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Milk and dairy products provide highly sustainable concentrations of essential amino acids and other
required nutrients for humans; however, amount of milk currently produced per dairy cow globally is
inadequate to meet future needs. Higher performing dairy cows and herds produce more milk with less
environmental impact per kg than lower performing cows and herds. In 2018, 15.4% of the world’s dairy
cows produced 45.4% of the world’s dairy cow milk, reflecting the global contribution of high-performing
cows and herds. In high-performing herds, genomic evaluations are utilized for multiple trait selection,
welfare is monitored by remote sensing, rations are formulated at micronutrient levels, health care is
focused on prevention and reproduction is managed with precision. Higher performing herds require
more inputs and generate more waste products per cow, thus innovations in environmental management
on such farms are essential for lowering environmental impacts. Our focus is to provide perspectives on
technologies and practices that contribute most to sustainable production of milk from high-performing
dairy cows and herds.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Implications

High-performing dairy cows produce four-fold as much milk as
an average world dairy cow. These cows are in herds that provide
balanced nutrients required for high levels of milk output. These
herds utilize modern dairy management practices, incorporate
high-quality genetics in their breeding programs, ensure cows
have comfortable environments, provide high-quality health care,
and manage reproduction efficiently. These herds attempt to min-
imize environmental impacts through using best practices for pro-
ducing crops and managing water and manure. Cows in these
herds are more likely to be confined in modern barns with limited
access to pasture.
Introduction

Dairy products provide essential amino acids and nutrients, and
diets enriched with dairy products reduce stunting in children and
increase growth rates (Food and Agriculture Organization of the
United Nations, Global Dairy Platform, and International Farm
Comparison Network Dairy Network, 2020). An important question
is what daily diet would feed the most people from arable land
globally. This question was addressed by Peters et al. (2016),
who examined eight different diets, ranging from a purely vegan
to an extensive omnivore diet. Each diet was required to provide
essential amino acids and micronutrients that humans must con-
sume. The diet that fed the most people with the least amount of
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land was a vegan diet supplemented with dairy products. Annual
milk supply globally must increase to an estimated 1.12 � 1012 tons
by 2070 (extrapolated from Alexandratos and Bruinsma, 2012),
and this demand will be met through sustainable intensification
(Baulcombe et al., 2009; Godfray et al., 2010; Balmford et al.,
2018; Britt et al., 2018).

Our focus in this perspective is on high-performing dairy cows
and farms globally, particularly on their role in providing nearly
half of the global milk supply, their challenges with volatility in
the global milk market, their efforts to improve sustainability,
and their success in enriching cows’ environments, adopting and
utilizing advanced genetics, improving reproduction, preventing
health problems and feeding dairy cows successfully. There are
265 � 106 dairy cows globally according to FAOSTAT 2018 database.
We calculated intensity of production per cow by dividing each
country’s portion of the global milk supply by that country’s por-
tion of global dairy cows (Fig. 1). To be included in analyses, a
country must have had at least 1% of the world’s dairy cows
(n = 21) or produced at least 1% of global milk production
(n = 14). Countries with least intensity of production (<1.0) were
in East Africa (n = 6). South Asia (n = 3), South America (n = 2)
and Western Asia (n = 1). These countries held 52.6% of the world’s
dairy cows and produced 25.3% of the world’s milk from dairy
cows. Cows in these countries are mostly in smallholder confined
herds and fed byproducts from plant crops (Bateki et al., 2020).
Countries with greatest intensity of production (>2.0) were in Eur-
ope (n = 8), North America (n = 2), East Asia (n = 3), West Asia
(n = 1), South America (n = 1) and Oceania (n = 1). These countries
held 15.4% of the dairy cows and produced 45.4% of world’s milk
from dairy cows. Annual yield of milk solids (fat + protein) per
cow continues to increase in multiple modern dairying countries
(Fig. 2).
Perspective on sustainable high-performing dairy cows and
herds

Sustainability of dairy farms depends on multiple factors
(Table 1). There is not a definition of sustainability that fits all dairy
farms across the globe, nor is there a single farming system that is
Fig. 1. Columns show intensity of milk production for countries of the world that had at
panel) in 2018. Dotted line shows percentage of world’s dairy cows for each country. Int
portion of global dairy cows. Milk and cow data downloaded from FAOSTAT 2018 databas
the world.
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more sustainable than alternative systems. Intensity of production
is linked positively to higher environmental sustainability among
several agricultural sectors. Balmford et al. (2018) studied dairying
in the UK, wheat production in the EU, rice production in China and
beef production in Brazil to assess environmental sustainability. In
all cases, intensive systems were more sustainable environmen-
tally as measured by greenhouse gases (GHGs) output, N loss into
the soil, P loss into the soil, soil loss (erosion) and loss of habitat. As
global population grows, amount of current arable land to produce
food or feed will decline on a per capita basis; however, climate
change could open more land at northern-most latitudes for pro-
ducing crops (Hannah et al., 2020). Sustainability of dairying in
some regions may change as climate change affects availability of
water and crop production (von Keyserlingk et al., 2013).
Sustainable high high-performing dairy farming systems

