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Genetic variances are important parameters and have a great impact on the determination of optimal breeding
strategies of tree species. A large clonal testing program was conducted to estimate additive, dominant and
epistatic variances for the development of breeding and deployment strategies in Norway spruce (Picea abies
(L.) Karst.). The analysis results of genetic variation for growth and wood properties in two clonal trials in central
Sweden indicated that the important sources of total genetic variation were both additive and non-additive
genetic variances. Additive genetic variation accounted for the majority of total genetic variation for diameter
at breast height (DBH) and wood quality traits, whereas non-additive genetic variation was significant only for
tree height at an early age. Predicted genetic gain was the highest for clonal deployment based on best tested
(replicated) clones (4.7–65.3 per cent), followed by clonal deployment of the best individual trees from a full-sib
family trial (3.5–57.7 per cent), and the deployment of seedlings generated by open-pollination (1.9–48.3 per
cent).

Introduction
Genetic variance is the variance associated with the genetic
differences among trees in a population and is usually partitioned
into additive, dominance and epistatic components (Falconer
and Mackay, 1996). Additive effects of genes are cumulative over
generations and are the main source of genetic variation utilized
by most plant breeding programs. However, the interactions
between alleles at the same locus (dominance) and, particularly,
the interactions of alleles between loci (epistasis) could also
play a central role in heterosis, polymorphism and evolution (Yu
et al., 1997) and can be exploited in an alternative deployment
program (Berlin et al., 2019). The levels of the additive and
non-additive genetic variance in traits important for breeding
programs have a great impact on the determination of optimal
breeding strategies (White et al., 2007). Ignorance of epista-
sis is particularly common in forest tree breeding because of
substantial limitations in the statistical power and experimental
methods required to partition the non-additive variance into its
components (Foster and Shaw, 1988). Ignorance of non-additive
genetic variance might cause bias predictions of breeding val-
ues, variance components and genetic parameters estimated
(Costa e Silva et al., 2004; Baltunis et al., 2013). Well-designed

genetic trials with full-sib family structure and clonal identi-
fication are therefore required to estimate all three variance
components and associated heritabilities in the narrow-sense
(only additive genetic variance) and in broad-sense (all genetic
variance) (Wu, 2018). In addition, number of families and number
of clones within a family tested are also essential for accurate
estimation (Chen et al., 2020). The relative importance of addi-
tive and non-additive genetic effects is required information to
properly evaluate the potential for genetic gain from various
breeding programs and deployment options used in the genetic
improvement of forest trees (Costa e Silva et al., 2004). However,
most studies have mainly focused on additive genetic effects in
forest tree breeding programs.

Estimates of genetic gain from clonally replicated trials in
conifers were initially started in 1980s (Wu, 2018). But only few
reliable estimates for the non-additive variation were reported
(Mullin and Park, 1992; Isik et al., 2003, 2005; Baltunis et al.,
2007, 2009, 2013; Weng et al., 2008) in which growth traits
were the focus rather than wood quality traits (Costa et al.,
2004; Wu et al., 2008; Chen et al., 2020). When non-additive
genetic variance is significant, total genetic variance and broad-
sense heritability are expected to be higher than the corre-
sponding additive genetic variance and narrow-sense heritability
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(Wu, 2018). Given that non-additive genetic variation can be
exploited in deployment, this could result in larger genetic gain
from selection (Mullin and Park, 1992; Chen et al., 2020).

Norway spruce (Picea abies (L.) Karst.) is one of the most
important conifer species in Europe, both from economic and
ecological points of view (Högberg et al., 2014). The versatility of
the wood and its large geographic distribution make it a widely
used tree species in the European forest industry (Steffenrem
et al., 2016). In Sweden, genetic improvement has been carried
out on this species for about 60 years and has mainly focused
on improving growth and adaptive traits, including tree height,
diameter, branch quality, survival and frost damage (Karlsson
and Rosvall, 1993) and a large clonal testing program was
launched, including more than 18 400 clones tested from the
mid-1970s. Benefits from using clones are considerable through
intense within-family selection and capturing of non-additive
genetic effects (Rosvall et al., 2019). A previous study in Norway
spruce indicated that selection based on clonal means plus
vegetative deployment would be the most effective strategy
(Chen et al., 2020). In a recent review of deploying clonal forestry
of Norway spruce, there was a special call to estimate non-
additive genetic variance for growth and wood quality traits in
order to assess the benefits and risks of Norway spruce clonal
forestry (Wu, 2018; Rosvall et al., 2019). Thus, non-additive
genetic effects were analysed for height and DBH; however, the
scale and importance of dominance and epistatic effects could
not be clearly distinguished (Berlin et al., 2019) whereas additive
and non-additive genetic variances were equally necessary for
growth traits (Chen et al., 2020). Wood quality traits have recently
been incorporated into selective breeding programs (Högberg
et al., 2014; Chen et al., 2016; Wu, 2018). Knowledge of wood
quality and genetic correlations of wood quality traits with each
other and with growth rate is limited (Steffenrem et al., 2009).
The negative genetic correlation (adverse relationship) between
wood quantity and quality was found (Hannrup et al., 2004; Kroon
et al., 2011; Högberg et al., 2014; Chen et al., 2015). Breeding to
overcome adverse genetic correlations and to effectively utilize
non-additive genetic variation is two of the most challenging
issues in Norway spruce tree improvement and deployment
programmes.

This study, therefore, aims to (1) assess the relative impor-
tance of additive, dominance and epistatic genetic effects for
growth and wood quality traits; (2) estimate heritabilities and
genetic correlations for these traits; (3) furthermore, this study
aims to predict genetic gain from clonal deployment of the
top of tested and replicated clones (CRC) compared with clonal
deployment of the top individual trees (CIN) taken e.g. from a full-
sib family trial, and deployment of seedlings only, generated from
the open-pollination of the best individuals (SOP) by establishing
e.g. a seed orchard. To achieve these aims, two clonal full-sib
family progeny tests of Norway spruce in central Sweden were
studied.

Materials and methods
Plant material and field trials
Two clonal full-sib family progeny trials of Norway spruce, S209
at Lugnet and S241 at Rådahöjden, were established in 1991
in central Sweden (see Table 1). The two trials comprised 1015

Table 1 Details of the two field trials (Lugnet and Rådahöjden).

