, depending on the size of the SSL and the specific 
implementation. Their architectures vary since they are data dependent 
(Fig. 2). The number of total blocks ranged from 4 (Sweden) to 8 
(China), with different combinations of Conv- and FC-blocks. The 
architectural variations may indicate the different representations learnt 
in the 1D-CNNs. On the other hand, several hyperparameters in the 
architectures share similar values. For example, the 1D-CNNs tend to use 
large kernel sizes and large number of filters, and exclude pooling layers, 
which aligns with our previous findings on optimal 1D-CNNs for soil 
spectroscopic modelling (Shen and Viscarra Rossel, 2021). These 1D- 
CNNs served as the base models for transferring representations to the 
local sites (see Methods). 

3.3. Comparing global, country, local and DTL models 

We evaluated the global, country, local and DTL approaches by 
comparing the performance of their estimates of SOC on the N − n in-
dependent test data from each of the local field and farm-scale sites (see 
Methods). The estimates of SOC in the farm and field sites with the 
global and country 1D-CNNs did not generalise well (Table 3), although 
for China, the model derived with its country SSL was better than the 
one derived with the global SSL. These estimates were generally the 
most biased (largest ME) and inaccurate (largest RMSE, smallest ρc) 
compared to the estimates with the local and DTL methods. The local 

1D-CNNs and those derived with the different DTL methods produced 
estimates of SOC with similar accuracy (Table 3). 

DTL − Ig produced the most accurate estimates of SOC in all three 
examples. In the Chinese example RMSE  = 0.28%, ρc = 0.84, in the 
Swedish RMSE  = 0.23%, ρc = 0.90 and in the USA RMSE  = 0.31%, ρc =

0.84 (Table 3). The DTL-Ig estimates in the Swedish field were similar to 
the estimates made using the local data only (RMSE  = 0.24%, ρc =

0.90). In the USA field, estimates of SOC with DTL-Ig were almost 
identical to those from DTL-IRg (RMSE  = 0.31%, ρc = 0.85) and esti-
mates with the DTL-IRc were also accurate (RMSE  = 0.32%, ρc = 0.86). 
Overall, DTL-Ig produced the smallest RMSE in all three local sites and 
largest ρc in all but the USA local site (Table 3). 

To further quantitate the comparisons, we calculated the percent 
change in RMSE of the DTL estimates relative to local modelling (see 
Methods). Note we did not include the global or country 1D-CNNs 
because they were obviously biased (Table 3). Overall, compared to 
the local estimates, DTL-Ig improved the accuracy of the SOC estimates 
at the local sites by 25.8% on average (Fig. 4a). Fig. 4b shows plots of 
the observed versus the DTL-Ig estimates of SOC at each of the local sites. 
DTL-Rg and DTL-IRg improved estimates of SOC only in the Chinese and 
USA local sites. DTL-Ic improved the local modelling of SOC in Chinese 
and USA local sites. DTL-Rc and DTL-IRc did not show consistent im-
provements on the estimates from the purely local models. DTL-Rc only 
slightly improved the SOC estimates in the Chinese site, and DTL-IRc 
improved the estimates in the USA site. In the Swedish local site, esti-
mates of SOC with DTL-Rc and DTL-IRc were inaccurate (Fig. 4a). Fig. 4c 
shows point maps of the estimated SOC values of all the N local data 
indicating the spatial variability of SOC in each site. 

Fig. 3. Soil organic carbon (SOC %) distributions in the global/country SSLs, k RS-LOCAL-V2.0 selected data from the global/country SSLs and n local data, and 
principal component analysis on spectra from these datasets. (a) Density plot of SOC. (b) Principal components of the spectra from the different datasets. 
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3.4. 1D-CNN architectures of DTL-Ig 

Given that DTL-Ig produced the most accurate local estimates of SOC 
at each site, we show their 1D-CNN architectures in Table 4. Only a few 
Conv-blocks were used in the architectures, and they tended to use large 
kernel size and number of filters in the convolutional layers. The ar-
chitectures had one Conv-block and up to two FC-blocks. Pooling layers 
were disabled in the all the Conv-blocks. Again, these architectures 
aligned well with our previous findings on optimal 1D-CNNs for soil 
spectroscopic modelling (Shen and Viscarra Rossel, 2021). 