High-performing dairy herds around the globe have many sim-
ilarities, including breeds of cattle, use of modern technologies,
veterinary care, dairying equipment and record systems. They face
similar challenges, such as volatility of prices received for milk.
Over the period from 2007 through 2019, there was a 79% differ-
ence in average inflation-adjusted prices paid monthly to farmers
in the EU and UK for 100 kg of milk (Fig. 3). This volatility in Europe
and elsewhere has led to an increase in average herd size. Smaller
herds are unable to compete economically with larger herds when
prices received are below cost of production, and cows from smal-
ler herds move to larger herds. For example, average cows per herd
increased 2.7-fold in New Zealand between 1991 and 2019, during
a period when the country’s total dairy cow herd increased 2.1-
fold. As cows from smaller herds move into larger herds, yield
per cow increases (Fig. 4).
Factors affecting sustainability
Sustainability of dairying depends on several issues, including

cowwelfare, dairy farming scale and resources, access to milk mar-
kets and dairy product portfolios (Table 1). Dairy farmers, their
advisors, their dairy supply chain, their milk buyers, consumers,
and policy makers should develop scorecards to monitor dairy
least 1% of all dairy cows (left panel) or produced at least 1% of all cow’s milk (right
ensity is defined by the ratio of a country’s portion of global milk production to its
e. Data used for analyses included 77.8% all dairy cows and 86.5% of all cow’s milk in



Fig. 2. Trends in yields of milk solids, current number of dairy cows (2019) and
dairy cows per herd (2019) in Argentina (ARG), Germany (GER), USA and New
Zealand (NZ). Long grazing seasons in Argentina and New Zealand provide vast
majority of feed. Stored feeds comprise the primary sources of DM in Germany and
USA. Data are from each country’s governmental data site for dairy farm records.
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farming sustainability specific for their regions or countries,
because many aspects of sustainability differ among geographic
and climatic regions. Does dairy herd size or milk yield per cow
influence sustainable welfare of dairy cows? There is scarce evi-
dence that larger farms provide poorer care or welfare than smaller
farms, but group-size for cows should be managed carefully to
avoid disturbing social orders among cows. Gieseke et al. (2018)
evaluated dairy herds housed in freestalls in Germany and con-
cluded that husbandry had a greater effect on welfare than number
of cows per group. Beggs et al. (2019) studied Australian grazing
herds and found that herd size did not affect lameness, mastitis,
somatic cell count (SCC) or on-farm mortality. They reported that
larger herds were more likely to use standard operating proce-
dures, train farmworkers to improve consistency, have electronics
for cow identification, use in-line systems for monitoring milk
yield and mastitis, use anesthesia/analgesia for painful procedures
and have a hospital pen where cows receive specialist attention.

Enrichment of environment for housed dairy cows
High-performing cows in dairy herds in northern latitudes are

often housed part- or full-time. Comfortable stalls and flooring
and enhanced lighting in dairy barns improve animal welfare.
Cows on concrete floors are less willing to mount other cows in
Table 1
Examples of expectations, problems, issues and potential mitigations for sustainable high

Focus Expectations Examples of problem

Cow welfare � Unlimited availability of feed &
water

� Display normal behavior
� Free from fear or pain, clean,
comfortable

� Minimal production-related
diseases

� Mismatch of co
environment

� Environmentally
anomalies

� Cow movements
& poor husbandry

� Inadequate surve
Farm resources � Land, transportation infrastructure

& internet
� Water, forage, feed, wastes & lower
climate impacts

� Access to input/output supply chain
� Labor supply & management
� Financial resources

� Climate change; a
connectivity

� Feed wastage &
management

� Access to inputs, p
markets

� Poor communi
rewards for empl

� Inadequate return
Milk market � Efficient market regulation

� Payment more than cost of
production

� Consumer perceptions

� Insufficient produ
� Disruptions in su
� Undersupply of lo

Dairy products � Liquid
� Cheese, butter
� Powder; byproducts (e.g., whey)

� Improper storage
� Seasonal variation
� Surplus producti
systems
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estrus (Britt et al., 1986). Concrete alleys and walkways are prefer-
ably covered with rubber mats providing a softer, non-slip surface.
Use of LED lighting in feeding areas ensuring 16 h of light per day
increases feed intake and milk production (Dahl et al., 2000). Mul-
tiple watering troughs in pens limit adverse impact of dominant
cows on water intake by others (Sova et al., 2013). Clean and prop-
erly sized freestalls with deep sand increase resting time and
cleanliness and decrease lameness and mastitis (Cook 2020).
Well-positioned rotary brushes result in cleaner cows, stimulate
blood circulation, and help satisfy natural grooming behavior
(Goncu et al., 2019). Barns that incorporate sensors and automated
ventilation systems with retractable curtain walls and fans, with or
without water sprinkling overcome heat stress (Jones and Kammel,
2017). Innovative deep bedded compost barns enhance cow lying
behaviors (Leso et al., 2019). Exercise areas are beneficial, particu-
larly outside at pasture (von Keyserlingk et al., 2017).