Details Lugnet Rådahöjden

Latitude 59.38◦N 60.00◦N
Longitude 17.31◦N 13.31◦N
Altitude 10 m 210 m
Mean annual rainfall 592 mm 849 mm
Mean annual temperature 7◦C 5◦C
Soil type Sedimentary

clay
Sandy till

Number of measured trees 1215 2021
Number of clones 548 555
Number of families 74 (167∗) 165 (167∗)
Average number of ramets/clone 2.2 3.6

∗The value in parenthesis is the total number of families used in two
trials.

clones representing 167 full-sib families from crossing combina-
tions between 58 parents including 36 acting as females and 37
acting as males. Each family from these two trials had an average
of 6.2 clones (1–16 clones) and each clone was represented by
1–10 ramets (average 3.2 ramets). Growth traits were measured
at tree ages 6 and 12 for height (Ht6, Ht12) (m), and 12 and 26
for diameter at breast height (DBH12, DBH26) (cm). A randomized
incomplete block design using the single-tree plot was used in
the two clonal trials.

Non-destructive testing tools used to assess wood density
on standing trees were Pilodyn 6 J Forest (Proceq, Schwerzen-
bach, Switzerland) and Micro-drill Resistograph IML-RESI PD300
(Instrumenta Mechanic Labor, Germany). Pilodyn 6J Forest was
used to measure pilodyn penetration depth (Pilo). When mea-
suring, bark was not removed. The measurement was conducted
at approximate 1.3 m above the ground and on the same side
for all trees. Pilodyn penetration has repeatedly been observed
to show high magnitudes of correlation with wood density in
Norway spruce (Högberg et al., 2014; Chen et al., 2015). Besides,
the resistograph (Resi) was used for drilling trees bark to bark
at a given feed speed in one mutually perpendicular direction
at height of ca 1.3 m. The resistograph’s resistance traces were
then transferred to the PD Tools Pro program and exported as
text files. Custom software available as a web URL https://fo
restquality.shinyapps.io/ResiProcessor/ was used to process the
resistance traces and extract the over-bark and under-bark diam-
eter, together with the mean resistance value of the under-bark
portion of the trace (Downes et al., 2018). A measure of bark
thickness (BkTh) was also provided from the resistograph data
profile (Figure 1).

Also, the wood stiffness of standing trees was indirectly
assessed by first determining the acoustic velocity (AV, ms−1)
measured using the Hitman ST300 tool (Fibergen, Christchurch,
New Zealand). Two probes were inserted into a tree stem,
separated vertically at a distance of 0.7–1.3 m and orientated
at an angle of 450 to the stem with the tips facing each other.
The acoustic velocity was calculated:

AV = s
t

(1)
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Figure 1 The profile of resistograph measurement (a proxy of wood density) from bark to bark. The distances between two red dash lines on the two
sides are the bark thickness; the average of both sides’ bark thickness is used as bark thickness for the tree.

where the distance between probes is s and the transit time is
t. In the second step, the AV measurement was then combined
with Pilo measurements so that the modulus of elasticity (MOE)
could be determined as the indirect measure of wood stiffness
by using the following equation (Chen et al., 2015):

MOE = 1
Pilo

10 000 AV2 (2)

Finally, the spiral grain angle (GA) was measured for each tree
at 1.3 m height using the wedge grain angle gauge (Hannrup
et al., 2004; Fries et al., 2014). Measurements from two opposite
sides (northwest and southeast) of the stem were taken and
the mean value was used as the phenotypic GA value thus
eliminating measurement errors due to leaning stems.

Statistical analysis
Statistical analysis

Cross-site analyses were conducted for traits measured in both
trials and single site analyses were conducted for those traits
only measured in one trial (Table 1) in ASReml 4.0 (Gilmour et al.,
2014). The analysis of variance components for across site was
undertaken according to the following three general mixed linear
models:

y = Xβ + Zaa + Zasas + b(s) + e (3)

y = Xβ + Zaa + Zasas + Zf f + Zfsfs + Zb(s)b(s) + e (4)

y = Xβ +Zaa+Zasas+Zf f +Zfsfs+Zcc+Zcscs+Zb(s)b(s)+e (5)

where y is the vector of observations for traits, β is the vector of
fixed effects (i.e. mean and site), a is the vector of random addi-
tive genetic effects, as is the vector of random additive genetic
effects by site interaction effects, f is the vector of random
effects of full-sib families (specific combining ability, SCA), fs is

the vector of random effects of SCA by site interaction, c is the
vector of random effects of clones within full-sib families, cs is
the vector of random effects of clones within full-sib family by
site interaction and b(s) is the vector of random effects of the
block within site. X, Za, Zas, Zf, Zfs, Zc, Zcs and Zb(s) are the known
incidence matrices relating to the observations in y to effects in
b, a, as, f , fs, c, cs and b(s), respectively. The variances associated
with the random effects a, as, f , fs, c and cs are referred to
as Aσ 2

a , σ 2
asIs

⊗
A, σ 2

f If , σ 2
fsIfs, σ 2

c Ic and σ 2
csIcs, respectively. The

random effects of b(s) have a heterogeneity of variance structure
(σ 2

b1Ib1
⊕

σ 2
b2Ib2), where σ 2

b1and σ 2
b2 are block variances for sites 1

and 2, respectively. e is the vector of random residual terms ∼N(0,
R), with a heterogeneity of variance structure between two sites
(R = σ 2

e1I1
⊕

σ 2
e2I2), where

⊕
is the direct sum and σ 2

e1and σ 2
e2

are the residual variances for sites 1 and 2, respectively. σ 2e is
the average of the two-residual variances. 0 is the null matrix.
If a trait was only measured in one site, then the random effect
by site interaction term will be dropped and the block within site
term will be replaced by block effect. Similar to the univariate
model (5), a bivariate model was used to estimate variance and
covariance components. However, due to the complication of
model fitting, the variances of the block within site and residual
effects for each site are homogeneous. In the bivariate model,
unstructured (US) covariance structures were used to fit for the a,
as, f, fs, c and cs and residual effects. Diagnal (DIAG) covariance
structure was used to fit the block within site effects. If any of
the variance components are in boundary, then the terms will be
dropped in a specific bivariate model.