4. Discussion 

There is global interest in soil spectroscopy because one can use 
spectra to estimate, with various degrees of success, soil chemical, 
physical and biological properties (Song et al., 2021; Soriano-Disla et al., 
2014; Yang et al., 2019, 2022). To do so, however, we need to develop 
an SSL, and there’s been significant investment in developing large and 
diverse SSLs (e.g. Viscarra Rossel and Webster, 2012; Shi et al., 2014; 
Wijewardane et al., 2016; Gogé et al., 2012; Demattê et al., 2019; Peng 
et al., 2013; Orgiazzi et al., 2018; Viscarra Rossel et al., 2016; Brown 

et al., 2006; Stevens et al., 2013). Recently, much of the interest in soil 
spectroscopy has been for the estimation of SOC. The reason is that soil 
spectroscopy is cost-efficient (Li et al., 2022) and conventional methods 
for measuring and monitoring SOC content are time-consuming, 
expensive and present a key barrier to the design and implementation 
of practices that could increase SOC and their MRV (England and Vis-
carra Rossel, 2018; Paustian et al., 2019). The spectroscopic method can 
be extended to the estimation of SOC with hyperspectral remote sensing 
(Castaldi et al., 2019), which can be used to complement on-ground 
spectroscopic estimates to cover much larger areas. If we could in-
crease the content of SOC, it could help to mitigate climate change, 
improve soil health, ecosystem resilience, and food security (Smith 
et al., 2020). 

A large SSL that captures soil variation globally is complex and rich 
in information. Therefore, modelling of soil properties using SSLs for 
accurate estimation at a local site is challenging. Here, we developed a 
robust DTL method to accurately transfer the valuable information in 
large and diverse SSLs to enable rapid, cost-effective and accurate local 
estimates of SOC at the farm or field scale. Our results show that DTL-I 
effectively leverages helpful information from the large, global SSL to 
lessen the need for conventional laboratory analysis of soil samples, 

Table 2 
Global and country 1D-CNN architectures. 1D-CNNs optimised on the global/country SSLs.  

SSL Block Layers Kernel/Pool size Filters/Nodes Padding type Strides Activation 

Global Conv-block Convolutional 10 × 1 148 Valid 4 × 1 Swish 
– Flatten – – – – – 
FC-block 1 Fully-connected – 691 – – SELU 
FC-block 2 Fully-connected – 891 – – ELU 

Batch Normalisation – – – – – 
Dropout (0.38) – – – – – 

FC-block 3 Fully-connected – 533 – – Swish 
Batch Normalisation – – – – – 

FC-block 4 Fully-connected – 764 – – SELU 
Batch normalisation – – – – – 
Dropout (0.38) – – – – – 

FC-block 5 Fully-connected – 650 – – SELU 
Dropout (0.38) – – – – – 

Output-block Fully-connected – 1 – – Linear 

China Conv-block 1 Convolutional 7 × 1 25 Valid 7 × 1 Swish 
Conv-block 2 Convolutional 8 × 1 248 Valid 3 × 1 LeakyReLU 
Conv-block 3 Convolutional 5 × 1 238 Valid 4 × 1 ReLU 

Dropout (0.39) – – – – – 
– Flatten – – – – – 
FC-block 1 Fully-connected – 212 – – LeakyReLU 

Dropout (0.07) – – – – – 
FC-block 2 Fully-connected – 140 – – LeakyReLU 
FC-block 3 Fully-connected – 165 – – Swish 
FC-block 4 Fully-connected – 50 – – LeakyReLU 

Dropout (0.07) – – – – – 
Output-block Fully-connected – 1 – – Linear 

Sweden Conv-block Convolutional 5 × 1 161 Valid 3 × 1 ELU 
– Flatten – – – – – 
FC-block 1 Fully-connected – 896 – – Swish 

Batch normalisation – – – – – 
Dropout (0.37) – – – – – 

FC-block 2 Fully-connected – 474 – – Swish 
Batch normalisation – – – – – 
Dropout (0.37) – – – – – 

Output-block Fully-connected – 1 – – Linear 

USA Conv-block 1 Convolutional 8 × 1 216 Valid 7 × 1 SELU 
Conv-block 2 Convolutional 8 × 1 216 Same 8 × 1 Swish 

Batch normalisation – – – – – 
Conv-block 3 Convolutional 4 × 1 252 Same 4 × 1 LeakyReLU 

Dropout (0.03) – – – – – 
– Flatten – – – – – 
FC-block 1 Fully-connected – 179 – – Swish 

Batch normalisation – – – – – 
FC-block 2 Fully-connected – 252 – – Swish 

Batch normalisation – – – – – 
Dropout (0.29) – – – – – 

Output-block Fully-connected – 1 – – Linear  
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thereby reducing the time required for measuring and improving the 
cost-effectiveness of SOC assessments. Thus, one can process many more 
soil samples for a little additional cost and better characterise soil spatial 
and temporal variability to support SOC MRV (FAO, 2020). 

