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Propositions 

 
 

1. Cows with chronic subclinical mastitis will not cure when the somatic cell count is 

increased for 4 weeks (this thesis).  
 

2. Costs of chronic mastitis are more important than the costs of clinical mastitis 

(this thesis). 
 

3. A detection system built on user-detected events never performs better than the 

users themselves. 

 

4. Insufficient reporting on data cleaning is a major contributor to the replication 

crisis in social sciences. 
 

5. If dairy farmers worldwide would adopt the operational practices on antibiotic use 

and feed efficiency of Dutch and Scandinavian dairy farmers, societal problems 

concerning antimicrobial resistance and farm-related environmental emissions 

would be solved.  
 

6. Artificial intelligence needs to serve the user and not vice versa.   
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Abstract 

Mastitis, or udder inflammation, is one of the most prevalent and costliest diseases 

in dairy farming. Automatic milking systems, equipped with sensors measuring 

mastitis indicators, have been used commercially since the 1990s. The overall 

objective for this PhD project was to explore the potential applications for a decision 

support system in automatic milking systems supporting chronic mastitis decision-

making. Paper I described that mastitis cases usually recover in somatic cell count 

within three to four weeks. Paper II found strong non-linearities between milk 

production and lactate dehydrogenase, somatic cell count, and electrical 

conductivity, combined with possible actionable thresholds based on the size of milk 

yield loss. Paper III showed that it was possible to forecast the progression of 

mastitis. Finally, Paper IV estimated the economic impact of different sensor-based 

mastitis management strategies to show which strategy tends to decrease the cost of 

mastitis and chronic mastitis the most. More specifically, it estimated the economic 

consequences of chronic mastitis cases to show the direct impact of management 

failure on the economic situation of a dairy farm. This thesis shows that it is possible 

to support management regarding chronic mastitis with sensors, and it provides the 

basis for a decision support system. This decision support system would be a system 

that could tell the farmer which cases of mastitis are chronic, are likely to become 

chronic, are associated with large milk production loss, and could tell the economic 

consequences of chronic mastitis cases. 

Keywords: Mastitis, udder inflammation, automatic milking system, cow, sensor, 

chronic, management, progression, milk, production loss 
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Abstract 

Mastit, eller juverinflammation, är en av de vanligaste och mest kostsamma 

sjukdomarna inom mjölkproduktionen. Automatiska mjölkningssystem (AMS), som 

kan vara utrustade med sensorer som mäter mastitindikatorer, har använts sedan 

1990-talet. Det övergripande målet för det här doktorandprojekt var att utforska 

potentialen för ett beslutsstödsystem i AMS som stöder beslutsfattande kring kronisk 

mastit. I artikel I beskrevs att mastitfall som tillfrisknar vanligtvis gör det inom tre 

till fyra veckor. I artikel II påvisades starka icke-linjära samband mellan 

mjölkproduktion och LDH, SCC och EC i kombination med möjliga tröskelvärden 

för åtgärder som baseras på storleken av förlorad mjölkavkastning. Artikel III visade 

att det var möjligt att förutsäga utvecklingen av mastit på ett bra sätt. Slutligen 

uppskattades i artikel IV de ekonomiska följderna av olika sensorbaserade strategier 

för hantering av mastit, för att visa vilken strategi som tenderar att minska 

kostnaderna för akut och kronisk mastit mest. Mer specifikt uppskattades de 

ekonomiska konsekvenserna av kronisk mastit för att påvisa den direkta effekten av 

misslyckad hantering på mjölkgårdens ekonomi.  

Den här avhandlingen visar att det är möjligt att med hjälp av sensorer ge beslutsstöd 

för hantering av kor med kronisk mastit, och den utgör grunden för ett sådant 

beslutsstödsystem. Detta beslutsstödsystem skulle kunna kan tala om för 

lantbrukaren vilka mastitfall som är kroniska, vilka fall som sannolikt kommer att 

bli kroniska, vilka fall som är förknippade med stora förluster i mjölkproduktionen 

och vilka ekonomiska konsekvenser detta får. 

Keywords: Mastit, juverinflammation, automatiskt mjölkningssystem, ko, sensor, 

kronisk, hantering, progression, mjölk, produktionsförlust 
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1.1 Automatic milking systems 

 

Traditionally, cows were milked by hand and later by milking machines 

requiring manual farmer labor and supervision. However, the workflow 

changed with the commercial introduction of automatic milking systems 

(AMS) in 1992 (De Koning, 2010). In an AMS, the cow can be milked 

completely unsupervised by the farmer, and the cow could determine when 

she wants to enter the milking robot. When the cow enters the AMS, the teat 

cups are attached to the teats. The teats of the cow’s udder are typically 

cleaned, and milk ejection is stimulated. The milk begins to flow, and the 

cow is milked. After the milk flow stops or is close to stopping (i.e., the milk 

flow reaches a lower limit), the milking is stopped, the milking cups are 

detached, and the cow is free to go.  

Due to the lesser need for human labor, the farmer is no longer present 

during the milking. This absence may have worsened the detection rate of 

cow diseases (e.g., mastitis) or other events (e.g., a cow in heat or the start of 

ovulation). This worsening of the detection rate may explain the initial 

deteriorating health status of cows after adopting an AMS (Klungel et al., 

2000; van den Borne et al., 2021). Different sensors have been developed to 

detect these diseases or health events without human involvement. Typically, 

multiple sensors are connected to the AMS to analyze milk and cow 

behavior. Apart from the mastitis-related sensors, sensors can also be related 

to fertility, activity, or other events.  

 

1. Introduction 
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When not milking the cow personally, the farmers became dependent on the 

sensors to give them insight into the cow's health to manage the cow. The 

farmer should be able to apply sensor-based management on the cows (i.e., 

using sensor data and information) to make decisions for the cow’s health. 

Mastitis is one of the most important cow health disorders in terms of 

prevalence and economic cost on dairy farms (Hogeveen et al., 2019). 

Therefore, mastitis warrants the development of a separate sensor-based 

management system.  

1.2 Mastitis and intramammary infection 

Mastitis is an inflammation of one or multiple quarters of a cow's udder 

(International Dairy Federation, 2011), most often caused by pathogens, 

which invade through the teat canal, causing an intramammary infection 

(IMI). Several aspects can characterize mastitis. These aspects of mastitis are 

discussed below. 

1.2.1 Mastitis by clinical signs 

Among other classifications, mastitis can be either clinical or subclinical. 

Clinical mastitis (CM) is defined using visual signs, such as abnormality of 

milk (i.e., clots or blood in the milk) and a warm or swollen udder 

(International Dairy Federation, 2011). Various levels are defined for CM. 

Mild CM cases only have abnormal milk, but the overall condition of the 

cow is not affected. However, more severe CM is characterized by swelling, 

redness, increased warmth of the affected udder, and a compromised general 

condition of the cow (e.g., fever, dehydration, or depression) (International 

Dairy Federation, 2011; Pinzón-Sánchez and Ruegg, 2011). 

Contrary to CM, subclinical mastitis (SCM) is defined using an increase 

in the inflammatory marker Somatic Cell Count (SCC) without visual 

symptoms (International Dairy Federation, 2011, 2013). As SCM is not 

directly observable with the human eye, it can be hard to estimate the 

severity. The SCC is also used to measure milk quality (International Dairy 

Federation, 2013). Traditionally, SCC can be measured by a Dairy Herd 

Improvement Association (DHI) program, where milk samples of cows on 

participating herds are taken at a monthly frequency and analyzed in a 

laboratory. Generally, a threshold between 100,000 and 200,000 cells/ml is 
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recommended to identify cows with SCM (Smith et al., 2001; International 

Dairy Federation, 2013). 

1.2.2 Mastitis by pathogens and transmission modes 

To specify the cause of mastitis, bacteriological analysis is used to determine 

the invading pathogen on species and strain level, to assess prevention or 

treatment possibilities. Mastitis-causing pathogens are, in most cases, 

bacteria (Taponen et al., 2017) (e.g., Staphylococcus aureus). However, it 

can also be caused by fungi (Zhou et al., 2013) (e.g., yeasts) or algae (Pieper 

et al., 2012) (e.g., Prototheca). Commonly, mastitis is defined as either 

contagious or environmental mastitis based on the invading pathogen 

(International Dairy Federation, 2011). Examples of contagious pathogens 

are Staphylococcus aureus and Streptococcus agalactiae. These pathogens 

can be transferred from living beings to living beings via physical contact or 

milk. Other pathogens mainly infect cows from the environment (Klaas and 

Zadoks, 2018). Examples include Escherichia coli and Streptococcus uberis. 

However, the distinction between contagious and environmental mastitis is 

currently being disputed. Some environmental pathogens are shown to be 

transmitted from cow to cow, and some contagious pathogens can be found 

in feces (Klaas and Zadoks, 2018).  

1.2.3 Mastitis by impact 

Mastitis can impact cows in terms of decreased animal welfare (Siivonen et 

al., 2011), decreased milk production (Hagnestam-Nielsen et al., 2009; 

Gonçalves et al., 2018b), changed milk composition (e.g., in fat or protein 

level), (Dos Reis et al., 2013), and increased SCC (De Haas et al., 2004; 

Dohoo et al., 2011). Mastitis is also being classified as caused by major or 

minor pathogens (Harmon, 1994). These pathogens are classified by the 

physical and economic damage they can cause when they infect the 

mammary gland (Harmon, 1994). Major pathogens would include 

Staphylococcus aureus, Streptococci, enterococci of environmental origin, 

Escherichia coli, and Klebsiella spp., among others (Harmon, 1994). Minor 

pathogens would include Non-aureus staphylococci (NAS) and 

Corynebacterium bovis (Harmon, 1994).  

Besides the impact on cows, mastitis substantially contributes to 

antibiotic usage on dairy farms in Denmark, Sweden, and the Netherlands 

(Kuipers et al., 2016; Høg et al., 2019; Växa Sverige, 2020). Veterinary 
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overuse of antibiotics is linked to antimicrobial resistance, posing a public 

health risk to society (Speksnijder et al., 2015). As such, a more specific 

antibiotic treatment protocol for mastitis cases could reduce the usage of 

antibiotics and could contribute to limiting antimicrobial resistance in society 

at large. 

1.2.4 Mastitis by temporality 

When mastitis occurs, the cow can recover, or the cow can remain infected. 

A cow can obtain acute mastitis where clinical signs are immediately visible 

(International Dairy Federation, 2011). However, mastitis can also be 

classified as chronic when the episode continues for an extended period 

(International Dairy Federation, 2011) which can be clinical and subclinical. 

Chronic mastitis can increase the milk yield losses relative to mastitis caused 

by a new infection (Hadrich et al., 2018). However, these milk yield losses 

may not be significant for cows with chronic SCM caused by minor 

pathogens (Gonçalves et al., 2020). Moreover, chronic mastitis can cause 

continuing transmission of pathogens to other cows in the herd (Zadoks et 

al., 2003) and CM episodes in the future (Swinkels et al., 2005; Steeneveld 

et al., 2007). More specific standardized definitions of chronic mastitis are 

lacking. When chronic mastitis is studied, it is commonly defined as having 

an elevated SCC for the past two to four samplings (St. Rose et al., 2003; 

Hiitiö et al., 2017) using monthly or bimonthly samples. A more specific 

definition of chronic mastitis will be needed to study chronic mastitis in 

detail in the future. 

1.3 Management of mastitis 

Management of mastitis can be split into preventive management and 

curative management. Preventive management aims to avoid new mastitis 

cases with preventive measures (e.g., as studied in Dufour et al. (2011)). 

Preventive measures can take the form of adequate and frequent cleaning of 

the milking equipment, using milking gloves, and using teat disinfectant, 

among other measures (Dufour et al., 2011). Curative management is 

focused on reducing the impact and duration of ongoing infections using 

interventions on affected individual cows (as modeled by Steeneveld et al. 

(2011)). This thesis focuses on the curative management of mastitis. 
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After mastitis is detected, farmers have six curative management options: 

(I) further diagnosis to support an intervention decision, (II) treatment with 

antibiotics, (III) alternative interventions (e.g., increased milking frequency 

or the use of painkillers), (IV) doing nothing, (V) early dry-off (ending the 

lactation cycle early), or (VI) culling the affected animal. The selection of 

animals for treatment or non-treatment is usually based on factors 

influencing the cure rate. Such factors can include parity, number of quarters 

infected, the position of the quarter, SCC, mastitis history, duration of 

infection, pathogen type, and number of colony-forming units (Barkema et 

al., 2006; Degen et al., 2015; Schmenger and Krömker, 2020). Also, the 

severity of the symptoms, the general state of the cow, and the state of the 

herd play a vital role in the intervention decision (Vaarst et al., 2002). In 

addition, the potential consequences of the intervention decision play a role 

in the decision on how to intervene, including the expected level of animal 

welfare after treatment, recovered milk production, and the cost of veterinary 

treatment (Vaarst et al., 2002; Heikkilä et al., 2012). In summary, cow 

selection for interventions on mastitis is a complex decision that should be 

based on various factors.  

In mastitis decision-making, farmers can use sensor data to acquire 

valuable information to improve intervention decisions. Figure 1 describes 

the Data-Information-Decision mastitis framework (a combination of the 

frameworks by Rutten et al. (2013) and Kristensen et al. (2016)). The 

framework is used to structure the theoretical background and the Discussion 

of the thesis surrounding sensor-based mastitis management. The framework 

shows how data leads to information, and information can be applied to make 

and improve farmer decisions. It explains the relationships between Data, 

Information, and the Decision. In the framework, Data (bottom left pillar) 

consists of a collection of raw facts (Kristensen et al., 2016), and Information 

(middle left pillar) is defined as Data processed in a structured manner to 

offer practicable insight as a basis for decision-making (Kristensen et al., 

2016). A Decision (top left pillar) is confined to be a mastitis-related 

intervention decision in this thesis (e.g., lactational treatment, culling, drying 

off, or isolating a cow from the herd), which could be based on Information 

from the cow as well as the herd context (Rutten et al., 2013). The value of 

Data to Information is dependent on the accurateness and the relevance of 

the Data to the Information (which can be assessed using variable importance 

measures in machine learning models, see, e.g., Anglart et al. (2020) and 
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Naqvi et al. (2022)). The value of Information to a Decision (e.g., a mastitis 

treatment following a mastitis detection by a mastitis detection algorithm) 

depends on the accuracy and relevance of the Information to the Decision 

(Rutten et al., 2013; Rothery et al., 2020). 

 

 

Figure 1. The Data-Information-Decision framework applied to decision-making on 

mastitis (combination of frameworks by Rutten et al. (2013) and Kristensen et al. (2016)). 

1.3.1 Mastitis data 

At present, AMS contains sensors to track the indicators to determine the 

status of the cow and milk. In AMS, sensors can continuously measure 

disease symptoms and milk composition to detect abnormal milk and signs 

of mastitis. Pyörälä (2003) and Martins et al. (2019) state the availability of 
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the following inflammation indicators that are commercially available in 

AMS to analyze the milk: SCC, color, enzymes in the milk (e.g., N-acetyl-

β-D-glucosaminidase or lactate dehydrogenase (LDH)), and electrical 

conductivity (EC), among others. SCC is a traditional and widely used 

indicator in mastitis detection. SCC is the measure of cells per milliliter of 

milk (International Dairy Federation, 2011). Recently, several technologies 

have been used to estimate SCC within AMS or using AMS add-ons. The 

accuracy of the sensors has been tested with differing results, where it was 

shown that cell counters could assess SCC moderately to very well 

depending on the technology used (Sørensen et al., 2016; Nørstebø et al., 

2019; Deng et al., 2020). A color sensor is mainly used to screen the 

whiteness in the milk (i.e., to detect the presence of blood) and must be used 

in combination with other sensors as it is not sufficiently relevant on its own 

(Hogeveen et al., 2010). LDH has been proven to have some ability to detect 

IMIs causing mastitis, although less so than SCC (Nyman et al., 2016). EC 

has long been used as an indicator of CM and SCM (Nielen et al., 1992; 

Hogeveen et al., 2010; Anglart et al., 2020), although EC tends to perform 

worse than SCC in detecting SCM (Ebrahimie et al., 2018).  

Diagnostic data from the farmer and veterinarian is typically used in 

mastitis information creation and decision-making. The farmer will primarily 

report the disease data in the management system, including a pathogen 

diagnosis. This diagnostic data would typically include whether a cow had 

CM on a given date, possibly with the invading pathogen detected using on-

farm or laboratory pathogen analysis (e.g., bacteriological culturing or 

polymerase chain reaction analysis). However, this data can be problematic 

due to its possible inconsistency in reporting when used in statistical 

analyses. More specifically, farmers may miss CM cases or have different 

thresholds to report them (Vaarst et al., 2002; Espetvedt et al., 2013), leading 

to underreporting. Other authors have also reported the underreporting of 

CM cases (Bartlett et al., 2001; Wolff et al., 2012). This underreporting could 

lead to erroneous data and potentially biased statistical inferences.  

1.3.2 Mastitis information 

In this thesis, mastitis information could be any information that could be of 

relevance to mastitis intervention decisions (e.g., knowing if a case is likely 

to recover in a culling decision). It can be sensor or non-sensor-based (e.g., 

from experts). However, current sensor-based mastitis research almost solely 
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consists of mastitis detection algorithm studies, while mastitis information 

can also help in other mastitis-related decisions. These detection algorithms 

use data to alarm the farmer on mostly CM for individual cows. Multiple 

methodologies to detect CM have been tried since 1990, but the accuracy 

levels are not consistently above the desired level of 99% specificity and at 

least 80% sensitivity (Hogeveen et al., 2010, 2021; Khatun et al., 2017). 

Recently, requirements for different accuracy levels for various levels of CM 

severity have been recommended. It can be expected that more severe cases 

are more straightforward to detect due to clearer increases in mastitis 

indicators (Hogeveen et al., 2021), and therefore, higher sensitivity can be 

expected. An 80% sensitivity and a 99% specificity have been recommended 

for mild cases. These mild cases would not require immediate detection, 

while severe cases would need a sensitivity close to 100% and a specificity 

of 99% within twelve hours (Hogeveen et al., 2021). To express the severity 

of a mastitis case, researchers have estimated a continuous value of the 

“degree of mastitis” that is not a dichotomous quantity (Friggens et al., 2007; 

Højsgaard and Friggens, 2010). In this case, the mastitis value of zero 

indicates a healthy state, and one indicates severe CM. This “degree of 

mastitis” approach does not explicitly distinguish between subclinical or 

clinical cases. The general idea of the approach is to create a continuous 

mastitis risk variable by using patterns of a combination of mastitis indicator 

variables. Without setting explicit thresholds on what is and is not mastitis, 

these values would allow the farmer to derive a list of a predefined number 

of cows that require attention the most (i.e., are most severely affected). 

Based on this degree of mastitis, the alert list could provide time-constrained 

farmers with valuable information in selecting cows to check for CM.  

Mastitis information can also be non-sensor-based when it takes the form 

of expert information. The data of past experiences and knowledge have been 

processed by human beings who can supply information based on these 

experiences (Rutten et al., 2013). Expert information from farmers (e.g., 

visual inspections of the cow's health), herd advisors, other farmers, or 

veterinarians can also be used to make mastitis decisions. It is essential to 

mention that farmers may have also developed their own system to transform 

sensor data into information, albeit unstructured. The transformation from 

data to information will be less systematic in this case than in mathematical 

algorithms due to cognitive biases (Mankad, 2016). However, farmer expert 

information will still be needed in sensor-based mastitis management. This 
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need is highlighted as the CM detection algorithms proposed in the literature 

do not consistently achieve the required performance of AMS as stipulated 

by ISO (2007) (Hogeveen et al., 2010; Khatun et al., 2017). 

Another source of information used in mastitis management is economic 

information (Rutten et al., 2013). Economic information of mastitis in this 

thesis is defined as the costs (expressed in monetary units) of the 

consequences of mastitis. More specifically, economic information can be 

obtained by combining the value of a specific consequence (often 

represented by a price level, e.g., milk price) with the data on the negative 

consequence (e.g., production losses in milk yields due to mastitis). These 

costs can be calculated for a range of consequences, including milk yield 

production loss, discarded milk, drugs, diagnostics, veterinary services, and 

labor (Halasa et al., 2007). In decision-making, these costs could help 

farmers in their mastitis management decisions by evaluating the expected 

monetary value of intervening versus not intervening (e.g., applying 

antibiotic treatment, culling, or dry cow treatment). This value of intervening 

is especially relevant in cases of chronic mastitis, as the expected monetary 

values of interventions will change dynamically during a chronic episode. 

As stated before, research on sensor-based mastitis information that is not 

focused on mastitis detection is far less common. Nevertheless, mastitis 

decision-making does not solely consist of detecting cases and treating them. 

Farmers may also like to evaluate and forecast the progression of an ongoing 

mastitis case and gain insight into its consequences or impact (e.g., on milk 

production or in terms of economic costs) to make intervention decisions. 

These decisions lack sensor-based mastitis management tools. To the 

author's knowledge, chronic mastitis management applications based on 

sensors are not explored in the literature. While work on chronic mastitis 

prediction models has been performed using non-sensor data (Kristula et al., 

1992; Bartel et al., 2019), no sensor-based solutions have been proposed to 

forecast chronic mastitis. Monitoring and forecasting chronic mastitis would 

allow farmers to intervene earlier when it becomes clear that it is unlikely 

that a cow will recover. It would allow the initiation of targeted treatment, 

culling, and drying-off strategies to decrease chronic mastitis. Sensor 

systems offer opportunities to improve the management of chronic mastitis, 

but there is a lack of knowledge to implement such a system. These gaps in 

knowledge would include knowledge on the definition of chronic mastitis, 
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algorithms to forecast chronic mastitis, and the economic importance of 

chronic mastitis. 

1.3.3 Mastitis decision 

Central in sensor-based mastitis intervention management is deciding what 

to do with a cow, given the available information derived from AMS sensors 

combined with other available information. The mastitis intervention 

decision is intricately linked with decision theory and expected utility theory 

in economics. In an expected-utility framework, the farmer, as a rational 

agent, is assumed to maximize the expected utility in a choice under 

uncertainty (Von Neumann et al., 2007). The utility can be derived from farm 

profit, but possibly also from alternative ends, e.g., reducing antibiotics 

usage, or improving animal welfare of the animals on-farm, as indicated in 

farmer interviews (Vaarst et al., 2002). The expected utility of a decision is 

based on the summed value of all future cow states multiplied by the 

probability of obtaining those states (Bernoulli, 1954). Sensor-based 

information can often be used to make informed intervention decisions. 

Theoretically, the probability distribution of future states conditional on 

current information might differ from the unconditional probability 

distribution (Arrow, 1973). The value of this sensor information for decision-

making lies in how much the information changes the probability distribution 

of future cow states relative to the distribution without that information. In 

other words, the value depends on how much the information changes the 

uncertainty and expected value of future states. This observation can also be 

tied to the Value of Information framework. In this framework, the value of 

information for a specific decision is the difference in expected utility (e.g., 

profit) between a situation with and without information (Rothery et al., 

2020). 

Several studies were published using this theoretical background that use 

bioeconomic models to determine the economically optimal decision for 

different scenarios. These studies narrow down the expected utility to utility 

derived from minimizing the economic cost of mastitis. For instance, a 

dynamic programming approach has been used to optimize management 

decisions concerning the economic cost of CM (Bar et al., 2008a; b; Cha et 

al., 2011; Heikkilä et al., 2012). Another technique is Monte Carlo 

simulation, in which different scenarios can be modeled and the outcome 

distributions are compared (Van den Borne et al., 2010a; Steeneveld et al., 
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2011; Gussmann et al., 2019a; b). Both Monte Carlo simulation and dynamic 

programming allow these different authors to essentially simulate or 

optimize different sets of candidate Standard Operating Procedures (SOPs). 

In this thesis, these SOPs are defined as standardized step-by-step 

instructions (Mills et al., 2020) performed when a mastitis event is 

encountered. For instance, when severe CM is detected and confirmed, the 

SOP describes what action to take (e.g., which medication to give in terms 

of the type of treatment). 

Bioeconomic models in mastitis research primarily do not account for 

sensor data. In practice, farmers can use sensor data (e.g., EC or SCC) and 

information (e.g., an alert of a CM detection algorithm) in decision-making. 

As stated before, sensor data and information can be used for more than 

solely case detection. For instance, one could potentially determine whether 

the cow has chronic mastitis (sensor-based information) using sensor data 

and cull the affected animal based on that information (decision) and avoid 

possible transmission of pathogens. It would allow users to determine 

whether the decreased cost of chronic cows would be more than the extra 

cost of culling. Moreover, better intervention selection would increase 

animal welfare and recovered milk production (Heikkilä et al., 2012).  

It is also important to realize that assessing the cost of a failed recovery 

or chronic mastitis is important for mastitis decision-making. For chronic 

mastitis, Steeneveld et al. (2007) showed that antibiotic treatment of chronic 

mastitis caused by Streptococcus uberis was unprofitable, while Swinkels et 

al. (2005) showed that a 3-day treatment of chronic mastitis caused by 

Streptococcus spp. was profitable. However, these studies did not assess the 

costs of chronic mastitis at the herd level that controlled for herd dynamics 

but assessed the benefit of treatment on chronic cases on a cow-by-cow basis 

for specific pathogens. To the author's knowledge, the specific costs of 

chronic mastitis at the herd level have not been investigated yet. This 

estimation would be needed to assess the overall value of chronic mastitis 

management and information. 
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The overall objective for this PhD project was to explore the potential 

applications for a decision support system that includes the course and 

consequences of chronic mastitis. More specifically,  

 

 Describe the dynamics of sensor data after the first sign of 

inflammation within a lactation with a focus on the duration of udder 

inflammation (paper I);  

 

 Estimate the associations of different sensor-related inflammation 

indicators with milk yield (paper II); 

 

 Develop a sensor-based prediction model that forecasts the future 

subclinical chronic mastitis status based on past sensor data. (paper 

III); 

 

 Estimate the economic effects of chronic mastitis on an AMS farm 

and estimate the economic effects of different sensor-based strategy 

scenarios on the cost of chronic mastitis (paper IV).

2. Objective and aims 
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This chapter will provide an overview of the materials and methods used in 

the thesis, while complete information is found in the respective papers. 

3.1 Available data 

Table 1 shows an overview of the data used in this thesis. In general, the 

herds of the study were selected based on the presence of an AMS (VMS 

series, DeLaval International AB, Tumba, Sweden) and an Online Cell 

Counter (OCC) (DeLaval International AB, Tumba, Sweden) to measure 

SCC. In some herds, LDH was also measured using the Herd Navigator 

(DeLaval International AB, Tumba, Sweden). Data were retrieved from a 

database of DeLaval International AB. The data was recorded “per milking.” 

The data was retrieved from Western Europe and North America. 

Furthermore, the study periods were from 2016 to 2019 or 2017 to 2020. 

Additionally, some variables in the dataset were required for the different 

papers (e.g., milk diversion or LDH), and henceforth each paper used 

separate datasets. For Paper I and III, the herds were selected based on 

whether documentation was available on whether milk from individual cows 

was diverted from the bulk milk tank to proxy antibiotic treatment. Paper II 

used a dataset with herds that had measured LDH to study its association 

with milk yield. These two sets of general requirements formed datasets: 

dataset A and dataset B. Both datasets consisted of different herds but were 

not mutually exclusive. Paper IV used the results of Paper I and II and 

included input from literature and the author’s expertise. 

 

 

 

3. Materials and methods 
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Table 1. Overview of data as used in the thesis, including datasets, number of herds, 

countries, study periods, variables of interest, and selection criteria to determine the 

dataset 

Paper I II III IV 

Dataset Dataset A Dataset B Dataset A Results 

Paper I and 

II, author’s 

expertise, 

and 

literature 

sources 

Number of 

herds after 

preprocessing 

15 21 14 (removed 

1) 1 

NA 

Countries Belgium, 

Canada, 

Germany, the 

Netherlands, 

Scotland, and 

Sweden 

Canada, The 

Netherlands, 

Finland, and 

Sweden 

Belgium, 

Canada, 

Germany, the 

Netherlands, 

Scotland, and 

Sweden 

NA 

Study period 2016-2019 2017-2020 2016-2019 NA 

Variables of 

interest 

EC 

SCC 

Milk diversion  

Days in milk 

(DIM) 

Parity 

Milk yield 

SCC 

EC 

LDH 

DIM 

Parity 

A range of 

variables2 

SCC 

Milk yield, 

Pregnancy 

DIM 

Parity 

Selection 

criteria for 

dataset (A or 

B) 

Presence of 

milk diversion  

Potential 

presence of 

LDH 

Presence of 

milk diversion  

NA 

1 One herd sampled SCC at a substantially lower rate (once every five days on average) 

than the other herds and was henceforth removed. 
2 milk yield, milk production speed, standard deviation of quarter ECs, interquarter ratio 

of quarter ECs, time interval between milkings, blood presence, SCC, DIM, milk 

diversion, quarter ECs, and parity. 
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3.2 Data pre-processing 

3.2.1 Analyzing the dynamics of sensor data 

EC of the milking quarters was used to calculate σ-Conductivity, defined as 

the standard deviation of the quarter EC within the cow over the total milk 

produced at each milking. The natural logarithm transformation was applied 

to σ-Conductivity and SCC to obtain homoscedastic and normally distributed 

residuals in the statistical analyses. Milking level observations of SCC, σ-

Conductivity, and the diverted milk indicator were aggregated to a daily level 

by taking the maximum of these values on a given day.  

The start of a mastitis episode during lactation was defined as the first 

observation within lactation of an increased SCC, as measured by the OCC 

higher or equal to 200,000 cells/ml. This start of the mastitis episode was 

defined as “the initial inflammation” in this study. To counter the possibility 

of a false-positive initial inflammation detection, the initial inflammation 

needed to be combined with one or more SCC measurements higher or equal 

to 200,000 cells/ml. The data used for the analyses included data from four 

weeks prior to the initial inflammation until twelve weeks after the initial 

inflammation. This period was defined as the mastitis episode sequence.  

Because treatment records were not available from all herds, we used 

milk diversion from the bulk tank as an approximation of a farmer 

intervention related to a mastitis episode (Bonestroo et al., 2020, 2021a). As 

an indication of a farmer intervention in case of mastitis, milk diversion was 

defined as diversion of milk for at least two consecutive days within the ten 

days after the initial inflammation.  

Recovery from a mastitis episode for an individual cow was defined as 

having a rolling mean SCC lower than 200,000 (Smith et al., 2001; 

International Dairy Federation, 2013) for ten consecutive days within the 

twelve weeks after the initial inflammation in the episode sequence.  

The dataset was split into four subsets of cows 1) no diverted milk – no 

recovery, 2) diverted milk – no recovery, 3) no diverted milk - recovery, and 

4) diverted milk – recovery.  
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3.2.2 Estimating the associations between mastitis indicators and milk 
yield 

A set of variables was created to facilitate statistical analysis. We used milk 

synthesis rate (kg/hour) as the dependent variable. Each interval between 

milkings is different in AMS farms, leading to a large variation in time 

intervals between milkings. (Hogeveen et al., 2001). Therefore, to obtain a 

comparable milk yield-based measure, we divided the milk yield (in kg per 

milking) by the time interval between milkings (in hours) to obtain milk 

synthesis rate. We used online SCC and LDH as independent variables. 

These two variables were transformed using the natural logarithm (LnSCC 

and LnLDH). Furthermore, we used the Mean EC of the four quarters as the 

third independent variable (Mean EC). Mean EC was chosen to compare the 

milk production loss results to LDH and SCC as it was a cow-level indicator, 

similar to SCC and LDH. In addition, the subgroup variable “chronicity 

status” was created to represent whether the cow was chronic or not. A 

milking day observation was labeled as chronic if a cow had weekly SCC 

geometric averages equal to or higher than 200,000 cells/ml for a period of 

four consecutive weeks or more before the current milking day (Bonestroo 

et al., 2021b) based on available SCC samples. Lastly, we also created a cow 

lactation variable (CowLactation) that combined the unique animal 

identification number with the parity to identify unique cow lactations. 

We aggregated the multiple individual milkings on a given day by using 

the maximum daily values of LnSCC, LnLDH, Mean EC, and averaged the 

milk synthesis rate. The daily maximum value was used to capture the 

severity of the increase. When some values were missing for specific 

milkings but not for all milkings on specific days, these values were ignored 

in determining the maximum. When there was no observation of the mastitis 

indicator at all during a day, no daily maximum value of that day was given. 