According to assumptions defined by Costa e Silva et al.
(2004), the additive, dominance, epistatic, total genetic, envi-
ronmental (residual) and phenotypic variances were estimated
as follows:

V̂A = σ̂ 2
a (6)

V̂D = 4σ̂ 2
f (7)

V̂I = σ̂ 2
c − 3σ̂ 2

f (8)

418

D
ow

nloaded from
 https://academ

ic.oup.com
/forestry/article/95/3/416/6461166 by U

ppsala U
niversity user on 20 M

ay 2022



Effect of additive, dominant and epistatic variances on breeding and deployment strategy in Norway spruce

V̂G = σ̂ 2
a + σ̂ 2

f + σ̂ 2
c (9)

V̂E = (
σ̂ 2

e1 + σ̂ 2
e2

) ∗ 0.5 (10)

V̂P = σ̂ 2
a + σ̂ 2

as + σ̂ 2
f + σ̂ 2

fs + σ̂ 2
c + σ̂ 2

cs + V̂E (11)

Proportions of dominance (d̂2) and epistatic (î2) variances,
individual narrow-sense (ĥ2), broad-sense (Ĥ2) and clonal mean
(Ĥ2

C
) heritabilities were estimated according to (Costa e Silva et al.,

2004; Baltunis et al., 2009):

d̂2 = V̂D

V̂P
(12)

î2 = V̂I

V̂P
(13)

ĥ2 = V̂A

V̂P
(14)

Ĥ2 = V̂G

V̂P
(15)

Ĥ2
C = V̂G

V̂C

= V̂G

V̂G + V̂E
r

(16)

where V̂C is the variance of clonal means and r is the harmonic
mean number of ramets per clone.

Total genetic (r̂G) and additive genetic (r̂A) correlations
between traits were calculated from variances and covariances
using the mixed model equation, and the following formula were
used for calculation (Isik et al., 2017):

r̂G =
ˆCovG

(
x, y

)
[
V̂G(x) · V̂G(y)

]1/2 (17)

r̂A =
ˆCovA

(
x, y

)
[
V̂A(x).V̂A(y)

]1/2 (18)

where ˆCovG(x, y) and ˆCovA(x, y) are the total genetic covariance
component and additive genetic covariance between traits x and
y.

Expected genetic gains (ΔG) were estimated for a number
of deployment options based on various forward selection
schemes under selection intensities ranging from 1 to 20 per cent
(i = 2.665–1.400). The deployment strategies considered were (1)
deployment of seedlings generated by the open-pollination of
the best individual trees (assuming no pollen contamination),
which is based on only the additive portion of the genetic
variance (SOP), (2) clonal deployment of the best individual trees
from a full-sib family field trial with cutting propagation without
replicated clonal testing (CIN) and (3) clonal deployment of the
best clones by replicated clonal testing with cutting propagation
(CRC). Genetic gains were calculated as follows:

�Gh2 = iĥ2
√

V̂P (19)

�GH2 = iĤ2
√

V̂P (20)

�GH2
C

= iĤ2
C

√
V̂C (21)

All gains were expressed as the percentage gain over the
mean of the trait:

%�G = �G
yi

· 100 (22)

where yi is the population mean for trait i.
Delta method was used to estimate standard error for all

genetic parameters by ASReml standard alone version v4.1,
except standard error of genetic gain that was estimated by
ASReml R v4.1 since, in the current version, ASReml standard
alone is not allowed to estimate standard error for a complicated
genetic parameter, such as genetic gain.

Results
Summary of traits measured in two trials
In total, 1016 genotypes with an average of 3.2 ramets were
measured in two trials. Eighty-eight genotypes within seventy-
two families are overlapped between the two sites Lugnet and
Rådahöjden. The basic summary of the measured traits is shown
in Table 2. The mean values of growth traits in Rådahöjden were
higher than those in Lugnet. For example, the mean value of Ht6
was 233.5 cm in Rådahöjden, which is higher than 125.7 cm in
Lugnet. The coefficient of variation (CV) varied from 5.9 per cent
for AV26 in Lugnet to 46.0 per cent for GA26 in Lugnet. The CV
of growth traits is higher than wood quality traits, except GA27
and MOE26. Phenotypic correlation and the distribution of each
trait are shown in Supplementary Figure S1. The distribution for
all traits is approximately normal, the growth traits showed slight
two peaks, and thus, the heterogeneous variances for block and
residuals effects were fitted in the model for those traits when
we estimated genetic variances.

Comparison of variance components of different models
To detect the G × E interaction and dissect non-additive effects
including dominance and epistatic effects, three models includ-
ing additive only (A), additive and dominance only (AD), and
additive, dominance, epistatic effects (ADE full model) were per-
formed for all traits. The results are shown in Table 3 and Supple-
mentary Table S1. Based on Akaike information criterion (AIC),
only the full model of traits Ht6, Ht12 and DBH12 showed the
smallest AIC value. Other traits, the additive model only showed
the smallest AIC value.

Partitioning of genetic variances and genetic
parameters
Single site and across sites estimates of variance components
and genetic parameters for wood and growth traits for the data
from two clonal progeny trials are presented in Table 4. Addi-
tive genetic variation accounted for the majority of the total
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Table 2 Number of trees measured (n), number of genotypes (N), minimum, maximum, mean and coefficient of variation (CV) for all traits in two
Norway spruce trials (Lugnet and Rådahöjden).

Site Lugnet Site Rådahöjden

Trait n N Min-Max Mean CV (%) n N Min-Max Mean CV (%)

Ht6 (cm) 1214 547 37–240 125.7 26.7 2014 555 30–372 233.5 21.4
Ht12 (cm) 1214 547 130–700 482.9 18.6 2012 555 140–810 568.0 17.2
DBH12 (cm) 1214 547 7–97 54.7 24.9 2012 555 10–122 71.0 22.8
DBH26 (cm) 1214 547 33–239 118.0 24.3 2020 555 16–305 136.4 24.9
Pilo26 (mm) 1204 545 12.0–26.5 19.0 13.1 1415 552 10–28 18.8 12.5
AV26 1192 545 3.0–5.2 4.3 5.9 1415 552 3.1–5.3 4.3 6.8
MOE26 (Gpa) 1185 544 4.48–15.96 10.0 18.2 1415 552 5.1–18.0 9.9 20.0
BkTh27 (mm) 1205 548 3.15–9.00 5.5 15.3 NA 0 NA NA NA
Resi27 1203 548 1198.4–2741.1 1963.3 13.1 NA 0 NA NA NA
GA27 (◦) 1140 529 −12.5-65 24.9 46.0 NA 0 NA NA NA

NA represents that the trait was not measured in that trial. Note: ht6 and ht12 represent that tree height was measured at tree age 6 and 12,
respectively; DBH12 and DBH26 represent diameter at breast height measured at tree ages 12 and 26, respectively; Pilo26, AV26, BkTH27 and Resi27
represent that Pilodyn penetration, acoustic velocity, bark thickness and resistograph, measured at tree ages 26, 26, 27 and 27, respectively. MOE26
represents modulus of elasticity predicted based on AV26 and Pilo26 measured at tree age 26.

genetic variation associated with Ht6, DBH12, DBH26 and wood
traits (53.3–99.4 per cent), whereas non-additive genetic vari-
ation contributed low to moderate portion to the total genetic
variation (0.6–46.7 per cent). Among them, dominance genetic
variation contributed a lower or zero portion to the total genetic
variation (0–32.5 per cent).