Modelling SOC (and more generally, soil properties) directly with 
large SSLs (e.g. global or country) does not work well when the ‘global’ 
models are used to estimate locally, e.g. the SOC in an agricultural field. 
Typically, the estimates produced are biased. This has led researchers 
and practitioners to question the need and usefulness of large spectral 
libraries (Guerrero et al., 2016). However, our results show that large 
SSLs with vast and diverse soils are useful for DTL because they can 
supply information to localise the models and improve the accuracy of 
SOC estimates at a site. In this regard, the more extensive and diverse 
global SSL was more effective for DTL than the smaller country SSLs. 

The modelling problem lies in the dissimilarity of the conditional and 
marginal distributions between the training data from the large SSLs, 
and the ‘unknown’ local data (Pan and Yang, 2009; Weiss et al., 2016). 
That is, when the statistical distributions of the response and predictor 
variables between the training and local data are too different, the 
model derived with the large SSL cannot depict the variability in the 
local data, and its generalisation capacity diminishes. Here, we have 
shown that DTL-I can help to reduce the differences between these 
distributions (Fig. 3). Transferring instances with RS-LOCAL-V2.0 discarded 
99% of the instances in the global SSL, keeping only the most useful ones 
for the local modelling. The search, filtering and localisation that the 
algorithm performs help with the marginal and conditional distribu-
tions. As a result, DTL-I with the global SSL produced the most accurate 
estimates of SOC at each of the local sites in each country. DTL-I with 
1D-CNN can also handle data with different complexity. When a dataset 
is small, relatively homogeneous and with linear response, modelling 
with a linear method such as PLSR will be appropriate. However, if the 
dataset is small but heterogeneous and with non-linear response, then 
PLSR will not be sufficient for modelling, thereby needing more complex 
(non-linear) methods like machine learning and 1D-CNNs. In real-world 

situations, it is difficult to determine which algorithm to use, making 1D- 
CNN a sensible choice as it is able to handle data with different levels of 
complexity to generate reliable predictions. Because we incorporated 
different regularisation methods in the optimisation framework (Shen 
and Viscarra Rossel, 2021), the risk of overfitting 1D-CNN on the k+n 
localised data is also minimised. 

Deep transfer learning of instances from a global SSL requires 
extracting instances from the SSL using RS-LOCAL-V2.0 and deriving an 
optimal 1D-CNN using the automated framework (Shen and Viscarra 
Rossel, 2021). The RS-LOCAL-V2.0 selection finished within several mi-
nutes using 50 CPU cores. However, evaluating hundreds 1D-CNNs in 
sequence to find a best one could take 20 h on a single GPU. Future 
improvements will explore other hyperparameter optimisation algo-
rithms (Li et al., 2017; Jamieson and Talwalkar, 2016) to parallelise the 
evaluations, which would greatly improve the computation efficiency of 
DTL-Ig, and the use of other machine learning methods. 

The few examples in the literature of DTL for spectroscopic model-
ling of SOC have focused on DTL-R using continental SSLs and trans-
ferring to country or regional levels (Liu et al., 2018; Padarian et al., 
2019). Here, we found DTL-R generally inconsistent for transferring 
information from the larger SSLs to estimate SOC in a farm or field. DTL- 
R using the global data was only useful for estimating SOC in the USA 
local site. There are several reasons for this. A large SSL contains in-
consistencies arising from various sources, e.g. different analytical 
methods, calibration protocols and standards, and insufficient sampling, 
etc. Such inconsistencies can affect the quality of the representations 
learnt in the large-scale 1D-CNNs. Inconsistencies may also exist be-
tween the local data and SSL, thus the learnt representations may not 
apply to some local sites. This is also the reason why localisation based 
on spectral similarity using distance metrics perform inconsistently. It 
could also be that soil vis–NIR spectra are largely non-specific, and the 
learned features in the 1D-CNNs are data dependent, limiting the 
generalisation of the representations. Moreover, the networks may rote 
learn all of the information (cf. Webster et al., 2021) and the 1D-CNNs 
derived with the global and country SSLs can contain both helpful and 
irrelevant representations for the SOC estimates at a site. These may 
explain the varied performance of DTL-R and DTL-IR (Fig. 4a), and the 
relatively minor improvements in the estimates reported elsewhere (Liu 
et al., 2018; Padarian et al., 2019). Although our results show that DTL-I 
to be generally better than DTL-IR, there is value in transferring both, 
instances and representations (Fig. 4). If we could exclude the irrelevant 
learned features for the transfer, via robust feature selection for 
example, the performance of DTL-R and DTL-IR should improve. 