As not all mastitis indicators were always reported, these three datasets 

differed in the number of observations.  

Three subgroups were created and analyzed separately to analyze the 

association between milk synthesis rate and mastitis indicators for various 

levels of parity, DIM, and chronicity. The first subgroup was formed 

according to three DIM levels (5-28, 29-60, and 61-305 DIM). These cut-

offs were determined by selecting the median DIM where the day-to-day 

change in milk synthesis rate was maximal (28 DIM) and where the milk 

synthesis rate peaked (60 DIM) in our dataset. The second subgroup was 
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based on parity (first lactation, second lactation, and third or more lactation). 

The last subgroup was formed according to chronicity (non-chronic and 

chronic mastitis). The differences in milk synthesis loss in the various parity 

levels, stages of lactation, and chronicity groups were studied separately 

using separate regression models. 

3.2.3 Predicting mastitis chronicity 

The data (e.g., milk yield or interquarter ratio of conductivity) from each 

milking per day was aggregated to a daily frequency using the mean, 

minimum, maximum, and standard deviation. After the aggregation to a daily 

frequency, the daily mean, maximum, and standard deviation of quarter-level 

conductivity values (e.g., daily mean conductivity of the left-rear quarter) 

were aggregated to cow-level variables. This aggregation was performed by 

calculating the mean over daily mean quarter conductivity values and the 

maximum over daily maximum quarter conductivity values. In addition, we 

also calculated the standard deviation over daily standard deviations of 

quarter conductivity values and the standard deviation over daily maximum 

quarter conductivity values. All variables had to be on cow level as we 

forecast chronic mastitis on cow level. The remaining quarter-level 

conductivity variables were not included as input in the forecasting models 

as they were not reported on cow-level. 

A prediction day (i.e., a day on which a prediction of a future state was 

made) was defined as a day in the lactation with at least a mean SCC higher 

than or equal to 200,000 cells/ml (International Dairy Federation, 2013) or 

having an SCC of such a level on one of the four days prior to the day. It is 

essential to mention that one mastitis case can have multiple prediction days 

as each day of the episode, a forecast is performed. It would allow the farmer 

to monitor and forecast during an ongoing episode. For each day on which 

the future chronic mastitis status was forecasted, we used the data 30 days 

before the prediction day as input. (i.e., the day on which the forecast was 

made). The forecasting method could use the feature values of each day 

during the last 30 days (e.g., MaxIQRConductivity on the 16th day before 

the prediction day). Moreover, to derive the future chronic mastitis status for 

each prediction day, 50 days of data after the prediction day were needed 

(Figure 2). Consequently, each day during lactation with 30 preceding and 

50 successive days of data could be a prediction day, given that it had a recent 

increase in SCC.  
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Filtering was used to determine a structural decrease in SCC below 

200,000 SCC/ml. The future chronic mastitis status on a prediction day was 

labeled as not chronic if the rolling 20-day mean SCC decreased below 

200,000 SCC/ml (0= not chronic mastitis) at least once in the period from 

the prediction day to 50 days post the prediction day. It was labeled chronic 

if no structural decrease occurred (1=chronic mastitis). In other words, the 

label indicates whether the cow would recover (=0) or turn chronic (=1). 

Suppose a cow had an increase of SCC after a structural decrease in SCC; 

the cow would be regarded as not chronic (the third example in Figure 2). In 

these cases, it was impossible to determine whether the new increase in SCC 

was part of the initial episode or was the start of a new episode based solely 

on SCC.  

To create a training and a validation dataset, we randomly divided the 

herds in our dataset. Half of the herds were selected for the training set, and 

the other half entered the validation set. Validation herds were identified as 

herds 1 until 7, while herds 8 until 14 were designated as training herds. The 

data from all the training herds were used to fit a prediction model all at once 

(i.e., the model was trained once using data from all training herds), and data 

from the validation herds were used to test the model’s performance. 

 

 

Figure 2. Examples of the prediction task that was performed by the chronicity 

forecasting model where the label contains the definition of future chronicity. 
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3.3 Data analysis 

3.3.1 Analyzing the dynamics of sensor data 

The effects of predictor variables on SCC and σ-Conductivity were analyzed 

using a multivariable linear mixed model for each subset with DIM, parity, 

and weeks since initial inflammation as covariates and a random effect of a 

specific cow lactation (LactationID) and a random effect of a specific herd 

(HerdID). HerdID and LactationID indicate the identity of the herd and 

specific cow lactation number for a specific cow (e.g., cow 12 in its second 

lactation). Weeks since initial inflammation was a categorical variable with 

seventeen levels (once per week from four weeks prior, until twelve weeks 

after the initial inflammation). Parity was a categorical variable coded for 

primiparous (0) and multiparous cows (1). The models for Y, i.e., SCC or σ-

Conductivity, took the following form: 

 

𝑌 =  𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 +  ∑ 𝑤𝑒𝑒𝑘 𝑠𝑖𝑛𝑐𝑒 𝑎𝑙𝑒𝑟𝑡𝑖

12

𝑖 =−4

+  𝑝𝑎𝑟𝑖𝑡𝑦 + 𝐷𝐼𝑀 +

𝑟𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 𝑜𝑓 𝐿𝑎𝑐𝑡𝑎𝑡𝑖𝑜𝑛𝐼𝐷 𝑖𝑛 𝐻𝑒𝑟𝑑𝐼𝐷 + 𝑟𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 𝑜𝑓 𝐻𝑒𝑟𝑑𝐼𝐷

(1)

 

Where i is the week number relative to the week in which the initial 

inflammation was observed. Estimated marginal means were assessed for the 

weeks since the initial inflammation while evaluating all other covariates at 

mean level. Different interactions and quadratic terms were tried, but they 

had no substantial effect on the estimated marginal means and were therefore 

left out. Random effects of lactation of a specific cow and herd were included 

in the models as nested random intercepts (LactationID in HerdID and 

HerdID), and a first-order autoregressive correlation structure was used. The 

assumptions of homoscedasticity and normality of residuals were checked 

using fitted value–residual plots and qq-plots. The linear mixed models were 

estimated using nlme 3.1-137 (Pinheiro et al., 2019) using Restricted 

Maximum Likelihood in R 3.5.1 (R Core Team, 2018).  

3.3.2 Estimating the associations between mastitis indicators and milk 
yield 

We applied a generalized additive model using the R package mgcv (Wood, 

2021) in R 3.6.1 (R Core Team, 2018) to model milk synthesis rate per hour. 

Milk synthesis rate was estimated as a function of the mastitis indicator and 
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DIM for each subgroup, respectively (Eq. 2, 3, and 4). DIM and 

CowLactation were treated as confounders. Depending on the subgroup that 

was analyzed, the subgroup value in these equations can take the form of the 

parity, stage of lactation, or chronicity status. We included a random effect 

of each cow lactation (random cow lactation effect) using the CowLactation 

variable to control for non-independence of observations within cows. Milk 

synthesis rate was assumed to have a scaled-t distribution rather than a 

normal Gaussian distribution since it was expected that milk synthesis rate 

would have more extreme observations than a normal distribution.  

 

 𝑀𝑖𝑙𝑘 𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 𝑟𝑎𝑡𝑒 =  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +  𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 

+ 𝑓𝐿𝑛𝑆𝐶𝐶(𝐿𝑛𝑆𝐶𝐶) ∗ 𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 +  𝑓𝐷𝐼𝑀(𝐷𝐼𝑀) ∗ 𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 

+ 𝑅𝑎𝑛𝑑𝑜𝑚 𝑐𝑜𝑤 𝑙𝑎𝑐𝑡𝑎𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑒𝑐𝑡 

(2) 

 𝑀𝑖𝑙𝑘 𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 𝑟𝑎𝑡𝑒 =  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +  𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 

+ 𝑓𝐿𝑛𝐿𝐷𝐻(𝐿𝑛𝐿𝐷𝐻) ∗ 𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 +  𝑓𝐷𝐼𝑀(𝐷𝐼𝑀) ∗ 𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 

+ 𝑅𝑎𝑛𝑑𝑜𝑚 𝑐𝑜𝑤 𝑙𝑎𝑐𝑡𝑎𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑒𝑐𝑡 

(3) 

 𝑀𝑖𝑙𝑘 𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 𝑟𝑎𝑡𝑒 =  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +  𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 

+  𝑓𝑀𝑒𝑎𝑛 𝐸𝐶(𝑀𝑒𝑎𝑛 𝐸𝐶) ∗ 𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 +  𝑓𝐷𝐼𝑀(𝐷𝐼𝑀) ∗ 𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 

+ 𝑅𝑎𝑛𝑑𝑜𝑚 𝑐𝑜𝑤 𝑙𝑎𝑐𝑡𝑎𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑒𝑐𝑡 

(4) 

 

Where 𝑓𝐷𝐼𝑀 is a non-linear smoothing function modeling the milk synthesis 

rate over the lactation cycle with a cubic spline basis that was estimated 

separately for every subgroup. 𝑓𝐷𝐼𝑀 was not plotted in Results for brevity, 

but it takes the form similar to a Wood lactation curve found in the literature 

(Wood, 1967). And where 𝑓𝐿𝑛𝑆𝐶𝐶, 𝑓𝐿𝑛𝐿𝐷𝐻, and 𝑓𝑀𝑒𝑎𝑛 𝐸𝐶 are non-linear 

smoothing functions modelling the association between LnSCC, LnLDH, 

Mean EC, and milk synthesis rate. To enable the analysis, a baseline was 

created where the mastitis indicators are not associated with decreases in 

milk synthesis rate. As such, this study assumed prior to the analysis that a 

level of 1,000 SCC/ml, 1 U/L LDH, and 4 mS/cm Mean EC would have no 

effect on milk synthesis rate. These functions are also non-linear smoothing 

functions with a cubic spline basis. We used the BAM function, which is a 

generalized additive model with discretization of covariate values that makes 

it more time and memory efficient when having large datasets (Wood et al., 

2017; Wood, 2021). Each of the three models (eq. 2, 3, 4) was estimated 

separately for each subgroup (parity, stage of lactation, and chronicity). 

Thus, leading to the fitting of nine models in total (three mastitis indicators 

by three subgroup variables). 
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To visualize the associations, we plotted 𝑓𝐿𝑛𝑆𝐶𝐶, 𝑓𝐿𝑛𝐿𝐷𝐻, and  𝑓𝐶𝑜𝑛𝑑 for 

each mastitis indicator and each of the subgroups. The value, at which the 

mastitis indicator started to be negatively associated with milk synthesis rate, 

was identified as a threshold. This threshold was found by determining the 

maximum positive milk synthesis rate difference in the partial plot (the 

highest point) and highlighted in the partial effect plots. After the threshold, 

further points of potential substantial decreases in milk synthesis rate were 

described (e.g., whether the line starts to decrease considerably more).  

The residuals of all models were checked for normality, 

homoscedasticity, and autocorrelation using qq-plots fitted values-residual 

plots and autocorrelation plots. During the analysis, we detected substantial 

autocorrelations for all models. The autocorrelation problem was solved by 

adapting the model with an AR1-parameter. 

3.3.3 Predicting mastitis chronicity 

We used the gradient-boosting trees algorithm as implemented in XGBoost 

(Chen and Guestrin, 2016) to create a prediction model that forecasts whether 

the cow would recover (=0) or turn chronic (=1) given that they showed an 

initial increase in recent daily mean SCC. 

The predictive performance of the gradient-boosting trees classifier was 

compared to that of two default approaches or simple prediction rules: the 

monthly sampling approach (approach mimicking DHI sampling frequency 

but using OCC data) and the frequent sampling approach (using all OCC data 

available). We used sensitivity, specificity, Matthews Correlation 

Coefficient (MCC), and area under the curve (AUC) to compare the model's 

forecasting performance with the default approaches. The default approaches 

are listed below: 

- Monthly sampling approach, this approach predicted future chronic 

mastitis to be present when the SCC was equal to or higher than 

200,000 SCC/ml in the evaluation closest to the prediction day and 

the SCC evaluation furthest away in time in the preceding 30 days 

relative to the prediction day. The prediction rule predicted chronic 

mastitis if both SCC samples were higher than 200,000 SCC/ml. The 

monthly sampling approach mimicked a situation where farmers use 

monthly SCC data of the previous month and the current month to 

determine chronic mastitis, common in a non-sensor dairy farm 

setting. 
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- Frequent sampling approach, this approach predicted future chronic 

mastitis when the number of days with 200,000 SCC/ml or higher 

prior to the prediction day was equal or more than thirteen days in 

the 30-day input period dataset. This threshold on the number of days 

was chosen to maximize the sum of sensitivity and specificity to 

forecast the future chronic mastitis status. 

The differences in AUC, MCC, and accuracy between the model predictions 

and the default approaches were tested using (Welch’s) t-tests for unequal 

variances. 

3.4 Simulating the cost of chronicity 

We developed and used a stochastic Monte Carlo bioeconomic simulation 

model to simulate IMI, mastitis, and chronic mastitis. The model also 

included the consequences of IMI and mastitis in milk production losses and 

clinical mastitis. In a Monte Carlo simulation, an outcome is simulated 

dependent on variables that have (random) distributional properties. The 

model ran a predefined number of times (model iterations), creating different 

outcomes for every model iteration. The set of outcomes of each model 

iteration was taken together to form outcome distributions (Dijkhuizen and 

Morris, 1997; Hogeveen et al., 2019). The outcome distributions were 

summarized using the 25th, 50th, and 75th percentiles.  

The model mimicked the daily mastitis situation on a Dutch AMS dairy 

farm with 100 cow places and with IMIs caused by Staph. aureus, Strep. 

spp., Gram-negative bacteria, and non-aureus staphylococci (NAS). The 

cow-places were simulated every day for seven years, including the burn-in 

period, for 500 model iterations. This burn-in period was set to two years. 

Initial experimentation showed that stationarity of ongoing IMI cases 

occurred around one and a half years, and the number of lactating cows in 

the herd stabilized in two years. Standard management was implemented 

regarding antibiotic treatment during lactation and dry-off, and culling. The 

negative consequences of mastitis were modeled in milk production loss and 

transmission of contagious bacteria. The negative consequences of mastitis 

were monetarized by multiplying these consequences with their costs. 

The dynamics of IMI in the model were based on literature sources on 

clinical mastitis incidence rates (Santman-Berends et al., 2015), pathogen 

populations (Taponen et al., 2017), (contagious) transmissions (Gussmann et 



 

 

43 
 

al., 2018; Dalen et al., 2019a), and lactational and dry cow period cure rates 

(Wilson et al., 1999; Sol et al., 2000; Taponen et al., 2006; Huijps and 

Hogeveen, 2007; Newton et al., 2008; Halasa et al., 2009; Van den Borne et 

al., 2010b; Halasa et al., 2010; Fuenzalida and Ruegg, 2019; Swinkels et al., 

2021). Simulation of SCC was based on literature sources (Dalen et al., 

2019b; Fuenzalida and Ruegg, 2019; Bonestroo et al., 2021b) and SCC data 

used in Bonestroo et al. (2022). Milk yield simulation was based on an 

adapted statistical model used by Bonestroo et al. (2022) (see below). Price 

data was gathered from a range of sources (Lam et al., 2013; Griffioen et al., 

2016; Scherpenzeel et al., 2018; Blanken et al., 2019; GD, 2019; Steeneveld 

et al., 2020). 

The model architecture distinguished between a simulated non-

transmission IMI case and a modeled transmission IMI case. Both types of 

cases were used to calculate the incidence rate of IMI, the culling rate, and 

the incidence rate of clinical mastitis on the farm. The occurrence and the 

consequences (e.g., actions by the farmer, milk yield losses) of non-

transmission cases were directly simulated. Transmission cases were handled 

differently as the number of such cases was calculated after each model 

iteration. Transmission cases are defined in this paper as cases that are 

directly transmitted from infected cows. These transmission cases were 

determined based on the number of non-transmission cases together with a 

pathogen-specific transmission rate. This calculation was performed by 

multiplying the infection days of the non-transmission cases (i.e., days with 

ongoing infection) of different pathogens with the pathogen-specific 

transmission rate. The costs of an individual transmission case were 

considered equal to the average costs of a non-transmission case of the same 

pathogen in that model iteration.  

The simulation model was used to assess the cost of mastitis and chronic 

mastitis under different sensor-based strategies or SOPs. This assessment 

was done to analyze the potential value of the SCC sensor in different 

mastitis decisions, including treating SCM and CM during lactation and the 

dry cow period and culling. The strategies are outlined in Table 2. The 

outcomes of each scenario were the total cost of mastitis and chronic mastitis 

in € per IMI case, the CM and IMI incidence rate in cases per cow year, and 

the culling rate per cow year. 
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Table 2. The different sensor-based mastitis strategy scenarios applied in the study. 

Strategy  SCC 

lactational 

SCM 

treatment 

threshold  

SCC 

lactational 

SCM 

treatment 

time 

threshold  

SCC 

DCT 

SCM 

treatment 

threshold  

SCC 

DCT 

SCM 

treatment 

time 

threshold  

SCC 

culling 

treatment 

threshold  

SCC 

culling 

treatment 

time 

threshold  

Default None  None  150,000  1  200,000  90  

Lactational 

treatment  

200,000  14  150,000  1  200,000  90  

Dry cow 

treatment 

None  None  150,000  7  200,000  90  

Earlier 

culling 

None  None  150,000  1  200,000  45  

Earlier 

culling and 

more 

specific dry 

cow 

treatment 

None None 150,000 7 200,000 45 
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This chapter will provide an overview of the results used in the thesis, while 

complete information can be found in the respective papers. 

4.1 The dynamics of sensor data 

4.1.1 Somatic cell count 

Figure 3 shows the estimated marginal means of the SCC from four weeks 

prior to the initial inflammation to twelve weeks after the initial 

inflammation. The average levels of SCC increased prior to the initial 

inflammation in almost all four subsets, apart from the milk diverted – no 

recovery subset. The average SCC value during the week of the initial 

inflammation of SCC of the diverted milk subsets was higher than the no 

diverted milk subsets. At mean level, the diverted milk - recovery subset had 

above 200,000 SCC/ml (natural logarithm of 200 is 5.298) until 

approximately one week past the initial inflammation, whereas the no 

diverted milk - recovery subset was below 200,000 SCC/ml in the week of 

the initial inflammation (week 0). Moreover, SCC in both diverted milk – 

recovery and no diverted milk – recovery subsets stabilized approximately 

three to four weeks after the initial inflammation at a level slightly higher 

than before the initial inflammation. As expected in the diverted milk - no 

recovery and the no diverted milk – no recovery subsets, mean SCC 

remained stable and was on average higher than 200,000 cells/ml after the 

initial inflammation. This increase persisted throughout the twelve-week 

time window and was higher than the level before the initial inflammation.  

 

4. Results 



 

46 
 

 

Figure 3. Patterns of SCC measured by online SCC from four weeks before until twelve 

weeks after the initial inflammation (first time in a lactation where SCC ≥200,000 

cells/mL) for four subsets of cows using the estimated marginal effects of linear mixed 

models with 95% CI of the weekly mean. 

4.1.2 Electrical conductivity 

Figure 4 shows the estimated marginal means of σ-Conductivity. The 

average σ-Conductivity increased prior to the initial inflammation in all four 

subsets. The diverted milk – no recovery subset showed stable σ-

Conductivity values above the level before the initial inflammation after the 

initial inflammation, whereas the diverted milk – recovery subset stabilized 

in three to four weeks after the initial inflammation but above the estimated 

level before the initial inflammation. The no diverted milk – recovery subset 

and the no diverted milk – no recovery did not have a clear increase at the 

week of the initial inflammation, and it did not have a clear decrease after 

the week of the initial inflammation. The average σ-Conductivity during the 

week of the initial inflammation of the diverted milk subsets was higher than 

the no diverted milk subsets. Interestingly, the recovery pattern of the milk 
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diverted subsets of σ-Conductivity is similar to the patterns of SCC. 

However, the relative difference between the peak value at week 0 and the 

level at which the indicator stabilizes is more negligible. 

 

 

Figure 4. Patterns of σ-Conductivity from four weeks before until twelve weeks after the 

initial inflammation (first time in a lactation where SCC ≥200,000 cells/mL) for four 

subsets of cows using the estimated marginal effects of linear mixed models with 95% 

CI of the weekly mean. 

4.2 The associations between mastitis indicators and milk 
yield 

4.2.1 Somatic cell count 

Figure 5 provides the visualization of the non-linear association between 

LnSCC and milk synthesis rate (𝑓𝐿𝑛𝑆𝐶𝐶) and the frequency of LnSCC 

observations for different parity, stage of lactation, and chronicity classes 

(Figure 5A, 5B, and 5C). The milk synthesis rate was negatively associated 
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with LnSCC over a specific threshold. The large dot in Figure 5 marks the 

point where milk synthesis rate started to decrease, and milk production 

losses occurred. For most cases, this threshold was approximately 2.5 

LnSCC (12,000 SCC/ml) and 3.75 LnSCC (43,000 SCC/ml), while 

occasional lower and higher thresholds were found in the analysis depending 

on the analysis of the specific subgroup. Moreover, the milk synthesis rate 

started to decrease more a second time when LnSCC increased at an 

increasing speed and non-linearly. This occurred approximately after 5.625 

LnSCC/ml (approx. 277,000 SCC/ml) for all subgroups.  

Some differences in thresholds and the steepness of the decrease in milk 

synthesis rate between subgroups were seen. These differences in thresholds 

were caused by minor differences in the LnSCC and milk synthesis rate 

association on an overall approximately flat line on the lower levels of 

LnSCC. Therefore, the differences between thresholds should be interpreted 

carefully. In Figure 5A, the decrease in milk synthesis rate was steeper at 

higher parity levels (i.e., older cows showed a steeper decrease in milk 

synthesis rate). Moreover, the differences in intercept between first parity 

cows and second parity cows and between first parity cows and third or more 

parity cows were 0.27, with a standard error of 0.01, and 0.35, with a standard 

error of 0.01, respectively (P < 0.01). Regardless of LnSCC, cows with a 

higher parity tend to produce significantly more milk. In Figure 5B, no 

apparent difference in milk synthesis rate in the stage of lactation subgroups 

could be seen. The difference in intercept between 5-28, 29-60, and 61-305 

DIM subgroups was also not significant (P > 0.05). In Figure 5C, the chronic 

subgroups have approximately the same form; the chronic group was steeper 

in its decrease and was lower than its non-chronic counterpart. The difference 

in intercepts between the chronic and non-chronic subgroups, indicating 

long-term effects on milk synthesis rate, were -0.04 with a standard error of 

0.01 (P < 0.01). 
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Figure 5. The estimated association between milk synthesis rate and LnSCC and the 

number of observations for parity, stage of lactation, and chronicity subgroups. The dots 

indicate that the start of milk synthesis rate decreases and thereby milk production losses 

increase from that point. 
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4.2.2 Electrical conductivity 

Figure 6 provides a visualization of the non-linear association between Mean 

EC and milk synthesis rate (𝑓𝑀𝑒𝑎𝑛 𝐸𝐶) and the frequency of Mean EC 

observations for different parity, stage of lactation, and chronicity classes 

(Figure 6A, 6B, and 6C). Figure 6 indicates that the association between 

Mean EC and milk synthesis rate was highly nonlinear. In addition, the 

threshold of milk synthesis rate decrease was within the range of 5.0 to 6.0 

mS/cm Mean EC for all subgroups. This threshold was found at a high 

percentile of the Mean EC distribution compared to LnSCC and LnLDH (see 

bottom panels in Figures 5 and 7). Mean EC remained negatively associated 

with milk synthesis rate after 6.0 mS/cm for all parity, stage of lactation, and 

chronicity subgroups. 

Between the subgroups, several differences and similarities could be seen 

in Figure 6. The differences in thresholds between subgroups were limited 

as they all fell between 5.0 and 6.0 mS/cm. The differences in the functional 

forms between subgroups should be interpreted with care as a large section 

of the decrease in milk synthesis rate was based on a small area of the Mean 

EC distribution. The limited number of observations explains the increase in 

milk synthesis rate at 7.5 mS/cm for the second parity subgroup in Figure 

6A. In Figure 6A, the milk synthesis rate of the multiparous subgroups 

decreased more when Mean EC increased than in the first parity subgroups. 

Furthermore, the differences in intercept between first parity cows and 

second parity cows and between first parity cows and third or more parity 

cows were 0.28 with a standard error of 0.01 and 0.36 with a standard error 

of 0.01 (P < 0.01). Regardless of Mean EC, cows with a higher parity 

significantly produce more milk. In Figure 6B, the milk synthesis rate of the 

29-60 and 61-305 DIM subgroups decreased more than the milk synthesis 

rate of the 5-28 DIM subgroup when Mean EC increased, while the 

difference in intercepts between the stage of lactation subgroups was not 

significant (P > 0.1). In Figure 6C, the milk synthesis rate of the chronic 

subgroup decreased more than for the non-chronic subgroup when Mean EC 

increased. In addition, the chronic mastitis subgroup difference in intercept 

between chronic cows and non-chronic cows was -0.04 with a standard error 

of 0.003 (P < 0.01). The milk synthesis rate for chronic cows was lower while 

controlling for the current level of Mean EC.
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Figure 6. The estimated association between milk synthesis rate and Mean EC and the 

number of observations for parity, stage of lactation, and chronicity subgroups. The dots 

indicate that the start of milk synthesis rate decreases, and milk production losses 

increase from that point.
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4.2.3 Lactate dehydrogenase 

Figure 7 provides the non-linear association between LnLDH and milk 

synthesis rate (𝑓𝐿𝑛𝐿𝐷𝐻) and the frequency of LnLDH observations for 

different parity, stage of lactation, and chronicity classes (Figure 7A, 7B, and 

7C). The dots in Figure 7 mark the point where milk synthesis rate started to 

decrease, and milk production losses increased when LnLDH increased. It 

can be seen from the results that LnLDH was negatively associated with milk 

synthesis rate for almost the entire range of LnLDH for most groups. The 

thresholds ranged from approximately 0 to 3 LnLDH (1 - 20 U/L) for all 

subgroups. Despite the similarity in the general form and level of the 

smoothing function, the differences in thresholds are large. The differences 

in thresholds seem to be caused by minor differences in the shape of the 

association between LnLDH and milk synthesis rate between the subgroups. 

In other words, the difference in milk production loss between the thresholds 

was limited. Nevertheless, the milk synthesis rate decreased noticeably more 

after approximately 3 LnLDH (20 U/L) in all subgroups. 

Several dissimilarities in thresholds and the steepness of the decrease in 

milk synthesis rate between subgroups were seen. In Figure 7A, multiparous 

cows showed a larger decrease in milk synthesis rate associated with higher 

LnLDH than primiparous cows. Even more, the differences in intercept 

between first parity cows and second parity cows, and between first parity 

cows and third or more parity cows were 0.27 with a standard error of 0.01 

and 0.36 with a standard error of 0.02 (P < 0.01), respectively. As such, 

regardless of LnLDH, cows with a higher parity significantly produce more 

milk. In Figure 7B, 61-305 DIM observations showed a larger decrease in 

milk synthesis rate than the 5-28 and 29-60 DIM observations. The stage of 

lactation subgroup differences in intercept between 5-28, 29-60, and 61-305 

DIM subgroups were not significantly different (P > 0.1). In Figure 7C, the 

line of non-chronic cows was slightly lower than the line of chronic cows, 

but the chronic cow intercept in the model was -0.08 with a standard error of 

0.01 (P < 0.01). Regardless of current LDH, the milk synthesis rate for 

chronic cows was lower. 
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Figure 7. The estimated association between milk synthesis rate and LnLDH and the 

number of observations for parity, stage of lactation, and chronicity subgroups. The dots 

indicate that the start of milk synthesis rate decreases and thereby milk production losses 

increase from that point. 
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4.3 The prediction of mastitis chronicity 

Table 3 presents the different approaches' sensitivity, specificity, MCC, 

accuracy, and AUC. The chronic mastitis prediction model outperformed the 

two default approaches on all farms for almost all performance indicators. 

More specifically, it outperformed them on accuracy (chronic mastitis 

prediction model: 0.859, frequent sampling approach: 0.833, and monthly 

sampling approach: 0.809), MCC (chronic mastitis prediction model: 0.694, 

frequent sampling approach: 0.618, and monthly sampling approach: 0.504), 

and AUC metrics (chronic mastitis prediction model: 0.944 and frequent 

sampling approach: 0.910). Using (Welch’s) t-tests for unequal variances, 

we determined that the differences between the default approaches and the 

model predictions were significant for AUC, and MCC (P<0.05) but not for 

accuracy when compared to the frequent sampling approach (P>0.05). The 

chronic mastitis prediction model also outperformed the other approaches on 

sensitivity (chronic mastitis prediction model: 0.934, frequent sampling 

approach: 0.833, and monthly sampling approach: 0.595), but the monthly 

sampling approach outperformed the other methods on specificity (chronic 

mastitis prediction model: 0.826, frequent sampling approach: 0.834, and 

monthly sampling approach: 0.896). 
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Table 3. The sensitivity, specificity, Matthew's correlation coefficient, accuracy, and 

Area under Curve (AUC) of the predictions of the model, frequent sampling approach, 

and monthly sampling approach over seven validation herds using 30 days prior to the 

prediction day as input. 

Herd Sensitivity Specificity Matthew's 

correlation 

coefficient 

Accuracy AUC 

Model 

Herd 1 0.937 0.798 0.721 0.854 0.938 

Herd 2 0.925 0.781 0.677 0.832 0.924 

Herd 3 0.940 0.785 0.629 0.821 0.931 

Herd 4 0.909 0.842 0.718 0.864 0.945 

Herd 5 0.943 0.838 0.762 0.878 0.954 

Herd 6 0.934 0.831 0.666 0.853 0.948 

Herd 7  0.947 0.909 0.687 0.913 0.969 

All herds 

average 

0.934 0.826 0.694 0.859 0.944 

      

Frequent sampling approach 

Herd 1 0.813 0.844 0.652 0.831 0.904 

Herd 2 0.833 0.756 0.566 0.783 0.879 

Herd 3 0.885 0.774 0.573 0.800 0.912 

Herd 4 0.707 0.864 0.573 0.813 0.882 

Herd 5 0.825 0.852 0.670 0.842 0.916 

Herd 6 0.896 0.838 0.645 0.850 0.933 

Herd 7 0.874 0.913 0.649 0.909 0.947 

All herds 

average 

0.833 0.834 0.618 0.833 0.910 

      

Monthly sampling approach 

Herd 1 0.553 0.906 0.502 0.764  

Herd 2 0.546 0.862 0.434 0.750  

Herd 3 0.594 0.863 0.449 0.801  

Herd 4 0.585 0.897 0.515 0.795  

Herd 5 0.656 0.903 0.587 0.809  

Herd 6 0.631 0.900 0.531 0.843  

Herd 7 0.598 0.937 0.510 0.900  

All herds 

average 

0.595 0.896 0.504 0.809  
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4.4 The cost of chronicity 

4.4.1 Mastitis dynamics 

The model results indicated a median culling rate was 0.32 with a quartile 

range of 0.30 to 0.34 per cow year. The median clinical mastitis incidence 

rate was 0.27 with a quartile range of 0.25 to 0.30 cases per cow year. The 

median incidence rate of IMI was 1.04 with a quartile range of 0.98 to 1.11 

cases per cow year.  

4.4.2 Economic results 

Total costs of mastitis 

Table 4 gives the economic outcomes of the model per IMI case. The median 

total mastitis costs were € 208 with a quartile range of € 197 to € 225 per IMI 

case. Most of the costs occurred due to transmission (i.e., transmission 

cases), culling, and clinical and subclinical milk production losses. Other 

substantial costs originated from dry cow treatments, lactational treatments, 

and diverted milk. We could determine that Staph. aureus caused the largest 

share of the total costs of IMI by looking at pathogen-specific economic 

impact per generic IMI case, followed by NAS, Strep. spp., and Gram-

negative pathogens. 
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Table 4. Economic results of the simulation model for the total mastitis costs, and 

pathogen-specific shares of the total cost (in €) per non-transmission IMI case. 

Costs 1st Qu. Median 3rd Qu. 