Non-additive genetic variation appeared to be more important
only for Ht12 (61.8 per cent) in which dominance contributed
considerably (69.9 per cent) and the relative importance between
dominance and epistasis varied with age. For wood traits, domi-
nance ranged from zero to 32.5 per cent while epistasis was less
than 16.5 per cent. Partitioning of genetic variance indicated that
both additive and non-additive genetic variances were important
sources of total genetic variances for most of the traits, especially
for growth traits.

For tree height, the proportion of phenotypic variance due to
dominance variance showed an increasing trend (0.00–0.14) by
increasing age but epistatic variance decreased (0.03 to −0.01)
with age. The total non-additive genetic variance in the model
was higher than the additive genetic variance for Ht12whereas
for Ht6 and DBH, this relationship was the reverse. For the wood
traits, the results showed zero levels of dominance for Pilo, GA
and BkTh; low for Resi (10.2 per cent) and MOE (13.2 per cent);
and moderate for AV (32.5 per cent). In addition, epistatic genetic
variances for wood traits estimated from the data were very low
and especially negative for Resi.

Overall, clonal mean heritability (H2
C
) estimates were always

the largest in magnitude as compared with broad-sense (H2)
and narrow-sense (h2) heritabilities for studied traits. Most wood
traits including Resi, Pilo, MOE and GA also showed higher heri-
tability than growth traits. Estimates of h2 for all traits were low
to high (0.08–0.51) while H2 ranged from 0.15 to 0.61. Clonal
mean heritability estimates (H2

C
) were however systematically

higher (0.28–0.78) than h2 and H2 for all observed traits and their
small standard errors indicated the high precision of estimates
(Table 4).

Trait–trait correlations
Estimates of the total genetic and additive genetic correlations
among observed traits in both single trials and across trials are
presented in Table 5. Total genetic correlations among growth
traits were generally comparable to additive genetic correla-
tions but had lower standard errors. Therefore, additive and
total genetic correlations are henceforth reported and discussed
together as genetic correlations. Both total genetic and additive
genetic correlation among tree height and DBH growth traits
were very high (0.72–0.95). Genetic correlations between BkTh
and growth were highly positive (0.79–1.00) but both correlations
between BkTh and wood traits were close to zero (−0.19 to 0.31).

Wood density measured indirectly by Resi and Pilo showed
unfavourable and moderate genetic correlations with DBH
(−0.42 to −0.63 for Resi and 0.38–0.51 for Pilo). However,
wood density using Resi measurements had unfavourable and
moderate correlation with height (−0.30 to −0.44), but relatively
low correlations between Pilo and height (0.02–0.25). The
estimate of the total and additive genetic correlation between
Resi and Pilo was strongly negative (both values at −0.88).
Besides, MOE had low positive (large standard error) to moderate
negative (unfavourable) genetic correlations with growth traits
but high correlations with Resi and Pilo. However, grain angle had
very weak genetic correlations with the most traits (−0.03 to
0.32) except for AV and MOE (−0.30 to −0.60).

Response for different selection schemes
Genetic gains for DBH were calculated assuming equal selection
intensities (i = 1–20 per cent) for each deployment strategy
(Figure 2). Regarding the predicted genetic gain, clonal deploy-
ment of the best tested and replicated clones (CRC) offered
the greatest gains, followed by clonal deployment of the
best individuals (CIN) from full-sib family, and then the open-
pollinated seedling deployment (SOP). For example, when
selecting the top 5 per cent of tested and replicated clones
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Table 3 Variance components of three different models and their standard errors (in parenthesis) and Akaike information criterion (AIC).

Trait Model α2
a α2

as α2
f α2

fs α2
c σ 2

cs AIC

Ht6 A 441.1 (87.0) 201.9 (72.4) 27053.4
AD 453.0 (85.6) 157.7 (73.4) 0 (NA) 31.3 (23.4) 27055.1
ADE 197.3 (74.7) 45.1 (47.9) 0 (NA) 36.4 (24.9) 51.2 (89.8) 193.9 (88.2) 27044.0∗

Ht12 A 2536.9
(386.1)

631.2 (265.2) 32027.6

AD 2211.6
(390.0)

635.8 (268.3) 254.0 (122.7) 0 (NA) 32024.4

ADE 617.6 (345.1) 402.9 (231.5) 279.0 (127.4) 0 (NA) 719.9 (409.0) 445.8 (405.2) 32015.4∗
DBH12 A 47.0 (9.3) 18.6 (7.3) 20241.1

AD 45.3 (9.6) 13.7 (7.9) 0.8 (3.6) 4.3 (4.1) 20241.1
ADE 24.5 (9.7) 4.6 (6.6) 0.9 (3.8) 5.5 (4.5) 5.7 (10.2) 14.7 (10.1) 20237.9∗

DBH26 A 157.6 (34.9) 72.1 (28.5) 25045.0∗
AD 153.8 (36.2) 57.1 (31.0) 1.7 (15.0) 1.7 (15.0) 25046.7
ADE 136.3 (38.6) 39.3 (30.2) 0.9 (14.7) 15.4 (17.2) 0 (NA) 28.3 (26.9) 25049.6

Pilo26 A 1.7 (0.2) 0.03 (0.08) 6529.5∗
AD 1.7 (0.2) 0 (NA) 0 (NA) 0.02 (0.05) 6533.4
ADE 1.4 (0.4) 0 (NA) 0 (NA) 0.02 (0.05) 0.2 (0.3) 0.04 (0.2) 6536.7

AV26 A 0.02 (0.003) 0.005 (0.002) 0.020 (0.07) -4657.2∗
AD 0.02 (0.003) 0.005 (0.002) 0.001 (0.001) 0 (NA) -4655.6
ADE 0.01 (0.004) 0.004 (0.002) 0.002 (0.001) 0 (NA) 0.007 (0.003) 0 (NA) -4656.9

MOE26 A 1.3 (0.1) 0.1 (0.08) 5135.6∗
AD 1.3 (0.2) 0.1 (0.08) 0.03 (0.04) 0 (NA) 5138.9
ADE 0.9 (0.3) 0.1 (0.07) 0.04 (0.04) 0 (NA) 0.2 (0.20) 0 (NA) 5141.9

BkTh27 A 0.12 (0.03) 565.1∗
AD 0.12 (0.03) 0 (NA) 567.1
ADE 0.11 (0.04) 0 (NA) 0.02 (0.03) 568.7

Resi27 A 24085.0
(3095.8)