In response to public opinion in some regions such as Sweden,
farmers are required to provide housed cows with daily grazing
seasonally. Cows that graze continuously have fewer incidences
of subclinical mastitis, lameness, culling and mortality (Arnott
et al., 2017; White et al., 2002), but may have more internal para-
sitism, malnutrition, and delayed onset of postpartum estrus (Mee
and Boyle, 2020). Intensive grazing requires higher fertilizer use,
thus raising concerns about loss of nitrogen and phosphorus into
surface- or groundwater (Pinxterhuis et al., 2015; Bryant et al.,
2020). Another forthcoming challenge for seasonal grazing,
particularly in Europe and North America, is rising temperatures
during grazing seasons that will cause dairy cows to be
more heat-stressed during summer (https://www.eea.europa.
eu/data-and-maps/indicators/global-and-european-temperature-
10/assessment).
Advanced milking systems for high-performing cows and herds
Milking parlors have evolved to linear or rotary platforms

accommodating up to 120 cows at once. Vacuum teat cups are
attached manually, which is physically intensive requiring tedious
attention to detail. There is increasing popularity of robotic milking
systems, with an estimated 35 000 robots in use globally (John
et al., 2016). Cows are enticed to enter robots voluntarily to gain
access to feed, then electronic sensors control robotic arms that
-performing dairy cows and herds in the future.

s and issues Examples of mitigation

w’s genetics & herd’s

induced behavioral

that disturb social orders

illance and treatment

� Precision diets, adequate space of water and feed
bunks per cow

� Automatic tracking & separation of cows; big
data

� Smart housing: clean, comfortable, temperature
control & lighting

� Efficient diagnostics, bio-therapeutics
ccess to water and poor

poor manure & nutrient

rocessors, and consumer

cation, delegation &
oyees
on investment

� Lower environmental footprints through man-
agement & technology

� Farm-to-farm collaborations in crop production
& waste management

� Farm & herd located in active milk producing
area

� Staff training; automation for drudge jobs; praise
� Entrepreneurial sharing of risks & rewards;
research & development

cer control
pply chain to consumers
cal milk

� Greater collaboration
� Effective innovations & regulation of supply
chains

� Education; ethical governance
of products
s in fat & protein
on & poor distribution

� Process for longer shelf-life
� Balanced use of milk constituents
� Objective regulation & management of dairy sup-
ply chain

https://www.eea.europa.eu/data-and-maps/indicators/global-and-european-temperature-10/assessment
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Fig. 3. Volatility in prices paid to dairy farmers for milk in the EU and UK from 2007
through 2019, adjusted to 2007 Euro equivalents to account for inflation. There is a
79% difference in prices paid after adjustment for inflation. Retrieved on 18 January
2021 from https://data.europa.eu/euodp/en/data/dataset/eu-milk-market-observa-
tory-eu-historical-prices/resource/f05af922-3f35-40c3-8071-e419dd082a8d.
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clean and stimulate the teats before attaching teat cups. Vacuum
level, pulsation and cup removal are automated for each individual
teat to avoid tissue damage. Abnormal milk is detected electroni-
cally and discarded.
Precision farming with artificial intelligence and Big Data
Precision farming focuses on using sensors and artificial intelli-

gence to guide management of herds and farms. For an individual
cow, micro-chips can store data about owners, location, genetics,
reproduction, lactation, health care and disease. The social contract
between dairy farmers and their cows requires using such
advanced technologies to ensure well-being of cows. Artificial
intelligence integrates eating, rumination, walking, resting, and
body temperature to identify cows that are at greater risk of dis-
ease (Stevenson et al., 2020). Social network analysis will generate
alerts for detection of atypical behaviors associated with ill-health
(Vimalajeewa et al., 2019). Data collected from many different
farms permit scientists and policymakers to address concerns
around food provenance, welfare, influence of climate on food pro-
duction, soils, pests, diseases, and impacts of different farming
practices on ecosystems and environments (Eastwood et al., 2019).
Fig. 4. Deviation in milk solids yield per cow per year from smallest herds (<150 cows) in
are reported at the highest end of their common range. Milk solids yield per cow for he
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Reducing impact of dairy farms on environment and climate