Total clinical mastitis milk production loss 25.27 28.29 31.77 
Total subclinical mastitis milk production loss 21.77 23.06 24.48 
Total mastitis culling 21.50 24.55 27.60 
Total lactational antibiotics 10.89 11.87 12.85 
Total dry cow treatment 10.65 11.33 12.09 
Total diagnostics 0.36 0.39 0.42 
Total diverted milk 8.82 9.65 10.52 
Total clinical mastitis checks 0.37 0.40 0.43 
Total extra costs due to transmission  90.76 99.26 110.74 
    

Total mastitis 197.12 208.02 225.27 
Pathogen-specific share of the total costs    

Total Staph. aureus share 91.46 101.03 113.67 
Total Gram-negative pathogens share 8.47 10.67 13.20 
Total Strep. spp. share 22.79 26.53 30.80 
Total NAS share 61.31 67.99 76.28 
Total non-pathogen-related share 1.36 1.68 2.11 

 

Costs of chronic mastitis 

In Table 5, we present chronic mastitis costs per IMI case and its cost factors. 

The median total costs due to chronic mastitis were € 104 (50% of the total 

mastitis costs) per IMI case with a quartile range of € 96 to € 115. The share 

of chronic mastitis relative to the total mastitis costs was substantial. 

Unsurprisingly, the costs due to transmission had a large share in the chronic 

mastitis costs (45% of the total chronic mastitis costs). Culling and milk 

production losses substantially affected the costs of chronic mastitis as well 

(culling: 24%, combining subclinical and clinical milk production losses: 

16%). Subclinical mastitis production losses were higher than clinical 

mastitis production losses compared to the share in the total costs of mastitis. 

On average, Staph. aureus had the largest share in the costs of chronic 

mastitis (70%), followed by NAS (14%), Strep. spp. (11%), and Gram-

negative pathogens (5%). 
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Table 5. Economic results of the simulation model for the chronic mastitis costs, and 

pathogen-specific shares of the chronic cost (in €) per non-transmission IMI case. 

Costs 1st Qu. Median 3rd Qu. 

Total chronic mastitis milk 

production loss due to clinical 

mastitis 

5.61 6.62 7.76 

Total subclinical mastitis during 

ongoing non-spontaneously cured 

IMI milk production loss 

9.93 10.86 12.02 

Total chronic mastitis treatments 5.29 6.03 6.83 

Total chronic mastitis diagnostics 0.17 0.20 0.23 

Total chronic mastitis extra costs 

due to transmission  

41.11 46.81 53.71 

Total chronic mastitis diverted 

milk 

4.30 4.89 5.66 

Total chronic mastitis culling 21.50 24.55 27.60 

Total dry cow treatment 3.60 3.97 4.38 

    

Total chronic mastitis  95.91 104.25 114.95 

Pathogen-specific share of costs    

Total chronic Staph. aureus share 64.67 72.97 82.33 

Total chronic Gram-negative 

pathogens share 

3.04 4.96 6.88 

Total chronic Strep. spp. share 9.15 11.47 14.11 

Total chronic NAS share 12.17 14.57 16.76 

4.4.3 Estimating the costs of mastitis for different sensor-based 
mastitis strategy scenarios 

Table 6 indicates the costs of mastitis and chronic mastitis, the IMI and CM 

incidence rate, and the culling rate for different sensor-based mastitis 

strategy scenarios. Lactational treatment of SCM based on fourteen days of 

SCC data leads to more mastitis and chronic mastitis costs but decreased CM 

and IMI incidence rates and the culling rate relative to the baseline scenario. 

Dry cow treatment based on seven days of SCC samples rather than one SCC 

sample led to decreasing mastitis and chronic mastitis costs, CM and IMI 

incidence rates, and a decreasing culling rate relative to the baseline scenario. 
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Culling using a 45-day rolling mean of SCC samples rather than a 90-day 

rolling mean of SCC decreased the mastitis and chronic mastitis costs and 

the IMI and CM incidence relative to the baseline, but it increased the culling 

rate. When the earlier culling strategy and specific dry cow treatment 

strategy were combined, mastitis and chronic mastitis costs were lower than 

the baseline. It lowered the IMI and CM incidence rate but at the cost of a 

higher culling rate. 

 

Table 6. The cost (in €) of chronic mastitis, the total cost (in €) of mastitis, clinical 

mastitis (CM) incidence rate in cases per cow year, IMI incidence rate in cases per cow 

year, and culling rate per cow year for different sensor strategies. The median and the 

25% and 75% quartiles (between brackets) are reported. 

Strategy  Cost of 

chronic 

mastitis per 

IMI case  

Total cost of 

mastitis per 

IMI case 

CM 

incidence 

in cases 

per cow 

year 

IMI 

incidence 

in cases 

per cow 

year 

Culling 

rate per 

cow year 

Baseline 104.25 

(95.91 – 

114.95) 

208.02 

(197.12 – 

225.27) 

0.27  

(0.25 – 

0.30) 

1.04  

(0.98 – 

1.11) 

0.32 

(0.30 – 

0.34 

Subclinical 

lactational 

treatment  

150.89 

(138.94 – 

162.86) 

335.75 

(320.00 – 

352.21) 

0.22  

(0.21 – 

0.24) 

0.79  

(0.74 – 

0.83) 

 0.27 

(0.25 – 

0.29) 

More 

specific Dry 

cow 

treatment 

100.56 

(90.43 – 

110.54) 

200.12 

(187.65 – 

214.05) 

0.27  

(0.25 – 

0.30) 

1.04  

(0.98 – 

1.11) 

0.31 

(0.30 – 

0.33) 

Earlier 

culling 

97.28  

(90.27 – 

105.31) 

197.59 

(186.27 – 

208.71) 

0.25  

(0.22 – 

0.27) 

0.88  

(0.83 – 

0.93) 

0.37 

(0.35 – 

0.39) 

Earlier 

culling and 

more specific 

dry cow 

treatment 

94.77  

(87.48 – 

102.83) 

190.26 

(179.92 – 

203.24) 

0.24  

(0.22 – 

0.27) 

0.89  

(0.83 - 

0.93) 

0.37 

(0.35 – 

0.39) 
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5.1 The Data-Information-Decision mastitis framework 

In the Introduction, the Data-Information-Decision mastitis framework was 

put forward to understand the structure of past research on the concept of 

sensor-based mastitis management. The framework is helpful to obtain a 

general understanding of the concept. However, it is also helpful to 

understand the remaining challenges in research and place this thesis's 

contributions into a broader scientific perspective. The framework structure 

will guide the Discussion chapter, where the text will address the 

contributions of the thesis and the remaining challenges in each component 

of the framework.  

5.1.1 Data 

Contribution of the thesis 

A major contribution of this thesis is that it creates new information based 

on data from existing sensor technology available on commercial dairy 

farms. Henceforth, the findings can be implemented directly into practice. 

Moreover, the methodological approach is general and can obtain mastitis 

information for different mastitis sensor data. The approach could be applied 

to study the progression of a new mastitis indicator after initial inflammation, 

similar to what was done in Paper I. One could estimate the severity of a 

specific level of a new inflammation indicator by using the estimated milk 

production loss (Paper II). One could add another indicator into the chronic 

mastitis forecasting model to increase predictive performance (Paper III). 

One could also use a similar methodology in creating a bioeconomic model 

5. Discussion 
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to simulate a dairy farm with a newly developed sensor (Paper IV). All these 

approaches could also be used with to-be-developed sensors to acquire new 

mastitis information in the future. 

In Paper IV, the model simulated daily sensor data based on the 

progression of SCC after a new IMI occurred. To the author’s knowledge, 

this method of simulating daily sensor data has never been used to evaluate 

potential management strategies in a bioeconomic mastitis model. To 

simulate the day-to-day variation of SCC, interpolated SCC points were 

added by points from the day-to-day variation distribution based on general 

SCC patterns. This idea of simulating sensors could be extended upon by 

developing methods to capture herd-specific sensor patterns of a specific 

mastitis indicator and use these extracted sensor patterns in a farm-specific 

bioeconomic model. Applying these herd-specific sensor patterns would be 

a step in developing the simulation model as a complete herd-specific digital 

twin (Pylianidis et al., 2021). This development would allow the farmer to 

simulate a range of different sensor-based strategies in a context that reflects 

the herd-specific context even closer, enhancing the practical value of the 

model. 

Challenges 

In mastitis research, one of the most considerable remaining challenges with 

sensor-based data and large datasets is verifying the data quality. The data 

quality could deteriorate in the case of structural data maintenance issues on-

farm. These issues could be mitigated by data cleaning. In the papers in this 

thesis, data cleaning has mainly been performed by using standards for 

typical values using thresholds found in literature or by common sense (e.g., 

a cow cannot get pregnant two times during lactation). In mastitis research, 

there is a lack of standards to clean data. Researchers use their own methods 

(which they may or may not describe in publications) to assess and improve 

data quality. This implicit knowledge adds another layer of complexity to 

mastitis research. It could lead to misunderstandings between researchers 

and increase the difficulty for new researchers entering the scientific field. 

Another challenge in this thesis was that the available data did not contain 

bacteriological analysis results. Generally, it is important to keep in mind 

that the overall focus of this thesis was on mastitis or the degree of 

inflammation rather than the causal agent. This research focused on sensor-

based mastitis management from the farmer's perspective, and the farmer 

does not know the pathogen at every step of the way (Griffioen et al., 2016). 
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Farmers tend to use symptoms and consequences to decide on treatment 

(Vaarst et al., 2002). Furthermore, most applications in this thesis have to do 

with chronic SCM. Chronic SCM is, by definition, a long-term increase in 

mastitis indicators (International Dairy Federation, 2011), for which a 

pathogen specification was not strictly needed. Therefore, bacteriological 

data would have been beneficial to have but not needed. It could have led to 

more precise results. For example, it was impossible to assess the progression 

of different mastitis indicators (Paper I) for differing pathogens, such as 

performed in Fogsgaard et al. (2015). It was also impossible to assess 

whether the association between different mastitis indicators and milk yield 

(Paper II) differed for different pathogens, as done by Gonçalves et al. 

(2020). Having bacteriology data would have led to more precise results and 

conclusions concerning the duration and degree of milk loss per pathogen 

type. Additionally, Paper III did not need bacteriological information as the 

focus was on predicting a prolonged inflammation and not infection. 

However, it could have led to a more precise forecast if bacteriological 

information was used as model input. Bacteriological information was 

needed in Paper IV, but it could be retrieved from the literature. 

Nevertheless, for a decision support system, bacteriological information 

would be necessary to gather a complete overview of the consequences of 

mastitis in terms of contagious cow-to-cow transmission, as transmission and 

its mode are highly dependent on pathogen type (see Paper IV).  

In general, incomplete data was and will continue to be a problem in 

future mastitis research. In the current datasets used in this thesis, data was 

primarily incomplete due to farmers not filling in treatments into their 

management systems (Bonestroo et al., 2021a) or using risk-based sampling 

algorithms (i.e., sampling SCC or LDH). Using risk-based algorithms, SCC 

and LDH tend to be sampled from higher risk milkings (e.g., early in 

lactation). This tendency could have resulted in an inherent bias of higher 

SCC or LDH values when observations were reported. This bias would pose 

a weakness of the dataset used in this thesis. For instance, this would 

potentially increase the estimated duration in Paper I due to a higher presence 

of high SCC values. We tried to mitigate the effects of this bias partly by 

aggregating data per day or week, reducing the amount of incomplete data. 

Nevertheless, the estimates for milk production loss or decrease in indicators 

after initial inflammation could be less biased if the dataset included these 

inflammation indicators for every milking. This increased sampling would 
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also create more observations, increasing the precision of the parameters 

estimated in statistical inference. Additionally, in the thesis, farmer-reported 

treatments were not used as they were unavailable for many studied farms. 

Instead, milk diversions were used as approximations for treatments, which 

can be automatically stored. However, milk can be diverted for many reasons 

and can therefore be unspecific to approximate antibiotic treatment due to 

mastitis (Bonestroo et al., 2021a). As such, Paper I may have included cases 

that were not treated for mastitis in the milk diversion subgroup, decreasing 

the specificity of the conclusions on this subgroup. Nevertheless, milk 

diversions are consistently reported, while farmer treatment reports may be 

inconsistent (Vaarst et al., 2002; Espetvedt et al., 2013) and were therefore 

used in this thesis. 

5.1.2 Information 

Contribution of the thesis 

Paper I contributed to the Information concept in the Data-Information-

Decision mastitis framework. Its results can define mastitis chronicity based 

on inflammation markers measured by sensors. There is an interdependence 

that can be seen here between the Data concept and the Information concept 

in the framework. Paper I gives a duration-based threshold for SCM 

chronicity, which has limited attention in the literature. This limited focus 

mainly occurred due to the monthly reported DHI SCC samples. Usage of 

monthly-reported DHI SCC samples caused the minimum threshold to be 

one month. As a result, researchers used chronicity thresholds of either one 

or two months (St. Rose et al., 2003). The existence of close-to-daily data 

instead of monthly data created the possibility for a more precise definition 

of chronic mastitis, showing this interdependence between Data and 

Information. 

Paper II contributed to the Information concept by estimating the non-

linear association between different mastitis indicators and milk yield more 

precisely. This increased precision is important as it allows for a more exact 

estimate of milk production loss. The analysis showed that the most 

substantial losses tend to occur at a higher level of SCC than indicated by 

other studies (Hortet et al., 1999; Dürr et al., 2008; Hagnestam-Nielsen et al., 

2009; Gonçalves et al., 2018a). Others have also found the milk production 

loss functions of SCC to be non-linear (Dürr et al., 2008; Hagnestam-Nielsen 
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et al., 2009; Gonçalves et al., 2018a) but still indicated higher milk losses on 

lower levels of SCC. In Paper II, the associations did show that the milk 

production loss started to increase after a low level of SCC (e.g., 12,000 

SCC/ml) but that it was starting to be substantial at 277,000 SCC/ml. This 

pattern confirms that the loss is highly non-linear. Farmers in the past have 

been using milk production loss as an important indicator for mastitis (Vaarst 

et al., 2002). Milk production loss can make the degree of severity observable 

and understandable to the farmer, given SCM's lack of physical symptoms. 

Therefore, the work in Paper II can be used to translate various levels of 

different mastitis indicators with different unit measures into an estimated 

milk production loss that is comparable across mastitis indicators. 

A major contribution of the thesis was to show the potential value of 

forecasting mastitis chronicity. In paper III, mastitis chronicity was 

forecasted for ongoing mastitis cases. In mastitis research, substantial 

attention was given to the detection of CM (Hogeveen et al., 2010; Jensen et 

al., 2016; Khatun et al., 2017, 2018). However, sensor technology is not 

substantially used after the point of detection, while it could also be used to 

track the progression of ongoing episodes. The contribution of paper III is 

the introduction of a problem that can be solved with mastitis sensors. The 

forecasts of mastitis chronicity allow farmers to gain more insight after 

detecting mastitis. Furthermore, Paper III shows that using a smaller input 

window of fifteen days had a limited impact on the prediction performance. 

This limited impact shows that it may be possible to forecast chronicity 

accurately in early lactation. In any case, forecasting chronic mastitis would 

allow for a more targeted intervention protocol, which would lead to culling 

truly chronic cows and reduced usage of antibiotics. The latter is societally 

relevant in the challenge to limit antimicrobial resistance by limiting the use 

of antibiotics (Speksnijder et al., 2015).  

Challenges 

Generally, one of the main remaining challenges in terms of mastitis 

information is the usage and operationalization of the term chronic mastitis. 

Multiple efforts have been undertaken to standardize mastitis definitions 

(International Dairy Federation, 2011). However, the definitions do not 

define chronic mastitis in detail, apart from indicating that chronic mastitis 

is an udder inflammation that continues over an extended period 

(International Dairy Federation, 2011). More specifically, this definition 

does not specify what mastitis indicator to use (e.g., SCC), how high the 
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indicator level needs to be (e.g., 100,000-200,000 SCC/ml), and for how long 

the indicator should be elevated (e.g., three to four weeks of elevated SCC). 

Suppose a different definition of chronic mastitis was chosen. In that case, 

the conclusions of this thesis could differ in terms of estimated milk losses 

(Paper II), the ability to forecast chronic mastitis (Paper III), and the cost of 

chronic mastitis (Paper IV). A pathway to overcoming this research 

challenge is applying sensitivity analysis on the chronic mastitis definition. 

For instance, Paper I used different case definitions in a sensitivity analysis, 

and one similarly could do a sensitivity analysis on the chronic mastitis 

definition. However, this does not increase the comparability between study 

results. A more permanent solution would be that the same chronic mastitis 

definitions are used across studies, requiring standardization. 

Another remaining challenge in transforming data into information is to 

choose the appropriate method. This thesis applied linear mixed models, 

generalized additive models, and gradient-boosting trees in Paper I, II, and 

III. Each of these models could be used interchangeably in the different 

papers. However, the different papers have different aims (and different 

pieces of information to obtain), and therefore some methods are more fitting 

than others. Paper I required an estimate of weekly effects before and after 

the initial inflammation while controlling for repeated measures from the 

same cow. Gradient-boosting trees and generalized additive models would 

achieve this aim. However, a simpler linear mixed model would also achieve 

this aim and would be preferable from the perspective of parsimony. 

Estimating non-linear associations between milk yield and mastitis 

indicators is possible with linear mixed models with polynomial effects. 

However, the results of Paper II indicated that the non-linear associations are 

not simply quadratic or cubic. Hence, the linear mixed model results would 

not reflect the underlying association accurately. Paper III forecasts 

chronicity status based on past sensor data from the same lactation. A 

generalized additive or linear mixed model could also have made this 

prediction. However, these methods would require the interactions between 

variables to be defined apriori, while a tree-based method does not have this 

requirement. A tree-based method would also allow for more complex 

interactions. In summary, these methods were chosen by weighing the aim 

of the study, the characteristics of the item under study, and the need for 

interpretability (or parsimony).  
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5.1.3 Decision 

Contribution of the thesis 

Paper IV contributes to the Decision concept in the Data-Information-

Decision framework as it models the interaction between the decision-maker 

and the information. The addition of sensor data in bioeconomic models is 

novel. As implemented in the model, the daily data frequency would allow 

earlier decision-making on treating and culling cows. Other work has 

modeled detection systems (i.e., mastitis information) (Van den Borne et al., 

2010a), but it did not directly model the mastitis sensor data. Directly 

modeling sensor data allows different sensor strategies to be tried within the 

model. The model could be used as a tool to explore different sensor-based 

mastitis SOPs under the assumption of an economic rational farmer that tries 

to minimize the cost of mastitis. A selection of potentially cost-minimizing 

strategies could be made using the simulation model. This selection process 

is performed on a small scale in Paper IV. However, the resulting strategies 

should be explored further using different methods before implementing 

them in practice, as a simulation model will continue to simplify a complex 

system set in reality.  

Another contribution of the thesis is estimating the cost of chronic 

mastitis. Paper IV focuses on the cost of chronic mastitis, which is a 

substantial portion of the total cost of mastitis. Past research has primarily 

focused on the total cost of mastitis, as indicated in Aghamohammadi et al. 

(2018) and Hogeveen et al. (2019), and how the total cost of mastitis changed 

due to preventive measures (Aghamohammadi et al., 2018) or intervention 

strategies (Steeneveld et al., 2007; Van den Borne et al., 2010a; Gussmann 

et al., 2019a; b). However, an explicit distinction between non-chronic and 

chronic mastitis costs has not been made so far. This lack of a distinction is 

surprising as the share of chronic mastitis cost in the total mastitis costs is 

estimated to be 50% and is related to the failure of current intervention 

procedures. Chronic mastitis costs indicate the potential value for tools that 

allow for earlier intervention in chronic mastitis cases (e.g., Paper I and Paper 

III). Given the importance of chronic mastitis in the cost of mastitis, it 

obviously would be vital to reduce the cost of chronicity and to look into its 

largest cost factors. One of the largest cost factors in chronic mastitis is 

contagious transmission. Interestingly, the size of the cost factor emphasizes 

the non-directly observed cost of keeping chronic cows in the herd. Limiting 

transmission has a long tradition as a preventive strategy to combat mastitis 
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(Hillerton and Booth, 2018). These model results highlight the importance 

of management options to limit transmission, by the decision, for instance, 

to clean milking equipment regularly or separate sick from healthy cows. 

This example shows that the focus on chronic costs is important as it can 

give insights to farmers and scientists into the cost of inefficiencies in 

intervention procedures.  

Another contribution of this thesis is to explore the potential for sensor-

based SOPs. Paper I provides a general estimate on the definition of chronic 

mastitis using a cut-off duration value for online SCC and EC. This cut-off 

could be used in an SOP monitoring chronic mastitis. Paper II provides a 

method to estimate the severity of an SCM case by using milk yield as a 

proxy, which could be used as an indication to intervene. Paper III extends 

on Paper I by providing the possibility of individual chronic mastitis SOPs 

based on the forecasted future state of the cow. Paper IV provides a model 

where SOPs can be developed on economic principles. More specifically, the 

model of Paper IV can be used as a selection step to select different sensor-

based SOPs prior to testing it out on a farm. Testing different sensor-based 

strategies can filter out the strategies that will be unprofitable, allowing the 

most promising candidates to be tested in real-life. Overall, the thesis 

provides the framework for a structured sensor-based mastitis management 

decision tool that includes multiple SOPs. 

Challenges 

The main remaining challenge concerning the farmer's decision-making is 

its complexity, and that the knowledge on sensor-based decision-making in 

practice is quite limited. The author could not find specific knowledge on 

how farmers use mastitis sensors in practice in the academic literature, apart 

from their use of alerts (Mollenhorst et al., 2012; Hogeveen et al., 2013). Due 

to this lack of knowledge, the current simulation model focuses on symptom-

level and cow-level factors in sensor-based mastitis decision-making and 

may give a somewhat simplified view of the farmer decision-making using 

sensors. Sensor-based decision-making can be more complex in practice. For 

instance, apart from the characteristics of the individual cow, farmers are still 

dependent on herd-level processes when making cow-level mastitis 

decisions (Vaarst et al., 2002), such as the inflow of new calves when making 

culling decisions. In this case, the culling decision might be different when 

no calves are available, even if the decision-making is sensor-based. Many 

more complex (herd) factors are crucial in farmer sensor-based decision-
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making. Therefore, more research into sensor-based farmer decision-making 

is needed to incorporate it realistically in the simulation model. 

Another remaining challenge is that farmer decision-making in practice 

will not be focused entirely on cost minimization. Farmers could have 

different goals, such as supporting biodiversity (Herzon and Mikk, 2007), 

increasing animal welfare (Vaarst et al., 2002), decreasing the use of 

antibiotics (Jones et al., 2015), and having enjoyable work (Bergevoet et al., 

2004). In economic terms, the farmer may obtain more utility in other 

activities than in cost minimization (Hansson and Lagerkvist, 2014, 2015). 

The simulation model in Paper IV was focused on the cost of mastitis and 

not on antibiotic usage, enjoyment of work, supporting biodiversity, or 

animal welfare. It restricted the results and conclusions of Paper IV to be 

monetary. Nevertheless, the model could be expanded upon by using multi-

objective optimization (Groot et al., 2012) in the future. In the simulation 

model, these alternative goal functions could be modeled separately. One 

may create a farmer utility function by weighing the profit and alternative 

goal functions based on farmer-specific weights. This utility function would 

model the trade-offs between profit and alternative goal functions for 

specific farmers. The simulation models will be made herd-specific and 

subjective by infusing the farmer-specific importance of goals in the utility 

function using these weighing methods. It may bridge the gap between 

bioeconomic models created in academia and farms in practice, allowing 

farmers to simulate different farming strategies and align them with their 

preferences. 

A practical challenge in mastitis research is to develop tools that farmers 

actively use. It is problematic if farmers do not actively use provided tools, 

as these tools would then provide limited value in return. To illustrate this 

problem, Hogeveen et al. (2013) found that only 3% of the CM alerts led to 

actions by the farmers. This lack of use could be especially problematic for 

the model put forth in Paper III as its predictions would barely be used in 

practice. To this end, mastitis tools should be more farmer-centric to promote 

their use. The author mentions two alternative pathways to achieve more 

farmer-centric mastitis tools. The first pathway is to align the mastitis tool 

with the different types of mastitis decisions farmers may encounter (e.g., 

different decisions for severe CM, mild CM, or chronic mastitis). An 

extensive effort to tie different types of required sensor accuracies to 

different farmer decisions has recently been performed (Hogeveen et al., 
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2021), which is a good step in this direction. The second pathway addresses 

the hard-to-understand reasoning of mastitis decision tools as the cause of 

the lack of use. When farmers are confronted with a daily alert list with a 

substantial portion of false alerts with a limited understanding of the model, 

they lose trust. Unfortunately, most mastitis models tend to use black-box or 

hard-to-interpret models (e.g., gradient-boosting trees or neural networks) 

(Hogeveen et al., 2010), where it is hard to understand the reasoning of the 

model. To increase the understandability of the model, one may apply 

explainable machine learning techniques to these black-box models. 

Examples of these explainable machine learning techniques include SHAP 

(Lundberg and Lee, 2017) or Lime (Ribeiro et al., 2016). Conceptually, the 

farmer could still understand the algorithm's reasoning if it produced a false 

alert, avoiding trust issues. Both aligning mastitis tools with the different 

types of decisions and applying explainable machine learning techniques to 

black-box models could be part of the solution in increasing the usage of 

mastitis tools by farmers in practice.  

5.2 Mastitis from multiple research perspectives 

As the thesis attempted to address mastitis from a veterinary, data science, 

and economics perspective, it would be vital to address the value of 

interdisciplinary work in science. Mastitis is seen in a different light by 

different disciplines. From a veterinary perspective, mastitis is a disease that 

decreases animal welfare and the proper functioning of the animal (Siivonen 

et al., 2011; Heikkilä et al., 2018). From an economic perspective, mastitis 

is a cost factor on dairy farms, and major attention is paid to the 

consequences of the disease as costs can be attached to them (Halasa et al., 

2007). From a data science perspective, mastitis is seen as an event that 

causes changes in sensor data collected by milking machines and add-ons 

(Chagunda et al., 2006; Khatun et al., 2019; Hogeveen et al., 2021).  

At the crossing of these different perspectives lie the most valuable topics 

in mastitis research, in the author's opinion. For instance, combining a data 

science and economics perspective could obtain questions regarding the 

economic value of sensor data or mastitis detection systems (Van den Borne 

et al., 2010a). If one combines data science and a veterinary perspective, one 

could address problems such as measuring animal welfare with sensor data 

(Silva et al., 2021) or forecast disease outcomes that impede proper 
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functioning using sensor data (Paper III). If the economic and veterinary 

perspectives are combined, one could address issues such as determining 

whether a treatment is cost-effective (Swinkels et al., 2005; Steeneveld et al., 

2007; Gussmann et al., 2019b; a). These examples highlight the importance 

of interdisciplinary work. Mastitis research serves to improve mastitis 

decision-making of the farmer in practice. In practice, changes in mastitis 

decision-making affect multiple areas such as animal welfare, farm 

economics, and public health. The lenses of different disciplines will be 

needed to assess the impact of a change on these areas and enhance the 

uptake of mastitis research in practice and in the future.  
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The overall objective for this PhD project was to explore the potential 

applications for a decision support system that includes the course and 

consequences of chronic mastitis. The main conclusions are: 

 

 Both mean σ-Conductivity and SCC stabilized three to four weeks 

for recovered cases after initial inflammation, providing the basis for 

a sensor-based definition of chronic mastitis. Differences and 

similarities were identified in mean σ-Conductivity and SCC. 
 

 Negative associations were found between SCC, EC, and LDH and 

milk yield, which were non-linear and had a similar form between 

parity groups, at different lactation stages, and at different chronicity 

statuses of the cow.  

 Based on sensor data, the developed prediction model outperformed 

default approaches that mimic current decision-making based on 

monthly or more frequently sampled SCC data. 
 

 Using a bioeconomic simulation model, the median cost of chronic 

mastitis in an AMS farm was € 104 per IMI case, and the median 

total cost of mastitis was € 208 per IMI case. This share showed the 

importance of chronic mastitis in the cost of mastitis. It demonstrated 

that the economic impact of different sensor-based strategies could 

be assessed using the implemented bioeconomic model.  

 

This thesis shows the potential for a decision support system that monitors 

and forecasts chronic mastitis and its consequences, which is built on data 

that is already available on commercial dairy farms.

6. Conclusions 
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7.1.1 Data-based improvements 

Milk diversion 

During the research that procured this thesis, it was noticed that treatment 

records tend to be incomplete. These incomplete records are a problem when 

the data is used for research, which is also indicated by others on national 

levels (Wolff et al., 2012). To combat this problem, the analyses in the thesis 

have used a proxy variable in the form of milk diversion in Paper I 

(Bonestroo et al., 2020, 2021a). It is not a perfect proxy to indicate mastitis 

treatments, as milk may be diverted for other reasons. Even more, milk can 

be automatically diverted by the system if specific mastitis indicators are too 

high without intervention from farmers. Nevertheless, it can be made more 

specific by using multiple days of milk diversion instead of one day 

(Bonestroo et al., 2021a). Milk diversion holds the opportunity to proxy 

treatment even if treatment records are not available, and therefore it could 

be used in future studies involving large sensor-based datasets. In the future, 

milk diversion could be used in data cleaning to select farms with an 

adequate recording of treatments. It would allow researchers to remove farms 

from the dataset that have a substantial number of milk diversions but close 

to no reported treatments.  
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7.1.2 Information-based improvements 

Herd-specific mastitis models 

Paper III proposed a chronic mastitis forecasting model. The model is a 

general universal model that multiple herds can use. However, it can be 

expected that making the model herd-specific by adjusting the model to herd-

specific parameters (e.g., implicitly learning the non-observed farm pathogen 

population) would increase the predictive performance. This increase in 

performance would also hold for CM detection models. One could use 

transfer learning (Pan and Yang, 2009) (i.e., partly refitting an existing model 

trained with data from other herds with new data from a new herd) if one 

switched methodology from a gradient-boosting trees model to a neural 

network. A transfer learning approach could involve training a general model 

based on a large set of training herds and fine-tuning the model on the dataset 

of the herd on which the model is to be used. Transfer learning has been used 

successfully with image-based or text-based deep learning tasks (Pan and 

Yang, 2009), where training a model was expensive and the required dataset 

was large. Transfer learning the models in this manner would potentially 

create more accurate mastitis models in the future. 

Milk production loss monitoring 

The milk production loss estimate proposed in Paper II could be extended 

further to measure the severity of a case of mastitis. A milk production loss 

model using multiple mastitis indicators as input could be created to measure 

the severity of an ongoing case in terms of milk production loss. As farmers 

are familiar with milk production loss (Vaarst et al., 2002), they would be 

able to interpret it. A single milk production loss measure would be simpler 

to interpret than four or five mastitis measures with their own units and 

thresholds.  

Additionally, one could extend the milk production loss estimation by 

forecasting the milk production of the remainder of the lactation cycle after 

a mastitis case. The system would report the total lactational loss to the 

farmer. This information would support the farmer in making treatment and 

culling decisions. Recently, work has been done to forecast lactation curves 

using deep learning (Liseune et al., 2021). This deep learning work can 

extend the estimated milk production loss of Paper II into an estimate for a 

milk production loss for the remainder of the lactation. This information 

would allow farmers to select cows on their estimated milk yield in the 
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future, which is one of the most substantial cost factors in mastitis (Paper 

IV). 

Mastitis case forecasting 

Paper III proposes a chronic mastitis forecasting model with a binary output 

(chronic or not chronic). In the future, individual cow case forecasting could 

be extended to become similar to a weekly weather forecast where the first 

week, second week, and third week SCC is given with an estimated 

uncertainty interval. This information could give farmers more precise 

outputs of what would eventually happen to a case, and the model could 

simultaneously communicate the uncertainty attached to the prediction. 

Different indicators could also be used instead of SCC, such as milk 

production loss or having no CM episodes for a given period, making the 

tool flexible for different sensor setups. This methodological flexibility 

would allow a broader group of farmers to perform case forecasting, even 

when they do not have an SCC sensor. 

7.1.3 Decision-based improvements 

Research into current sensor-based farmer mastitis decision-making 

During the initial stages of the research, it became clear that more insights 

into current farmer mastitis decision-making are needed. There is some 

insight into non-sensor-based farmer decision-making (Vaarst et al., 2002) 

and the influence of farmer attitudes (Jansen et al., 2009) and alternative 

goals (Hansson and Lagerkvist, 2014, 2015). However, there is a lack of 

peer-reviewed research on farmers' current sensor-based decision rules. 

Farmers with an AMS have access to sensor data streams, but it is unknown 

how farmers currently use sensor data in their decision-making. More 

information on the current informal SOPs of farmers would make it possible 

to ensure that solutions that are suggested in the literature fit in practice. 

