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Abstract
Insulin-like growth factors 1 and 2 (IGF1 and IGF2) are small mitogenic peptides. IGF! 
is mainly expressed in adult life, whereas IGF2 is one of the most ubiquitous growth 
factors in the mammalian embryo, where it plays an important role in the regulation of 
fetal growth. The encoding genes have been characterised in a number of species and show 
a complex structural organisation and regulation of expression. Furthermore, IGF2 it is 
subject to epigenetic modification and genomic imprinting.
The present study aimed at the basic structural and functional characterisation of the equine 
IGF1 and IGF2 genes.
cDNAs for both equine IGF1 and IGF2 were cloned and showed high sequence homology 
when compared to other species. Even more conserved is the deduced amino add sequence 
of both peptides. The equine IGF2 gene was cloned and characterised. Sequence 
comparison revealed three non-coding leader exons and three coding exons. Downstream of 
the polyadenylation site a dinucleotide repeat sequence was identified. A novel structural 
element, an inverted repeat, is predicted. It is conserved between species and located in a 
region which is differentially methylated in the human and mouse genes and possibly 
involved in the imprinting mechanism. The inverted repeat acquires a stem-loop structure 
with a hybrid A/B-DNA conformation in the stem area and binds a specific, methylation 
sensitive protein which is developmentally regulated.
A number of transcripts were detected for both equine IGF1 and IGF2 genes. In the IGF2 
gene, two promoters (P2 and P3) were shown to be active in fetal tissues and one 
promoter (P3) was found to be active in adult tissues. This represents a transcriptional 
pattern different from that in humans or rodents. Furthermore, IGF2 transcripts were 
located at tissue level using in situ hybridisation.
The equine IGF2 gene was physically mapped to ECA 12ql3 and homoeology of this 
chromosome to HSA11 was revealed. .

Key words-, insulin-like growth factor, equine, cloning, transcription, physical 
localisation, stem-loop, imprinting

Distribution:
Swedish University of Agricultural Sciences Uppsala 1997
Department of Pathology ISSN1401-6257
S-75007 Uppsala ISBN91-576-5418-2



The Equine IGF Genes

Structural and transcriptional features

Kerstin Otte
Department of Pathology 

Uppsala

Doctoral thesis
Swedish University of Agricultural Sciences

Uppsala 1997



Acta Universitatis Agriculturae Sueciae 
Veterinaria 24

ISSN 1401-6257
ISBN 91-576-5418-2
© 1997 Kerstin Otte, Uppsala



Abstract
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Insulin-like growth factors 1 and 2 (IGF1 and IGF2) are small mitogenic peptides. IGF1 
is mainly expressed in adult life, whereas IGF2 is one of the most ubiquitous growth 
factors in the mammalian embryo, where it plays an important role in the regulation of 
fetal growth. The encoding genes have been characterised in a number of species and show 
a complex structural organisation and regulation of expression. Furthermore, IGF2 it is 
subject to epigenetic modification and genomic imprinting.
The present study aimed at the basic structural and functional characterisation of the equine 
IGF1 and IGF2 genes.
cDNAs for both equine IGF1 and IGF2 were cloned and showed high sequence homology 
when compared to other species. Even more conserved is the deduced amino acid sequence 
of both peptides.
The equine IGF2 gene was cloned and characterised. Sequence comparison revealed three 
non-coding leader exons and three coding exons. Downstream of the polyadenylation site a 
dinucleotide repeat sequence was identified. A novel structural element, an inverted repeat, 
is predicted. It is conserved between species and located in a region which is differentially 
methylated in the human and mouse genes and possibly involved in the imprinting 
mechanism. The inverted repeat acquires a stem-loop structure with a hybrid A/B-DNA 
conformation in the stem area and binds a specific, methylation sensitive protein which is 
developmentally regulated.
A number of transcripts were detected for both equine IGF1 and IGF2 genes. In the IGF2 
gene, two promoters (P2 and P3) were shown to be active in fetal tissues and one 
promoter (P3) was found to be active in adult tissues. This represents a transcriptional 
pattern different from that in humans or rodents. Furthermore, IGF2 transcripts were 
located at tissue level using in situ hybridisation.
The equine IGF2 gene was physically mapped to ECA 12ql3 and homoeology of this 
chromosome to HSA11 was revealed.
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Abbreviations