Advanced dairy farming globally has seen remarkable sustain-
able intensification to produce milk efficiently. Dairy farms in
2017 in the US produced 1 ton of milk with 25.2% fewer cows,
17.3% less feed, 20.8% less land, and 30.5% less water than in
2007 (Capper and Cady, 2020). Even so, dairy systems impact the
environment by emitting GHGs, require blue water and loss of
habitat for feed production, and use of water for milk production
and processing that leads to water contaminants including N and
P (Naranjo et al., 2020).
Greenhouse gas emissions
Anthropogenic GHGs are main drivers of climate change. Global

livestock accounts for 14.5% of total GHGs (Gerber et al., 2013), and
dairy as a subset accounts for approximately 20% of livestock emis-
sions (VanMiddelaar et al., 2014). Opio et al., (2013) estimated that
GHGs per unit of milk (kg CO2e/kg fat and protein corrected milk)
were much lower in Eastern and Western Europe, Russia, North
America and Oceania (range 1.5–1.9) than in Sub-Saharan Africa
(9.0) and Near East and North Africa (4.3). Methane is a major
GHG in dairy farming and varies by location in dairying countries
such as NZ, where it is lower in herds with higher-producing cows
(Ledgard et al., 2020). Methane accounts for 10% of all GHGs in the
USA, and of that, enteric fermentation from all ruminants accounts
for 28% and stored manure for 10% (Retrieved on 2 September
2020, from https://www.epa.gov/ghgemissions/overview-green-
house-gases). Novel additives, such as the algae, Asparagopsis taxi-
formis, show promise as a safe and effective feed additive for
reducing CH4 in ruminants (Roque et al., 2019). Emissions of N2O
arise during microbial denitrification of NO-

3 to nitrogen gas. Dairy
sources of N2O include long-term manure storage and volatiliza-
tion of fertilizer, manure and urine applied to or deposited on crop
land or pastures (Chadwick et al., 2018).

Different GHGs do not have directly comparable contributions
to climate change, and therefore are scaled as CO2e. The 100-year
Global Warming Potential (GWP100), as denoted in both the Kyoto
Protocol and Paris Agreement, set standard values for these relative
contributions. The GWP100 inappropriately treats CH4 the same as
CO2, despite CH4 degrading rapidly in the atmosphere leading to an
atmospheric lifetime of approximately 12 years. New metrics like
GWP* (Lynch et al., 2020) account for gas lifespan, more accurately
relating emissions to warming. With GWP* as the metric, modest
NZ and US. Herd size groupings differed among official databases; therefore, values
rds with 100–149 cows was 319 kg in NZ and 703 kg in USA.

https://www.epa.gov/ghgemissions/overview-greenhouse-gases
https://www.epa.gov/ghgemissions/overview-greenhouse-gases
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mitigations of CH4 (i.e., 0.3% annual decline) leads to a net-zero
warming effect.

As an example, manure management plans supplemented by
California state funds reduced methane from manure by 25%
between 2015 and 2019 (Retrieved on 2 September 2020, from
http://www.caclimateinvestments.ca.gov/press-releases/2019/9/
19/california-department-of-food-and-agriculture-awards-nearly-
102-million-for-dairy-methane-reduction-projects.)

Air quality
Dairyproduction can lead to emissions ofNH3, particulatematter

(PM), and volatile organic compounds (VOCs). Ammonia con-
tributes to water eutrophication, soil acidification and aerosol/par-
ticulate formation. Ammonia mitigation involves precise control of
nitrogen intake to maximize animal N retention, precise control of
nitrogen fertilization of cropland and timely management of man-
ure. Environmental PM includes organic compounds, metals, dust,
pollen, and mold (Retrieved on 2 September 2020, from https://
www.epa.gov/pm-pollution/particulate-matter-pm-basics). Dairy
specific PM is high in bacterial residues (e.g., endotoxin), which
can elicit an immune responsewhen inhaled.Workersmight be vul-
nerable to chronic exposure (Davidson et al., 2018). Mitigation
includes adding sprinklers to dry dirt pens which can reduce partic-
ulates by more than 50% (Cassel et al., 2003). Adding tall perennial
vegetation around dairy facilities can trap airborne contaminants.
Dairies may emit VOCs, predominantly from silage and feed han-
dling, which contribute to ozone formation (Howard et al., 2010).
Mitigation involves applying effective coverings on silage, ensiling
with additives like potassium sorbate, and proper defacing of the
silage pile (Mitloehner and Cohen, 2017).

Manure management and water pollution
Applying manure to land either through grazing or application

becomes unsustainable if it overwhelms capacity of local ecosys-
tems. Anaerobic digestion of manure produces CH4 which can be
used on-site or be distributed for energy or transportation fuel.
Long-term liquid manure storage produces more CH4 than fresh
waste (Place and Mitloehner, 2010). Manure also contains inor-
ganic N, which leads to emissions of N2O or infiltration of NO-

3 after
deposition or application (Chaddwick et al., 2011). N2O emissions
can be mitigated by controlling slurry DM content through
decreasing amount of water utilized to flush manure. The best
strategy to reduce N losses into the ecosystem is to reduce excess
protein consumed by lactating cows.

Wastewater is an agricultural pollutant if nutrient rich water
from manure lagoons and/or runoff enters local ecosystems (Fyfe
et al., 2016). With high effluent rates, NO-

3 infiltration of surface
and subsurface water can become a challenge. More than one-
third of domestic wells exceeded the NO-

3maximum contamination
level in some areas of California that have high dairy activity. Dairy
effluent may contain salts (e.g., alkaline and acid detergents, disin-
fectants, milk residues, trace quantities of veterinary chemicals)
that can infiltrate subsurface water. Wastewater should be col-
lected, and organic matter recovered before the water is used for
irrigation (Taylor et al., 2016).