These informal SOPs would include which sensor or algorithm value is 

important to the farmer for which decision and what threshold is being used 

by the farmer. In the end, the value of sensor-based mastitis management and 

its decision support systems rely on whether the farmer actively uses it. If 

the farmer does not use the system as intended, then such a system adds less 

to no value.  
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The general approach to sensor-based disease management 

This thesis focused on sensor-based management of mastitis and was highly 

interdisciplinary. It investigated the information that the farmer might need 

to make a disease decision: 1) defining the measurement characteristics of 

the disease, 2) detecting the disease, 3) forecasting its recovery, 4) estimating 

the effects of the disease, and 5) estimating the benefits of intervention. All 

these aspects need different disciplines to study and fulfill different 

information needs of the farmer when making disease-related decisions. 

Although applied to mastitis, this interdisciplinary research approach can be 

used as a blueprint to support farm management for other diseases.  

 

 



 

 

79 

 

Aghamohammadi, M., D. Haine, D.F. Kelton, H.W. Barkema, H. Hogeveen, G.P. 

Keefe, and S. Dufour. 2018. Herd-level mastitis-associated costs on Canadian 

dairy farms. Front. Vet. Sci. 5:100. 

Anglart, D., C. Hallén-Sandgren, P. Waldmann, M. Wiedemann, and U. 

Emanuelson. 2020. Modeling cow somatic cell count using sensor data as 

input to generalized additive models. J. Dairy Res. 87:282–289. 

Arrow, K.J. 1973. Information and economic behavior. National Technical 

Information Service, Springfield. 

Bar, D., L.W. Tauer, G. Bennett, R.N. Gonzalez, J.A. Hertl, Y.H. Schukken, H.F. 

Schulte, F.L. Welcome, and Y.T. Gröhn. 2008a. The cost of generic clinical 

mastitis in dairy cows as estimated by using dynamic programming. J. Dairy 

Sci. 91:2205–2214. 

Bar, D., L.W. Tauer, G. Bennett, R.N. González, J.A. Hertl, H.F. Schulte, Y.H. 

Schukken, F.L. Welcome, and Y.T. Gröhn. 2008b. Use of a dynamic 

programming model to estimate the value of clinical mastitis treatment and 

prevention options utilized by dairy producers. Agric. Syst. 99:6–12. 

Barkema, H.W., Y.H. Schukken, and R.N. Zadoks. 2006. Invited Review: The Role 

of Cow, Pathogen, and Treatment Regimen in the Therapeutic Success of 

Bovine Staphylococcus aureus Mastitis. J. Dairy Sci. 89:1877–1895. 

Bartel, A., E. Gass, F. Onken, C. Baumgartner, F. Querengässer, and M.G. Doherr. 

2019. SCC predictions using generalized additive models: can they support 

mastitis management decisions? Page 24 in IDF mastitis Conference 2019, 

Copenhagen. 

Bartlett, P.C., J.F. Agger, H. Houe, and L.G. Lawson. 2001. Incidence of clinical 

mastitis in Danish dairy cattle and screening for non-reporting in a passively 

collected national surveillance system. Prev. Vet. Med. 48:73–83. 

Bergevoet, R.H.M., C.J.M. Ondersteijn, H.W. Saatkamp, C.M.J. Van Woerkum, and 

R.B.M. Huirne. 2004. Entrepreneurial behaviour of Dutch dairy farmers under 

a milk quota system: goals, objectives and attitudes. Agric. Syst. 80:1–21. 

Bernoulli, D. 1954. Exposition of a theory on the measurement of risk. Econom. J. 

Econom. Soc. 22:23–36. 

Blanken, K., F. de Buisonje, A. Evers, W. Ouweltjes, J. Verkaik, I. Vermeij, and H. 

Wemmenhove. 2019. KWIN 2019-2020: Kwantitatieve Informatie 

Veehouderij. Wageningen Livestock Research. 

Bonestroo, J., N. Fall, M. van der Voort, I.C. Klaas, H. Hogeveen, and U. 

Emanuelson. 2021a. Diagnostic properties of milk diversion and farmer-

reported mastitis to indicate clinical mastitis status in dairy cows using 

Bayesian latent class analysis. Livest. Sci. 253:104698. 

References 



 

80 

 

Bonestroo, J., M. van der Voort, N. Fall, U. Emanuelson, I.C. Klaas, and H. 

Hogeveen. 2022. Estimating the nonlinear association of online somatic cell 

count, lactate dehydrogenase, and electrical conductivity with milk yield. J. 

Dairy Sci. (in press). 

Bonestroo, J., M. van der Voort, N. Fall, H. Hogeveen, U. Emanuelson, and I.C. 

Klaas. 2021b. Progression of different udder inflammation indicators and their 

episode length after onset of inflammation using automatic milking system 

sensor data. J. Dairy Sci. 104:3457–3473. 

Bonestroo, J.H., I.C. Klaas, M. Van der Voort, N. Fall, H. Hogeveen, and U. 

Emanuelson. 2020. Using Milk Diversion in Automatic Milking Systems to 

Estimate Incidence of Mastitis in the Absence of Treatment Records. Pages 

168–169 in Proceedings of the 59th Annual Meeting National Mastitis Council 

(NMC). 

van den Borne, B.H.P., N.J.M. van Grinsven, and H. Hogeveen. 2021. Trends in 

somatic cell count deteriorations in Dutch dairy herds transitioning to an 

automatic milking system. J. Dairy Sci. 104:6039–6050. 

Van den Borne, B.H.P., T. Halasa, G. Van Schaik, H. Hogeveen, and M. Nielen. 

2010a. Bioeconomic modeling of lactational antimicrobial treatment of new 

bovine subclinical intramammary infections caused by contagious pathogens. 

J. Dairy Sci. 93:4034–4044. doi:10.3168/jds.2009-3030. 

Van den Borne, B.H.P., G. Van Schaik, T.J.G.M. Lam, and M. Nielen. 2010b. 

Therapeutic effects of antimicrobial treatment during lactation of recently 

acquired bovine subclinical mastitis: Two linked randomized field trials. J. 

Dairy Sci. 93:218–233. 

Cha, E., D. Bar, J.A. Hertl, L.W. Tauer, G. Bennett, R.N. González, Y.H. Schukken, 

F.L. Welcome, and Y.T. Gröhn. 2011. The cost and management of different 

types of clinical mastitis in dairy cows estimated by dynamic programming. J. 

Dairy Sci. 94:4476–4487. 

Chagunda, M.G.G., N.C. Friggens, M.D. Rasmussen, and T. Larsen. 2006. A model 

for detection of individual cow mastitis based on an indicator measured in 

milk. J. Dairy Sci. 89:2980–2998. 

Chen, T., and C. Guestrin. 2016. Xgboost: A scalable tree boosting system. Pages 

785–794 in Proceedings of the 22nd acm sigkdd international conference on 

knowledge discovery and data mining. 

Dalen, G., A. Rachah, H. Nørstebø, Y.H. Schukken, and O. Reksen. 2019a. 

Dynamics of somatic cell count patterns as a proxy for transmission of mastitis 

pathogens. J. Dairy Sci. 102:11349–11358. 

Dalen, G., A. Rachah, H. Nørstebø, Y.H. Schukken, and O. Reksen. 2019b. The 

detection of intramammary infections using online somatic cell counts. J. 

Dairy Sci. 102:5419–5429. 

Degen, S., J.H. Paduch, M. Hoedemaker, and V. Krömker. 2015. Factors affecting 

the probability of bacteriological cure of bovine mastitis. Tierärztliche Prax. 

Großtiere 43:222–227. 

Deng, Z., H. Hogeveen, T.J.G.M. Lam, R. Van Der Tol, and G. Koop. 2020. 



 

 

81 

 

Performance of online somatic cell count estimation in automatic milking 

systems. Front. Vet. Sci. 7:221. 

Dijkhuizen, A.A., and R.S. Morris. 1997. Animal health economics. Princ. Appl. 

Univ. Sidney, Sidney. 

Dohoo, I.R., J. Smith, S. Andersen, D.F. Kelton, S. Godden, and M.R. 

Workers’Conference. 2011. Diagnosing intramammary infections: Evaluation 

of definitions based on a single milk sample. J. Dairy Sci. 94:250–261. 

Dufour, S., A. Fréchette, H.W. Barkema, A. Mussell, and D.T. Scholl. 2011. Invited 

review: Effect of udder health management practices on herd somatic cell 

count. J. Dairy Sci. 94:563–579. 

Dürr, J.W., R.I. Cue, H.G. Monardes, J. Moro-Méndez, and K.M. Wade. 2008. Milk 

losses associated with somatic cell counts per breed, parity and stage of 

lactation in Canadian dairy cattle. Livest. Sci. 117:225–232. 

Ebrahimie, E., F. Ebrahimi, M. Ebrahimi, S. Tomlinson, and K.R. Petrovski. 2018. 

A large-scale study of indicators of sub-clinical mastitis in dairy cattle by 

attribute weighting analysis of milk composition features: highlighting the 

predictive power of lactose and electrical conductivity. J. Dairy Res. 85:193–

200. 

Espetvedt, M., A.-K. Lind, C. Wolff, S. Rintakoski, A.-M. Virtala, and A. Lindberg. 

2013. Nordic dairy farmers’ threshold for contacting a veterinarian and 

consequences for disease recording: Mild clinical mastitis as an example. Prev. 

Vet. Med. 108:114–124. 

Fogsgaard, K.K., P. Løvendahl, T.W. Bennedsgaard, and S. Østergaard. 2015. 

Changes in milk yield, lactate dehydrogenase, milking frequency, and 

interquarter yield ratio persist for up to 8 weeks after antibiotic treatment of 

mastitis. J. Dairy Sci. 98:7686–7698. 

Friggens, N.C., M.G.G. Chagunda, M. Bjerring, C. Ridder, S. Hojsgaard, and T. 

Larsen. 2007. Estimating degree of mastitis from time-series measurements in 

milk: a test of a model based on lactate dehydrogenase measurements. J. Dairy 

Sci. 90:5415–5427. 

Fuenzalida, M.J., and P.L. Ruegg. 2019. Negatively controlled, randomized clinical 

trial to evaluate intramammary treatment of nonsevere, gram-negative clinical 

mastitis. J. Dairy Sci. 102:5438–5457. 

GD. 2019. Producten En Tarieven. Accessed January 28, 2022. 

https://www.gddiergezondheid.nl/~/media/Files/DAP Contact/Producten en 

tarieven 2019.as. 

Gonçalves, J.L., R.I. Cue, B.G. Botaro, J.A. Horst, A.A. Valloto, and M. V Santos. 

2018a. Milk losses associated with somatic cell counts by parity and stage of 

lactation. J. Dairy Sci. 101:4357–4366. 

Gonçalves, J.L., C. Kamphuis, C. Martins, J.R. Barreiro, T. Tomazi, A.H. Gameiro, 

H. Hogeveen, and M. V dos Santos. 2018b. Bovine subclinical mastitis 

reduces milk yield and economic return. Livest. Sci. 210:25–32. 

Gonçalves, J.L., C. Kamphuis, H. Vernooij, J.P. Araújo Jr, R.C. Grenfell, L. Juliano, 

K.L. Anderson, H. Hogeveen, and M. V Dos Santos. 2020. Pathogen effects 



 

82 

 

on milk yield and composition in chronic subclinical mastitis in dairy cows. 

Vet. J. 262:105473. 

Griffioen, K., G.E. Hop, M.M.C. Holstege, A.G.J. Velthuis, T.J.G.M. Lam, and 

1Health4Food–Dutch Mastitis Diagnostics Consortium. 2016. Dutch dairy 

farmers’ need for microbiological mastitis diagnostics. J. Dairy Sci. 99:5551–

5561. 

Groot, J.C.J., G.J.M. Oomen, and W.A.H. Rossing. 2012. Multi-objective 

optimization and design of farming systems. Agric. Syst. 110:63–77. 

Gussmann, M., C. Kirkeby, K. Græsbøll, M. Farre, and T. Halasa. 2018. A strain-, 

cow-, and herd-specific bio-economic simulation model of intramammary 

infections in dairy cattle herds. J. Theor. Biol. 449:83–93. 

Gussmann, M., W. Steeneveld, C. Kirkeby, H. Hogeveen, M. Farre, and T. Halasa. 

2019a. Economic and epidemiological impact of different intervention 

strategies for subclinical and clinical mastitis. Prev. Vet. Med. 166:78–85. 

Gussmann, M., W. Steeneveld, C. Kirkeby, H. Hogeveen, M. Nielen, M. Farre, and 

T. Halasa. 2019b. Economic and epidemiological impact of different 

intervention strategies for clinical contagious mastitis. J. Dairy Sci. 102:1483–

1493. 

De Haas, Y., R.F. Veerkamp, H.W. Barkema, Y.T. Gröhn, and Y.H. Schukken. 

2004. Associations between pathogen-specific cases of clinical mastitis and 

somatic cell count patterns. J. Dairy Sci. 87:95–105. 

Hadrich, J.C., C.A. Wolf, J. Lombard, and T.M. Dolak. 2018. Estimating milk yield 

and value losses from increased somatic cell count on US dairy farms. J. Dairy 

Sci. 101:3588–3596. 

Hagnestam-Nielsen, C., U. Emanuelson, B. Berglund, and E. Strandberg. 2009. 

Relationship between somatic cell count and milk yield in different stages of 

lactation. J. Dairy Sci. 92:3124–3133. 

Halasa, T., K. Huijps, O. Østerås, and H. Hogeveen. 2007. Economic effects of 

bovine mastitis and mastitis management: A review. Vet. Q. 29:18–31. 

doi:10.1080/01652176.2007.9695224. 

Halasa, T., M. Nielen, T. van Werven, and H. Hogeveen. 2010. A simulation model 

to calculate costs and benefits of dry period interventions in dairy cattle. 

Livest. Sci. 129:80–87. 

Halasa, T., M. Nielen, A.C. Whist, and O. Østerås. 2009. Meta-analysis of dry cow 

management for dairy cattle. Part 2. Cure of existing intramammary infections. 

J. Dairy Sci. 92:3150–3157. 

Hansson, H., and C.J. Lagerkvist. 2014. Defining and measuring farmers’ attitudes 

to farm animal welfare. Anim. Welf. 23:47–56. 

Hansson, H., and C.J. Lagerkvist. 2015. Identifying use and non-use values of animal 

welfare: Evidence from Swedish dairy agriculture. Food Policy 50:35–42. 

Harmon, R.J. 1994. Mastitis and genetic evaluation for somatic cell count. J. Dairy 

Sci. 77:1151–1161. 

Heikkilä, A.-M., E. Liski, S. Pyörälä, and S. Taponen. 2018. Pathogen-specific 

production losses in bovine mastitis. J. Dairy Sci. 101:9493–9504. 



 

 

83 

 

doi:10.3168/jds.2018-14824. 

Heikkilä, A.-M., J.I. Nousiainen, and S. Pyörälä. 2012. Costs of clinical mastitis with 

special reference to premature culling. J. Dairy Sci. 95:139–150. 

Herzon, I., and M. Mikk. 2007. Farmers’ perceptions of biodiversity and their 

willingness to enhance it through agri-environment schemes: A comparative 

study from Estonia and Finland. J. Nat. Conserv. 15:10–25. 

Hiitiö, H., J. Vakkamäki, H. Simojoki, T. Autio, J. Junnila, S. Pelkonen, and S. 

Pyörälä. 2017. Prevalence of subclinical mastitis in Finnish dairy cows: 

changes during recent decades and impact of cow and herd factors. Acta Vet. 

Scand. 59:1–14. 

Hillerton, E., and J.M. Booth. 2018. The five-point mastitis control plan—A revisory 

tutorial. Proc. 57th Annu. Mtg. Natl. Mastit. Counc. Tucson, AZ, USA 30. 

Høg, B.B., J. Ellis-Iversen, U.W. Sönksen, H. Korsgaard, A.E. Henius, K.S.S. 

Pedersen, F. Bager, R.L. Larsen, C.B. Jensen, and A. Bjarnum. 2019. 

DANMAP 2018 - Use of antimicrobial agents and occurrence of antimicrobial 

resistance in bacteria from food animals, food and humans in Denmark. 

Statens Serum Institut, Copenhagen. 

Hogeveen, H., K.J. Buma, and R. Jorritsma. 2013. Use and interpretation of mastitis 

alerts by farmers. Pages 313–319 in Proceedings of the 6th European 

conference on precision livestock farming. 

Hogeveen, H., C. Kamphuis, W. Steeneveld, and H. Mollenhorst. 2010. Sensors and 

clinical mastitis—The quest for the perfect alert. Sensors 10:7991–8009. 

Hogeveen, H., I.C. Klaas, G. Dalen, H. Honig, A. Zecconi, D.F. Kelton, and M.S. 

Mainar. 2021. Novel ways to use sensor data to improve mastitis management. 

J. Dairy Sci. 104:11317–11332. 

Hogeveen, H., W. Ouweltjes, C. De Koning, and K. Stelwagen. 2001. Milking 

interval, milk production and milk flow-rate in an automatic milking system. 

Livest. Prod. Sci. 72:157–167. 

Hogeveen, H., W. Steeneveld, and C.A. Wolf. 2019. Production Diseases Reduce 

the Efficiency of Dairy Production: A Review of the Results, Methods, and 

Approaches Regarding the Economics of Mastitis. Annu. Rev. Resour. Econ. 

11:289–312. 

Højsgaard, S., and N.C. Friggens. 2010. Quantifying degree of mastitis from 

common trends in a panel of indicators for mastitis in dairy cows. J. Dairy Sci. 

93:582–592. 

Hortet, P., F. Beaudeau, H. Seegers, and C. Fourichon. 1999. Reduction in milk yield 

associated with somatic cell counts up to 600 000 cells/ml in French Holstein 

cows without clinical mastitis. Livest. Prod. Sci. 61:33–42. 

Huijps, K., and H. Hogeveen. 2007. Stochastic modeling to determine the economic 

effects of blanket, selective, and no dry cow therapy. J. Dairy Sci. 90:1225–

1234. 

International Dairy Federation. 2011. Suggested Interpretation of Mastitis 

Terminology (revision of Bulletin of IDF N° 338/1999). Brussels. 

International Dairy Federation. 2013. Guidelines for the use and interpretation of 



 

84 

 

bovine milk somatic cell counts (SCC) in the dairy industry. Brussels. 

ISO. 2007. ISO/DIS 20966: Automatic milking installations—Requirements and 

testing. Geneva. 

Jansen, J., B.H.P. Van den Borne, R.J. Renes, G. Van Schaik, T. Lam, and C. 

Leeuwis. 2009. Explaining mastitis incidence in Dutch dairy farming: the 

influence of farmers’ attitudes and behaviour. Prev. Vet. Med. 92:210–223. 

Jensen, D.B., H. Hogeveen, and A. De Vries. 2016. Bayesian integration of sensor 

information and a multivariate dynamic linear model for prediction of dairy 

cow mastitis. J. Dairy Sci. 99:7344–7361. 

Jones, P.J., E.A. Marier, R.B. Tranter, G. Wu, E. Watson, and C.J. Teale. 2015. 

Factors affecting dairy farmers’ attitudes towards antimicrobial medicine 

usage in cattle in England and Wales. Prev. Vet. Med. 121:30–40. 

Khatun, M., C.E.F. Clark, N.A. Lyons, P.C. Thomson, K.L. Kerrisk, and S.C. 

García. 2017. Early detection of clinical mastitis from electrical conductivity 

data in an automatic milking system. Anim. Prod. Sci. 57:1226–1232. 

Khatun, M., P.C. Thomson, C.E.F. Clark, and S.C. García. 2019. Prediction of 

quarter level subclinical mastitis by combining in-line and on-animal sensor 

data. Anim. Prod. Sci. 60:180–186. 

Khatun, M., P.C. Thomson, K.L. Kerrisk, N.A. Lyons, C.E.F. Clark, J. Molfino, and 

S.C. García. 2018. Development of a new clinical mastitis detection method 

for automatic milking systems. J. Dairy Sci. 101:9385–9395. 

Klaas, I.C., and R.N. Zadoks. 2018. An update on environmental mastitis: 

Challenging perceptions. Transbound. Emerg. Dis. 65:166–185. 

Klungel, G.H., B.A. Slaghuis, and H. Hogeveen. 2000. The effect of the introduction 

of automatic milking systems on milk quality. J. Dairy Sci. 83:1998–2003. 

De Koning, C. 2010. Automatic milking–common practice on dairy farms. Pages 

52–57 in First North American Conference on Precision Dairy Management, 

Toronto. 

Kristensen, A.R., E. Jørgensen, and N. Toft. 2016. Herd Management Science: I. 

Basic Concepts. 2010 editi. Department of Large Animal Sciences, University 

of Copenhagen, Copenhagen. 

Kristula, M.A., C.R. Curtis, D.T. Galligan, and R.C. Bartholomew. 1992. Use of a 

repeated-measures logistic regression model to predict chronic mastitis in 

dairy cows. Prev. Vet. Med. 14:57–68. 

Kuipers, A., W.J. Koops, and H. Wemmenhove. 2016. Antibiotic use in dairy herds 

in the Netherlands from 2005 to 2012. J. Dairy Sci. 99:1632–1648. 

Lam, T., B.H.P. Van Den Borne, J. Jansen, K. Huijps, J.C.L. Van Veersen, G. Van 

Schaik, and H. Hogeveen. 2013. Improving bovine udder health: A national 

mastitis control program in the Netherlands. J. Dairy Sci. 96:1301–1311. 

Liseune, A., M. Salamone, D. Van den Poel, B. Van Ranst, and M. Hostens. 2021. 

Predicting the milk yield curve of dairy cows in the subsequent lactation period 

using deep learning. Comput. Electron. Agric. 180:105904. 

Lundberg, S.M., and S.-I. Lee. 2017. A unified approach to interpreting model 

predictions. Pages 4765–4774 in Advances in neural information processing 



 

 

85 

 

systems. 

Mankad, A. 2016. Psychological influences on biosecurity control and farmer 

decision-making. A review. Agron. Sustain. Dev. 36:1–14. 

Martins, S.A.M., V.C. Martins, F.A. Cardoso, J. Germano, M. Rodrigues, C. Duarte, 

R. Bexiga, S. Cardoso, and P.P. Freitas. 2019. Biosensors for on-farm 

diagnosis of mastitis. Front. Bioeng. Biotechnol. 7:186. 

Mills, K.E., K.E. Koralesky, D.M. Weary, and M.A.G. von Keyserlingk. 2020. Dairy 

farmer advising in relation to the development of standard operating 

procedures. J. Dairy Sci. 103:11524–11534. 

Mollenhorst, H., L.J. Rijkaart, and H. Hogeveen. 2012. Mastitis alert preferences of 

farmers milking with automatic milking systems. J. Dairy Sci. 95:2523–2530. 

Naqvi, S.A., M.T.M. King, R.D. Matson, T.J. DeVries, R. Deardon, and H.W. 

Barkema. 2022. Mastitis detection with recurrent neural networks in farms 

using automated milking systems. Comput. Electron. Agric. 192:106618. 

Von Neumann, J., O. Morgenstern, and H.W. Kuhn. 2007. Theory of Games and 

Economic Behavior (Commemorative Edition). Princeton university press. 

Newton, H.T., M.J. Green, H. Benchaoui, V. Cracknell, T. Rowan, and A.J. Bradley. 

2008. Comparison of the efficacy of cloxacillin alone and cloxacillin 

combined with an internal teat sealant for dry‐cow therapy. Vet. Rec. 162:678–

683. 

Nielen, M., H. Deluyker, Y.H. Schukken, and A. Brand. 1992. Electrical 

conductivity of milk: measurement, modifiers, and meta analysis of mastitis 

detection performance. J. Dairy Sci. 75:606–614. 

Nørstebø, H., G. Dalen, A. Rachah, B. Heringstad, A.C. Whist, A. Nødtvedt, and O. 

Reksen. 2019. Factors associated with milking-to-milking variability in 

somatic cell counts from healthy cows in an automatic milking system. Prev. 

Vet. Med. 172:104786. 

Nyman, A.-K., U. Emanuelson, and K.P. Waller. 2016. Diagnostic test performance 

of somatic cell count, lactate dehydrogenase, and N-acetyl-β-d-

glucosaminidase for detecting dairy cows with intramammary infection. J. 

Dairy Sci. 99:1440–1448. 

Pan, S.J., and Q. Yang. 2009. A survey on transfer learning. IEEE Trans. Knowl. 

Data Eng. 22:1345–1359. 

Pieper, L., A. Godkin, U. Roesler, A. Polleichtner, D. Slavic, K.E. Leslie, and D.F. 

Kelton. 2012. Herd characteristics and cow-level factors associated with 

Prototheca mastitis on dairy farms in Ontario, Canada. J. Dairy Sci. 95:5635–

5644. 

Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, and R Core Team. 2019. nlme: Linear 

and nonlinear mixed effects models. R package version 3.1-137. 

Pinzón-Sánchez, C., and P.L. Ruegg. 2011. Risk factors associated with short-term 

post-treatment outcomes of clinical mastitis. J. Dairy Sci. 94:3397–3410. 

Pylianidis, C., S. Osinga, and I.N. Athanasiadis. 2021. Introducing digital twins to 

agriculture. Comput. Electron. Agric. 184:105942. 

Pyörälä, S. 2003. Indicators of inflammation in the diagnosis of mastitis. Vet. Res. 



 

86 

 

34:565–578. 

R Core Team. 2018. R: A language and environment for statistical computing. 

Dos Reis, C.B.M., J.R. Barreiro, L. Mestieri, M.A. de Felício Porcionato, and M.V. 

dos Santos. 2013. Effect of somatic cell count and mastitis pathogens on milk 

composition in Gyr cows. BMC Vet. Res. 9:1–7. 

Ribeiro, M.T., S. Singh, and C. Guestrin. 2016. “ Why should i trust you?” 

Explaining the predictions of any classifier. Pages 1135–1144 in Proceedings 

of the 22nd ACM SIGKDD international conference on knowledge discovery 

and data mining. 

St. Rose, S.G.S., J.M. Swinkels, W.D.J. Kremer, C.L.J.J. Kruitwagen, and R.N. 

Zadoks. 2003. Effect of penethamate hydriodide treatment on bacteriological 

cure, somatic cell count and milk production of cows and quarters with chronic 

subclinical Streptococcus uberis or Streptococcus dysgalactiae infection. J. 

Dairy Res. 70:387–394. 

Rothery, C., M. Strong, H.E. Koffijberg, A. Basu, S. Ghabri, S. Knies, J.F. Murray, 

G.D.S. Schmidler, L. Steuten, and E. Fenwick. 2020. Value of information 

analytical methods: report 2 of the ISPOR value of information analysis 

emerging good practices task force. Value Heal. 23:277–286. 

Rutten, C.J., A.G.J. Velthuis, W. Steeneveld, and H. Hogeveen. 2013. Invited 

review: Sensors to support health management on dairy farms. J. Dairy Sci. 

96:1928–1952. 

Santman-Berends, I., T. Lam, J. Keurentjes, and G. Van Schaik. 2015. An estimation 

of the clinical mastitis incidence per 100 cows per year based on routinely 

collected herd data. J. Dairy Sci. 98:6965–6977. 

Scherpenzeel, C.G.M., H. Hogeveen, L. Maas, and T. Lam. 2018. Economic 

optimization of selective dry cow treatment. J. Dairy Sci. 101:1530–1539. 

Schmenger, A., and V. Krömker. 2020. Characterization, cure rates and associated 

risks of clinical mastitis in Northern Germany. Vet. Sci. 7:170. 

Siivonen, J., S. Taponen, M. Hovinen, M. Pastell, B.J. Lensink, S. Pyörälä, and L. 

Hänninen. 2011. Impact of acute clinical mastitis on cow behaviour. Appl. 

Anim. Behav. Sci. 132:101–106. 

Silva, S.R., J.P. Araujo, C. Guedes, F. Silva, M. Almeida, and J.L. Cerqueira. 2021. 

Precision technologies to address dairy cattle welfare: focus on lameness, 

mastitis and body condition. Animals 11:2253. 

Smith, K.L., J.E. Hillerton, and R.J. Harmon. 2001. Guidelines on normal and 

abnormal raw milk based on somatic cell counts and signs of clinical mastitis. 

National Mastitis Council, Madison, Wisconsin. 

Sol, J., O.C. Sampimon, H.W. Barkema, and Y.H. Schukken. 2000. Factors 

associated with cure after therapy of clinical mastitis caused by 

Staphylococcus aureus. J. Dairy Sci. 83:278–284. 

Sørensen, L.P., M. Bjerring, and P. Løvendahl. 2016. Monitoring individual cow 

udder health in automated milking systems using online somatic cell counts. 

J. Dairy Sci. 99:608–620. 

Speksnijder, D.C., D.J. Mevius, C.J.M. Bruschke, and J.A. Wagenaar. 2015. 



 

 

87 

 

Reduction of veterinary antimicrobial use in the Netherlands. The Dutch 

success model. Zoonoses Public Health 62:79–87. 

Steeneveld, W., P. Amuta, F.J.S. van Soest, R. Jorritsma, and H. Hogeveen. 2020. 

Estimating the combined costs of clinical and subclinical ketosis in dairy cows. 

PLoS One 15:e0230448. 

Steeneveld, W., J. Swinkels, and H. Hogeveen. 2007. Stochastic modelling to assess 

economic effects of treatment of chronic subclinical mastitis caused by 

Streptococcus uberis. J. Dairy Res. 74:459–467. 

Steeneveld, W., T. van Werven, H.W. Barkema, and H. Hogeveen. 2011. Cow-

specific treatment of clinical mastitis: An economic approach. J. Dairy Sci. 

94:174–188. 

Swinkels, J.M., K.A. Leach, J.E. Breen, B. Payne, V. White, M.J. Green, and A.J. 

Bradley. 2021. Randomized controlled field trial comparing quarter and cow 

level selective dry cow treatment using the California Mastitis Test. J. Dairy 

Sci. 104:9063–9081. 

Swinkels, J.M., J.G.A. Rooijendijk, R.N. Zadoks, and H. Hogeveen. 2005. Use of 

partial budgeting to determine the economic benefits of antibiotic treatment of 

chronic subclinical mastitis caused by Streptococcus uberis or Streptococcus 

dysgalactiae. J. Dairy Res. 72:75–85. 

Taponen, S., E. Liski, A.-M. Heikkilä, and S. Pyörälä. 2017. Factors associated with 

intramammary infection in dairy cows caused by coagulase-negative 

staphylococci, Staphylococcus aureus, Streptococcus uberis, Streptococcus 

dysgalactiae, Corynebacterium bovis, or Escherichia coli. J. Dairy Sci. 

100:493–503. 

Taponen, S., H. Simojoki, M. Haveri, H.D. Larsen, and S. Pyörälä. 2006. Clinical 

characteristics and persistence of bovine mastitis caused by different species 

of coagulase-negative staphylococci identified with API or AFLP. Vet. 

Microbiol. 115:199–207. 

Vaarst, M., B. Paarup-Laursen, H. Houe, C. Fossing, and H.J. Andersen. 2002. 

Farmers’ choice of medical treatment of mastitis in Danish dairy herds based 

on qualitative research interviews. J. Dairy Sci. 85:992–1001. 

Växa Sverige. 2020. Husdjursstatistik 2020. Accessed February 17, 2022. 

https://www.vxa.se/globalassets/dokument/statistik/husdjursstatistik-

2020.pdf. 

Wilson, D.J., R.N. Gonzalez, K.L. Case, L.L. Garrison, and Y.T. Groöhn. 1999. 

Comparison of seven antibiotic treatments with no treatment for 

bacteriological efficacy against bovine mastitis pathogens. J. Dairy Sci. 

82:1664–1670. 

Wolff, C., M. Espetvedt, A.-K. Lind, S. Rintakoski, A. Egenvall, A. Lindberg, and 

U. Emanuelson. 2012. Completeness of the disease recording systems for 

dairy cows in Denmark, Finland, Norway and Sweden with special reference 

to clinical mastitis. BMC Vet. Res. 8:131. 

Wood, P.D.P. 1967. Algebraic model of the lactation curve in cattle. Nature 

216:164–165. 



 

88 

 

Wood, S. 2021. Mgcv : Mixed GAM Computation Vehicle with GCV/AIC/REML 

Smoothness Estimation. Accessed September 29, 2021. https://cran.r-

project.org/web/packages/mgcv/index.html. 

Wood, S.N., Z. Li, G. Shaddick, and N.H. Augustin. 2017. Generalized additive 

models for gigadata: modeling the UK black smoke network daily data. J. Am. 