bp base pair
BTA Bos taurus
BWS Beckwith-Wiedemann syndrome
CD circular dichroism
CBP cruciform binding protein
C/EBP CAAT/enhancer binding protein
CNS central nervous system
DAPI 4’ ,6-diamidino-2-phenylindole
Dig digoxigenin
DNA deoxyribonucleic acid
ECA Equus caballus
EAS Equus asinus
FISH flourescent insitu hybridisation
GH growth hormone
GRE glucocorticoid responsive element
HMG high mobility group
HBB haemoglobin P
ERAS V-Ha-ras Harvey rat sarcoma viral oncogene homologue
HSA Homo sapiens
IDDM2 insulin-dependent diabetes mellitus
IGF insulin-like growth factor
IGF2/Mpr IGF2/cation-independent mannose-6 phosphate receptor
IGFBP IGF binding protein
INS insulin
kb kilo base
LAP liver-enriched activating protein
LQT1 Long QT syndrome, Ward-Romano syndrome
MEU Macropus eugenii
MMU Mus musculus
mRNA messenger RNA
mRNP messenger ribonucleoprotein particle
NMR nuclear magnetic resonance
OAR Ovis aries
PFGE pulse field gel electrophoresis
PCR polymerase chain reaction
RNA ribonucleic acid
RNase ribonuclease
RT-PCR reverse transcription PCR
SP signal peptide
TH tyrosine hydroxylase
UTR untranslated region
WT-1 Wilms' tumor suppressor gene 1



Introduction

The IGF system

The insulin-like growth factors IGF1 and IGF2 are members of a larger 
family of structurally related peptides which include insulin, IGF1, IGF2 and 
relaxin (Blundell and Humbel 1980, Dull et al 1984, Dafgård et al 1985) (Fig 
1). The IGFs were discovered 40 years ago as molecules mediating GH action 
(Salmon and Daughaday 1957) and subsequent purification and amino acid 
sequence determination revealed two separate molecules (Rinderknecht and 
Humbel 1978a, Rinderknecht and Humbel 1978b).
Named after their high degree of homology with insulin, IGF1 and IGF2 are 
single chain polypeptides and consist of 70 and 67 amino acids, respectively 
(Daughaday and Rotwein 1989). Both mature peptides consist of four 
domains (A, B, C, and D). The A, B and C domains share strong homology 
with pro-insulin (Fig 1). Both IGFs are synthesised as precursors composed of 
a signal peptide, the mature peptide, and a trailer peptide. In IGF1, several 
signal and trailer peptides combine to make up different precursors. These are 
posttranslationally processed to yield identical mature peptides.
NMR solution structures have been determined for human IGF1 and IGF2 
and predict structures similar to insulin, in accordance with earlier computer 
graphic modelling studies (Blundell et al 1978, Dafgård et al 1985, Cooke et 
al 1991, Sato et al 1992, 1993, Terasawa et al 1994, Torres et al 1995).

Insulin
SP B

IGF1
B

IGF2
E

Relaxin
SP B

Fig 1. Structure of the members of the insulin peptide family. These proteins share 
structural similarities in the SP, A-, B-, C-, and D-domains as well as the E-peptides. 
Different domains in the proteins are indicated as boxes. Full size boxes indicate the 
mature peptide, while half size boxes indicate posttranslational removed domains. IGF1 is 
shown with the Ea peptide.
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Physiology and functional role
Originally, the IGFs were considered to act in an endocrine manner as 
mediators of GH action. Later, they were shown to act also in a paracrine 
(local cell to cell response) or autocrine (cell responding to signalling 
molecules made by itself) fashion. The liver is the main source for plasma 
IGFs; IGF1 expression in the liver is highly regulated by GH and nutritional 
factors. In contrast to classical hormone action, the IGFs are synthesized by 
cells in nearly all tissues (Han et al 1987, Daughaday and Rotwein 1989) and 
often at developmental stages when these tissues are undergoing rapid growth. 
In addition, IGF receptors are expressed either by IGF-synthesising cells or by 
adjacent cells, thereby facilitating autocrine or paracrine actions.

In cultured cells, the IGFs stimulate a wide variety of growth and growth- 
related responses. They have been shown to induce proliferation and 
differentiation, to counteract apoptosis and enhance cell survival, and to exert 
insulin-like anabolic effects (rev Jones and Clemmons 1995).