A new system converting manure and wastewater into clean
water, sterile solids, and organic nitrogen fertilizers has been
installed recently on dairy farms in the US (Retrieved on10 Novem-
ber 2020 https://www.sedron.com/varcor/). This system evolved
from systems developed for villages in underdeveloped countries
that did not have municipal water and sewage infrastructures.

Genetics of high-producing cows and herds

Genetic potential of dairy cattle in countries with modern dairy-
ing systems has accelerated rapidly (Weigel et al., 2017). From
5

1960 to 2017 average breeding values for milk yield of Holstein
bulls in the US increased 75 kg/year (Retrieved on 6 August 2020
https://queries.uscdcb.com/eval/summary/trend.cfm). Milk solids
produced by mature Holstein cows born in 2017 was 87% greater
than cows born in 1970. Can this growth in yield continue? Cole
et al. (2009) calculated breeding values if best chromosome seg-
ments across the Holstein breed were combined into a single
cow. They concluded milk yield could increase by as much as
35 000 kg per 305-day lactation. Fitness traits declined when selec-
tion emphasis was primarily on yield, but today, selection for
reproductive fitness, herd life, and resistance to disease accounts
for more weight in selection indexes than yields of milk, butterfat,
and protein, leading to improvements in fitness. Future selection
indexes may include the rumen microbiome, because it has a rea-
sonable level of heritability and affects milk yield and emissions
(Wallace et al., 2019). Consumer preferences have and will con-
tinue to influence genetic selection. For example, dairy cattle
breeders are selecting for the A2 version of beta-casein because
of perceived health benefits and market demand. We expect farm-
ers will be paid more for milk with different genotypes for kappa-
casein because of their impact on cheese yield.
Advanced genetic and reproductive technologies
Emerging embryo technologies provide advantages that could

lead to sales of embryos surpassing sales of semen. Removing cells
from embryos before freezing and identifying genetic markers can
be used to generate genomic breeding values to select embryos
with optimal pairing of alleles. If technology allows development
of sperm and oocytes from embryonic stem cells, genetically elite
embryos could become parents. This nascent population could be
theoretically generations beyond the current population and
beyond current computing capabilities. Current models assume
individual gene effects are independent, but genes function within
interactive networks, and it will take massive computing capacity
to deal with interactions among millions of single nucleotide poly-
morphisms in genomic databases. Epigenetics focuses on chemical
modifications at DNA-, transcriptional- or translational-levels that
regulate interaction between genes and their environment, with-
out changing the DNA sequence (Bach, 2018). For example, differ-
ences in epigenome exist between calves born to heifers or cows
(González-Recio et al., 2012). Emerging embryo technologies can
influence how much protein a specific animal can make from a
specific gene; therefore, a bovine embryo could be treated in cul-
ture or a recipient’s nutrition altered after transfer to influence epi-
genetic development of the fetus (Crouse et al., 2019; Li, et al.,
2020).
Fitting dairy cows to management and ecological niches
Thomet et al. (2011) observed that sustainable milk production

was tightly linked to a cow’s ability to convert forage into milk. As
an example, the KiwiCross� breed derived from crossing Holstein-
Friesian and Jersey cows in New Zealand improved productivity,
fertility and longevity in their intensive grazing system (Retrieved
10 November 2020 from https://www.lic.co.nz/products-and-ser-
vices/artificial-breeding/premier-sires/). To develop genetic selec-
tion programs, it is necessary to have well-developed pedigree,
genotype, and performance databases. Today all large data sources
exist in developed countries with intensive production and tem-
perate climates. Increasing production from cattle in other systems
requires development of regional- or climatic-specific genetic
resources. Crossing of elite genetic merit bulls from developed
countries with native cattle has improved productivity and sus-
tainably in tropical countries (Bunning et al., 2019).

http://www.caclimateinvestments.ca.gov/press-releases/2019/9/19/california-department-of-food-and-agriculture-awards-nearly-102-million-for-dairy-methane-reduction-projects
http://www.caclimateinvestments.ca.gov/press-releases/2019/9/19/california-department-of-food-and-agriculture-awards-nearly-102-million-for-dairy-methane-reduction-projects
http://www.caclimateinvestments.ca.gov/press-releases/2019/9/19/california-department-of-food-and-agriculture-awards-nearly-102-million-for-dairy-methane-reduction-projects
https://www.epa.gov/pm-pollution/particulate-matter-pm-basics
https://www.epa.gov/pm-pollution/particulate-matter-pm-basics
https://www.sedron.com/varcor/
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Sustainable feeding of high-performing cows and herds