Stat. Assoc. 112:1199–1210. 

Zadoks, R.N., B.E. Gillespie, H.W. Barkema, O.C. Sampimon, S.P. Oliver, and Y.H. 

Schukken. 2003. Clinical, epidemiological and molecular characteristics of 

Streptococcus uberis infections in dairy herds. Epidemiol. Infect. 130:335–

349. 

Zhou, Y., Y. Ren, C. Fan, H. Shao, Z. Zhang, W. Mao, C. Wei, H. Ni, Z. Zhu, and 

X. Hou. 2013. Survey of mycotic mastitis in dairy cows from Heilongjiang 

Province, China. Trop. Anim. Health Prod. 45:1709–1714. 

 

  



 

 

89 

 

Mastitis in dairy cows is an inflammation in the udder that can reduce animal 

welfare and can be costly in terms of reduced milk production. Since the 

1990s, automatic milking systems have been commercially available where 

the cow can be milked without human labor. These systems are equipped 

with sensors that measure the cow’s health by analyzing her milk. For 

instance, these sensors could measure electrical conductivity, the number of 

immune cells, and activity of enzymes in the milk. Different programs have 

been developed to use this sensor data to alarm the farmer in the case of 

mastitis. However, less programs have been developed to help the farmer 

decide what to do when mastitis is found. This thesis investigates new ways 

in which existing sensor data can be used to help the farmer in the decision 

making whether to intervene in a case of mastitis or not.  

More specifically, paper I investigated the average duration of mastitis 

that recover based on sensor data. On average, recovering from mastitis takes 

3-4 weeks measured by the commonly used mastitis indicators. After this 

period, it becomes unlikely that a cow will recover and therefore the farmer 

may want to treat or remove the cow from the herd. 

Paper II investigated the losses of milk production for various value levels 

of three different sensors (the activity of an enzyme, electronic conductivity, 

and somatic cell count) that are commonly equipped on automatic milking 

systems. The results showed that, at low sensor levels, almost no milk 

production losses were observed. The milk production losses would increase 

substantially after specific higher sensor values. Using these thresholds, 

farmers can be alerted when the milk yield production decreases 

substantially and that action may be needed. 

In Paper III, we developed a method to forecast whether a case of mastitis 

would recover, using an advanced forecasting model and sensor data from 
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the recent past. The results showed that it was possible to forecast the 

outcome of the disease, whether it would recover or become chronic. This 

forecast could help the farmer in the decision to intervene in a mastitis case 

when it becomes clear that a case does not recover on its own. 

Paper IV estimated the economic consequences of non-curing or chronic 

mastitis cases to show their impact on the economic situation of a dairy farm. 

The impact was approximately 50% of the total cost of mastitis. This shows 

that handling chronic mastitis well is important, as it would have a large 

impact on the total cost of mastitis on the farm. 

Paper IV also estimated the economic impact of different sensor-based 

strategies to manage mastitis. It shows which strategy tends to decrease the 

cost of mastitis and chronic mastitis the most. The model could be used to 

test a wide range of sensor-based management strategies to select the most 

promising strategies before trying them in practice. 

This thesis lays the groundwork for a sensor-based decision support 

program, using different scientific methods, that could inform the farmer on 

chronic mastitis. Such a program could inform the farmer on when 

intervention is worthwhile based on the expected outcome and the 

consequences of the intervention.  
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Mastit är en inflammation som kan uppstå i juvret hos mjölkkor och ha en 

negativ inverkan på djurvälfärden liksom bondens ekonomi genom förlorade 

intäkter på grund av minskad mjölkproduktion. Automatiska 

mjölkningssystem, där kon mjölkas utan att någon aktiv arbetsinsats krävs, 

har funnits på marknaden sedan 1990 talet. Dessa system är utrustade med 

sensorer som kan mäta flera olika juverhälsoindikatorer genom att analysera 

mjölken. För att hitta mastiter har olika modeller som kombinerar data från 

olika sensorer med information om kon studerats. Emellertid finns det i 

dagsläget få verktyg som hjälper bonden att ta beslut om vad denne ska göra 

när en mastit väl har upptäckts av systemet. I denna avhandling undersöktes 

hur sensordata från automatiska mjölkningssystem kan användas för att 

utveckla nya sensorbaserade verktyg som kan ge stöd för bonden i 

beslutsfattande och agerande kring kor med mastit.  

I den första artikeln undersöktes den genomsnittliga tiden det tar för en 

juverinflammation att läka ut av sig själv. Kriterierna för självutläkningen 

baserades på data från sensorer och det visade sig vara en period mellan 3 

och 4 veckor. Efter den perioden är det inte troligt att kon blir frisk och 

bonden måste i stället behandla henne eller slå ut henne. 

I den andra artikeln undersöktes hur tre vanligt förekommande sensorer 

(som mäter enzymaktivitet, elektrisk konduktivitet samt antalet celler i 

mjölken) i automatiska mjölkningssystem speglar hur mjölkmängden 

minskar vid en mastit. Resultatet visade att det inte var stora förluster av 

mjölk vid låga värden för alla tre typer av sensorer. Däremot kunde vi se att 

mjölkproduktionen minskade i en ökande takt när sensorerna visade värden 

över en viss nivå. Denna kunskap är användbar för att indikera för bonden 

när mjölkförlusterna blir stora ock måste åtgärdas 
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I den tredje artikeln användes sensordata över en längre tid för att skapa 

avancerade modeller som kunde förutsäga sannolikheten för ett mastitfall 

skulle läka ut av sig självt. Resultaten visade att det var möjligt att förutse 

hur ett mastitfall skulle utvecklas, dvs om mastitfallet skulle självläka eller 

kvarstå och bli ett så kallat kroniskt mastitfall. Modellen kan därför användas 

för att fatta beslut om när bonden måste göra något för att kon ska bli bra 

eller ej. 

I den fjärde artikeln skattades de ekonomiska konsekvenserna av de 

kroniska mastitfallen. Dessa kostnader visade sig uppgå till ungefär 50 % av 

de totala kostnaderna för mastit. Det betyder att det är minst lika viktigt att 

ta väl hand om kroniska fall eftersom de har en stor effekt på gårdens 

ekonomi. 

Vidare skattades även den ekonomiska effekten av olika åtgärder kring 

mastit som baseras på information från sensorer. Detta gjordes för att 

fastställa vilken typ av strategi som är mest lönsam och minskar kostnaden 

för mastiter såväl som kronisk mastiter mest. Med en sådan modell kan man 

utvärdera många olika åtgärder och välja den som har störst positiv effekt 

redan innan man faktiskt gör något. 

Den här avhandlingen lägger grunden för att kunna utveckla 

beslutsmodeller som baseras på information från sensorer, så kallade 

sensorbaserade beslutsmodeller. Genom metoder baserade på vetenskap, kan 

bonden få information om vilka mastitfall som är kroniska, vilka som 

riskerar att bli kroniska samt vilka fall som ger allvarligast konsekvenser med 

avseende på mjölkproduktion och ekonomi. En sådan modell kan hjälpa 

bonden att avgöra när det är lönsamt att vidta åtgärder baserat på förväntade 

effekter och konsekvenser av åtgärderna. 
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ABSTRACT

In automatic milking systems (AMS), sensors can 
measure cow behavior and milk composition at every 
milking. The aim of this observational study of previ-
ously collected data was to gain insight into the dif-
ferences in dynamics of udder inflammation indicators 
between cows that recover and those that do not re-
cover after detection of an initial inflammation. Milk 
diversion (milk separated from the bulk tank and thus 
indicating farmer intervention), conductivity, and so-
matic cell count (SCC) data from 4 wk before the initial 
inflammation to 12 wk after the initial inflammation 
were used to analyze 2,584 cases of udder inflammation. 
An udder inflammation case was defined as an initial 
observation of SCC ≥200,000 cells/mL as well as 1 ad-
ditional SCC measurement >200,000 cells/mL within 
10 d after the initial case, among other requirements. 
The data originated from 15 AMS herds in 6 countries. 
Four subsets of cows were created based on whether 
milk was diverted after the initial inflammation and 
whether the udder inflammation cases recovered, using 
a 10-d rolling average SCC threshold of 200,000 cells/
mL and checking whether this rolling mean was below 
the threshold within 90 d after the initial inflammation 
as the indication of recovery. This formed the following 
subsets of cow lactations: milk diverted–recovered, milk 
diverted–not recovered, no milk diverted–not recovered, 
no milk diverted–recovered. Thresholds of 100,000 SCC/
mL and 300,000 SCC/mL for the definition of case and 
recovery were also applied in a sensitivity analysis but 
with no substantial difference in results. Linear mixed 
models were used for each subset to study the variation 
in SCC (natural logarithm of SCC divided by 1,000) 
and σ-conductivity (natural logarithm of standard 

deviation of quarter conductivities). When observing 
the fraction of cows with SCC <200,000 cells/mL in 
the recovery subsets, most cows recovered within 20 d 
after the initial inflammation. In the recovery subsets, 
both σ-conductivity and SCC stabilized, mostly within 
3 to 4 wk after the initial inflammation. σ-Conductivity 
stabilized above the pre-onset level in all subsets and 
did not show a clear increase in the no-milk-diverted 
subgroups, whereas SCC stabilized closer to the pre-
onset level. Overall, this study indicated a cutoff point 
between nonchronic and chronic changes in indicators 
3 to 4 wk after the initial inflammation for SCC and 
σ-conductivity.
Key words: mastitis, recovery, conductivity, somatic 
cell count

INTRODUCTION

Mastitis or udder inflammation is a common produc-
tion disease in dairy herds, causing compromised animal 
welfare and high but widely varying economic losses 
(Hogeveen et al., 2019). Early detection and proper 
treatment of mastitis is of benefit in terms of milk 
yield, quality of milk, and cow health (Milner et al., 
1997). Research on using sensors for mastitis detection 
has gained attention (Hogeveen et al., 2010), although 
the prediction of disease progression and duration has 
garnered almost no attention in the literature.

In automatic milking systems (AMS), sensors con-
tinuously measure cow behavior and milk composition 
for the detection of mastitis (Hogeveen et al., 2010). 
Because of the increasing number of sensors available 
on dairy farms, additional cow information is available 
on a daily or per milking level. This high frequency 
of measurement creates many novel opportunities that 
were not possible until quite recently. For instance, 
these high frequency data have the potential to routine-
ly establish patterns of an udder inflammation episode 
much more precisely than measurements on DHI test 
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days. The time from the point of infection to increased 
SCC is measured in hours rather than months (Bur-
venich et al., 1994; Shuster et al., 1996; Kruze et al., 
2007; Moyes et al., 2009), and frequent measurement 
of inflammation indicators is therefore a significant im-
provement. Having udder inflammation indicator data 
at every milking could be of high potential benefit for 
farmers who must decide whether and when to inter-
vene. Farmers could base their decisions on the differ-
ences between the patterns of a specific udder inflam-
mation episode and typical patterns of recovered udder 
inflammation cases. However, practical knowledge of 
inflammation indicator patterns and the typical inflam-
mation indicator episode duration based on sensor data 
is lacking. Given that the data are readily available, the 
potential benefits for farmer decision-making could be 
large because a potential decision-support system can 
be widely implemented.

Knowledge about the typical duration and trajec-
tory of an udder inflammation recovery has practical 
implications. The farmer can decide whether or not to 
cull a cow when it does not recover after the typical du-
ration of an udder inflammation episode. In addition, 
definitions of subclinical udder inflammation based on 
monthly DHI data (e.g., chronicity determined by the 
past 2 monthly SCC values; as used by St. Rose et 
al., 2003) are of limited value when a farmer obtains 
data at every milking. Therefore, specific sensor-based 
definitions are needed for daily decision-making in 
sensor-based systems.

Conceptually, udder inflammation recovery or non-
chronic udder inflammation can be defined as the cow 
returning to a healthy state after an udder inflamma-
tion episode, as operationalized in terms of SCC in the 
literature (de Haas et al., 2004). Given that definition, 
chronicity can be defined as the lack of returning to 
a healthy state within the period in which recovered 
cows typically do recover. In the past, researchers used 
monthly or bimonthly DHI data to study udder inflam-
mation recovery or milk yield losses caused by udder 
inflammation (Jones et al., 1984; de Haas et al., 2004; 
Hand et al., 2012). This frequency made it difficult to 
determine temporal patterns. In contrast, sensors in 
AMS can measure udder inflammation–related inflam-
matory indicators, such as conductivity, SCC, and lac-
tate dehydrogenase (LDH), and other milking-related 
variables (e.g., milk yield, blood presence, and milk 
flow) at each milking. The analysis of temporal pat-
terns can therefore focus on daily patterns of variables. 
Fogsgaard et al. (2015) looked at the recovery phase 
of udder inflammation in general and for different 
pathogens using AMS data. They concluded that udder 
inflammation has large effects on milking frequency, 
LDH activity, and milk yield. However, the patterns of 

conductivity- and SCC-based measures remain to be 
explored.

The overarching aim of this observational study was 
to gain insight into the differences in the progression 
of inflammation indicators after the initial onset of ud-
der inflammation, as indicated by an increase in SCC 
between cows that recover and cows that do not recover 
on commercial dairy farms. More specifically, the study 
explored sensor measurements of SCC and conductivity 
in terms of episode length (the time until the inflamma-
tion indicator stabilizes; i.e., revolves around a constant 
mean) after the initial onset of udder inflammation, and 
whether the level after the initial udder inflammation 
is equal to that before the initial udder inflammation. 
This knowledge can be used to build new groundwork 
for the definitions of chronic and nonchronic udder in-
flammation cases using daily available sensor data.

MATERIALS AND METHODS

Data Collection

Data of 15 AMS herds located in Belgium, Canada, 
Germany, the Netherlands, Scotland, and Sweden were 
retrieved from a database of DeLaval International AB 
(Tumba, Sweden). The data covered a period from Jan-
uary 4, 2016, to March 14, 2019, although not all farms 
began reporting on January 4, 2016. The herds were 
selected based on the presence of an AMS (VMS series, 
DeLaval International AB) to measure conductivity, 
an Online Cell Counter (OCC; DeLaval International 
AB) to measure SCC, and having documentation on 
whether milk from individual cows was diverted from 
the bulk milk tank. Because this was an observational 
study using previously collected data, we did not have 
any information on farmers’ approach toward milk 
diversion. Consequently, we could not control for dif-
ferences in milk diversion strategies or the diagnostic 
skills to detect and treat inflammation by the farmer. 
The average daily milk yield per cow varied between 
27.9 and 39.9 kg/d between herds, with a mean of 32.2 
kg/d (Appendix Table A1).

The following variables were gathered from the AMS 
management software and included in this study:

• Milk diversion, defined as whether milk on that 
day did enter the bulk tank to be sold (1) or not 
(0). Because the farmer diverted milk away from 
the bulk tank with consumable milk, the diversion 
is likely due to an intervention in, for example, a 
mastitis case (Bonestroo et al., 2020). We used 
milk diversion as a proxy for farmer intervention 
and to separate cases where farmers have likely 
detected and intervened in the case.
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• Mean conductivity of the milking quarters during 
milking. This was used to calculate σ-conductivity, 
defined as the natural log of the standard devia-
tion of the mean quarter conductivities within cow 
over the total milk produced at each milking.

• SCC, in 1,000 cells/mL as measured by an OCC.
• DIM.
• Parity, with 2 categories: primiparous (0) and 

multiparous (1).

The natural logarithm transformation was applied to 
σ-conductivity and SCC to obtain approximately ho-
moscedastic and normally distributed residuals in the 
linear mixed model.

Preparation of Data

Milking level observations of SCC, σ-conductivity, 
and the diverted milk indicator were aggregated to a 
daily level by taking the maximum value of these values 
on a given day. Every observation below 10 DIM of 
every lactation was removed. This was an average of 
DIM removal thresholds used by other authors (Hand 
et al., 2012; Dalen et al., 2019).

Below, we define the episodes and their requirements. 
An overview of these definitions can be seen in Figure 
1. The start of an udder inflammation episode during 
lactation was defined as the first observation within 
lactation of an increased SCC (as measured by OCC) 
≥200,000 cells/mL. This start of the udder inflamma-
tion episode was defined as the “initial inflammation” 
in this study. The data from 4 wk before the initial 

inflammation and as much as was available until 12 
wk after the initial inflammation was used for analy-
ses, and this time period was defined as the “udder 
inflammation episode sequence.” Next, a set of require-
ments was imposed. First, to counter the possibility 
of a false-positive initial inflammation detection, the 
initial inflammation needed to be combined with one 
or more SCC measurements ≥200,000 cells/mL (Dohoo 
and Leslie, 1991; Smith et al., 2001) within all measure-
ments taken in the 10 d after the initial inflammation. 
This 10-d window was chosen because we expected that 
SCC would be measured on multiple days in the first 
10 d after the initial inflammation. It is important to 
note that the initial inflammation (d 0 in our analy-
sis) remained the first day when SCC increased above 
or equal to 200,000 cells/mL. Farmers can choose the 
OCC sampling settings; for example, following the 
default algorithm of the system or requiring daily mea-
surements of each cow. Lactations without an increased 
SCC within 10 d after the first initial inflammation 
were completely removed from the data set, because we 
could not confirm the start of the udder inflammation 
episode, and possible later episodes may therefore be 
part of the same unconfirmed episode. Second, lacta-
tion cycles were removed when 80 d or fewer with data 
were recorded within the first 10 to 100 DIM, to ensure 
that we had records of at least the start of each selected 
lactation to minimize the risk that the first initial in-
flammation that occurred earlier in lactation was not 
in the data sample.

In total, 7,302 of 7,902 lactations had cases of initial 
inflammation according to the case definition of an 
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OCC observation ≥200,000 cells/mL. Next, 4,331 of 
the 7,302 udder inflammation episodes had an addi-
tional OCC SCC observation ≥200,000 cells/mL within 
10 d after the initial inflammation. Finally, 2,584 udder 
inflammation episodes of the 4,331 originated from lac-
tation cycles in which more than 80 day-observations 
during the first 10 to 100 DIM were recorded and thus 
were retained for analysis.

Because treatment records were not available from 
all herds, we chose to use milk diversion as an approxi-
mation of a farmer intervention related to a mastitis 
episode (Bonestroo et al., 2020). Milk diversion was 
defined as diversion of milk for at least 2 consecutive 
days within the 10 d after the initial inflammation. A 
period of 2 d was chosen to avoid including automatic 
milk diversions made by the AMS itself based on sensor 
thresholds. We assumed that when milk was diverted 
for at least 2 d within 10 d of the initial inflammation, 
a cow was confirmed by the farmer as having mastitis 
and having diverted milk because (a) milk was deemed 
as not consumable, (b) the cow was treated with anti-
biotics, or (c) both. If there was no diversion after an 
episode according to our definition of an udder inflam-
mation episode, we assumed that the farmer did not 
intervene. Occasionally, some days of some cows with 
an udder inflammation episode, milking data, and milk 
diversion data could be missing. The missing values 
most likely indicated that a cow was milked outside the 
AMS during an udder inflammation episode. In these 
cases, we replaced the milk diversion status with the 
value of the previous day with complete registrations. 
This was done solely to determine milk diversion status 
and the imputed version of milk diversion was not fur-
ther used in the data analysis.

Recovery was defined as a decrease in SCC (mea-
sured by the OCC) to a healthy level after an initial 
increase of SCC to an unhealthy level, as done by de 
Haas et al. (2004). The threshold between a healthy 
and an unhealthy level was defined as 200,000 cells/
mL (Smith et al., 2001). However, a gray area exists 
between 100,000 and 199,999 cells/mL, according to 
the National Mastitis Council (Smith et al., 2001). To 
evaluate the influence of the chosen threshold, we also 
tested 100,000 and 300,000 cells/mL in the sensitiv-
ity analysis. More specifically, recovery from an udder 
inflammation episode for an individual cow was de-
fined as the individual cow having a rolling mean SCC 
<200,000 cells/mL (Smith et al., 2001) for 10 consecu-
tive days within 12 wk after the initial inflammation 
in the episode sequence. The rolling mean was only 
calculated when, during the 10-d window, at least 5 
d with SCC measurements were available. In the case 
where fewer than 5 d with SCC measurements were 

available in the 10-d window, the recovery status was 
determined as undefined and not regarded as recovered 
within the 10-d window.

Using the recovery definition and milk diversion 
status after the initial inflammation, the data set was 
split into 4 subsets of cows: (1) no diverted milk–no 
recovery, (2) diverted milk–no recovery, (3) no diverted 
milk–recovery, and (4) diverted milk–recovery.

Statistical Analysis

The effects of predictor variables on SCC and 
σ-conductivity were analyzed using a multivariable lin-
ear mixed model for each subset with DIM, parity, and 
weeks since initial inflammation as covariates and a 
random effect of a specific cow lactation (LactationID) 
and a random effect of a specific herd (HerdID); Her-
dID and LactationID indicate the identity of the herd 
and specific cow lactation number for a specific cow 
(e.g., cow 12 in its second lactation). Weeks since initial 
inflammation was a categorical variable with 17 levels 
(once per week from 4 wk before until 12 wk after the 
initial inflammation). Parity was a categorical variable 
coded for primiparous (0) and multiparous cows (1). 
The analysis used the daily data to estimate the effects 
of being several weeks before or after initial inflamma-
tion to analyze the data (Fogsgaard et al., 2015) to 
avoid unnecessarily complex models in the number of 
daily parameters that would need to be estimated.

The models for Y (i.e., SCC or σ-conductivity) took 
the following form:

 

Y week since alert parity DIM

ran

i
i

= ( )
=−
∑constant  +  +  +  

+
4

12

ddom intercept of  LactationID in HerdID
random intercept

  
+   of  HerdID,

 

where i is the week number relative to the week in 
which the initial inflammation was observed. Estimated 
marginal means were assessed for the weeks since the 
initial inflammation while evaluating all other covari-
ates at mean level. Different interactions and quadratic 
terms were tried but they had no substantial effect on 
the estimated marginal means and were therefore omit-
ted. Random effects of lactation of a specific cow and 
herd were included in the models as nested random 
intercepts (LactationID in HerdID and HerdID) and a 
first-order autoregressive correlation structure was used 
in line with Fogsgaard et al. (2015). The assumptions 
of homoscedasticity and normality of residuals were 
checked using fitted value residual plots and quantile-
quantile (qq) plots. The linear mixed models were esti-
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mated using nlme 3.1–137 (Pinheiro et al., 2019) using 
REML in R 3.5.1 (https: / / www .R -project .org/ ).

The robustness of the results subject to the exact 
values for these thresholds described above (Figure 
1) was tested in a sensitivity analysis by changing 
the SCC threshold to 100,000 and 300,000 cells/mL 
for the recovery definition and case requirements (re-
quirements 1 and 2) in case definition (see Figure 1) 
separately. We also changed the days in requirement 
2 of the case definition from 10 d to 5 and 20 d (see 
Figure 1). Furthermore, the recovery definition was 
altered by changing the consecutive days from 10 d to 
5 and 20 d during which the rolling mean SCC should 
be <200,000 cells/mL to determine recovery. The milk 
diversion status definition was changed from 2 d of milk 
diversion to 5 consecutive days of milk diversions in the 
first 10 d after the initial inflammation. Last, we reran 
the analysis for the 2 herds with the largest number 
of episodes to explore herd-specific episodes using the 
default thresholds and compared results with the full 
data set.

RESULTS

Descriptive Analyses

We analyzed 2,584 episode sequences from 15 herds. 
Table 1 displays descriptive statistics per herd for cows 
according to our definition of udder inflammation. The 
herds varied greatly in terms of proportions of days 
with diverted milk, duration of milk diversion, mean 
daily milk yield, median day of initial inflammation, 
mean SCC, number of lactations, and number of obser-
vations. Figure 2 shows the progression of the fraction 
of cows <200,000 cells/mL per day for the 4 subsets 
after the start of the episode up to 90 d after the start 
of the episode. For example, the recovery fraction in 
Figure 2 at d 10 after the initial inflammation was 68% 
of the cows in the no diverted milk–recovery subset; 
that is, cows that had an SCC observation <200,000 
cells/mL. As expected, in the nonrecovery subsets 
(no diverted milk–no recovery and diverted milk–no 
recovery), the fraction remained low because, per the 
subset definition given in Material and Methods, the 
cows in this subset did not have 10 consecutive days 
with a mean SCC <200,000 cells/mL. In both recovery 
subsets (no diverted milk–recovery and diverted milk–
recovery), the fraction increased substantially during 
the first 20 to 30 d after the initial inflammation, up 
to 65 to 80% of the cows in the respective subsets. 
The recovery fraction of the no diverted milk–recovery 
subset increased substantially faster than its diverted 
milk–recovery counterpart. Extra descriptive analysis 
on general herd information and descriptive analysis 

per subset are presented in Appendix Tables A1 and 
A2.

Linear Mixed Model Analyses

Somatic Cell Count. Somatic cell count in the 
week of the initial inflammation (i.e., week since initial 
inflammation = 0) was significantly higher than in most 
other weeks in all subsets (Table 2). However, the sub-
set no diverted milk–no recovery was different, because 
the mean SCC at the week of the initial inflammation 
was not significantly higher than the weeks after the 
week of the initial inflammation. The standard devia-
tion of the cow lactation random effect was larger than 
the standard deviation of the herd random effect for all 
SCC subset models, indicating a larger variation in the 
residuals between cows than between herds.

Figure 3 shows the estimated marginal means of the 
SCC from 4 wk before the initial inflammation to 12 
wk after the initial inflammation. At mean level, the 
diverted milk–recovery subset had >200,000 cells/mL 
(natural logarithm of 200 is 5.298) at approximately 1 
wk past the initial inflammation whereas that of the no 
diverted milk–recovery subset was <200,000 cells/mL 
in the week of the initial inflammation. Moreover, SCC 
in both the diverted milk–recovery and no diverted 
milk–recovery subsets stabilized approximately 3 to 
4 wk after the initial inflammation at a level slightly 
higher than that before the initial inflammation. As 
expected in the diverted milk–no recovery and no di-
verted milk–no recovery subsets, mean SCC remained 
stable and was, on average, >200,000 cells/mL after 
the initial inflammation throughout the 12-wk time 
window and higher compared with the level before ini-
tial inflammation. The average levels of SCC increased 
before the initial inflammation in all subsets except in 
the diverted milk–no recovery subset. Last, the average 
SCC value during the week of the initial inflammation 
of SCC of the diverted-milk subsets was higher than 
that of the no-diverted-milk subsets.

σ-Conductivity. Results from the multivariable 
analysis of σ-conductivity are presented in Table 2. 
σ-Conductivity in the week of initial inflammation was 
significantly different from that in most other weeks 
after the initial inflammation in all subsets, except for 
several weeks after initial inflammation in the no di-
verted milk–no recovery subset. However, even in the 3 
other subsets, the difference in the later weeks was less 
substantial than in the SCC subsets due, in part, to an 
increase in standard errors of the weekly coefficients. 
The standard deviation of the cow lactation random 
effect was larger than that of the herd random effect for 
all subsets, indicating greater variation in the residuals 
between cows than between herds.

Bonestroo et al.: DESCRIBING UDDER INFLAMMATION SENSOR DYNAMICS



3463

Journal of Dairy Science Vol. 104 No. 3, 2021

Bonestroo et al.: DESCRIBING UDDER INFLAMMATION SENSOR DYNAMICS

T
ab

le
 1

. 
D

es
cr

ip
ti
ve

 s
ta

ti
st

ic
s 

of
 t

he
 v

ar
ia

bl
es

 u
nd

er
 s

tu
dy

 i
n 

th
e 

da
ta

 s
et

 o
f 
co

w
s 

w
it
h 

an
 u

dd
er

 i
nf

la
m

m
at

io
n 

ep
is

od
e 

ac
co

rd
in

g 
to

 o
ur

 d
ef

in
it
io

n 
of

 u
dd

er
 i
nf

la
m

m
at

io
n 

in
 t

he
 

se
le

ct
ed

 h
er

ds

H
er

d 
nu

m
be

r

M
ea

n 
m

ilk
 

di
ve

rs
io

n 
pr

op
or

ti
on

1

M
ea

n 
du

ra
ti
on

 
of

 c
on

se
cu

ti
ve

 
m

ilk
 d

iv
er

si
on

 (
d)

M
ea

n 
m

ilk
 

yi
el

d 
(k

g/
d)

M
ed

ia
n 

D
IM

 
of

 i
ni

ti
al

 
in

fla
m

m
at

io
n 

af
te

r 
10

 D
IM

M
ea

n 
σ-

 
co

nd
uc

ti
vi

ty
2

M
ea

n 
SC

C
3

M
ea

n 
da

ys
 

be
tw

ee
n 

O
C

C
 

sa
m

pl
es

3
N

o.
 o

f 
la

ct
at

io
ns

N
o.

 o
f 

m
ilk

in
g 

da
ys

1
0.

01
2.

79
36

.3
5

23
−

1.
84

4.
58

1.
39

15
2

15
,7

17
2

0.
01

6.
34

36
.5

6
18

−
1.

73
4.

82
1.

50
46

8
45

,6
11

3
0.

04
2.

22
38

.4
1

23
−

1.
74

4.
73

2.
28

22
5

22
,6

32
4

0.
04

6.
10

48
.3

1
13

−
1.

90
4.

79
1.

16
17

6
17

,2
09

5
0.

05
6.

08
38

.3
4

11
−

1.
90

4.
63

1.
33

12
6

11
,8

78
6

0.
06

2.
55

35
.6

5
12

−
1.

66
5.

30
1.

76
22

7
21

,8
21

7
0.

02
3.

37
42

.0
3

15
−

1.
89

4.
80

2.
06

45
0

44
,3

64
8

0.
08

3.
14

42
.7

2
11

−
1.

81
4.

77
1.

46
14

1
13

,4
48

9
0.

03
5.

27
36

.2
1

13
−

1.
92

4.
38

1.
25

84
8,

19
8

10
0.

01
4.

72
32

.6
8

23
−

1.
85

4.
74

1.
28

16
4

16
,2

66
11

0.
01

6.
55

40
.9

3
12

−
1.

87
4.

72
1.

59
89

8,
33

7
12

0.
04

4.
21

34
.0

6
13

−
1.

68
5.

32
3.

02
72

6,
76

3
13

0.
01

8.
29

39
.1

9
12

−
2.

01
4.

02
1.

32
98

9,
40

3
14

0.
02

6.
79

35
.4

9
27

−
1.

82
4.

39
1.

21
86

8,
80

8
15

0.
03

2.
38

36
.1

8
11

−
1.

82
4.

81
1.

48
26

2,
42

8
M

ea
n

0.
03

4.
72

38
.2

1
15

.8
0

−
1.

83
4.

72
1.

61
17

2.
27

16
,8

58
.8

7
SD

0.
02

1.
92

3.
98

5.
49

0.
09

0.
32

0.
50

12
9.

04
12

,6
98

.7
2

M
in

im
um

0.
01

2.
22

32
.6

8
11

−
2.

01
4.

02
1.

16
26

2,
42

8
M

ax
im

um
0.

08
8.

29
48

.3
1

27
−

1.
66

5.
32

3.
02

46
8

45
,6

11
1 D

iv
er

te
d 

m
ilk

 p
ro

po
rt

io
n 

=
 n

um
be

r 
of

 m
ilk

in
gs

 w
it
h 

di
ve

rs
io

n/
to

ta
l 
nu

m
be

r 
of

 o
bs

er
ve

d 
m

ilk
in

gs
.

2 σ
-C

on
du

ct
iv

it
y 

=
 n

at
ur

al
 l
og

ar
it
hm

 o
f 
th

e 
st

an
da

rd
 d

ev
ia

ti
on

 b
et

w
ee

n 
qu

ar
te

r 
co

nd
uc

ti
vi

ti
es

 a
s 

m
ea

su
re

d 
by

 t
he

 a
ut

om
at

ic
 m

ilk
in

g 
sy

st
em

. 
It

 c
an

 b
e 

se
en

 t
ha

t 
σ-

co
nd

uc
ti
vi

ty
 i
s 

ne
ga

ti
ve

 a
s 

th
e 

na
tu

ra
l 
lo

ga
ri

th
m

 o
f 
a 

va
lu

e 
be

tw
ee

n 
0 

an
d 

1 
is

 n
eg

at
iv

e.
3 S

C
C

 =
 n

at
ur

al
 l
og

ar
it
hm

 o
f 
th

e 
SC

C
 a

s 
m

ea
su

re
d 

by
 O

nl
in

e 
C

el
l 
C

ou
nt

er
 (

O
C

C
; 
D

eL
av

al
 I

nt
er

na
ti
on

al
 A

B
, 
T
um

ba
, 
Sw

ed
en

).