14090.0∗

AD 23493.7
(3254.0)

611.9
(1154.5)

14091.6

ADE 23493.7
(3254.0)

611.9
(1154.5)

0 (NA) 14093.6

GA27 A 88.8 (8.7) 6269.2∗
AD 88.8 (8.7) 0 (NA) 6271.2
ADE 66.8 (18.3) 0 (NA) 13.2 (10.7) 6272.0

Bold and ∗ represent that the fitness of model is better than the other two models. Models A, AD and ADE represent models of equations (3) (additive
only), 4 (additive + dominance) and 5 (additive + dominance + epistasis), respectively.

for clonal deployment (CRC), genetic gains were estimated to
reach 9.8–10.6 per cent for DBH from ages 12 to 26 and 8.9–
9.6 per cent for tree height from age six to 12 (Table 6). When
clonally deploying the best 5 per cent individuals (CIN), gains at
7.0–7.4 per cent for DBH and 6.4–7.0 per cent for height could
be expected. Finally, deploying the offspring of the best 5 per
cent selected individuals by open pollination (SOP) would result
in gains of 5.5–7.3 per cent for DBH and 2.7–5.1 per cent for
height. CRC deployment thus showed a relative superiority of
40.0–43.2% per cent over CIN and 45.2–78.2% per cent over SOP
for DBH at the same selection intensity. In addition, genetic gains
for wood quality traits including BkTh but excluding GA reached
from 4.7 to 17.8 per cent in CRC deployment, 3.5–13.8 per cent
in CIN deployment and 1.9–11.2 per cent in SOP deployment.
According to the results, the CRC strategy offered a relative
improvement of 13.2–37.7 per cent over CIN and 22.4–147.4

per cent over SOP deployment in terms of genetic gains for wood
traits.

Discussion
Partitioning of genetic variances and genetic
parameters
Most tree breeding programs only use additive variation in their
breeding and deployment program if selection is based on phe-
notypes or predicted breeding values, and propagation is based
on open-pollinated seed orchards only. This is because non-
additive genetic components cannot be used for genetic advance
in such scenario (Isik et al., 2017). Phenotypic variance comprises
(1) additive variance: heritable from parents to progeny; (2)
dominance and epistasis variance: only heritable with the same
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Table 4 Additive, dominance and epistatic genetic variances, genetic parameters and their standard errors (in parenthesis) for observed traits in
Rådahöjden, Lugnet(a) and across two sites.

Ht6 Ht12 DBH12 DBH26 Pilo26 AV26 MOE26 BkTh27
a Resi27

a GA27
a

V̂A 197.3
(74.6)

617.7 (344.4) 24.5 (9.7) 136.3
(38.7)

1.4 (0.4) 0.01 (0.004) 0.95 (0.28) 0.11 (0.04) 23 494 (3255.6) 66.8 (18.3)

V̂D 0 (0) 1116.1
(509.3)

3.5 (15.1) 3.5 (59.1) 0 (0) 0.006
(0.004)

0.16 (0.17) 0 (0) 2447.5 (4623.3) 0 (0)

V̂I 51.2 (89.4) −117.2 (551.6) 3.1 (15.3) −2.7 (44.3) 0.2 (0.3) 0.003
(0.004)

0.06 (0.19) 0.02 (0.03) −1835.7 (3467.5) 13.2(10.7)

V̂G 248.5
(86.6)

1616.6 (400) 31.1 (10) 137.2
(37.1)

1.6 (0.3) 0.019
(0.003)

1.17 (0.16) 0.12 (0.03) 24106.0 (3107.6) 80.0 (10.0)

V̂P 1695.4
(54.3)

7913.4
(253.9)

200.1 (6.5) 873.6
(28.5)

4.9 (0.2) 0.067
(0.003)

3.09 (0.15) 0.58 (0.03) 53410.0 (2914.2) 130.6 (10.1)

V̂C 890 (48.5) 4167.8
(228.6)

101.0 (5.8) 424.4
(25.3)

2.7 (0.2) 0.037
(0.002)

1.85 (0.15) 0.33 (0.02) 37322.0 (2914) 102.8 (9.9)

d2 0 (0) 0.14 (0.06) 0.02 (0.08) 0.00 (0.07) 0 (0) 0.09 (0.06) 0.05 (0.06) 0 (0) 0.05 (0.09) 0 (0)
i2 0.03 (0.05) −0.01 (0.07) 0.02 (0.08) 0.00 (0.05) 0.03 (0.06) 0.04 (0.06) 0.02 (0.06) 0.03 (0.05) −0.03 (0.06) 0.10 (0.09)
h2 0.12 (0.04) 0.08 (0.04) 0.12 (0.05) 0.16 (0.04) 0.29 (0.07) 0.15 (0.06) 0.31 (0.08) 0.18 (0.06) 0.44 (0.04) 0.51 (0.11)
H2 0.15 (0.05) 0.20 (0.05) 0.16 (0.05) 0.16 (0.04) 0.32 (0.05) 0.28 (0.04) 0.38 (0.04) 0.21 (0.04) 0.45 (0.04) 0.61 (0.03)
H2

C
0.28 (0.09) 0.39 (0.09) 0.31 (0.09) 0.32 (0.08) 0.60 (0.08) 0.51 (0.06) 0.63 (0.05) 0.38 (0.06) 0.65 (0.04) 0.78 (0.03)

Partitioning of genetic components of variances (%)
V̂A 79.4 (32.8) 38.2 (20.2) 78.8 (31.8) 99.4 (10.8) 89.5 (17.8) 53.3 (16.7) 81.2 (15.6) 85.6 (22.5) 97.5 (4.8) 83.5 (14.6)
V̂D 0.0 (0.0) 69.9 (34.1) 11.1 (48.4) 2.6 (43.0) 0.0 (0.0) 32.5 (21.5) 13.4 (14.8) 0.0 (0.0) 10.2 (19.2) 0.0 (0.0)
V̂I 20.6 (31.8) −7.2 (34.9) 10.1 (48.3) −2.0 (32.2) 10.5 (17.8) 14.2 (20.3) 5.4 (16.8) 14.4 (22.5) −7.6 (14.4) 16.5 (14.6)

Table 5 Total genetic (above), additive genetic (below) correlations between growth and wood traits and their standard errors (in parenthesis) in
Rådahöjden, Lugnet(a) and cross sites.