The essential growth promoting functions of the IGFs during fetal 
development were demonstrated in knockout mice carrying null mutations for 
the genes encoding IGF1 and IGF2. Absence of IGF1 causes a decreased 
body weight at birth of around 60% of normal weight, while body proportions 
remain normal. These mice also show a reduced postnatal growth rate and 
high neonatal lethality (Liu et al 1993, Baker et al 1993). Mice lacking IGF2 
show decreased prenatal growth rates and reach 60% of normal body weight 
at term; postnatal growth rates are normal (DeChiara et al 1990).

Creation of transgenic mice overexpressing IGFs have furthered the 
understanding of IGF function, as overexpression of a gene might amplify its 
action in vivo. These transgenics provide long-term exposure to IGFs and are 
capable of increasing IGF expression in specific tissues. Overexpression of 
human IGF1 in transgenic mice resulted in increased body weight and a 
tendency towards overgrowth was observed; variations in local expression 
caused disproportionate growth of specific tissues and spontaneous tumour 
formation (Mathews et al 1988, Coleman et al 1995, Reiss et al 1996, Bol et al 
1997). Overexpressing IGF2 in transgenic mice affected body composition 
but not overall body growth; local transgene expression caused overgrowth of 
specific organs and increased development of tumours (Ward et al 1994, Wolf 
et al 1994, Rogier et al 1994, Bates et al 1995, van Buul-Offers et al 1995, 
Rossetti et al 1996).
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Receptors
The IGFs are able to bind to and possibly exert their actions through three 
different membrane receptors, the insulin receptor, the type-1 IGF receptor 
and the type-2 IGF receptor, which is the equivalent of the IGF2/Mpr (Ullrich 
et al 1986, Morgan et al 1987). Each receptor-growth factor interaction shows 
different kinetic properties. The type-1 receptor has the highest affinity for 
IGF1, the type-2 receptor for IGF2, and the insulin receptor binds both 
molecules with low affinity (Steele-Perkins et al 1988, Nissley et al 1991, 
Werner et al 1992,).

The type-1 receptor is a heterodimeric trans-membrane tyrosine kinase 
consisting of two ot/p subunits, with strong homology to the insulin receptor. 
After ligand binding and subsequent autophosphorylation of the receptor, a 
cascade of intracellular signalling takes place that mediates most of the 
biological effects of the IGFs (de Meyts et al 1994, rev Jones and Clemmons 
1995). Recently, also the insulin receptor was shown to stimulate cell 
proliferation after binding of IGF2, but not IGF1 (Morrione et al 1997).

The type-2 IGF receptor is a monomer consisting of a large extracellular 
domain containing fifteen repeats of a cystein rich motif, a single 
transmembrane helix and a small cytoplasmic region. It binds mannose-6- 
phosphate and IGF2 at different sites of the molecule (Braulke et al 1988, 
Garmroudi and MacDonald 1994). IGF2 binding has not been shown to 
induce phosphorylation of this receptor, but has been suggested to cause 
receptor redistribution (Braulke and Mieskes 1992) and to promote 
exocytosis in insulin-secreting cells (Zhang et al 1997). Also, it might 
function as a scavenger which binds and degrades excess IGF2 in the embryo. 
This view is supported by the rescue of prenatal lethal IGF2/Mpr knockout 
mice through introduction of an IGF2 null allele (Barlow et al 1991, Filson et 
al 1993, Wang et al 1994).

Binding proteins
IGF1 and IGF2 peptides circulating in serum are mostly associated with high 
affinity binding proteins, IGFBPs (Baxter and Martin 1989). At least six 
different IGFBPs have been identified and cloned in man, along with six 
binding proteins from rat and several from pig, cow and sheep (rev Shimasaki 
et al 1991, rev Rechler 1993). Additional members have been proposed in rat 
and man (Chan and Nicoll 1994, Wilson et al 1997). The binding proteins 
differ in their biochemical and physiological characteristics as well as in their 
relative affinities for IGF1 and IGF2. The functions of the binding proteins 
have been proposed to prolong the half-life of the IGFs, to act as transport 
proteins for IGFs in serum and across the endothelial barrier of blood vessels, 
to inhibit or facilitate IGF action, and to store IGF peptides (Clemmons 1993, 
rev Jones and Clemmons 1995).
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The molecular biology of the IGFs

IGF1 gene structure
The genomic organisation of the IGF1 gene has been determined in a number 
of species, including man (Rotwein et al 1986b), rat (Shimatsu and Rotwein 
1987), sheep (Dickson et al 1991), chicken (Kajimoto and Rotwein 1989), and 
salmon (Kavsan et al 1993). cDNAs have been cloned from these and other 
species and sequence comparison reveals a generally conserved gene structure, 
although an increase in the size of introns occurred during evolution. Whereas 
the salmon IGF1 gene is less than 20 kb in length, the chicken IGF1 gene is ca 
50 kb in length and the rat and human genes are from 80 to 100 kb in length. 
The IGF1 gene has been mapped to human chromosome 12 (Brissenden et al 
1984, Tricoli et al 1984) and mouse chromosome 10 (Taylor et al 1991).