Journal of Dairy Science Vol. 104 No. 3, 2021

3464

Figure 4 shows the estimated marginal means of 
σ-conductivity. As expected, the diverted milk–no 
recovery subset showed stable σ-conductivity values 
above the level after the initial inflammation, whereas 
the diverted milk–recovery subset stabilized in 3 to 4 wk 
after the initial inflammation, but above the estimated 
level before the initial inflammation. The no diverted 
milk–recovery and the no diverted milk–no recovery 
subsets did not show a clear increase in the week of 
initial inflammation and did not have a clear decrease 
after the week of initial inflammation. The average 
σ-conductivity increased before initial inflammation in 
all 4 subsets. The average σ-conductivity during the 
week of the initial inflammation of the diverted-milk 
subsets was higher than that of the no-diverted-milk 
subsets.

Overall. Somatic cell count and σ-conductivity 
had similar patterns in the estimated marginal means 
across subsets. However, in the recovery subsets, SCC 
stabilized relatively closer to the level before initial 
inflammation than σ-conductivity. Furthermore, 
σ-conductivity in the no milk diverted–recovery and 
the no milk diverted–no recovery subset had a less clear 
pattern than SCC. The residuals for the 4 subset models 
for both SCC and σ-conductivity were approximately 
normally distributed and homoscedastic, although the 
negative residuals at lower fitted values formed a pat-
tern of diagonal lines in the fitted values residuals plot 
where no pattern should be present, possibly because 
of sensor measurement error. We estimate that this 
concerned approximately 1% of the milking-day obser-
vations, assuming that every measurement below ln(50) 

SCC with a standardized residual of −2 is subject to 
this measurement error.

In the sensitivity analysis, we applied different SCC 
thresholds to define initial inflammation and the re-
covery. We also applied different thresholds for milk 
diversion duration, the maximum number of days 
between the initial inflammation and milk diversion, 
and the maximum number of days between the initial 
inflammation and second SCC measurement ≥200,000 
cells/mL. In the recovery definition, we changed the 
number of input days to compute the mean. Overall, 
the results of the sensitivity analysis remained simi-
lar to the original results. More specifically, changing 
the SCC threshold to 100,000 cells/mL (300,000 cells/
mL) in the initial inflammation definition resulted in 
a slightly larger (similar) initial increase in recovery 
fraction after the initial inflammation. The estimated 
marginal means of SCC and σ-conductivity showed a 
slightly lower (higher) peak at wk 0. However, the dura-
tion until stabilization remained between 3 and 4 wk. 
When we changed the SCC threshold to 100,000 cells/
mL (300,000 cells/mL) in our recovery definition, it 
resulted in a higher (similar) fraction of cows below 
200,000 cells/mL in the recovery subgroups in the re-
covery fraction analysis. This change in our recovery 
definition also resulted in a slightly lower (higher) level 
at which SCC and σ-conductivity stabilized. However, 
the duration until stabilization remained between 3 and 
4 wk in all plots. Changing the number of consecutive 
diversion days from 2 to 5 did not substantially change 
the recovery fraction or the estimated marginal means 
of SCC and σ-conductivity. We changed the maximum 

Bonestroo et al.: DESCRIBING UDDER INFLAMMATION SENSOR DYNAMICS

Figure 2. Progression of online SCC after initial inflammation (day = 0, first time in a lactation where SCC ≥200,000 cells/mL) in 4 subsets 
of cows as the fraction of cows with SCC <200,000 cells/mL relative to all cows in their respective subset from d 0 to 90.
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period between the initial inflammation and the sec-
ond increased SCC observation equal to or higher than 
200,000 cells/mL from 10 d to 5 and 20 d, which did 
not cause substantial differences in the estimated mar-
ginal means of SCC or σ-conductivity. However, the re-
covery fraction of the no diverted milk–recovery subset 
increased faster during the initial days after the initial 
inflammation but again plateaued after approximately 
3 to 4 wk. Changing the maximum period between the 
initial inflammation and milk diversion from 10 d to 5 
or 20 d did not substantially alter the recovery frac-
tion results or the estimated marginal means of SCC 
or σ-conductivity. We changed the recovery period over 
which a SCC mean was computed, from 10 d to 5 and 
20 d, which resulted in no substantial differences in the 
estimated marginal means of SCC or σ-conductivity, 
although the no-recovery subsets attained a higher re-
covery fraction when the recovery period was set to 5 d. 
Two herds with the largest number of selected episodes 
were also analyzed separately to explore herd-specific 
episode durations (data not shown). The confidence in-
tervals of the weekly estimates increased substantially 

and it was hard to determine when the pattern would 
stabilize because of the limited number of observations. 
Taking this substantially increased uncertainty into ac-
count, we observed that the herd-specific episode dura-
tions until stabilization were approximately equal to 
3 to 4 wk after the initial inflammation in both herds 
for SCC; that is, as found in the overall population. 
However, for the σ-conductivity analysis in 1 of the 
2 individual herd data sets, we could not determine 
the same duration of 3 to 4 wk that we were able to 
determine in our main results. We observed no decrease 
of σ-conductivity after the initial inflammation and the 
confidence interval was very large.

DISCUSSION

In this study, we aimed to gain insight into the differ-
ences in udder inflammation indicators after an initial 
inflammation, as measured by AMS sensors, between 
cows that recover and cows that do not recover. Be-
cause this is one of the first studies to describe the 
duration of an udder inflammation episode based on 

Bonestroo et al.: DESCRIBING UDDER INFLAMMATION SENSOR DYNAMICS

Figure 3. Patterns of SCC measured by online SCC from 4 wk before until 12 wk after the initial inflammation (first time in a lactation 
where SCC ≥200,000 cells/mL) for 4 subsets of cows using the estimated marginal effects of linear mixed models with 95% CI of the weekly 
mean.
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daily sensor data, there was no standardized manner by 
which to define recovery or evaluate results. Our first 
major contribution is to show that it is possible to ana-
lyze the dynamics of inflammation indicators and gain 
insight into these dynamics using routinely available 
sensor and other data. Because farmers worldwide use 
similar sensors and management software, this creates 
interesting research and development opportunities as 
well as future practical applications. Second, our results 
showed that the mean of σ-conductivity and SCC stabi-
lized, at most, 3 to 4 wk after the initial inflammation, 
above the level that occurred before the initial inflam-
mation, depending on the inflammation indicator as 
SCC stabilized closer to the pre-onset level than did 
σ-conductivity. However, we also found that there was 
only a limited increase in σ-conductivity in both no-
milk-diverted subsets. This could be due to the SCC-
based case definition. Another case definition (that 
includes conductivity or a conductivity-based measure) 
would change the pattern in these subsets (data not 
shown). The observed recovery pattern would, in some 
cases, depend on the variables used in the case defini-

tion. It is important to consider that these are means, 
and substantial natural variation occurs in SCC and 
σ-conductivity; we observed a sizable residual variation 
compared with the size of the variation in residual herd- 
and cow-effects (Table 2). Nørstebø et al. (2019) argued 
that the normal variation of the SCC could cause high 
variability of OCC measurements. We observed that 
the estimated marginal mean value of σ-conductivity 
and SCC in the week of the initial inflammation was 
generally higher for diverted-milk subsets than for 
no-diverted-milk subsets. This most likely indicates a 
higher severity of the cases where farmers intervened 
by diverting the milk.

To date, no definitions of recovered and nonre-
covered (i.e., chronic udder inflammation episodes) 
based on daily AMS measurements are available. Our 
findings showed distinctive mean patterns for both 
σ-conductivity and SCC during the course of an udder 
inflammation episode. Based on these mean SCC and 
σ-conductivity patterns, we suggest a cutoff point of 
3 to 4 wk after initial inflammation to discriminate 
between chronic and recovered cases of udder inflam-

Bonestroo et al.: DESCRIBING UDDER INFLAMMATION SENSOR DYNAMICS

Figure 4. Patterns of σ-conductivity from 4 wk before until 12 wk after the initial inflammation (first time in a lactation where SCC 
≥200,000 cells/mL) for 4 subsets of cows using the estimated marginal effects of linear mixed models with 95% CI of the weekly mean. It can 
be seen that σ-conductivity is negative because the natural logarithm of a value between 0 and 1 is negative.
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mation. Pinzón-Sánchez and Ruegg (2011) reported 
that 58.2% of the cows with clinical mastitis (which is 
different from our SCC-based case definition) returned 
to an SCC <200,000 cells/mL within 21 to 55 d after 
treatment based on DHI SCC, which is within the range 
of our findings. Somatic cell count and conductivity 
can be affected by factors other than mastitis. Harmon 
(1994) indicated that, aside from infection status, par-
ity, stress, age, season, and stage of lactation can affect 
the variation in SCC. Other factors that may influence 
conductivity are temperature, stage of lactation, and 
milk composition (Nielen et al., 1992).

The use of sensors allowed us to study the dynamics 
of udder inflammation episodes on a large set of cows 
with daily measures; we analyzed 2,584 episodes almost 
daily for 90 d after the initial inflammation. In com-
parison, Francoz et al. (2017) mention 40 experimental 
treatment trials (out of 41 total trials summarized), 
studying treatments other than conventional antibiot-
ics, that used a data sample consisting of, at most, 258 
cows over, at most, 60 d after an onset of udder inflam-
mation. Without sensor data, and other than carrying 
out expensive data collection schemes, the dynamics of 
mastitis could only be studied using DHI data, which 
has a bimonthly or monthly test frequency. A major 
disadvantage of using large observational data rather 
than smaller detailed observational or experimental 
data is that information on relevant factors may be 
missing. In our case, these would be data on bacteriol-
ogy, clinical severity scores (if clinical signs were ob-
served), or farmer criteria for initiating milk diversion 
and mastitis treatments as several other studies report 
(see Francoz et al., 2017, for examples). In terms of 
bacteriology, inflammation patterns can differ between 
different pathogens (Fogsgaard et al., 2015) or can be 
more associated with certain pathogens (de Haas et 
al., 2004) and could be used as the onset of an episode. 
Moreover, scoring the severity of clinical mastitis, if 
clinical mastitis was observed, could have given more 
insights into farmer decision-making and effects of mas-
titis severity on the progression and chances of recovery. 
Because farmer criteria for initiating treatments were 
not available, differences in farmer treatment decision-
making (Espetvedt et al., 2013) could have influenced 
our results. However, the standard deviation in the 
random herd effect was low compared with that of the 
random cow lactation effect, indicating limited herd ef-
fects on average (e.g., due to a difference in treatment 
protocol) compared with the cow effect. Nonetheless, 
we could not completely control for the differences be-
tween herds, as we did not have access to the treatment 
protocols or background information on cases of the 
farms in our sample. Missing data on important fac-
tors is one inherent weakness of analyzing observational 

data retrospectively. Nevertheless, the extensive usage 
of observational data sets procured by DHI associations 
in research has led to insightful results on the general 
udder health status of herds as well as the association 
between milk production and SCC in the past (Tyler et 
al., 1989; Dohoo and Morris, 1993; Hand et al., 2012). 
Observational data sets can be used to describe general 
patterns. Therefore, we argue that large data sets with 
less detailed data can be used to explore and describe 
general patterns and associations in a larger popula-
tion, and this type of observational study could be the 
first step to future research using more detailed but 
smaller data sets to study these general patterns in 
more detail.

Mean σ-conductivity stabilized above the level be-
fore initial inflammation, whereas mean SCC stabilized 
close to the level before initial inflammation. Further-
more, mean σ-conductivity showed a less substantial 
increase in the week of initial inflammation than SCC. 
Conductivity and SCC measures, as used in this study, 
are distinct udder inflammation indicators that are 
medium to highly correlated when transformed appro-
priately (Nielen et al., 1992). This is caused by both 
indicators measuring related but distinct processes as-
sociated with inflammation (Viguier et al., 2009); SCC 
in milk is largely the result of an activated immune 
response when PMN are released into the milk to en-
gulf the pathogen. Then, apoptosis occurs and somatic 
cells can be found in the milk. Differences in conductiv-
ity occur through tissue damage and breaching of the 
blood–milk barrier. Tissue damage can also be caused 
by the PMN themselves as well as by the pathogen 
(Zhao and Lacasse, 2008). We hypothesize that the 
tissue damage remains even after an episode, causing 
a lasting weak point in the blood–milk barrier and af-
fecting conductivity. Therefore, it can be expected that 
mean SCC and σ-conductivity would not share exactly 
the same pattern.

In this study, we focused on the progression of in-
flammation indicators after an initial inflammation 
and we assumed that SCC (measured by OCC) and 
standard deviation (σ) of conductivity are relevant to 
measure this progression. We did not aim to assess the 
diagnostic quality of SCC or conductivity, as this has 
already been studied (Nielen et al., 1992; Dalen et al., 
2019); in addition, the diagnostic quality of OCC SCC 
was studied by Nørstebø et al. (2019) by comparing 
it with DHI SCC. They found a mean correlation of 
0.82 between SCC measured by the OCC and SCC as 
measured in a DHI laboratory. Fadul-Pacheco et al. 
(2018) also reported a high mean correlation coefficient 
of 0.91, ranging from 0.84 to 0.98 between herds, for 
OCC measurements and SCC as measured in a DHI 
laboratory. Interestingly, there were differences in accu-

Bonestroo et al.: DESCRIBING UDDER INFLAMMATION SENSOR DYNAMICS



3469

Journal of Dairy Science Vol. 104 No. 3, 2021

racy reported for 4 farms, but high agreement between 
SCC measured by OCC and SCC measured by a DHI 
laboratory remained. Given that SCC measurements 
by OCC have similar test performance as DHI SCC, 
frequent or even daily measurements enable detailed 
investigations of the onset and course of inflamma-
tion indicators compared with monthly or bimonthly 
DHI SCC measurements. In this study, we developed 
a specific conductivity measure, standard deviation 
(σ)-conductivity, which is similar to the variation of 
quarter conductivities measures as used by Anglart et 
al. (2020). The diagnostic quality of conductivity was 
discussed in the meta review of Nielen et al. (1992), 
in which raw conductivity and relative differences 
were compared across different studies using different 
gold standards (SCC-based, California Mastitis Test, 
Wisconsin Mastitis Test, and IMI). They found that 
measures using raw conductivity levels had a median 
specificity of 91% and median sensitivity 57%), whereas 
measures based on the difference in conductivity be-
tween quarters had a median specificity of 96% and 
median sensitivity of 79%). This supports the use of 
a conductivity measure that looks at differences be-
tween quarters. We chose the natural logarithm of the 
standard deviation of quarter conductivity specifically 
because it resulted in homoscedastic and normally dis-
tributed residuals in our statistical analyses.

Treatment with antibiotics can have a large effect on 
the udder inflammation recovery of a cow (Barkema 
et al., 2006). However, the data set used in this study 
did not contain detailed treatment records and milk 
diversions were used as a proxy for farmer intervention 
because farmers will divert milk when they find the 
milk unfavorable for sale or consumption. This could 
be to avoid a high bulk tank SCC, to avoid milk with 
antibiotic residues in the bulk tank, or milk diversion 
during an alternative treatment. Milk diversion is rela-
tively untested and might not be as precise as farmer 
treatment records, which is one limitation of this study. 
This study is exploratory in nature, utilizing data from 
a very large number of cows, and we argue therefore 
that it is useful to use a novel, possibly less precise, 
but widely available variable in AMS data sets. The 
threshold was set to 2 consecutive days when milk 
was diverted within 10 d after the initial inflamma-
tion. A typical duration of milk diversions in relation 
to antibiotic treatment may vary between and within 
herds due to differences in required milk withdrawal 
times between different antibiotic drugs and treatment 
regimens. In an economic simulation study, Steeneveld 
et al. (2011) used a 5-d milk withdrawal time for the 
shortest antibiotic treatment course. Using 2 consecu-
tive days of milk diversion rather than 5 consecutive 
days of milk diversion might be too strict, but it was 

used to ensure that no treated cases entered the no-
diverted-milk subsets. Short milk diversion periods 
could represent cases in which farmers determined that 
the milk was not suitable for human consumption, but 
decided not to treat the animal with antibiotics based 
on the visual appearance or sensor data. Nevertheless, 
the milk diversion and initial inflammations were hap-
pening in approximately the same time window (Ap-
pendix Figure A1).

In our research, we made use of SCC to perform a 
first screening of a potential onset of an udder inflam-
mation episode, which we required to be followed up by 
at least one more observation of SCC ≥200,000 cells/
mL within 10 d of the initial inflammation. Confirma-
tion of an IMI by the presence of an udder pathogen 
was not feasible in our study because the participat-
ing farmers did not regularly collect milk samples for 
bacteriology. Potentially different farmer thresholds 
for bacteriology would have resulted in a different fre-
quency and timing of bacteriological testing and thus 
would have biased our results. Instead, we analyzed the 
udder inflammation indicators an AMS farmer, or any 
farmer using the OCC system, would monitor. From 
a practical point of view, a farmer wants to know how 
long a case typically takes from the first moment of 
detection, here by a sensor system, to a possible re-
covery of udder inflammation. Therefore, our results 
show the progression of udder inflammation indicators 
from the onset detected by the system until 90 d after 
the initial inflammation. Nevertheless, defining onsets 
of inflammation solely on robotic sensor data is a sig-
nificant limitation in our study. Future studies with 
more refined definitions based on nonrobotic reference 
data such as farmer-confirmed clinical observations or 
identification of udder pathogens would be useful to 
add to the results of this study.

A set of thresholds was used on milk diversions, SCC, 
and number of days after the initial inflammation to 
define the episode using SCC and the number of con-
secutive days to determine recovery (Figure 1). The 
robustness of the results subject to the exact values 
for these thresholds was tested in a sensitivity analysis. 
The different set of thresholds did change the number 
of episodes that would be in each subset. However, our 
results were mostly robust to different thresholds.

The analysis as applied and the recovery definitions 
as defined focused on analyzing single episodes of udder 
inflammation. From the perspective of sensors, it can 
be hard to distinguish a new flare-up due to a new IMI 
from recurrent udder inflammation due to a remaining 
IMI. Therefore, we chose to focus on the first flare-up 
or episode. Nevertheless, when we changed the recovery 
duration threshold from 10 d with a mean <200,000 
cells/mL to 20 d with a mean <200,000 cells/mL, which 
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can include the time for extra flare-ups, it did not affect 
the duration estimate.

During analysis, we encountered a data issue because 
the negative residuals at lower fitted values formed a 
pattern of diagonal lines in the fitted values residu-
als plot where no pattern should be present. A closer 
investigation indicated that these values would have an 
improbably low SCC value (e.g., 1,000 cells/mL), and 
we attribute this to measurement error of the sensor. 
This behavior of the OCC has been reported in the 
literature (Nørstebø et al., 2019). Nevertheless, OCC 
values are highly correlated with DHI SCC observa-
tions (Nørstebø et al., 2019) so they can be used as an 
adequate measurement. Overall, we argue that this had 
a limited effect due to the relatively small number of 
these observations compared with the total number of 
observations.

Practically, farmers could use the knowledge of the 
typical duration threshold of 3 to 4 wk from an initial 
inflammation to a healthy state as an indication of 
when to reevaluate the udder health status of the cow 
and effects of any interventions. When a cow persists 
with high SCC or σ-conductivity values for longer than 
3 to 4 wk after the initial inflammation, recovery will 
most likely not occur, at least not within the studied 
time period of 12 wk after the initial inflammation. 
Further research is necessary to determine the course 
of chronic udder inflammation in cows that did not 
recover during the study period and appropriate follow-
up intervention. However, the severity of clinical signs 
should always be the most important factor in the in-
tervention decision because of animal welfare concerns 
and may justify recurrent treatment. In addition, IMI 
status and specific bacteriological information should 
always be used to determine the type of intervention.

The results of this study represent an important step 
toward understanding differences in SCC and conduc-
tivity from the start of an udder inflammation episode 
and over the course of 12 wk. By including herds from 
different geographic regions and countries, we covered a 
wide range of different management styles represented 
within AMS herds.

CONCLUSIONS

We identified differences and similarities in mean 
σ-conductivity and SCC after initial inflammation as 
defined using SCC. In subsets of cows that recovered, 
both mean σ-conductivity and SCC stabilized 3 to 4 
wk, after the initial inflammation. Therefore, the time 
point of 3 to 4 wk after the initial inflammation may be 
regarded as a threshold to discriminate between non-
chronic and chronic udder inflammation and to help 
farmers in their intervention decisions. Nevertheless, 

differences were observed between mean σ-conductivity 
and SCC. Duration of an udder inflammation episode 
and differences in temporal patterns between sensors 
after initial inflammations are affected by a large range 
of other cow, pathogen, and treatment factors and need 
more research. Generally, combining AMS data with 
milk diversion data seems to be a promising approach 
to analyze temporal patterns of udder inflammation 
and to explore differences between nonchronic and 
chronic udder inflammation.
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Figure A1. Progression of milk diversions after the initial inflammation (day = 0, first time in a lactation where SCC ≥200,000 cells/mL) 
in 4 subsets of cows from d 0 to 90. The figure shows the fraction of cows with diverted milk over all recorded cows in the recovery and no 
recovery subsets after the initial inflammation (first time in a lactation where SCC ≥200,000 cells/mL). In the recovery cases, milk diversions 
and recoveries were well aligned. This suggests that the farmer is also inclined to think that these cows are recovered and therefore the farmer 
allows their milk to be placed in the bulk tank again. In the nonrecovery case, the diverted milk fraction showed larger variation than in the 
recovered subset after 20 d after the initial inflammation. In these cases, the initial inflammation and the apparent intervention were less aligned 
than in the recovered cases. In the case of recovery as well as nonrecovery, a clear peak of diverted milk fraction could be seen in the first 20 d 
after the initial inflammation. This also makes sense as the sum of days of antibiotic treatments and the subsequent necessary period of milk 
diversion usually last between 5 and 10 d. Some interventions may have been started later, which could prolong the period of increased diverted 
milk fraction to 20 d.
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ABSTRACT

Reduction of milk yield is one of the principal com-
ponents in the cost of mastitis. However, past research 
into the association between milk yield and mastitis in-
dicators is limited. Past research has not been based on 
online or in-line daily measurements and has not fully 
explored nonlinearity and the thresholds at which milk 
yield starts to decrease. In dairy herds with automated 
milking systems equipped with sensors, mastitis indica-
tors of individual cows are measured on an intraday 
frequency, which provides unprecedented avenues to 
explore such effects in detail. The aim of this observa-
tional study was primarily to investigate the nonlinear 
associations of lactate dehydrogenase (LDH), electrical 
conductivity (EC), and somatic cell count (SCC) with 
milk yield at various stages of lactation, parity, and 
mastitis chronicity status (i.e., whether the cow had 
SCC ≥200,000 SCC/mL for the last 28 d). We also 
investigated thresholds at which mastitis indicators 
(LDH, EC, and SCC) started to be negatively associ-
ated with milk yield. We used data from 21 automated 
milking system herds measuring EC and online SCC. 
Of these herds, 7 of the 21 additionally measured online 
LDH. We operationalized milk yield as milk synthesis 
rate in kilograms per hour. Applying a generalized ad-
ditive model, we estimated the milk synthesis rate as 
a function of the 3 mastitis indicators for 3 different 
subgroups based on parity, stage of lactation, and mas-
titis chronicity. Partial dependence plots of the mastitis 
indicators were used to evaluate the milk synthesis rate 
to study if the milk synthesis rate was associated with 
mastitis indicators at a specific level. Results showed 
that milk synthesis rate decreased with increasing SCC, 
LDH, and EC, but in a nonlinear fashion. The thresh-
olds at which milk synthesis rate started to decrease 

were 2.5 LnSCC (12,000 SCC/mL) to 3.75 LnSCC 
(43,000 SCC/mL), 0 to 1 LnLDH (1−2.7 U/L), and 
5.0 to 6.0 mS/cm for EC. Additionally, another sub-
stantial decrease of milk synthesis rate was observed at 
thresholds of 5.625 LnSCC (277,000 SCC/mL) and 3 
LnLDH (20 LDH U/L) but not for EC. Having chronic 
mastitis decreased milk synthesis rate in all models. 
The identified nonlinearities between mastitis indica-
tors and milk synthesis rate should be incorporated in 
statistical models for more accurate estimations of milk 
loss due to mastitis.
Key words: mastitis, correlation, generalized additive 
model, milk loss

INTRODUCTION

Mastitis is one of the most important diseases on 
commercial dairy farms, and the costliest consequence 
of it is loss of milk production (Hogeveen et al., 2019), 
both in subclinical (72% of the subclinical mastitis 
cost) as well as in clinical mastitis cases (48% of the 
clinical mastitis cost; Aghamohammadi et al., 2018). 
To support farmer decision-making regarding udder 
health, insight into the milk production losses due to 
mastitis is important. Milk production losses due to 
subclinical mastitis can be estimated and linked to the 
level of a specific mastitis indicator (e.g., milk loss of 1 
kg/d with 200,000 SCC/mL).

Many milking systems have electrical conductivity 
(EC) sensors and could be equipped with a range of 
sensors that measure mastitis indicators of individual 
cows on an intraday frequency, such as SCC and lactate 
dehydrogenase (LDH). The higher the mastitis indica-
tor, the more severe the inflammation is in the udder, 
resulting in a larger milk yield loss (Hortet et al., 1999; 
Hagnestam-Nielsen et al., 2009).

Somatic cell count is the most widely studied mastitis 
indicator for estimating losses of milk yield. Measuring 
SCC in DHI tests or in an experimental setting showed 
that milk yield is negatively associated with increas-
ing SCC with greater losses at higher SCC (Jones et 
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al., 1984; Hortet et al., 1999; Hagnestam-Nielsen et al., 
2009). Previous studies found or suggested a negative 
effect on milk yield at thresholds of 148,000 SCC/mL 
(Tyler et al., 1989), 100,000 SCC/mL (Halasa et al., 
2009), 50,000 SCC/mL (Hortet and Seegers, 1998), 
7,400 SCC/mL (Dürr et al., 2008), and 12,400 SCC/
mL (Gonçalves et al., 2018). A significantly reduced 
milk yield due to subclinical chronic mastitis was found 
by Hadrich et al. (2018).

Electrical conductivity can also be used as an indica-
tor of inflammation of the mammary gland (Interna-
tional Dairy Federation, 2011). A few studies found a 
negative association between EC and milk production 
or milk loss (Oshima et al., 1990; Nielen et al., 1993). 
Similar to EC, LDH is also less well studied in relation 
to milk yield. Nyman et al. (2014) found that milk yield 
was negatively associated with LDH, analyzed using 
milk samples in a laboratory, together with other cow 
factors (such as DIM and parity).

Although the studies mentioned used a multitude of 
different approaches and data collection protocols, they 
did not use data from online sensors of LDH and SCC 
that are used in commercial dairy farms. Moreover, all 
these studies assume a form of relationship between 
milk yield and the mastitis indicator beforehand us-
ing linear models (Hagnestam-Nielsen and Østergaard, 
2009), logarithmic transformations (Green et al., 2006; 
Dürr et al., 2008; Hagnestam-Nielsen and Østergaard, 
2009), or a combination of linear segments (Dürr et al., 
2008; Gonçalves et al., 2018). However, the exact form, 
which could be a combination of effects (e.g., linear, 
exponential, and cyclical), is less studied. By choos-
ing a functional form beforehand, the researcher might 
be limited by the inflexibility of the chosen parametric 
functional form to model these effects. In addition to 
the functional form, the threshold of SCC, LDH, and 
EC, at which a negative association with milk yield can 
be seen, has been studied to a limited extent. In the 
case of SCC, various thresholds have been suggested 
(Tyler et al., 1989; Hortet et al., 1999; Dürr et al., 2008; 
Halasa et al., 2009; Gonçalves et al., 2018), whereas EC 
and LDH thresholds based on milk loss have not been 
studied.

The primary aim of this observational study was to 
investigate the nonlinear associations of LDH, EC, and 
SCC with milk yield at differing stages of lactation, 
parity, and chronicity status during cow lactation. 
Chronicity status in this study is defined as a mean 
increase of SCC above 200,000 SCC/mL for at least 
28 d. A second aim was to investigate thresholds at 
which mastitis indicators start to be negatively associ-
ated with milk yield. To achieve these aims, we applied 
a generalized additive model on milk yield, LDH, SCC, 
EC, and DIM to estimate milk synthesis rate over cow 

lactation cycles, and to assess the association between 
these mastitis indicators and milk synthesis rate.

MATERIALS AND METHODS

Herd Selection and Data

Data were available in a central DeLaval database 
from 21 dairy herds from Canada, the Netherlands, 
Finland, and Sweden with automated milking systems 
(AMS; VMS series, DeLaval International AB) that 
measured EC and were equipped with an online cell 
counter (OCC; DeLaval International AB) to measure 
SCC. Farms were selected from the database on the 
presence of an OCC. Of these 21 herds with OCC, 7 
also were equipped with a DeLaval Herd Navigator 
(DeLaval International AB) to measure LDH. Data 
were retrieved from a database of DeLaval Interna-
tional AB for the period from January 2017 to April 
2020. The majority of the herds kept Holstein cows. 
The number of lactating cows ranged from 66 to 603 
cows, with a mean of 194 cows. The 305-d herd average 
milk yield ranged from 5,712 to 11,979 kg, with an av-
erage of 9,870 kg. These data were reported per milking 
and included the herd identification, cow identification, 
DIM, time of milking, milk yield, SCC, LDH, and the 
EC. For SCC and LDH, a sampling algorithm based 
on the risk of mastitis determined when a sample was 
taken (Mazeris, 2010). We could not check the setting 
of the algorithm in the farms. However, we did observe 
fewer samples of SCC and LDH than number of milk-
ings in the analyzed data set.

Data Cleaning and Preparation

As a first step in the analyses, several data cleaning 
and data preparation activities were undertaken. All 
cow lactations had missing data as not all mastitis indi-
cators were measured at every milking. The raw data set 
consisted of 5,990,883 milkings from 6,372 cows. Milk-
ings outside the range of 5 to 305 DIM were discarded 
(removed 735,977 milkings). Furthermore, quarter EC 
values outside of the range from 3 to 10 mS/cm were 
set to “not available” (in 53,015 milkings) as done by 
Anglart et al. (2020). To ensure that the decreases in 
milk yield were not due to teat blinding (not milking 1 
or more udder quarters during lactation), milkings with 
quarter milk yields equal to 0 were removed (removed 
640,958 milkings). We used milk synthesis rate (see 
below), assuming an approximately linear relationship 
between time interval and milk yield. This was not the 
case for short- and long-time intervals (Hogeveen et al., 
2001); therefore, we removed them. As such, records 
where the time interval between the current milking 
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and the previous milking was outside of the range of 
4 to 24 h were discarded (removed 66,044 milkings). 
Records on days where the number of milkings for a 
cow was equal or greater than 5 were discarded (re-
moved 11,577 milkings). This resulted in a data set 
of 4,536,637 milkings from 7,352 lactations from 5,805 
cows from 21 herds.

A set of variables was created to facilitate statisti-
cal analysis. We used milk synthesis rate (kg/h) as the 
dependent variable. Each interval between milkings is 
different in AMS farms, leading to a large variation 
in time intervals between milkings (Hogeveen et al., 
2001). Therefore, to obtain a comparable milk yield–
based measure, we divided the milk yield (in kg/milk-
ing) by the time interval (in h) between milkings to 
obtain milk synthesis rate. We used online SCC and 
LDH as independent variables. These 2 variables were 
transformed using the natural logarithm (LnSCC and 
LnLDH). Furthermore, we used the mean EC of the 4 
quarters as the third independent variable (mean EC). 
Mean EC was chosen to compare the milk loss results 
for LDH and SCC, as it was a cow-level indicator, 
similar to SCC and LDH. In addition, the subgroup 
variable “chronicity status” was created to represent 
whether the cow was chronic or not. A milking day 
observation was labeled as chronic if a cow had weekly 
SCC geometric averages equal or higher than 200,000 
cells/mL for a period of 4 consecutive weeks or more 
before the current milking day (Bonestroo et al., 2021) 
based on available SCC samples. Last, we also created 
a cow lactation variable (CowLactation) that combined 
the unique animal identification number with the par-
ity to identify unique cow lactations.