Feed accounts for greatest cost of producing milk, and carefully
managing intake of energy, protein, vitamins, and minerals should
meet a cow’s requirements without excretion of excess nutrients.
This is extremely challenging with intensive grazing in tempera-
ment climates (Wilkinson et al., 2020), especially in countries such
as Ireland and New Zealand that utilize mixtures of perennial rye
grass (Lolium perenne L.) and white clover (Trifolium repens L.) in
pastures (Department of Agriculture Food and Marine, 2018). This
forage combination provides excess nitrogen intake relative to
energy during the entire grazing season, and 60% of consumed
nitrogen is excreted in urine, leading to nitrate toxicity in soils
and subsoil water (Bryant et al., 2020). Supplementation of grazing
cows with energy from stored feeds leads to underutilization of
grass and lowers milk yield per hectare (Pinxterhuis et al., 2015),
making intensive grazing less profitable (Bryant et al., 2020). Yields
per cow are greater for cows fed a total mixed ration than those fed
by intensive grazing for long seasons (Fig. 2); however, profitability
per cow may be similar (White et al., 2002).

Lowering NDF and increasing starch within normal limits will
increase milk protein and lower milk fat (Broderick, 2003), but
markets globally differ in utilization of fat and protein, so farmers
will produce what is most profitable in their market. Protein
requirements in the cow are expressed as grams of available amino
acids provided to the mammary gland. Rumen microbial amino
acids comprise 50–60% and rumen-undegraded protein con-
tributes 40–50% of required amino acids. Methionine and lysine
are first limiting amino acids and their rumen-protected forms
can be fed to meet requirements. Milk fat precursors include acet-
ate and butyrate from rumen fermentation, and fatty acids from
feeds and mobilized body fat. Dietary fatty acids are provided from
feeds, commercial dry fatty acids (i.e., palmitic, oleic and stearic
fatty acids), and commercial rumen-protected polyunsaturated
fatty acids (such as linoleic and linolenic fatty acids).
Formulating balanced rations for high-producing cows
Ration balancing software uses rumen-based models to esti-

mate nutrient levels provided by feed ingredients. Table 2 illus-
trates primary nutritional goals for Holstein cows at different
stages of the dry period and lactation. Local pastures and harvested
forages provide most economical feeds, but it may be essential to
supplement cows with feeds such as maize or small grains or their
silages (Pinxterhuis et al., 2015). Total mixed rations are common
for feeding high-performing cows (Schingoethe, 2017) and these
vary depending on available feeds and nutrient requirements
(Table 2; Hutjens, 2018). Cows milked by robots may be fed a par-
tial mixed ration or pasture to complement concentrate fed in the
robot. Feed efficiency (FE) evaluates relationships between milk
yield and feed inputs and includes measures such as kg of
Table 2
Expected yields and recommended intakes and concentrations of nutrient sources for T
approximately 12 000 kg annually. Values should be adjusted accordingly for other levels

Dry period

Far off (�60 to �22 d) Close-up (�21 to 0 d)

Milk yield, kg/day 0 0
DM intake, kg/day 14 10
CP, g/kg 99 124
Rumen undegradable protein, g/kg 22 28
Metabolizable protein, g/kg 60 80
Net energy lactation, MJ/kg of DM 5.52 5.98
Ether extract, g/kg 20 30
ADF, g/kg 300 250
NDF, g/kg 400 350
Starch, g/kg 140 170
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energy- or fat-corrected milk produced per kg of DM consumed.
Determining FE requires measuring exact amount of feed con-
sumed, knowing exact number cows, and knowing amount and
composition of milk produced. Feed efficiency in grazing herds uti-
lizes the same principle but may be expressed per hectare rather
than per cow.

Feeding replacement heifers to gain more weight before wean-
ing at 7–9 weeks of age stimulates development of more mammary
stem cells, and this is linked to higher production during first lac-
tation, Heifers should reach approximately 60% of adult weight by
onset of puberty and should calve first at 22–24 months of age
(Kertz et al., 2017).

Heat stress will increase as global temperatures increase. Sub-
stituting grain for some forages improves rate of feed passage
and generates less heat from rumen fermentation, but sufficient
high-quality forage is essential to maintain rumen health. Feeds
that are optimal under heat stress should have greater NDF
Digestibility and lower NDF than grass or legume forages. Replac-
ing some carbohydrate-based energy with lipids reduces heat of
fermentation in the rumen.

Reproductive management for the dairy cow and herd

Adoption of multiple reproductive technologies has provided
primary means for accelerating genetic progress in dairy cattle
(Fig. 5). Improved fertility in dairy cows is driving a shift to pro-
duce more beef from dairy-breed dams by inseminating dairy cows
with semen from beef sires. Dairy-beef indexes for AI sires that are
optimum matches for dairy cows are available (Berry and Ring,
2020). In modern dairy countries, farmers are using gender-
sorted semen to inseminate their best phenotypic cows and their
top genetic heifers to produce herd replacements. Broad use of
multiple ovulation and embryo transfer is being replaced by
in vitro maturation of oocytes, in vitro fertilization and in vitro cul-
ture of embryos, to exploit genetic merit of superior heifers and
cows in the way AI extends use of superior sires. In Europe, number
of transferable embryos per cow and per in vitro production session
in dairy breeds increased from 1.6 in 2014 to 2.5 in 2018.