The IGF1 gene consists of up to 6 known exons (Fig 2). The chicken and 
mammalian genes contain two different 5" leader exons (termed 1 and 2), 
whereas in xenopus and salmon IGF1 genes only exon 1 is present. In rat and 
man, the leader exons are arrayed in tandem with an intervening intron and 
each is driven by its own promoter (Adamo et al 1991, Kajiamoto and 
Rotwein 1991, Kim et al 1991, rev Sussenbach et al 1992) (Fig 2). Exons 3 
and 4 are common to all IGF1 genes and encode parts of the signal peptide, 
the mature peptide and the common region of the E-peptide. The most 3' 
exons encode different E-peptides. In chicken, the E-peptide is encoded by 
parts of the last two exons. In salmon and mammals, however, the two last 
exons are alternatively spliced which results in IGF1 mRNAs encoding 
multiple E-peptides (Rotwein et al 1986, Steenbergh et al 1991, Chew et al 
1995).

IGF1 promoters
IGF1 promoter structures are highly conserved in all species analysed. The 
precise location and nature of the core promoters have not been determined, 
although minimal promoter regions have been suggested lately (Wang et al 
1997). No TATA or CCAAT-box could be identified, nor are the promoter 
regions GC-rich, which might be the reason for multiple sites of transcription 
initiation in the IGF I promoters (Jansen et al 1991, Kim et al 1991, Hall et al 
1992, Ohlsen et al 1993). However, specific binding of nuclear proteins has 
been observed (Thomas et al 1995, LeStunff et al 1995, An et al 1995, Pao et 
al 1995) and regions or elements that are responsive to transcription factors 
have been identified (Nolten et al 1994, 1995, Delany and Canalis 1995, 
Thomas et al 1996).

IGF1 gene expression
The transcription of IGF1 has been detected in a variety of tissues from 
several species (Rotwein 1986a, 1987, Lund et al 1986, Beck et al 1987, 
Tavakkol et al 1988, Wong et al 1989). IGF1 transcripts are most abundant in 
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adult tissues and the highest levels are found in adult liver; lower levels are 
present in a variety of non-hepatic tissues.
Transcripts containing leader exons 1 or 2 are distributed in a tissue-specific 
manner, with exon 1 containing transcripts being predominant in all rat and 
human tissues examined, and exon 2 derived transcripts occurring at relatively 
high levels in liver, and at low levels in some tissues as kidney, testes, lung and 
stomach. In addition, they appear at different times during development 
(Lowe et al 1987, Hoyt et al 1988, Adamo et al 1991, Jansen et al 1991). 
Transcripts containing different E-peptide coding sequences are present at 
various levels: EalGFl mRNAs are predominant in all tissues examined, 
EblGFl transcripts show low abundance and EcIGFl transcripts has only been 
detected in liver in low amounts (Lowe et al 1988, Nagaoka et al 1991, rev 
Ward and Ellis 1992, Chew et al 1995).
The IGF1 mRNA populations arising from the diversity of transcriptional 
mechanisms differ among species: salmon IGF1 mRNAs appear to be a single 
species, whereas xenopus, chicken, and mammalian IGF1 mRNAs occur as 
multiple species ranging in size from around 0.8 to around 7.5 kb. The 
differences in size depend mainly on the usage of the different 
poly adenylation sites (Lund et al 1989).