We aggregated the multiple individual milkings on 
a given day by using the maximum daily values of 
LnSCC, LnLDH, mean EC, and averaged the milk syn-
thesis rate (reducing the data from 4,536,637 milkings 
to 1,687,508 milking days). The daily maximum value 
was used to capture the severity of the increase. When 
some values were missing for specific milkings but not 
for all milkings on specific days, these values were ig-
nored in determining the maximum. When there was 
no observation of the mastitis indicator at all during 
a day, no daily maximum value of that day was given. 
Lactations with less than 100 SCC day observations or 
on average 1 SCC sample per 3 d (to allow determina-
tion of the chronicity status based on SCC throughout 
the lactation) were discarded. This requirement allowed 
us to define chronic observations anywhere in the lacta-
tion. We chose 100 d as a threshold because a lower 
value (e.g., 29 d) would only let us define observations 
coming from chronic cows very sparingly, whereas using 
a requirement of higher number of samples limited the 
data set to such a substantial amount that we had little 

data left. Lactations with less than 100 d of observa-
tions of a specific mastitis indicator were also discarded 
in the data set for that indicator-specific model. For 
each of the 3 mastitis indicators, a separate data set 
was created. Because not all mastitis indicators were 
always reported, these 3 data sets differed in number 
of observations. The selection steps reduced the data 
further from 1,687,508 milking days to 788,572 milking 
days of the SCC data set (4,516 lactations and 3,352 
cows and 21 herds), 179,335 milking days of the LDH 
data set (1,394 lactations and 1,116 cows and 7 herds), 
and 1,146,320 milking days of the mean EC data set 
(4,515 lactations and 3,350 cows and 21 herds).

To analyze the association between milk synthesis 
rate and mastitis indicators for different levels of par-
ity, DIM, and chronicity, 3 subgroups were created and 
analyzed separately. The first subgroup was formed ac-
cording to 3 DIM levels (5–28, 29–60, and 61–305 DIM) 
as multiple authors have found differences in milk loss 
between stages of lactation (Hagnestam-Nielsen et al., 
2009; Gonçalves et al., 2018). These cut-offs were de-
termined by selecting the median DIM where the day-
to-day change in milk synthesis rate was maximal (28 
DIM) and where the milk synthesis rate peaked (60 
DIM) in our data set. The second subgroup was based 
on parity (first lactation, second lactation, and third or 
more lactation) as it can be expected that multiparous 
cows, which give more milk, will have a higher milk 
loss when subclinical mastitis occurs (Dürr et al., 2008; 
Hagnestam-Nielsen et al., 2009; Gonçalves et al., 2018). 
The last subgroup was formed according to chronicity 
(nonchronic and chronic mastitis) as cows with chronic 
mastitis tend to have higher milk losses (Hadrich et 
al., 2018). The differences in milk synthesis loss in the 
various levels of parity, stage of lactation, and chronic-
ity were studied separately using separate regression 
models, as discussed in the next section.

Statistical Analysis

We applied a generalized additive model using the 
R package mgcv (Wood, 2012) in R 3.6.1 (https: / / 
www .r -project .org/ ) to model milk synthesis rate per 
hour. Milk synthesis rate was estimated as a function 
of the mastitis indicator and DIM, for each subgroup, 
respectively (Eq. 1, 2, and 3). The DIM and CowLacta-
tion were treated as confounders. Depending on the 
subgroup that was analyzed, the subgroup value in 
these equations can take the form of the parity, stage 
of lactation, or chronicity status. A generalized addi-
tive model is an extension of a general linear model 
where the dependent variable can depend linearly on 
unknown smoothing functions in combination with 
normal regression coefficients and random effects (as 
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used in the general linear mixed model). The smooth 
functions can be fitted with data and can have any 
form (e.g., linear, quadratic, plateauing, or a combi-
nation of them). The function form does not have to 
be predefined, allowing a very flexible estimation of 
the association between a mastitis indicator and milk 
synthesis rate. Last, we included a random effect of 
each individual cow lactation (random cow lactation 
effect) using the CowLactation variable to control for 
nonindependence of observations. In generalized ad-
ditive models, different link functions can be used to 
model the relation between the dependent variable and 
the independent variables, as it is an extended general 
linear model. Milk synthesis rate was assumed to have 
a scaled-t distribution rather than a normal Gaussian 
distribution because it was expected that milk synthe-
sis rate would have more extreme observations than a 
normal distribution. We used the following models: 

 Milk synthesis rate = intercept + subgroup intercept   

+ fLnSCC (LnSCC) × subgroup + fDIM (DIM)  

 × subgroup + random cow lactation effect, [1]

 Milk synthesis rate = intercept + subgroup intercept   

+ fLnLDH (LnLDH) × subgroup + fDIM (DIM)  

 × subgroup + random cow lactation effect, [2]

 Milk synthesis rate = intercept + subgroup intercept   

+ fMean EC (mean EC) × subgroup + fDIM (DIM)  

 × subgroup + random cow lactation effect, [3]

where fDIM is a nonlinear smoothing function modeling 
the milk synthesis rate over the lactation cycle with 
a cubic spline basis that was estimated separately for 
every subgroup. The fDIM was not plotted in the results 
for brevity, but it takes the form similar to a Wood lac-
tation curve as found in literature (Wood, 1967), and 
where fLnSCC, fLnLDH, and fMean EC are a nonlinear smooth-
ing function modeling the association between LnSCC, 
LnLDH, and mean EC with milk synthesis rate. To 
enable the analysis, we used a baseline where the mas-
titis indicators were not associated with decreases in 
milk synthesis rate. As such, this study assumed, before 
the analysis, that a level of 1,000 SCC/mL, 1 U/L of 
LDH, and 4 mS/cm mean EC would have no effect 
on milk synthesis rate. These levels were close to the 
minimally observable levels, and were chosen due to 
the low thresholds found and proposed for SCC (Dürr 
et al., 2008; Gonçalves et al., 2018). These assump-
tions were needed to estimate fLnSCC, fLnLDH, and fMean EC. 

These functions are also nonlinear smoothing functions 
with a cubic spline basis. We used the BAM function, 
which is a generalized additive model with discretiza-
tion of covariate values that makes it more time and 
memory efficient when having large data sets (Wood, 
2012, 2017). Each of the 3 models (Eq. 1, 2, and 3) 
were estimated separately for each subgroup (parity, 
stage of lactation, and chronicity), thus leading to the 
fitting of 9 models in total (3 mastitis indicators times 
3 subgroup variables).

To visualize the associations, we plotted fLnSCC, 
fLnLDH, and fMean EC for each mastitis indicator and each 
of the subgroups. The value of the mastitis indicator, 
at which it started to be negatively associated with 
milk synthesis rate, was identified as a threshold. This 
point was found by determining the maximum positive 
milk synthesis rate difference in the partial plot (the 
highest point in the plot) and was highlighted in the 
partial effect plots. Further points of potential substan-
tial decreases in milk synthesis rate start, after this 
initial threshold, will be described by how the rate of 
the decrease changes abruptly (e.g., whether the line 
starts to decrease considerably more).

The residuals of all models were checked for nor-
mality, homoscedasticity, and autocorrelation using 
qq-plots, fitted values-residual plots, and autocorrela-
tion plots. During the analysis, we detected substan-
tial autocorrelation for all models. The autocorrela-
tion problem was solved by adapting the model. The 
BAM function used in the mgcv library (Wood, 2012) 
does not allow to estimate a first order autoregres-
sive (AR1) residual structure, but it does allow for a 
predefined AR1 parameter. Consequently, we allowed 
an AR1 residual structure by first estimating a model 
without an AR1 parameter, then estimating the re-
sidual autocorrelation at the first lag, and inserting 
that value as the AR1 parameter when fitting the final 
model using autocorrelation functions of the R package 
itsadug (Van Rij et al., 2017). The inclusion of the 
AR1 structure reduced the autocorrelation problem to 
an insubstantial level.

RESULTS

Descriptive Statistics

The number of AMS per herd ranged from 1 to 9 
with a mean of 2.7. After the data selection process, 
the number of cows analyzed in each herd varied with a 
mean of 159, a minimum of 22, and a maximum of 512. 
Two herds had an especially small number of lacta-
tions because we required 100 SCC-day observations 
per lactation for all lactations, SCC were not sampled 
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every day, and only data on completed lactations from 
mid-2018 were available. The mean parity across herds 
was 2.42 with a standard deviation of 0.36, a herd par-
ity mean minimum of 1.63, and a herd parity mean 
maximum of 3.22. The mean milk synthesis rate was 
1.47 kg/h across herds with a standard deviation of 
0.17, with a herd mean minimum of 0.99 and a herd 
mean maximum of 1.74.

In the SCC data set, the mean LnSCC across herds 
was 4.39 (80,640 SCC/mL) with a standard deviation 
of 0.45, a herd mean minimum of 3.58 (35,873 SCC/
mL), and a herd mean maximum of 5.30 (200,337 SCC/
mL). In the LDH data set, the mean LnLDH across 
herd means was 3.07 (21.54 U/L) with a standard de-
viation of 0.24, a herd mean minimum of 2.83 (16.95 
U/L), and a herd mean maximum of 3.54 (34.47 U/L). 
In the EC data set, the mean EC across herds was 4.66 
mS/cm with a standard deviation of 0.22, a herd mean 
minimum of 4.28 mS/cm, and a herd mean maximum 
of 5.09 mS/cm.

Generalized Additive Model Analyses

SCC Results. Figure 1 provides the nonlinear as-
sociation between LnSCC and milk synthesis (fLnSCC) 
and the frequency of LnSCC observations for different 
parity, stage of lactation, and chronicity classes (Figure 
1–C). Table 1 summarizes the results of the regression 
models. The milk synthesis rate was negatively associ-
ated with LnSCC over a specific threshold. The large 
dot in Figure 1 marks the point on the line where milk 
synthesis rate started to decrease, and thereby milk 
losses occurred. For most cases, this threshold was 
approximately between 2.5 LnSCC (12,000 SCC/mL) 
and 3.75 LnSCC (43,000 SCC/mL), whereas occasional 
lower and higher thresholds were found in the analysis 
depending on subgroup. Moreover, the milk synthesis 
rate started to decrease even further a second time 
when LnSCC increased, and at an increasing speed and 
nonlinearly. This occurred approximately after 5.625 
LnSCC/mL (~277,000 SCC/mL) for all subgroups.

Bonestroo et al.: MASTITIS INDICATORS AND MILK YIELD

Figure 1. Estimated associations between milk synthesis rate and LnSCC and number of observations for parity, stage of lactation, and 
chronicity subgroups. The dots indicate that the start of milk synthesis rate decreases, and thereby milk losses increase from that point.
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Some differences in thresholds and the steepness of 
the decrease in milk synthesis rate between subgroups 
were seen. These differences in thresholds were caused 
by minor differences in the LnSCC and milk synthesis 
rate association on an overall approximately flat line 
on the lower levels of LnSCC. Therefore, the differences 
between thresholds should be interpreted carefully. In 
Figure 1A, the decrease in milk synthesis rate was 
steeper at higher levels of parity (indicating an increas-
ing decrease in milk synthesis rate in older cows) of 
LnSCC for the multiparous subgroups. Moreover, the 
parity subgroup differences in intercept between first-
parity cows and second-parity cows and first-parity 
cows and ≥third-parity cows were 0.27, with a standard 
error of 0.01, and 0.35, with a standard error of 0.01, 
respectively (P < 0.01). Regardless of LnSCC, cows 
with a higher parity tended to produce more milk. In 
Figure 1B, no clear difference in milk synthesis rate in 
the stage of lactation subgroups could be seen, and the 
difference in intercept between 5 to 28, 29 to 60, and 
61 to 305 DIM subgroups was also not significant (P > 
0.05). In Figure 1C, the chronic subgroups had approxi-
mately the same form; the chronic group was steeper in 
its decrease and was lower than its nonchronic counter-
part. The difference in intercepts between the chronic 
and nonchronic subgroups, indicating long-term effects 
on milk synthesis rate, was −0.04 with a standard error 
of 0.01 (P < 0.01).

LDH Results. Figure 2 provides the nonlinear asso-
ciation between LnLDH and milk synthesis rate (fLnLDH) 
and the frequency of LnLDH observations for different 
parity, stage of lactation, and chronicity classes (Figure 
2A–C). Table 2 summarizes the results of the regression 
models. The dot in Figure 2 marks the point where 
milk synthesis rate started to decrease, and thereby 
milk losses increased when LnLDH increased. It can 
be seen from the results that LnLDH was negatively 
associated with milk synthesis rate after the threshold 
for all parity, stage of lactation, and chronicity sub-
groups. The thresholds ranged from approximately 0 
to 3 LnLDH (1–20 U/L) for all subgroups. Despite the 
similarity in the general form and level of the smoothing 
function, the differences in thresholds were large. The 
differences in thresholds seemed to be caused by minor 
differences in the shape of the association between Ln-
LDH and milk synthesis rate between the subgroups. 
In other words, the difference in milk loss between the 
thresholds was limited. Nevertheless, the milk synthesis 
rate decreased noticeably more after approximately 3 
LnLDH (20 U/L) in all subgroups.

Several dissimilarities in thresholds and the steep-
ness of the decrease in milk synthesis rate between 
subgroups were seen. In Figure 2A, multiparous cows 
showed a larger decrease in milk synthesis rate as-
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sociated with higher LnLDH than primiparous cows. 
Even more, the parity subgroup differences in intercept 
between first-parity cows and second-parity cows and 
first-parity cows and ≥third-parity cows were 0.27 with 
a standard error of 0.01 and 0.36 with a standard error 
of 0.02 (P < 0.01), respectively. Regardless of LnLDH, 
cows with a higher parity produced significantly more 
milk. In Figure 2B, 61 to 305 DIM observations showed 
a larger decrease in milk synthesis rate than the 5 to 28 
and 29 to 60 DIM observations. The stage of lactation 
subgroup difference in intercept between 5 to 28, 29 to 
60, and 61 to 305 DIM subgroups were not significantly 
different (P > 0.1). In Figure 2C, the line of nonchronic 
cows was slightly lower than the line of chronic cows, 
but the chronic cow intercept in the model was −0.08 
with a standard error of 0.01 (P < 0.01). Regardless of 
current LDH, the milk synthesis rate for chronic cows 
was lower.

Mean EC Results. Figure 3 provides the nonlin-
ear association between mean EC and milk synthesis 
(fMean EC) and the frequency of mean EC observations 
for different parity, stage of lactation, and chronicity 

classes (Figure 3A–C). Table 3 summarizes the results 
of the regression models. Figure 3 indicates that the as-
sociation between mean EC and milk synthesis rate was 
highly nonlinear. In addition, the threshold of milk syn-
thesis rate decrease was within the range of 5.0 to 6.0 
mS/cm mean EC for all subgroups. This threshold was 
found at a high percentile of the mean EC distribution 
compared with LnSCC and LnLDH (see bottom panels 
in Figure 2 and 3). Mean EC remained negatively as-
sociated with milk synthesis rate after the threshold for 
all parity, stage of lactation, and chronicity subgroups.

Between the subgroups, several differences and simi-
larities could be seen in Figure 3. The differences in 
thresholds between subgroups were limited as they all 
fell between 5.0 and 6.0 mS/cm. The differences in the 
function forms between subgroups should be interpret-
ed with care as a large section of the decrease in milk 
synthesis rate was based on a small area of the mean 
EC distribution. The limited number of observations 
explained the increase in milk synthesis rate at 7.5 mS/
cm for the second-parity subgroup in Figure 3A. In 
Figure 3A, the milk synthesis rate of the multiparous 

Bonestroo et al.: MASTITIS INDICATORS AND MILK YIELD

Figure 2. Estimated associations between milk synthesis rate and LnLDH and number of observations for parity, stage of lactation, and chro-
nicity subgroups. The dots indicate that the start of milk synthesis rate decreases, and thereby milk losses increase from that point. Occasionally, 
the orange dot is covered by the blue dot in the parity and the stage of lactation subgroups. LDH = lactate dehydrogenase.



Journal of Dairy Science Vol. 105 No. 4, 2022

subgroups decreased more when mean EC increased 
than in the first-parity subgroups. Furthermore, the 
parity subgroup differences in intercept between first-
parity cows and second-parity cows and first-parity 
cows and ≥third-parity cows were 0.28 with a standard 
error of 0.01 and 0.36 with a standard error of 0.01, 
respectively (P < 0.01). Regardless of mean EC, cows 
with a higher parity produced significantly more milk. 
In Figure 3B, the milk synthesis rate of the 29 to 60 
and 61 to 305 DIM subgroups decreased more than 
the milk synthesis rate of 5 to 28 DIM subgroup when 
mean EC increased, whereas the difference in intercepts 
between the stage of lactation subgroups was not sig-
nificant (P > 0.1). In Figure 3C, the milk synthesis 
rate of the chronic subgroups decreased more than for 
the nonchronic subgroup when mean EC increased. In 
addition, the chronic mastitis subgroup differences in 
intercept between chronic cows and nonchronic cows 
was −0.04 with a standard error of 0.003 (P < 0.01). 
Milk synthesis rate for chronic cows was lower when 
controlling for the current level of mean EC.

DISCUSSION

Our aim was to investigate the association between 
milk synthesis rate and online LDH, EC, and SCC at 
differing stages of lactation, parity, and chronicity sta-
tuses. As a second aim, we wanted to investigate the 
differences in thresholds at which online LDH, mean 
EC, and SCC levels start to be associated negatively 
with milk synthesis rate. We found strong nonlineari-
ties after a linear phase in the association between milk 
synthesis rate and different subgroups. Estimating the 
nonlinearity correctly would lead to a more accurate 
estimation of milk loss. In past research, the result-
ing nonlinear functions of the associations between the 
studied mastitis indicators with milk yield have not 
been found in this detail (Dürr et al., 2008; Gonçalves 
et al., 2018). Each of these mastitis indicators is tied to 
a connected, but dissimilar, mechanism in the immune 
response of a cow (Viguier et al., 2009), which may be 
the explanation for the differences we see. An immune 
response leads to increases in SCC in the milk when 
polymorphonuclear neutrophils, white blood cells, are 
released into the milk to engulf the pathogen. Next, 
apoptosis occurs, and somatic cells can be found in 
the milk. Differences in EC occur by tissue damage 
and breaching of the blood-milk barrier (Viguier et al., 
2009). The LDH, on the other hand, is released in the 
milk when a pathogen is engulfed and killed by a poly-
morphonuclear neutrophil (Viguier et al., 2009).

This study looked at differences in associations 
between parity, stage of lactation, and chronicity sub-
groups. We found nonlinear as well as linear charac-
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teristics in the association between milk synthesis rate 
and LDH, SCC, and mean EC. Typically, a linear phase 
with no clear association or a proportionally small de-
creasing association would be followed by a nonlinear 
phase where a quadratic decrease (i.e., decrease at an 
increasing speed) could be seen. This justified the use 
of nonlinear models for LDH, SCC, and EC measures, 
and supported the use of the threshold model in Dürr 
et al. (2008) and Gonçalves et al. (2018) wherein SCC 
has no effect on milk yield up to a certain threshold, 
and a negative effect on milk yield after the threshold. 
After reaching this threshold, milk synthesis rate would 
decrease at an increasing rate, and this is also reported 
by others (Jones et al., 1984; Hagnestam-Nielsen et al., 
2009; Hand et al., 2012). The milk synthesis difference 
was higher for the multiparous subgroups than their 
primiparous counterparts for all mastitis indicators. 
This is also seen in Hagnestam-Nielsen et al. (2009) 
and Hand et al. (2012) in the case of SCC. Multiparous 
cows often have a higher milk production; therefore, 
the losses can be greater. For the stage of lactation 

subgroups, no clear differences were seen in the SCC 
models; however, the milk synthesis rate in the 5 to 
28 and 29 to 60 DIM subgroups decreased less than 
61 to 305 DIM in the LnLDH models, and the 29 to 
60 and 61 to 305 DIM subgroup decreased more than 
5 to 28 DIM for mean EC. In contrast to our SCC 
results, Hagnestam-Nielsen et al. (2009), Dürr et al. 
(2008), and Gonçalves et al. (2018) reported increas-
ing milk losses related to SCC with increasing DIM, 
although this relationship could also be parabolic. 
These conflicting results could be caused by the limited 
number of DIM subgroups in our study. The results 
of the chronic subgroups are difficult to compare with 
results of other researchers due to differences in the 
definition and operationalization of mastitis chronicity. 
Nevertheless, Hadrich et al. (2018) also found that milk 
losses increased when the number of past consecutive 
observations with a higher SCC increased.

We found substantial variation in thresholds for the 
onset of milk loss between the different subgroups in 
all SCC models as well as the LDH models, which was 

Bonestroo et al.: MASTITIS INDICATORS AND MILK YIELD

Figure 3. Estimated associations between milk synthesis rate and mean electrical conductivity (EC) and number of observations for parity, 
stage of lactation, and chronicity subgroups. The dots indicate that the start of milk synthesis rate decreases, and thereby milk losses increase 
from that point.
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driven by minor differences in overall similar functional 
forms. Nevertheless, similar low thresholds (mostly 2.5 
LnSCC or 12,000 SCC/mL) for SCC were found com-
pared with milk loss thresholds reported in the past 
(7,400–12,400 SCC/mL; Dürr et al., 2008; Gonçalves 
et al., 2018). We found some occasional deviation from 
2.5 LnSCC between parity groups and stage of lacta-
tions, which is also found by Gonçalves et al. (2018). 
Other research pointed toward a dilution effect of SCC 
on milk yield (Green et al., 2006), and the dilution 
effect may cause an overestimation of the milk yield 
loss with increasing SCC. Due to the nonparametric 
nature of generalized additive models, the threshold 
was not a single parameter in the model, and we could 
not estimate the uncertainty of the threshold, whereas 
other authors report occasional substantial uncertainty 
in thresholds (Dürr et al., 2008; Gonçalves et al., 2018). 
Moreover, parametric piecewise models may have dif-
ficulty converging when finding complex (quadratic) 
parametric functions (Gonçalves et al., 2018). Never-
theless, we would argue that, if one were interested in 
only the threshold, one should fit a parametric piece-
wise model in which the threshold is a parameter. It 
would give a more precise description of the threshold 
together with an estimation of the uncertainty of the 
threshold.

This study had several limitations that may con-
strain the conclusions drawn. The disadvantage of 
observational secondary data, as used in this study, 
is that one cannot control all factors (e.g., farmer 
decision-making, availability of data, and LDH or SCC 
sampling algorithm) that can influence the association 
between inflammation indicators and milk production, 
potentially reducing the internal and external validity. 
Additionally, we did not have LDH data for all farms, 
reducing the generalizability of the LDH results relative 
to the SCC or mean EC results. In terms of farmer 
decision-making, farmers may have decided to retain 
high-producing cows with chronic mastitis more than 
lower-producing cows with chronic mastitis. This may 
cause a bias in the data where chronic cows are less 
affected by higher values of the mastitis indicators, 
reducing generalizability. The (automated) sampling 
strategy for LDH or SCC was partly based on the risk 
of having mastitis. Hence, cows that were sampled 
were more likely to have udder problems, even when 
they had low levels of mastitis indicators, potentially 
reducing the estimated milk loss (i.e., the difference 
between a cow with a low SCC and the cow with a 
high SCC) and generalizability. Furthermore, the time 
intervals between milkings differed substantially. We 
assumed that the effect of time interval on milk yield 
was linear by calculating the milk synthesis rate as milk 
yield divided by the time interval. However, milk yield 
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is nonlinearly associated with time interval (Hogeveen 
et al., 2001), especially during the first hours of the 
time interval between milkings. We have attempted to 
solve this issue by excluding observations with extreme 
time intervals between milkings of less than 4 h. Also, 
we took the daily average of milk synthesis rate, re-
ducing the influence of short or long milking intervals. 
Therefore, milk synthesis rate can be regarded as an 
adequate measurement of a cow’s milk production ca-
pacity. The accuracy of SCC, LDH, and EC to measure 
udder inflammation may differ between indicators and 
between the same indicator measured by equipment 
from different brands, but it should be inconsequential 
with regard to the estimates of milk yield losses associ-
ated with the indicators because we are not claiming 
to assess milk yield losses due to (subclinical) masti-
tis. Nevertheless, for the OCC, Nørstebø et al. (2019) 
showed that the correlation between laboratory SCC 
and OCC was 0.82. The research results regarding the 
ability of LDH to detect mastitis of Chagunda et al. 
(2006) and Friggens et al. (2007) were integrated in 
the development of the Herd Navigator system and 
hence can be used by farmers. The EC is a commonly 
used mastitis indicator (Nielen et al., 1992), but to our 
knowledge, the diagnostic properties of EC specific to a 
DeLaval system are not reported. In variable creation, 
we decided to create the cow-level mean EC variable 
by taking the mean of the quarter conductivity values 
rather than using the quarter conductivity values. This 
decision was made to make the estimated cow-level 
milk yield losses comparable to the losses associated 
with SCC and LDH. Nevertheless, the availability of 
quarter level EC, in combination with quarter level 
milk yield, would make it possible to estimate the milk 
losses due to increased EC at the quarter level, which 
would improve the accuracy of the estimates. That pos-
sibility, however, was beyond the scope of this article.

The overall statistical properties of the models were 
acceptable. The statistical fit of the SCC, LDH, and 
mean EC models was good in that the adjusted R2 of 
the models ranged from 0.78 to 0.81, 0.73 to 0.77, and 
0.76 to 0.80, respectively (see Tables 1, 2, and 3). With-
out an adjustment for autocorrelation, we saw substan-
tial autocorrelation in all models, and this affected the 
estimated associations between the mastitis indicators 
and milk synthesis rate. In our models, we have at-
tempted to correct for autocorrelation by allowing an 
AR1-correlation structure. This resulted in a decrease 
in autocorrelation to less than approximately 0.2 on all 
lags, although the autocorrelation did not completely 
disappear. Nevertheless, the autocorrelation was mini-
mal; therefore, we think that our estimates were not 
substantially influenced. No large deviations from the 

assumptions of homoscedasticity and normality could 
be seen using qq-plots and fitted versus residuals plots.

CONCLUSIONS

We found that the negative associations between 
SCC, EC, and LDH with milk yield were nonlinear and 
had a similar function form between parity groups, at 
different lactation stages, and at different chronicity sta-
tuses of the cow but occasionally differed in their level 
of decrease. Nevertheless, multiparous cows incurred 
larger milk losses than primiparous cows, whereas the 
effect of stage of lactation differed between indica-
tors. Chronicity had a negative association with milk 
synthesis rate. In contrast to mean EC, milk synthesis 
rate started to decrease substantially more for SCC and 
LDH at higher SCC (277,000 SCC/mL) and LDH (20 
U/L) levels. The study highlighted the nonlinearities 
that exist in the associations between different mastitis 
indicators that can be useful to more accurately predict 
mastitis-related milk loss.
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Abstract 
Although most of the losses due to mastitis per case in dairy production are estimated to be caused by 
clinical cases, subclinical cases, especially chronic, can also be problematic due to milk production 
losses and the risk of transmission of pathogens. Knowing which subclinical mastitis cases will become 
chronic at an early stage would help intervene in these cases. Automatic milking systems (AMS) can 
collect data on mastitis indicators such as conductivity, Somatic cell count (SCC), and blood in the 
milk for each milking. This study aimed to develop a sensor-based prediction model that forecasts the 
chronicity in subclinical mastitis cases after an initial increase in SCC using SCC, conductivity, blood 
in the milk, parity, milk diversion, time interval between milkings, milk yield, and days in milk (DIM). 
We used sensor data from 14 European and North American dairy farms (with herd sizes of lactating 
cows ranging from 55 to 638 cows) with an AMS and an Online Cell Counter, measuring SCC. A 
200,000 SCC/ml threshold has been used to distinguish cows with subclinical mastitis from healthy 
cows. We used gradient-boosting trees and sensor data to forecast whether the SCC would structurally 
decrease below 200,000 SCC/ml in the 50 days after the day at which the prediction was performed. 
Data from 30 and 15 days prior to the day where the forecast was made was used. The model was 
trained on data from seven randomly selected dairy farms from the dataset. The data of the remaining 
seven dairy farms were used to estimate the predictive performance. These results were compared with 
two approaches that simulate how farmers would diagnose chronic mastitis with simple prediction 
rules based on close-to-daily SCC (frequent sampling approach) and less frequent monthly SCC 
(monthly sampling approach). We used accuracy, Matthew’s correlation coefficient (MCC), and area 
under the curve (AUC) as metrics to assess the forecasting performance of the chronic mastitis predic-
tion model. On average, the forecasting model, using 30 days of sensor data prior to the day of predic-
tion, outperformed the approaches according to the accuracy (model accuracy: 0.859, Frequent sam-
pling approach accuracy: 0.833, and monthly sampling approach accuracy: 0.809), MCC (model MCC: 
0.694, frequent sampling approach MCC: 0.618, and monthly sampling approach MCC: 0.504), and 
AUC (model AUC: 0.944 and frequent sampling approach AUC: 0.910) metrics. The results also in-
dicate that shortening the input requirement from 30 days of prior sensor data to 15 days had a limited 
effect on the model's performance. Overall, this study shows that it is possible to predict the future 
chronic mastitis status with high accuracy using past sensor data and machine learning models.  

Keywords: mastitis, chronic, sensor, cow, forecast 

 
Introduction 

Most of the economic losses due to mastitis in dairy pro-
duction are estimated to be caused by clinical cases 
when estimated per case (Huijps et al., 2008). Neverthe-
less, subclinical cases, especially chronic or long-term, 
can also be problematic due to milk production losses 
(Aghamohammadi et al., 2018) and the risk of transmis-
sion of pathogens (Swinkels et al., 2005). Subclinical 
mastitis is rarely treated during lactation on most dairy 
farms as it is not recommended  

(Krömker and Leimbach, 2017). However, some cases 
may develop into chronic subclinical mastitis, which 
can be defined as a case where a long-term increased 
SCC is not expected to cure spontaneously during lacta-
tion (St. Rose et al., 2003; Bonestroo et al., 2021). 
Chronic subclinical mastitis leads to prolonged periods 
of milk loss and an increased risk of pathogen transmis-
sion. At the onset of and during subclinical mastitis, it 
would be helpful to distinguish between cases expected 
to cure spontaneously quickly and cases that develop 
into chronic subclinical mastitis. In other words, it 
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would be helpful to forecast chronic subclinical mastitis 
so that early intervention is possible (i.e., culling, early 
dry-off, or antibiotic treatment).  

Despite the considerable number of studies on the 
sensor-based detection of clinical mastitis (Rutten et al., 
2013; Jensen et al., 2016; Khatun et al., 2018), a smaller 
amount of research has been done into sensor-based de-
tection of subclinical mastitis (Polat et al., 2010; Khatun 
et al., 2019). As stated before, subclinical mastitis is not 
commonly treated during lactation and, therefore, sub-
clinical mastitis detection may be regarded as less appli-
cable than clinical mastitis detection. However, pro-
spective forecasting of chronic subclinical mastitis is 
now possible due to a clear definition of chronic sub-
clinical mastitis of three to four weeks (Bonestroo et al., 
2021) and the availability of data collected frequently 
from on-farm sensor systems. 

Sensor systems can measure mastitis indicators such 
as conductivity, somatic cell count (SCC), and blood in 
the milk daily. Being more frequent than commonly per-
formed monthly Dairy Herd Improvement (DHI) SCC 
sampling and testing, these high-frequency indicators 
could be used to obtain insight into udder health over 
time. The benefits of more frequent sampling would in-
clude a higher diagnostic performance to detect a case 
and potentially forecast the outcome of such a case.  

Therefore, this study aimed to develop a sensor-
based prediction model that forecasts the future subclin-
ical chronic mastitis status based on past sensor data. 
The model-based gradient-boosting trees approach was 
compared to two approaches representing the perfor-
mance achieved with simple prediction rules on monthly 
sampled data and daily SCC data alone. The effect of 
using input data from a shorter period in the model on 
the predictive performance was explored using data 
from 30 days and 15 days prior to the moment of fore-
casting. 

Methods 

Data 

For this study, we used data from 14 herds from Bel-
gium, Canada, France, Sweden, and the Netherlands, 
with herd sizes of lactating cows ranging from 55 to 638 
cows. The data was retrieved from a central database of 
DeLaval International AB (Tumba, Sweden). Herds 
with an online cell counter (OCC) (DeLaval OCC, 
DeLaval International AB, Tumba, Sweden) using an 
automatic milking system (DeLaval VMS series, DeLa-
val International AB, Tumba, Sweden) were selected. 
The OCC is an add-on to the AMS that measures the 

commonly used SCC in the milk to assess the degree of 
udder inflammation. The OCC was validated against la-
boratory SCC, resulting in a high correlation (0.82-0.86) 
with laboratory SCC (Sørensen et al., 2016; Nørstebø et 
al., 2019). 