Errors and other disturbances exist in any SSL when the spectra are 
measured with different instrument and under different conditions, 
resulting in additive or multiplicative errors, random noise, or shifting 
wavelengths. The SOC analysed in laboratories can also suffer from er-
rors that may be due to the different methods used, or the different 
protocols in different laboratories. DTL can attenuate such disturbances. 
The unique architecture of CNN enables local transnational invariance 
(LeCun et al., 2015), which can handle errors in the measurements of 
spectra, such as shifting wavelengths, and DTL-I can filter the errors and 
disturbances in the spectra and in the SOC data, keeping only the most 
relevant data for the modelling. Thus, DTL should remove the need for 
conventional calibration transfer, which requires a ‘master’ instrument 
and additional resources for making the empirical corrections 
(Workman, 2018). 

5. Conclusions 

Using large SSLs to accurately estimate SOC locally is challenging 
and the focus of research over the past decades. We employed DTL to 
solve this problem via transferring instances from large-scale SSLs, 
transferring representations from 1D-CNN trained on the SSLs, and 
transferring both instances and representations to assist local modelling. 
Transferring instances effectively used information from the global SSL 

Table 3 
Test statistics of soil organic carbon (SOC %) predictions at the local sites. 
Subscripts of the DTL methods indicate the SSL used: g for the global SSL and c 
for country SSLs.  

Statistics Modelling China Sweden USA 

SSL 1D-CNN 

RMSE – Local 0.46 0.24 0.47 
Global Global 0.77 1.06 1.02 

DTL-Ig 0.28 0.23 0.31 
DTL-Rg 0.45 0.28 0.35 
DTL-IRg 0.31 0.33 0.31 

Country Country 0.51 1.10 2.89 
DTL-Ic 0.36 0.39 0.33 
DTL-Rc 0.42 1.10 0.55 
DTL-IRc 0.45 0.86 0.32 

ME – Local − 0.02 − 0.05 − 0.07 
Global Global − 0.15 − 0.95 0.44 

DTL-Ig − 0.11 0.04 − 0.09 
DTL-Rg 0.05 − 0.01 − 0.05 
DTL-IRg 0.01 − 0.14 − 0.09 

Country Country − 0.21 − 0.56 1.98 
DTL-Ic 0.09 − 0.29 0.05 
DTL-Rc 0.11 0.18 0.17 
DTL-IRc 0.11 − 0.59 − 0.01 

ρc – Local 0.59 0.90 0.70 
Global Global 0.54 0.33 0.46 

DTL-Ig 0.84 0.90 0.84 
DTL-Rg 0.42 0.81 0.80 
DTL-IRg 0.80 0.82 0.85 

Country Country 0.62 − 0.30 0.23 
DTL-Ic 0.72 0.73 0.82 
DTL-Rc 0.52 − 0.54 0.75 
DTL-IRc 0.48 0.05 0.86  
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Fig. 4. Comparing estimates of SOC with DTL and local models. (a) Percent reduction in RMSE from DTL compared to local modelling. A positive ΔRMSE suggests 
that the DTL method produced more accurate estimates of SOC compared to the local model, while a negative ΔRMSE indicates that the DTL estimates were less 
accurate than those from the local model. The solid line gives the mean ΔRMSE of the three sites for each method. (b) Plots of estimated versus observed SOC at the 
local sites from DTL-Ig, which was the best method. (c) Spatial point distribution of the estimates of SOC at each site. 
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to most accurately estimate SOC in each local site, reducing RMSE by 
25.8% on average. 

We showed that large SSLs contain helpful information that can be 
transferred locally with DTL to improve the modelling and estimation of 
SOC. Thus, our study confirms that there is value in developing and 
maintaining large SSLs and highlights the need to expand SSLs to 
encompass the vast diversity of global soils to solve real-world problems. 
In this case, the methods presented here could help estimate SOC any-
where in the world more accurately, rapidly, and cost-effectively, 
enabling MRV protocols to monitor SOC changes. 
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