Fixed-time artificial insemination and pregnancy diagnosis
Programs to achieve fixed-time inseminations emerged in the

1990s, particularly in North and South America. These programs
utilize GnRH, PGF2a and progesterone in various sequences to
stimulate follicle waves, initiate luteolysis and induce precise time
of ovulation. It has become clear that synchronizing follicle growth
must be coupled precisely with induced regression of the corpus
luteum to synchronize ovulation in a group of cows or heifers, so
all animals in a group can be inseminated at a specific time. These
systems have led to improvements in percentage of cows or heifers
that become pregnant within any 21-day period of time, and ‘‘21-
otal Mixed Rations (TMR) for various lactation groups for Holstein cows producing
of production or for other breeds.

Early Remaining lactation

Postpartum (0–21 d) Early (22–80 d) Middle (81 to 200 d) Late (>200 d)

35 55 35 25
15 30 24 20
195 167 152 141
90 69 55 46
138 116 102 92
6.44 6.73 6.15 5.69
40 50 50 30
210 180 210 240
300 280 300 320
200 260 220 190



Fig. 5. Examples of common and emerging reproductive technologies that serve as vehicles for genetic progress in dairy cattle.

Fig. 6. Adoptive application of on-farm uses of reproductive technologies in 2006 and 2013 in the USA dairy herds (USDA, 2018). Abbreviations: ET = Embryo Transfer;
AI = Artificial Insemination.
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day Conception Rate” has become a common way of measuring
reproductive performance in countries that utilize such systems.
Increased use of transrectal ultrasonography for pregnancy diagno-
sis allows earlier reinsemination of non-pregnant cows (Fig. 6), and
these exams are important to detect uterine or ovarian abnormal-
ities, twin pregnancies, and estimation of conception dates from
unobserved matings. Pregnancy-specific proteins are used to diag-
nose pregnancy by testing blood or milk samples collected 28–
32 days after AI. For use with timed AI, blood or milk can be col-
lected when a resynchronization program is initiated so the pro-
gram can be continued if a cow is diagnosed not pregnant to the
original AI.
Health of high-performing cows and herds

Health of dairy cattle is associated positively with milk yield
and profitability. Infectious diseases such as Brucellosis, bovine
7

tuberculosis and foot-and-mouth disease have been brought under
control in advanced dairy regions, significantly because of govern-
ment programs. Vaccines to prevent diseases such as bovine rhino-
tracheitis and bovine viral diarrhea have been adopted widely.
Today’s focus on health and wellness is toward prevention of meta-
bolic health problems by improving nutrition and husbandry direc-
ted toward transition cows (LeBlanc et al., 2006), and farmworkers
increasingly use sensor data to monitor transition health and
detect diseases (Cabrera et al., 2020). Control of infectious and sub-
clinical disease is aided by greater adoption of biosecurity (Hoe and
Ruegg, 2006).

Mastitis remains a challenge because causative organisms are
found in infected cows and a herd’s environment. Mastitis is clas-
sified as subclinical (SCC > 200 000 cells/mL) or clinical (abnormal
milk with or without abnormal mammary gland appearance). Sub-
clinical mastitis is increasingly well-controlled, but incidence of
clinical mastitis has increased (Fig. 7; Ruegg, 2017a and 2017b).



Fig. 7. Incidence of diseases occurring at least once during one lactation in 40 large dairy herds in Wisconsin classified by different milk yields. There was no statistical
difference among yield groups for any of the diseases.

Table 3
Selected performance data for dairy cattle herds with different milk yield levels in the Upper Midwest of the USA.1

Milk yield category (kg/cow per year)

Traits <7 711 7 712–9 525 9 526–10 234 10 235–13 608 >13 608

Herds, n 160 327 651 645 113
Milk, kg/cow per year 6 416 8 734 10 471 12 332 14 338
Peak milk parity 3+, kg/day 32 40 48 55 62
Cows SCC < 100 000 cells, % 53 61 67 74 78
Cows SCC > 200 000 cells, % 29.8 23.4 19.2 14.7 12.3
Bulk tank SCC, cells 345 000 267 000 212 000 165 000 141 000
Cows culled < 60 DIM, % 7.6 7.2 7.6 8.0 7.5
Milk cow death rate, % 6.9 5.8 5.8 5.6 5.1
Milk cows died or culled, % 39.7 42.3 44.2 43.4 41.7

Abbreviations: SCC = somatic cell count, DIM = days in milk.
1 Retrieved on 2 September 2020, from https://dairy.agsource.com/industry-benchmarks/.
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Concerns about antimicrobial resistance have led some countries
to reduce usage of antimicrobials in food animals (Ruegg, 2017b).
Antimicrobial dry cow therapy accounts for most antimicrobials
used on dairy farms, but herds can reduce mastitis using non-
antibiotic therapies and genomic selection.