Ht6 Ht12 DBH12 DBH26 Pilo26 AV26 MOE26 BkTh27
a Resi27

a GA27
a

Ht6 0.90 (0.03) 0.83 (0.02) 0.72 (0.04) 0.13 (0.10) 0.28 (0.13) 0.04 (0.11) 0.79 (0.12) −0.34 (0.14) 0.01 (0.12)
Ht12 0.95 (0.07) 0.85 (0.06) 0.80 (0.08) 0.25 (0.13) 0.23 (0.11) 0.06 (0.10) 1.00 (0.12) −0.30 (0.14) −0.03 (0.10)
DBH12 0.85 (0.07) 0.83 (0.09) 0.92 (0.04) 0.38 (0.11) 0.09 (0.13) −0.11 (0.11) 0.87 (0.11) −0.63 (0.12) 0.09 (0.12)
DBH26 0.78 (0.09) 0.80 (0.11) 0.92 (0.04) 0.51 (0.08) −0.10 (0.13) −0.35 (0.09) 0.86 (0.09) −0.42 (0.11) 0.14 (0.13)
Pilo26 0.02 (0.29) 0.25 (0.13) 0.38 (0.11) 0.51 (0.08) −0.44 (0.09) −0.94 (0.03) 0.31 (0.12) −0.88 (0.05) 0.19 (0.09)
AV26 0.46 (0.39) 0.32 (0.36) 0.04 (0.32) −0.11 (0.16) −0.63 (0.16) 0.81 (0.04) −0.11 (0.13) 0.37 (0.14) −0.33 (0.09)
MOE26 0.09 (0.30) 0.11 (0.31) −0.15 (0.26) −0.39 (0.11) −0.94 (0.03) 0.86 (0.06) −0.19 (0.12) 0.71 (0.07) −0.30 (0.08)
BkTh27

a 0.81 (0.11) 1.00 (0.12) 0.87 (0.11) 0.86 (0.09) 0.31 (0.12) −0.02 (0.25) −0.08 (0.21) 0.10 (0.13) 0.06 (0.11)
Resi27

a −0.34 (0.14) −0.44 (0.18) −0.56 (0.1) −0.43 (0.12) −0.88 (0.05) 0.37 (0.14) 0.74 (0.08) 0.10 (0.13) −0.03 (0.09)
GA27

a 0.12 (0.23) 0.03 (0.24) 0.16 (0.22) 0.14 (0.13) 0.32 (0.17) −0.60 (0.17) −0.52 (0.15) 0.15 (0.21) −0.03 (0.09)

control pollinated families or the same genotypes used and
(3) non-heritable environmental variation. The separation of
the genetic variance into its additive, dominance and epistatic
components can only be realized in clonal trials with family
structure or when various inbred materials are used (Costa e Silva
et al., 2004; Wu 1996). The genetic model using clones assumes
that epistasis reflects primarily interactions involving groups of
more than two or three loci (Mullin and Park, 1992) and it was
assumed that such interactions would capture the most of the
total interaction variance (Costa e Silva et al., 2004; Wu 1996).
Recently, genomic relationship matrices for additive, dominance
and epistatic effects were calculated to estimate the additive,

dominance and epistatic variances using marker data such as
exome capture and SNPs array (Gamal El-Dien et al., 2016; Tan
et al., 2018; Chen et al., 2019). However, a more common and
traditional method to estimate all genetic variances are clonal
field trials with full-sib family structure.

In this study, two large clonal trials with full-sib family
structures were used to partition the total genetic variance into
additive, dominance and epistatic variances. The large proportion
of the total genetic variance for growth trait DBH and wood
traits was explained by additive genetic variance while non-
additive genetic variance appeared to be more important for
tree height. Epistatic variance estimates was 20.6 per cent
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Figure 2 Predicted genetic gain of DBH12 (current measurement age
for early selection in Norway spruce breeding) from three deployment
scenarios (SOP-seedling deployment from open-pollinated progeny, CIN-
clonal deployment of the best individual trees from a full-sib family and
CRC-clonal deployment from the best clones tested).

of the total genetic variation for tree height at tree age six.
These estimates were close to the recent report on the same
species (46.5–55.2 per cent) (Chen et al., 2020). However, the
previous report of Chen et al. (2019) did not show any first-
order epistatic variance for tree height using genomic-based
relationship matrices to estimate epistatic effects in Norway
spruce. This may indicate that the epistatic effect of tree height in
Norway spruce may be from high-order multi-locus interaction
(i.e. among QTLs ≥ 3), but this needs more markers and large
population size for further verification. In addition, estimates
of dominance variances for growth were close to previous
studies on other conifer species, such as black spruce (Mullin
and Park, 1992, 1994), white spruce (Weng et al., 2008) and
hardwood species such as Eucalyptus globulus (Costa e Silva et al.,
2004). In contrast, Lenz et al. (2020) did not observe significant
dominance effect for growth and wood quality traits in two
Norway spruce full-sib family trials. In this study, non-additive
components were important or more important for height and
DBH at early ages (≤12-year-old). This was similar to a study of
white spruce (Weng et al., 2008). For the studied wood traits,
most estimates of non-additive variance proportions were very
low except for AV. Similarly, wood density indirectly measured
by Pilo in E. globulus showed dominance and epistatic variance
estimates to be close to zero (Costa e Silva et al., 2004). However,
considerable estimates of dominance variance, but with close-
to-zero epistatic variance estimates for Pilo were reported

Table 6 Genetic gain (�G) and their standard error (in parenthesis)
of three deployments for different traits based on selection intensity
(i = 2.063, e.g. 5% population selected) across two sites(a).

Variables �G (%)

SOP CIN CRC

Ht6 5.1 (1.9) 6.4 (2.2) 8.9 (3.0)
Ht12 2.7 (1.5) 7.0 (1.7) 9.6 (2.3)
DBH12 5.5 (2.1) 7.0 (2.2) 9.8 (3.1)
DBH26 7.3 (2.0) 7.4 (1.9) 10.6 (2.7)
Pilo26 7.0 (1.7) 7.7 (1.3) 10.6 (1.6)
AV26 1.9 (0.7) 3.5 (0.5) 4.7 (0.6)
MOE26 11.2 (3.0) 13.8 (1.6) 17.8 (1.8)
BkTh27

a 5.3 (1.7) 6.1 (1.4) 8.1 (1.6)
Resi27

a 10.7 (4822.5∗) 10.9 (4948.5∗) 13.1 (3820.9∗)
GA27

a 48.3 (31.5∗) 57.7 (36.4∗) 65.3 (24.8∗)

SOP = open-pollinated seedling deployment, CIN = clonal deploy-
ment of the best tree individuals, CRC = clonal deployment of the best
replicated clones. Note that the standard error could be biased when
data are not sufficient to estimate genetic parameters in ASReml-R
v4.1 compared with ASReml standard alone v4.1.

for Norway spruce (Chen et al., 2020). Different populations
and genetic structure between two different populations and
measured at different age may cause such different results.