A

Human IGF1 gene
chromosome 12

P1 P2 poly A poly A

1 2 3 4 5 6

5 Kb

P1 P2 P3 P4 poly A

_  I I II I ”
——0+—RTHHFH ——-

1 23 456789

absent in rodent genes

Human IGF2 gene
chromosome 11

B

Human IGF2 transcripts P1 / leader 1 D 0_J____________ LUZj 5.3 kb

P2 / leader 2 0__ LUI 5.0 kb

P3 / leader 3 n i ir 6.0 12.2 kb

P4 / leader 4 ii i ir~i 4.8 kb

Fig 2: Schematic structure of human IGF1 and IGF2 genes. A) Exon/intron organisation, 
promoters and polyadenylation sites in the human IGF1 and IGF2 genes are indicated. 
Coding exons are shown as solid boxes, non coding sequences as open boxes and introns 
as lines. The chromosomal localisation is given on the left side. B) Transcripts and 
respective length derived from human IGF2 promoters P1-P4 are shown below. Half size 
boxes indicates differential usage of polyadenylation sites.
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IGF2 gene structure
IGF2 cDNAs have been cloned from a variety of species and show strong 
sequence conservation between species including human (Bell et al 1984, 
Jansen et al 1985), rat (Dull et al 1984, Whitfield et al 1984), mouse (Bell et al 
1986), sheep (O'Mahoney et al 1991), mink (Ekström et al 1993), cow 
(Boulle et al 1993), and pig (Catchpole and Engström 1990). Despite this, 
complete sequence information is only available for the rat and mouse IGF2 
genes (Ikejiri et al 1990, Sasaki et al 1996) and large parts of the human and 
ovine genes (Dull et al 1984, de Pagter-Holthuizen et al 1986, 1987, Holtuizen 
et al 1990, Ohlson et al 1994).
The human IGF2 gene spans around 30 kb DNA on human chromosome 
1 lpl5.5 (Brissenden et al 1984, de Pagter-Holthuizen et al 1987, van Dijk et 
al 1991). The rodent IGF2 genes cover a 12 kb stretch and are located on 
mouse chromosome 7 and rat chromosome 1 (Frunzio et al 1986, Soares et al 
1986, Rotwein and Hall 1990, Zemel et al 1992, Goldmuntz et al 1993) (Fig 
3).

In all species hitherto examined, the IGF2 gene shows a complex genomic 
organisation. It consists of at least 9 exons in humans (Holthuizen et al 1991, 
Ikejiri et al 1991b), 9 exons in sheep (Ohlsen et al 1994) and 6 exons in rat 
and mouse (Frunzio et al 1986, Soares et al 1986, Ueno et al 1987, Rotwein 
and Hall 1990, Ikejiri et al 1990, 1991a) (Fig 2).
The 5' exons are non-coding and driven by different promoters. In humans, 
four identified promoters (Pl- P4) direct the tissue- and development-specific 
transcription of six leader exons (De Pagter-Holthuizen et al 1987, 1988, 
Holthuizen et al 1990), whereas in rodents only three promoters (P1-P3) have 
been identified that drive transcription of three leader exons (Soares et al 
1986, Evans 1988, Matsagushi et al 1990). The additional, most 5' located 
promoter Pl present in the human gene has also been identified in sheep and 
baboon (Jin et al 1993, Ohlsen et al 1994). The three 3' exons are common to 
all IGF2 genes and encode a signal peptide, the mature peptide and a trailer 
peptide. The generated transcripts differ in their 5' untranslated regions, but 
have identical coding regions. In addition, heterogeneity in the 3' region of 
the mRNAs is due to differential use of two polyadenylation sites (Fig 2).

IGF2 gene expression
The human IGF2 gene is expressed in a wide range of fetal tissues, including 
liver, adrenal and skeletal muscle with very high levels, kidney, skin and 
pancreas display intermediate levels. Low levels of IGF2 mRNA are detected 
in intestine, lung, heart, stomach, spleen and brain (Scott et al 1985, Gray et al 
1987, Han et al 1987). After birth the IGF2 level declines significantly and 
tissues such as liver, kidney, skin, peripheral nerve, muscle, colon, uterus, 
stomach, hypothalamus, adrenal, granulosa cells and lung express IGF2 at low 
levels compared with fetal levels. Also in rodents IGF2 is abundantly 
expressed during fetal development and neonatal tissues, but levels decline 
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during late fetal development and persist in the adult only in the brain and 
spinal cord (Soares et al 1985, 1986, Brown et al 1986, Lund et al 1986, Beck 
et al 1987, Gray et al 1987, Murphy et al 1987, 1988, Lee et al 1990).