There is little change in incidence of disease as milk yield
increases, as illustrated by data from 40 herds producing at differ-
ent levels (Fig. 7); these herds had an average SCC of 142 550, a
cow mortality rate of 5.5%, and an overall cow turnover rate of
37.8%. Performance benchmarks for 1 896 dairy herds in the upper
Midwest of the USA were summarized for January 2020 (Table 3).
Cows in herds with greatest annual yield per cow produced 2.2-
times more milk and had 40% fewer cows with subclinical mastitis
than herds with smallest yields. Higher-producing herds had about
half as many cows that exhibited subclinical mastitis in early lac-
tation or experienced new intramammary infections.

Transitional diseases and negative energy balance
Metabolic diseases during the peripartum transition period,

including hypocalcemia, ketosis, and displaced abomasum,
increase risk of other conditions such as metritis and lameness.
Postpartum uterine diseases, including retained fetal membranes,
metritis, endometritis, and subclinical endometritis occur in about
40% of cows (Sheldon et al., 2020). Negative energy balance and
uterine disease are linked: the odds of metritis increased almost
3-fold for every kg reduction in DM intake in the week before calv-
ing, and metritis increased 3.4-fold for postpartum dairy cows with
�1.2 mmol/L beta-hydroxybutyrate in peripheral blood the week
following calving. Negative energy balance impairs neutrophil
function and metritis causes visceral pain and reduces appetite,
which increases negative energy balance (Stojkov et al., 2015).
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Postpartum uterine diseases not only affects the uterus but also
perturbs ovarian function (Sheldon et al., 2020). Limiting negative
energy balance in high-producing dairy cows is the first step in
supporting both reproductive health and animal well-being.

It is not inevitable that dairy cows with a high milk yield exhibit
negative energy balance. Up to half of high-performing cows main-
tain or increase body condition score or weight during the first
three weeks postpartum (Carvalho et al., 2014). Among high-
producing Holstein cows, about 20% gain body condition or weight
during 3 weeks after calving and about 30% maintain body condi-
tion immediately post-calving. Greater genetic selection against
negative energy balance during the first 3 weeks postpartum could
eliminate many postpartum disease problems.

Resilient dairy cows prevent disease by avoiding, tolerating and
resisting pathogenic bacteria (Sheldon et al., 2020). Avoiding post-
partum uterine infection is particularly difficult when high-
producing dairy cows are kept closely confined; therefore, stocking
rate in early postpartum cow pens should be kept at about 80% of
capacity relative to pens beyond the transition period. Farmers can
reduce uterine disease by maintaining hygiene, monitoring calving
cows, and selecting for calving ease.

For many years, a strategy of ‘one calving per cow per year’ has
prevailed, especially in seasonal grazing herds. In herds that are fed
stored feeds, it could be beneficial to prolong 2nd and later lacta-
tions through genetic selection, milking 3-times or more a day
and increasing energy intake to reduce peri-parturient problems
as well as non-productive dry periods per life-time. This could ben-
efit animal welfare and improve profitability (Dobson et al., 2007).
Uterine disease could be avoided by inducing lactation in cows not
needed to produce replacements. Lactation was induced success-
fully in 1 500 barren Holstein dairy cows in northern Mexico using

https://dairy.agsource.com/industry-benchmarks/
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hormones that mimic natural hormonal changes during pregnancy
(Mellado et al., 2011). Among cows induced to lactate after one
natural lactation, milk yield averaged 7 607 kg and this increased
to 9 548 kg for cows that had six previous natural lactations.

Dairy cows and farming in the future

High performance cows and herds begin with cows having
genes that are adapted for their environments, with balanced
emphasis on fitness and yield of milk components. Application of
genomic selection will result in new breeds or new versions of
existing breeds that will fit dairy farming niches globally, and this
will increase output per cow and lower environmental impacts.
Genetic traits will be transferred among and between regions
through embryos and for some single genes by gene editing. Dairy-
ing in the northern hemisphere will shift northward across country
borders because of global warming and changes in availability of
water. Understanding of dairy cow nutrition will continue to
evolve with a continued focus on the transition period, but there
will also be increased emphasis on feed efficiency and on reducing
variation in body condition scores. There will be significant nutri-
tional fine-tuning in lowering nutrients excreted in urine and feces,
particularly where nitrogen excretion is degrading ground water.
Health of dairy cows will be improved significantly through greater
genetic emphasis to decrease clinical mastitis, lameness and meta-
bolic diseases. Use of antimicrobial drugs in dairy cattle will be
reduced drastically or eliminated and replaced with biologics or
with externally applied procedures that do not utilize drugs. Dairy
farms will continue to lower environmental impacts by adopting
systems that convert manure and wastewater into potable water,
bioenergy and nitrogen fertilizers – such systems will be affordable
for larger farms or through shared use by smaller farms. Milk’s
health benefits will be enhanced through increases in qualities of
milk proteins and fats. Through sustainable intensification, the
dairy industry can produce milk needed for our future global
population.
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