Estimates of heritability are critical for understanding the
genetic structure of natural forest tree populations as well as
breeding populations in tree improvement programs. Broad-
sense and narrow-sense heritability are both population-
specific, trait-specific and heavily affected by environmental
homogeneity, which includes genetic testing (White et al., 2007).

The higher broad-sense heritability (H2) estimates as com-
pared with narrow-sense heritability (h2) in this study indicated
there was considerable non-additive genetic variance exploitable
in breeding and deployment programmes for Norway spruce.
Values of h2/H2 near one imply that the amount of non-additive
variance is very small, and clonal values are similar to breeding
values thus indicating that any advantages of clonal forestry
would be small in comparison to the conventional use of seedling
deployment (White et al., 2007). In this study, the h2/H2 ratios
ranged from 0.40 to 1.00 for height and DBH growth traits while
they were similar for most wood properties (0.54–0.98). These
findings were comparable to the normal range of h2/H2 recorded
for tree growth traits. In previous studies on Norway spruce, the
ratio of h2/H2 varied from 0.60 to 0.84 and the author indicated
that a valid comparison must use datasets from the same trial
with comparable pedigree (Wu, 2018).

Narrow-sense heritability estimates were low to moderate for
growth traits (0.08–0.16) and from moderate to high for wood
property traits (0.15–0.51) in this study. These results were com-
parable to observations made in the recent studies of Norway
spruce that narrow-sense heritability ranged from 0.03 to 0.40
for growth and from 0.15 to 0.53 for wood properties (i.e. AV,
Pilo, Resi, MOE, GA and wood density) (Hannrup et al., 2004;
Hallingbäck et al., 2008; Steffenrem et al., 2009; Kroon et al.,
2011; Högberg et al., 2014; Chen et al., 2015; Chen et al., 2020).
Early estimates of broad-sense heritability in Norway spruce from
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clone tests in the field ranged from 0.17 to 0.40 for height growth
at 1 to 10 years (Roulund et al., 1986; Bentzer et al., 1989; Lepistö,
1993; Högberg and Karlsson, 1998). In this study, estimates of
broad-sense heritability were 0.15–0.20 for height at age 6–12,
and 0.16 for DBH at age 12–26. These reports on Norway spruce
showed that broad-sense heritabilities of growth traits and wood
density were comparable to the results in a previous study (In
Chen et al., 2020, Resi and Pilo considered as a proxy of wood
density), but higher for GA compared with the result (0.43–0.44)
in Hannrup et al. (2004). Hallingbäck et al. (2008) reported that
GA had a broad-sense heritability of 0.44–0.63, which was similar
to the result of this study (0.61).

Clonal mean heritability estimates ranged from 0.28 to 0.39
for height, 0.31 to 0.32 for DBH and 0.38 to 0.78 for wood
traits in this study (Table 4). These heritabilities were lower than
estimates for growth in the same species in previous studies
(Bentzer et al., 1989; Lepistö, 1993) and other species, such as
white spruce (Weng et al., 2008), black spruce (Mullin and Park,
1994) and loblolly pine (Isik et al., 2005; Baltunis et al., 2007).
However, they were close to the report on Norway spruce in which
clonal mean heritability estimates ranged from 0.28 to 0.60 for
height, 0.22 to 0.57 for DBH and 0.52 to 0.66 for wood traits (i.e.
AV, MOE, Pilo and Resi) (Chen et al., 2020). The possible reason
is that the new deployment strategy in Norway spruce clonal
progeny test series in Sweden used approximately three ramets
per clone in each of three or four test trials, compared with several
times this number for other species (Mullin and Park, 1994; Weng
et al., 2008; Baltunis et al., 2009). As we expected, clonal mean
heritability is always higher than broad-sense heritability for all
the traits even there is no non-additive variance. This is because
clonal mean heritability is estimated based on smaller residual
variance or environment variance (see equation 16, replaced
residual variance (v̂E) in estimate of broad-sense heritability
by V̂E

r ).

Uncertainty of dissecting variance components in the
clonal full-sib trials
Partitioning phenotypic variation accurately into additive, domi-
nance, epistatic effects is a complex problem (Carlborg and Haley,
2004; Mackay, 2014), but it is also important for prediction in
plant and animal breeding (Jiang et al., 2017; Forsberg et al.,
2017). In this study, we observed small or moderate non-additive
effects for growth traits, but none of them was significant, except
for tree height at tree age 12 (here, 1.96 times standard error
less than variance components was considered as significant,
P < 0.05). In this study, given the sufficient genetic connection
in additive levels between two trials (e.g. 72 overlapped families
in the total of 167 families), we think that the reasons of large
standard errors for non-additive effects and non-additive by site
effects could be that (1) six clones per family on average may
not be enough to accurately estimate the non-additive effects.
More clones per family would be recommended for improving
the estimates of genetic parameters; (2) only 88 genotypes (548
and 555 at each site) were replicated between sites and this
is probably the reason why G × E was difficult to be detected
for epistatic effects, and (3) the full diallel matings would be
more ideal to separate additive from dominance effects than
the current sparse partial diallel design. However, if the genomic
relationship matrix is available, the genetic parameter estimate

could be more accurate for dominance (Chen et al., 2019; Thava-
manikumar et al., 2020). Given these findings in this study, we
recommend that larger sample size, particularly within family,
would be needed to accurately estimate genetic parameter and
their GxE.

Trait–trait correlations
In genetic studies, it is necessary to distinguish between two
different sources of correlation between traits: genetic and envi-
ronmental (Falconer and Mackay, 1996). The genetic correla-
tions between traits can be used to predict the effectiveness of
direct selection on a measured trait with the primary goal of
indirectly improving a correlated target trait that is more difficult
or expensive to assess (Isik et al., 2017). However, almost all of
these estimates were additive genetic correlations (White et al.,
2007). Total genetic correlation will be more frequently reported
as clonal program become more common and it also is important
to distinguish the two types of correlation. Estimates of total
genetic correlations among traits were generally comparable or
slightly different from additive genetic correlations but had lower
standard errors. Strong genetic correlation among growth traits
in this study were similar to those of other studies, ranging from
0.70 to nearly one (White et al., 2007) and agreed also with pre-
vious studies on Norway spruce (0.48–0.95) (Roulund et al., 1986;
Bentzer et al., 1989; Hannrup et al., 2004; Kroon et al., 2011; Chen
et al., 2015). The observed unfavourable genetic relationships
between DBH and Resi, Pilo and MOE were slightly weaker than
those observed for the same species (Chen et al., 2015) and for
Pinus taeda (Isik and Li, 2003), but were comparable to observa-
tions for other conifer species such as Pinus contorta (Hayatgheibi
et al., 2017) and Pinus sylvestris (Fundova et al., 2018). In the
present study, Resi and Pilo showed a strong negative genetic
correlation (−0.88) as expected. In comparison, Pilo showed a
strong negative genetic correlation with wood density (−0.62) in
Norway spruce (Chen et al., 2015) and Scots pine (−0.59 with bark
and −0.74 without bark) (Fundova et al., 2018) using Siviscan
data. Besides, Resi had very high genetic correlation with wood
density in P. taeda (0.95) (Isik and Li, 2003) and in P. sylvestris
(0.87–0.96) (Fundova et al., 2018). Moreover, the resistograph
could provide more detailed measurements of over-bark and
under-bark diameter, bark thickness, average resistance of the
bark-to-bark (under-bark) trace, average resistance of the outer
50 mm on the entry and exit side of the traces (Downes et al.,
2018). Thus, the resistograph could be a great tool to reliably
assess the relative wood density of standing trees for selection
in tree improvement programs.