Besides SCC data, the AMS collected data on the 
conductivity of the milk per quarter of the udder (in 
mS/cm), the occurrence of blood in the milk (using an 
RGB sensor), as well as milk yields (in kg). The data 
was recorded in different time intervals for different 
herds, but all herds started to record in 2016 or 2017, 
and the average time recorded per herd was 2.8 years, 
with a minimum of 1.4 years and a maximum of 4.2 
years. The data was reported in a “per milking” fre-
quency. This data included cow identification number, 
herd identification number, milk yield in kilograms, 
blood presence (binary variable indicating the presence 
of blood), SCC, days in milk (DIM), milk diversion (the 
action of diverting the milk away from the consumable 
milk bulk tank into a sink), 4 quarter conductivities 
throughout the milking, and parity (i.e., the lactation 
number of the cow). We calculated the time interval be-
tween milkings in hours and the standard deviation of 
quarter conductivity values (see Appendix A). In addi-
tion, we also calculated the interquarter ratio of quarter 
conductivity values (the highest quarter conductivity 
value divided by the lowest quarter conductivity value) 
and milk production rate (milk yield in kilograms di-
vided by the time interval between milkings in hours). 
An overview of the data can be seen in Table 1. We se-
lected cows for which we had the data from the start of 
the lactation (at least one milking reported in the first 10 
DIM). Furthermore, we removed all milking days that 
had a between-milking interval shorter than 3 and longer 
than 24 hours because the milk-yield-based variables are 
misrepresented for milkings outside this range 
(Hogeveen et al., 2001).  

Training and validation datasets 

To create a training and a validation dataset, we ran-
domly divided the herds in our dataset. Half of the herds 
were selected for the training set, and the other half en-
tered the validation set. Validation herds were identified 
as herds 1 to 7, while herds 8 to 14 were designated as 
training herds. The data from all the training herds were 
used to fit a prediction model all at once (i.e., the model 
was trained once using data from all training herds), and 
data from the validation herds were used to test the 
model’s performance.  
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Table 1. An overview of the variables per milking used in the study 

 

Herd Milkings 
with milk di-
version 

Mean time 
between 

SCC sam-
ples 

Mean 
parity 

Milkings with 
blood detected 

Mean SCC Mean 
STDCon-
ductivity 

Mean IQRCon-
ductivity 

Mean milk 
yield 

Mean time 
interval 

1 0.02 1.94 2.37 0.01 134.01 0.15 1.07 11.82 8.91 

2 0.01 2.54 2.22 0.00 185.66 0.15 1.07 11.46 8.99 

3 0.02 4.32 2.31 0.06 155.75 0.16 1.08 13.61 9.57 

4 0.03 1.45 2.96 0.01 158.88 0.14 1.07 15.93 9.73 

5 0.05 2.11 2.40 0.08 206.66 0.16 1.08 13.92 10.67 

6 0.04 4.20 2.22 0.01 282.69 0.17 1.09 10.36 8.54 

7 0.04 3.52 2.00 0.06 191.91 0.15 1.07 15.56 10.08 

8 0.05 2.80 2.04 0.01 227.58 0.15 1.07 13.41 8.74 

9 0.03 2.66 2.03 0.01 228.80 0.14 1.07 10.39 8.33 

10 0.02 3.51 3.19 0.05 178.89 0.15 1.08 10.48 8.31 

11 0.01 2.21 2.57 0.02 130.65 0.13 1.07 11.30 8.37 

12 0.02 2.66 2.69 0.01 134.55 0.13 1.07 11.58 8.60 

13 0.01 2.22 2.59 0.02 89.14 0.13 1.07 11.43 8.94 

14 0.04 2.90 2.15 0.01 317.83 0.17 1.09 11.63 9.74 

 

Data pre-processing 

All data processing and case predicting were performed 
in Python 3.7. The data (e.g., milk yield, interquarter ra-
tio of conductivity) from each milking per day was ag-
gregated to a daily frequency using the mean, minimum, 
maximum, and standard deviation functions. After the 
aggregation to a daily frequency, the daily mean, maxi-
mum, and standard deviation of quarter-level conductiv-
ity values (e.g., daily mean conductivity value of the 
left-rear quarter) were aggregated to cow-level varia-
bles. This aggregation was performed by calculating the 
mean over daily mean quarter conductivity values and 
the maximum over daily maximum quarter conductivity 
values. In addition, we also calculated the standard de-
viation over daily standard deviations of quarter conduc-
tivity values and the standard deviation over daily max-
imum quarter conductivity values. A description of the 
aggregated variables in the dataset with their calculation 
is given in Appendix A. All variables had to be on cow 
level as we forecast chronic mastitis on cow level. The 
remaining quarter-level conductivity variables were not 
included as input in the forecasting models as they were 
not reported on cow-level. 

Case definition 

A prediction day (i.e., a day on which a prediction of a 
future state was made) was defined as a day in the lac-
tation with at least a mean SCC higher than or equal to 
200,000 cells/ml (International Dairy Federation, 2013) 
or having an SCC of such a level on 1 of the 4 days prior  

to the day. It is essential to mention that one mastitis 
case can have multiple prediction days as each day of 
the episode, a forecast is performed. It would allow the 
farmer to monitor and forecast during an ongoing epi-
sode. For each day on which the future chronic mastitis 
status was forecasted, we used the data 30 days before 
the prediction day as input. Referring back to Appendix 
A, the feature values of each day during the last 30 days 
(e.g., MaxIQRConductivity on the 16th day before the 
prediction day) could be used by the forecasting method. 
Moreover, to derive the future chronic mastitis status for 
each prediction day, 50 days of data after the prediction 
day were needed (Figure 1). Consequently, each day 
during lactation with 30 preceding and 50 successive 
days of data could be a prediction day, given that it had 
a recent increase in SCC.  

Labeling of chronic mastitis cases 

Filtering was used to determine a structural decrease in 
SCC below 200,000 SCC/ml. The future chronic masti-
tis status on a prediction day was labeled as not chronic 
if the rolling 20-day mean SCC decreased below 
200,000 SCC/ml (0= not chronic mastitis) at least once 
in the period from the prediction day to 50 days post the 
prediction day. It was labeled chronic if no structural de-
crease occurred (1=chronic mastitis). In other words, the 
label indicates whether the cow would recover (=0) or 
turn chronic (=1). When the SCC is consistently above 
200,000 SCC/ml across the whole 50-day period in the 
future, it is chronic (the top example in Figure 1), and 
when the SCC decreases structurally below 200,000 
SCC/ml in the 50 days after a prediction day, it is not 
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chronic (the second example from the top in Figure 1). 
If a cow had an increase of SCC after a structural de-
crease in SCC, the cow was regarded as not chronic (the 
third example in Figure 1). In these cases, it was impos-
sible to determine whether the new increase in SCC was 
part of the initial episode or the start of a new episode. 
The 20-day rolling window was chosen to ensure that a 
case recovered long-term and not just for a few days. 
The 50 days post prediction day were chosen based on 
the approximate chronic cut-off of Bonestroo et al. 
(2020) of 4 weeks or approximately 30 days plus the 
rolling 20-day window (20+30=50 days). Because SCC 
is sampled using a risk-based sampling strategy in the 
OCC, SCC was not sampled every day. As such, we re-
quired at least 10 SCC measurements in the rolling 20-
day window to calculate the rolling mean. If no rolling 
mean could be calculated at all, future chronic mastitis 
could not be determined, and the observation was dis-
carded.  

Different input periods 

Besides the default 30-day input period, we also pre-
processed the data for a 15-day input period to evaluate 
the effect of different input periods on the forecasting 
performance. A shorter input period using less infor-
mation would allow users to forecast chronic mastitis 
earlier in lactation.  

These different pre-processing steps resulted in 
59,541 chronic mastitis prediction days and 107,702 not 
chronic prediction days using a 30-day input period and 
63,362 chronic mastitis prediction days and 118,808 not 
chronic prediction days using a 15-day input period. A 
longer input period results in fewer cases to be fore-
casted as it requires more days with measured sensor 
data. Table 2 shows the number of cow lactations and 
prediction days per herd for both input period catego-
ries.  

 
Figure 1. Examples of the prediction task that was performed by the forecasting model where the future chronic mastitis label is 
created by determining whether the rolling 20-day mean of daily mean SCC decreased below 200,000 SCC/ml (0= not chronic mas-
titis) or not (1=chronic mastitis) at least once in the period from the prediction day to 50 days post the prediction day

Gradient-Boosting Classification Trees 

We used the gradient-boosting trees algorithm as imple-
mented in XGBoost (Chen and Guestrin, 2016) to create 
a prediction model that forecasts whether the cow would 
recover (=0) or turn chronic (=1), using all features in 
Appendix A for every input day (from the prediction day 
to 29 days before the prediction). We chose gradient-
boosting trees as it can deal with missing values, which 
can be frequent (Hogeveen et al., 2010). In addition, past 
work on clinical mastitis detection with boosting and 
bagged trees showed good results (Kamphuis et al., 
2010) using similar sensor data. Essentially gradient-

boosting trees (Friedman, 2001) use boosting with deci-
sion trees. In boosting, a combination of decision trees 
is made by sequentially building several decision trees 
from the data to minimize the classification error. In 
short, a first decision tree is fitted on the training data 
and a classification error is computed using the loss 
function (log loss function in our case). To minimize the 
classification error, the second decision tree uses the re-
sidual classification error of the first decision tree, and 
the third decision tree uses the residuals of the second 
decision tree, and so forth until the upper limit of the 
number of trees is reached. Each tree will give a predic-
tion on a log(odds) scale. The final prediction of the 
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model is the sum of the predictions of each decision tree 
multiplied by a pre-defined learning rate. Lastly, the fi-
nal prediction in log(odds) is transformed to a prediction 
in probability by using the inverse (logit) link function. 
Sequentially using the residual allows later decision 
trees to compensate for errors of the earlier decision 
trees. To address the class imbalance between the num-
ber of chronic and healthy prediction days, we set the 

positive class weight parameter (scale_pos_weight) to 
be equal to the ratio between the positive and the nega-
tive samples (i.e., chronic and non-chronic prediction 
days) in the training dataset. This was 0.653 in the 30-
day input period dataset and 0.635 in the 15-day input 
period dataset. 

 
 

Table 2. Herd descriptive statistics in terms of the number of cow lactations, the number of prediction days per input period 

Herd Herd type Cow lactations for 
30-day input dataset 

Prediction days for 
30-day input dataset 

Cow lactation for 15-
day input dataset 

Prediction days for 
15-day input dataset 

1.  Validation 326 19,375 355 21,030 

2. Validation 326 10,689 345 11,681 

3. Validation 295 26,244 307 28,301 

4. Validation 212 11,142 228 12,410 

5. Validation 196 12,983 200 13,647 

6. Validation 151 8,398 158 9,070 

7. Validation 36 896 45 1,221 

8. Training 233 9,434 243 10,081 

9. Training 245 16,543 259 17,791 

10. Training 210 12,566 222 13,857 

11. Training 545 19,704 595 22,286 

12. Training 137 8,439 140 9,009 

13. Training 118 6,292 129 6,920 

14. Training 127 4,538 131 4,866 

Hyperparameter optimization 

Gradient-boosting trees have several hyperparameters 
(or settings) that can be optimized. An explanation of 
the specific hyperparameters can be found in Chen and 
Guestrin (2016). The data cannot directly estimate these 
hyperparameters as they must be set before the learning 
process (i.e., the number of trees in a gradient-boosting 
trees classification model must be set beforehand). 
Therefore, these hyperparameters require optimization. 
To determine the optimal hyperparameter set, we sam-
pled 100 hyperparameter combinations from the statis-
tical distributions in Table 3. We used seven-fold ran-
dom search cross-validation in the programming library 
scikit-learn (Pedregosa et al., 2011) to choose the opti-
mal hyperparameter combination.  

In short, we separated the training dataset into seven 
folds based on the herd identification number to ensure 
that every herd occupied 1 fold. This separation was 
done to ensure that the herd-specific performance mim-
ics the model's situation in a new herd (Hogeveen et al., 
2010). Next, 6 folds of data were used to train a gradi-
ent-boosting trees model with a specific set of hyperpa-
rameters randomly sampled from the distributions de-
scribed in Table 3. A possible hyperparameter combina-
tion might be 0.02 learning rate, 5 minimum child 
weight, 2 maximum depth of each tree, 0.4 fraction of 

variables considered for each tree, and 75 number of 
trees. It could be any value as described by the distribu-
tions with a likelihood dependent on the type of distri-
bution. This random search procedure has been proven 
to work well relative to a grid search (Bergstra and 
Bengio, 2012). Subsequently, sample predictions in the 
form of prediction probabilities were made, using the 
unused fold as a test fold. These probabilities were com-
pared with the label (i.e., whether the case was going to 
be chronic or not in the future) using the area under the 
curve (AUC) metric. The AUC was implemented using 
the roc_auc_score function in scikit-learn (Pedregosa et 
al., 2011). The roc_auc_score function calculates the 
area under the receiver operating characteristic (ROC) 
curve. This procedure was iterated seven times, with 
each fold being the test fold once for every hyperparam-
eter combination. The average AUC over the test folds 
was the final score of the hyperparameter combination.  

The above procedure was done for 100 randomly 
sampled hyperparameter combinations. We chose the 
optimal hyperparameter combination where the model 
maximized the average AUC. This procedure was solely 
done to attain the optimal hyperparameter set on the 
training dataset. We trained a model with the optimal 
hyperparameters using all the training data from the 
training herds. This model was subsequently validated 
using data from the validation dataset. 
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Table 3. The hyperparameter space that is explored in the 
random hyperparameter optimization by using 100 combina-
tions of hyperparameters 

Validation 

The predictions of the model take the form of class prob-
abilities. The predictions and the labels in the validation 
dataset were compared using the AUC, Matthew's cor-
relation coefficient (MCC), accuracy, sensitivity, and 
specificity per herd. Accuracy, sensitivity, specificity, 
and MCC (Eq. 1, 2, 3, 4) were calculated using a prob-
ability threshold for predicted future chronic mastitis 
statuses. These statuses were created on the predicted 
probability using a threshold that maximizes Youden’s 
index (sensitivity +  specificity − 1), weighting false 
positives and false negatives equally. After the model 
was trained, a model probability threshold of 0.18 and 
0.16 in the 30-day and 15-day input period categories 
was estimated to maximize Youden’s index. Hence-
forth, these thresholds were used for their respective in-
put period categories. 

 

𝑀𝐶𝐶

=  
𝑡𝑝 × 𝑡𝑛 − 𝑓𝑝 × 𝑓𝑛

ඥ(𝑡𝑝 + 𝑓𝑝)(𝑡𝑝 + 𝑓𝑛)(𝑡𝑛 + 𝑓𝑝)(𝑡𝑛 + 𝑓𝑛)
 

(1) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
 (2) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 (3) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑡𝑛

𝑡𝑛 + 𝑓𝑝
 (4) 

 

 

 

 

Where tp is the number of true positives, tn is the num-
ber of true negatives, fp is the number of false positives, 
and fn is the number of false negatives. AUC was esti-
mated as indicated in the hyperparameter optimization 
section.  

The predictive performance of the gradient-boosting 
trees classifier was compared to that of two default ap-
proaches, the monthly sampling approach (approach 
mimicking DHI sampling frequency but using OCC 
data) and the frequent sampling approach (using all 
OCC data available).  
 
 Monthly sampling approach, this approach predicted 

future chronic mastitis to be present when the SCC 
was equal to or higher than 200,000 SCC/ml in the 
evaluation closest to the prediction day and the SCC 
evaluation furthest away in time in the preceding 30 
days relative to the prediction day (Figure 1). The 
prediction rule predicted chronic mastitis if both 
SCC samples were higher than 200,000 SCC/ml. The 
monthly sampling approach mimicked a situation 
where farmers use monthly SCC data of the previous 
month and the current month to determine chronic 
mastitis, common in a non-sensor dairy farm setting. 

 Frequent sampling approach, this approach predicted 
future chronic mastitis when the number of days with 
200,000 SCC/ml or higher prior to the prediction day 
was equal to or more than 13 days in the 30-day input 
period category (7 days in the 15-day input period 
category). This threshold on the number of days was 
chosen to maximize Youden’s index to forecast the 
future chronic mastitis status. 

 

Comparing different approaches based on different met-
rics allowed us to determine whether the increase in pre-
dictive performance was due to more complex models 
or more frequent SCC samples. The AUC could not be 
computed for the monthly sampling approach as this ap-
proach results in a class prediction and not a continuous 
value. The differences in AUC, MCC, and accuracy be-
tween the model predictions and the default approaches 
were tested using (Welch’s) t-tests for unequal variances 
on herd-specific performance measures. Accuracy, 
MCC, and AUC were selected for the statistical tests. 
This decision was made as they take all classified cases 
into account, while specificity (no tp or fn) and sensitiv-
ity (no tn or fp) do not. 
 
 
 
 
 

Hyperparameter Distribution 

Learning rate Log uniform(0.01-1.0) 

Minimum child weight Uniform(1-20) 

Maximum depth of each tree Uniform(1-15) 

Fraction of variables consid-
ered for each tree 

Uniform(0.01-1.0) 

The number of trees Uniform(50-200) 
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Table 4. The sensitivity, specificity, Matthew's correlation coefficient, accuracy, and Area under Curve (AUC) of the model predic-
tions and the frequent and monthly sampling approaches over 7 validation herds using 30 days prior to the prediction day as input 

Herd Sensitivity Specificity Matthew's correla-
tion coefficient 

Accuracy AUC 

Model 

Herd 1 0.937 0.798 0.721 0.854 0.938 

Herd 2 0.925 0.781 0.677 0.832 0.924 

Herd 3 0.940 0.785 0.629 0.821 0.931 

Herd 4 0.909 0.842 0.718 0.864 0.945 

Herd 5 0.943 0.838 0.762 0.878 0.954 

Herd 6 0.934 0.831 0.666 0.853 0.948 

Herd 7  0.947 0.909 0.687 0.913 0.969 

All herds 0.934 0.826 0.694 0.859 0.944 

      

Frequent sampling approach 

Herd 1 0.813 0.844 0.652 0.831 0.904 

Herd 2 0.833 0.756 0.566 0.783 0.879 

Herd 3 0.885 0.774 0.573 0.800 0.912 

Herd 4 0.707 0.864 0.573 0.813 0.882 

Herd 5 0.825 0.852 0.670 0.842 0.916 

Herd 6 0.896 0.838 0.645 0.850 0.933 

Herd 7 0.874 0.913 0.649 0.909 0.947 

All herds 0.833 0.834 0.618 0.833 0.910 

      

Monthly sampling approach 

Herd 1 0.553 0.906 0.502 0.764  

Herd 2 0.546 0.862 0.434 0.750  

Herd 3 0.594 0.863 0.449 0.801  

Herd 4 0.585 0.897 0.515 0.795  

Herd 5 0.656 0.903 0.587 0.809  

Herd 6 0.631 0.900 0.531 0.843  

Herd 7 0.598 0.937 0.510 0.900  

All herds 0.595 0.896 0.504 0.809  

Results 

Using the previous 30 days as input to predict 
future chronic mastitis 

A chronic mastitis forecasting model was trained and 
validated. Given automatically-collected sensor data, 
the farmer would gain insight into the probable end of a 
case and use sensor data structurally. Table 4 presents 
all approaches' sensitivity, specificity, MCC, accuracy, 
and AUC. The chronic mastitis prediction model outper-
formed the two default approaches on all farms for al-
most all performance indicators. More specifically, it 
outperformed them on accuracy (chronic mastitis pre-
diction model: 0.859, frequent sampling approach: 
0.833, and monthly sampling approach: 0.809), MCC 

(chronic mastitis prediction model: 0.694, frequent sam-
pling approach: 0.618, and monthly sampling approach: 
0.504), and AUC metrics (chronic mastitis prediction 
model: 0.944 and frequent sampling approach: 0.910). 
Using (Welch’s) t-tests for unequal variances, we deter-
mined that the differences between the default ap-
proaches and the model predictions were significant for 
AUC, and MCC (P<0.05) but not for accuracy when 
compared to the frequent sampling approach (P>0.05). 
The chronic mastitis prediction model also outper-
formed the other approaches on sensitivity (chronic 
mastitis prediction model: 0.934, frequent sampling ap-
proach: 0.833, and monthly sampling approach: 0.595), 
but the monthly sampling approach outperformed the 
other methods on specificity (chronic mastitis prediction 
model: 0.826, frequent sampling approach: 0.834, and 
monthly sampling approach: 0.896). 
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Using the previous 15 days as input to predict 
future chronic mastitis 

Table 5 provides the different approaches' sensitivity, 
specificity, accuracy, MCC, and AUC. In this case, the 
monthly sampling approach could not be applied, as it 
requires at least 30 input days. In this case, the model 
outperformed the approach in sensitivity, MCC, accu-
racy, and AUC but not in specificity. Using (Welch’s) t-
tests for unequal variances, we determined that the dif-
ferences between the default approach and the model 

predictions were significant for AUC and MCC 
(P<0.05) but not for accuracy when compared to the fre-
quent sampling approach (P>0.05). When comparing 
the results of differing input periods, we saw no substan-
tial differences between them. The decrease in perfor-
mance was limited due to decreasing the input period 
from 30 days to 15 days. 

.

Table 5. The sensitivity, specificity, Matthew's correlation coefficient, accuracy, and Area under Curve (AUC) of the model predic-
tions, and the frequent sampling approach over 7 validation herds using 15 days prior to the prediction day as input. It was not 
possible to use the monthly sampling approach using the 15-day input 

Herd Sensitivity Specificity Matthew's correla-
tion coefficient 

Accuracy AUC 

Model 

Herd 1 0.931 0.791 0.705 0.846 0.931 

Herd 2 0.915 0.781 0.663 0.827 0.922 

Herd 3 0.931 0.774 0.605 0.809 0.914 

Herd 4 0.905 0.836 0.704 0.858 0.938 

Herd 5 0.933 0.834 0.746 0.871 0.947 

Herd 6 0.930 0.833 0.660 0.853 0.941 

Herd 7  0.912 0.887 0.625 0.890 0.964 

All herds 0.922 0.820 0.673 0.851 0.937 

      

Frequent sampling approach 

Herd 1 0.840 0.824 0.653 0.830 0.901 

Herd 2 0.870 0.777 0.617 0.809 0.896 

Herd 3 0.884 0.769 0.561 0.794 0.899 

Herd 4 0.666 0.878 0.556 0.810 0.862 

Herd 5 0.842 0.837 0.665 0.839 0.914 

Herd 6 0.840 0.852 0.617 0.850 0.919 

Herd 7 0.855 0.900 0.611 0.895 0.946 

All herds 0.828 0.834 0.612 0.832 0.905 

Discussion 

This study is the first study that uses on-farm sensor data 
to predict future chronic mastitis. We developed a pre-
diction model and compared it with the monthly and fre-
quent sampling approaches using predictive perfor-
mance. The significantly higher performance of the 
model compared to the performance of the approaches 
showed the potential value of future chronic mastitis 
prediction models based on sensor data. The results 
show that this model would have value for farmers in 
forecasting chronicity. These points are strengthened 
because farmers may not need to invest in extra sensor 
technology to gather these forecasts. Limited research 
has been published on future chronic mastitis forecast-

ing. Bartel et al. (2019) created two chronic mastitis pre-
diction models for healthy and unhealthy cows, using 
non-sensor DHI data and generalized additive models. 
They reported an AUC of 0.779 and 0.868 for the un-
healthy and healthy cow models. Although we built only 
one model to classify healthy and chronic cows, our re-
ported AUC was larger. Nevertheless, these studies can-
not be directly compared as they used a different chronic 
mastitis definition using diverse data types.  

To keep the comparison between approaches fair, we 
have chosen an equal weighting between misclassifica-
tion types by optimizing Youden’s index. Preferring 
specificity to sensitivity would not be fair to the monthly 
sampling approach. The consequences of misclassifica-
tion differ between false positives and false negatives in 
chronic mastitis forecasting. Chronic cases classified as 
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not chronic have more time in the herd, while more data 
is gathered that could lead to a correct prediction in the 
end. However, this cow may infect other cows in this 
period. On the other side, misclassification of a not 
chronic case as a chronic case can lead to culling, which 
can be costly. In that case, the farmer incurs unnecessary 
culling costs, and it leads to an unnecessary loss of life. 
One may argue that unnecessary culling is more costly 
than keeping a chronic cow in the herd or vice versa and 
make the prediction algorithm more sensitive to either 
class. However, our primary aim was to compare the 
model to the approaches, and the monthly sampling ap-
proach does not allow us to adapt it and make it cost-
sensitive. Therefore, we have refrained from making the 
model cost-sensitive. 

Several limitations constrained the study and its re-
sults. We based our future chronic mastitis definition on 
a long-term increased SCC without a period where SCC 
was below 200,000 cells/ml. Chronic mastitis itself is 
not well-defined in the literature. As SCC is a primary 
indicator for inflammation (International Dairy 
Federation, 2011) and DHI SCC has been used to indi-
cate chronic mastitis (St. Rose et al., 2003), we argue 
that SCC is a primary candidate to operationalize 
chronic mastitis. However, one could also have used 
conductivity to define chronic mastitis, but the conduc-
tivity thresholds of healthy versus sick cows are less 
well defined and accepted than the thresholds of SCC 
(Smith et al., 2001; International Dairy Federation, 
2013). In the end, we recorded 50 days of SCC meas-
urements after the prediction day and determined 
whether, within the 50 days, there was a 20-day period 
where the mean SCC was lower than 200,000 SCC/ml. 
Another limitation was that we required more than 10 
non-missing observations to calculate a rolling mean 
when we labeled cases. Whether a value is missing may 
also be dependent on the sampling strategy. The sam-
pling strategy is based on the mastitis risk assessment on 
the OCC sampling algorithm. This may cause structural 
missing values as it depends on the decision of the sam-
pling algorithm and may bias the labels to be definable 
when the cow is indeed chronic and indefinable when a 
cow is not. It should be emphasized that the limitations 
do not make the model invalid from a practical perspec-
tive, as farmers would detect chronic cases that they 
would not have detected (or detected later) without any 
additional cost.  

We have made several choices concerning the model 
and training process. In the hyperparameter optimiza-
tion, we used random search with herd-based cross-val-
idation and gradient-boosting trees. We used gradient-
boosting trees as they tended to work well with tabular 
AMS sensor data (Kamphuis et al., 2010) and natively 
supports missing values. Other models might perform 
better than gradient-boosting trees. However, this study 
aimed to investigate the possibility of developing a fu-
ture chronic mastitis prediction model and not to find 

the best performing model. In hyperparameter optimiza-
tion, we could not do an exhaustive search, but the re-
sults in this paper still show the added value of a future 
chronic mastitis prediction model. We also used a herd-
based split between training and validation datasets to 
avoid the model learning herd-specific characteristics 
that might increase the predictive performance. This 
herd-based split mimics the algorithm's performance 
when deployed on a new farm. Different farm manage-
ment strategies or pathogen populations might cause 
herd-specific associations. The performance of such a 
validated model might then be disappointing when the 
model is deployed on a new farm. Therefore, a more 
conservative herd-based cross-validation strategy 
should be preferred when testing on-farm detection or 
prediction models. However, in a practical application, 
the current proposed model can be extended to be herd-
specific by using the herd data to retrain the model partly 
(i.e., by applying transfer learning). Although interest-
ing, this was outside the scope of this paper and hence-
forth was not performed. 

We have trained the chronic mastitis prediction 
model using data from 15 and 30 days prior to the pre-
diction day as model input. The predictive performance 
decreased when the number of input days decreased. 
However, the differences were minor (e.g., 0.944 to 
0.937 average AUC). This limited decrease in predictive 
performance with a decreasing input period indicates 
that it might be possible to predict future chronic masti-
tis with only a small number of input days prior to the 
prediction day. If a small number of input days are re-
quired, it becomes possible to predict future chronic 
mastitis early in lactation. Predicting chronic mastitis 
early in lactation is valuable as mastitis is most prevalent 
in that stage of lactation (Nyman et al., 2007). Predicting 
which case may turn into a chronic case, with or without 
treatment, would be helpful in decision-making at this 
stage. Future research could investigate possibilities of 
early lactation chronic mastitis forecasting. 

Conclusion 

The developed prediction model based on sensor data 
outperformed default approaches that mimic current de-
cision-making based on monthly or more frequently 
sampled SCC data. Decreasing the input period from 30 
to 15 days only had a limited effect on the model's pre-
dictive performance. An accurate prediction of future 
chronic mastitis could alarm farmers of potentially 
chronic cows in the future, resulting in earlier and po-
tentially more beneficial interventions, such as treat-
ment and more targeted culling. In the end, this supports 
sensor-driven decision-making concerning chronic 
cows. 
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Appendix 

Appendix A. Overview of the features as used 
in the prediction model in this study. 

Table A1. Overview of the features and their definitions as 
used in the study 

Feature name Explanation 

DIM The DIM of the day. 

MeanYield The mean of the milk yields 
from different milkings on a 
day. 

MaxYield The maximum of the milk 
yields from different milkings 
on a day. 

MinYield The minimum of the milk 

yields from different milkings 
on a day. 

STDYield The standard deviation of the 

milk yields from different 
milkings on a day. 

TotalYield The sum of the milk yields 
from different milkings on a 
day 

MeanIQRConductivity The mean of the ratio between 
the quarter with the highest 

conductivity and the lowest 
conductivity for a milking over 
all milkings on a day. 

MaxIQRConductivity The maximum of the ratio be-
tween the quarter with the 
highest conductivity and the 

lowest conductivity for a milk-
ing over all milkings on a day. 

MinIQRConductivity The minimum of the ratio be-

tween the quarter with the 
highest conductivity and the 

lowest conductivity for a milk-
ing over all milkings on a day. 

STDIQRConductivity The standard deviation of the 
ratio between the quarter with 
the highest conductivity and 
the lowest conductivity for a 

milking over all milkings on a 
day. 

MeanSTDConductivity The mean of the standard devi-

ation between the mean con-
ductivities measured between 

the four quarters of all milk-
ings on a certain day. 

MaxSTDConductivity The maximum of the standard 
deviation between the mean 
conductivities measured be-
tween the four quarters of all 
milkings on a certain day. 

Feature name Explanation 

MinSTDConductivity The minimum of the standard 
deviation between the mean 
conductivities measured be-

tween the four quarters of all 
milkings on a certain day. 

STDSTDConductivity The standard deviation over 
the standard deviation between 

the mean conductivities meas-
ured between the four quarters 
of all milkings on a certain 
day. 

MeanTimeInterval The mean time between milk-
ings on a day. 

MaxTimeInterval The maximum time between 
milkings on a day. 

MinTimeInterval The minimum time between 
milkings on a day. 

STDTimeInterval The standard deviation time 
between milkings on a day. 

MeanMilkRate The mean milk production in 
kilograms per hour on a day. 

MaxMilkRate The maximum milk produc-

tion in kilograms per hour on a 
day. 

MinMilkRate The minimum milk production 

in kilograms per hour on a 
day. 

STDMilkRate The standard deviation of milk 
production in kilograms per 
hour on a day. 

MeanSCC The mean SCC in ml on a day. 

MaxSCC The maximum SCC in ml on a 
day. 

MinSCC The minimum SCC in ml on a 
day. 

STDSCC The standard deviation of SCC 
in ml on a day. 

MeanBlood The share of milkings that had 

a detection of blood in the 
milk on a day. 

MaxBlood The maximum of blood detec-
tions in the milk on a day 

(whether there was any blood 
in the milkings on a given 
day). 

MinBlood The minimum of blood detec-
tions in the milk on a day 
(whether there was any no 
blood milking on a given day). 

STDBlood The standard deviation of 
milkings that had a detection 
of blood in the milk on a day. 

Treatment duration A number indicating the start 
of a treatment where milk was 

diverted for several days in the 
future. 



 

12 
 

Feature name Explanation 

Parity The parity of the cow at the 
time of milking. 

MeanOverallConductivity The mean of the daily mean 
quarter conductivities on a 
day. 

MaxOverallConductivity The maximum of the daily 
maximum quarter conductivi-
ties on a day. 

Feature name Explanation 

STDOverallConductivity The standard deviation of the 
daily standard deviations of 
quarter conductivities on a 
day. 

STDMaxOverallConductivity The standard deviation of the 

daily maximum quarter con-
ductivities on a day. 
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