Both total genetic and additive genetic correlations between
grain angle and all remaining traits except Pilo, AV and MOE
(−0.60 to 0.32) were very weak and close to zero. The addi-
tive genetic correlation between GA and MOE (−0.51) of this
study was much higher than that of another report on Norway
spruce (Högberg et al., 2014). In addition, both total genetic
and additive genetic correlation between GA and DBH were all
weakly positive and none were significantly different from 0
(Hallingbäck et al., 2008).

The negative genetic correlation (adverse relationship)
between wood quantity and quality traits (for mostly stem
diameter and wood density) is the greatest challenge to conifer
breeders. In any case, it will always be important for forest
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managers to be aware of the genetic characteristics of the
reproductive materials used, both positive and negative aspects
(Steffenrem et al., 2009). To overcome the adverse genetic
correlations, two approaches for breeding programmes are
recommended by Wu et al. (2008): (1) establishing effective
breeding objectives for structural timber products in the short
term, and (2) for long-term strategy, by dissecting the genetic
basis of the adverse relationship, designing optimal breeding
strategies based on the genetic architecture.

Response to different selection schemes
The deployment of elite and adaptable clones across sites is
a sound gene resource management strategy for maximizing
realized genetic gains. This is one of the most important strate-
gies in tree improvement programs. For this to be possible, a
large number of genetically diverse clones that are tested across
multiple sites should offer significant total genetic variation and
minimal G × E (Baltunis et al., 2013). Reliable estimates of all
genetic parameters are required for meaningful calculations of
genetic gain (Mullin and Park, 1992). Clone testing and deploy-
ment in conifer species would possibly bring an additional genetic
gain of 5–25 per cent, effectively doubling that obtainable from
seedling-based forestry within the same generation (Wu, 2018).
The CRC deployment strategy was the most effective as com-
pared with two other deployment strategies in this study, which
is in line with the most recent study for the same species (Chen
et al., 2020). Actually, the top 5 per cent selection of replicated
clones was predicted to yield 9.9–10.5 per cent genetic gain for
DBH, a relative improvement of 39.4–83.5 per cent over SOP
in this study. Similarly, a research on radiate pine found 24
per cent genetic gain of replicated clones, a relative improve-
ment of more than 100 per cent over family forestry (Baltu-
nis et al., 2009). The size of the testing population, the num-
ber of clones within each family, the ratio of additive to non-
additive genetic variances and accuracy of the progeny test-
ing mainly decide variation in terms of estimated extra gains
(Wu, 2018).

The report of Chen et al. (2020) showed genetic gains of 8–16
per cent for growth and 5–18 per cent for wood quality traits as a
result of applying the CRC-strategy and these gains were slightly
higher or similar to the results of this study. Genetic gains for tree
height were estimated between 10 and 25 per cent from similar
clone trials in Germany, Denmark, Norway and Finland (Bentzer,
1993). When using the best 10 per cent of tested and replicated
clones, estimated genetic gain for tree height in this study ranged
from 7.6 to 8.2 per cent and were smaller than 13–25 per cent
in the same species in Sweden reported by (Bentzer et al., 1988;
Karlsson 1993), and 13–19 per cent in Finland (Lepistö, 1993).
Wu (2018) summarized from previous studies on conifer species
that an extra genetic gain of 5–25 per cent would be effectively
possible from clone testing and deployment. Moreover, Rosvall
(2011) suggested considering more flexibility by relaxing the
number of ramets planted per clone, in favour of increasing
the number of clones to be tested. Thirty to forty clones per
family to realize the maximum genetic gain were recommended
for different clonal selection scenarios, either selecting the best
ten or twenty clones without any co-ancestry restriction or the
best single clone from each of the best ten or twenty families

(Chen et al., 2020). The extra genetic gains from the clonal
testing in Norway spruce indicate that clonal deployment is an
advantage if superior clones can be identified at early testing
stage with an implementation of mass propagation such as mini-
cutting, tissue culture. The genomic selection within the elite-
family at the seed-forming stage in combination with somatic
embryogenesis might be the future of Norway spruce clonal
deployment for the increased genetic gain.

Conclusions
This study indicated that both non-additive and additive genetic
variances were important sources of total genetic variances for
Norway spruce growth and wood quality traits. Additive genetic
variation accounted for the majority of the total genetic variation
for growth trait and wood traits, whereas non-additive genetic
variation is important for growth traits compared with wood
quality traits. The relative importance of genetic variances for
growth traits varied with age. Wood quality traits (i.e. Resi, Pilo,
AV, MOE and GA) had generally higher heritability than growth
traits. Total genetic correlations among observed traits were gen-
erally comparable to additive genetic correlations. Wood density
measured indirectly by Resi and Pilo, and MOE showed moderate
and unfavourable genetic correlations with DBH but weak cor-
relations with tree height. The predicted genetic gain of clonal
deployment of the best tested and replicated clones was the
greatest, followed by clonal deployment of the best individual
trees, and then the deployment of seedlings from open pollina-
tion of the best individuals. Under selection of the best 5 per cent
clones, genetic gains for DBH were estimated to obtain 9.8–10.6
per cent from replicated clonal testing (CRC). This corresponds to
a relative improvement of 40.0–43.2 per cent over deployment
of the best individual (CIN) and 78.2–255.6 per cent over seed
orchard deployment (SOP). For wood traits at the same selection
intensity, clonal deployment of replicated clones indicated a
relative improvement of 13.2–37.7 per cent over CIN and 22.4–
147.4 per cent over SOP.
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