In humans, transcripts derived from Pl are only expressed in adult liver and 
choroid plexus/leptomeninges and contain an internal ribosomal entry site in 
their leader sequence (Ohlsson et al 1994, Li et al 1996, Teerink et al 1995). 
Transcripts derived from the P2 promoter are present at low levels in fetal liver 
but more abundantly in certain human tumour cell lines. These transcripts, as 
well as mRNA derived from P4, have been shown to be completely polysomal 
and actively engaged in protein synthesis (Ikejiri et al 1991b, Nielsen et al 
1990, De Moor et al 1994). Transcripts derived from promoters P3 and P4 are 
abundant in many fetal tissues and non hepatic adult tissues, with the P3 
promoter being predominantly used. Human P3 derived mRNAs are mainly 
present as part of untranslated mRNP and are selectively mobilised and 
translated in dispersed exponentially growing cells. In mouse, P3 transcipts 
were shown to disengage from polysomes during development (dePagter- 
Holthuizen et al 1987, 1988, Schofield and Tate 1987, Nielsen et al 1990, De 
Moor et al 1994, Newell et al 1994, Ohlsson et al 1994, Nielsen et al 1995, Li 
et al 1996). Expression from the P2, P3 and P4 promoters is reduced during 
adult life.
In rodents, IGF2 transcripts are derived from all three promoters during fetal 
life, with promoter P3 (homologous to human P4) being predominantly used. 
During adult life, transcription from all promoters is strongly repressed 
(Frunzio et al 1986, Soares et al 1986, Ueno et al 1988).

IGF2 transcripts are processed and thereby degraded by endonucleolytic 
cleavage downstream from the translation termination codons (3'UTR) in rat 
and man, respectively. The cleavage site is situated in a highly conserved and 
structured domain that exhibits two large hairpins and an intramolecular 
guanosine quadruplex (Christiansen et al 1994), providing binding sites for 
trans-acting factors (Scheper et al 1996a). The endonucleolytic cleavage of 
IGF2 transcripts seems to be growth-condition-dependent (Scheper et al 
1996b). =

IGF2 promoters
Characterisation of the IGF2 promoters identified a number of functional 
elements and transcription factor binding sites.
The human Pl promoter contains no TATA or obvious CCAAT box although 
there is a single functional SP1 site (van Dijk et al 1991, Roden burg et al 
1997). Pl is activated by C/EBP a and b and LAP (Van Dijk et al 1991, 1992, 
Sussenbach et al 1993, Rodenburg et al 1995) and may be down-regulated by 
two inverted repeat elements which are bound by a protein factor (Rodenburg 
et al 1996).
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The human P2 promoter and the corresponding rodent Pl promoter are weak 
promoters. They contain no known consensus promoter elements and show 
great heterogeneity in their transcription start sites (Ueno et al 1987, 
Holthuizen et al 1990a, Van Dijk et al 1991).
The human P3 promoter is a typical RNA polymerase II driven promoter 
(dePagter-Holthuizen et al 1987, Van Dijk et al 1991) and contains TATA 
and CCAAT boxes along with two Spl sites and two Erg-1 binding sequences. 
Its structure and sequence is strongly conserved in all mammals examined 
(Soares et al 1986, Frunzio et al 1986, Evans et al 1988, O'Mahoney et al 
1991, Boulle et al 1993). The human P3 promoter is repressed by binding of 
WT-1, (Drummond et al 1992) and might also be regulated by p53 (Zhang et 
al 1996). The rat P2 homologue was shown to be downregulated by gluco­
corticoids in the rat neonate (Levinovitz and Norstedt et al 1989, Kitraki et al 
1992, Senior et al 1996) and several putative GREs have been suggested to 
mediate glucocorticoid action in human and rodent neonate (Beck et al 
1988).
The human P4 promoter is strongly homologous to rodent P3 and contains a 
TATA box along with multiple Spl binding sites (Evans et al 1988, Van Dijk 
et al 1991). It is transactivated by the Api complex (Caricasole et al 1993) 
and repressed by WT-1, like mouse P2 and P3 (Ward et al 1995, Duarte et al 
1997).
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Genomic Imprinting

Genomic imprinting is a form of developmental gene regulation which causes 
the expression of a gene according to its maternal or paternal origin (Solter 
1988). A number of imprinted genes have been discovered to date, among 
those IGF2 (DeChiara et al 1991) and its receptor IGF2/Mpr (Barlow et al 
1991).

Genomic imprinting of JGF2
The IGF2 gene is subject to genomic imprinting, such that only the paternal 
allele of IGF2 is transcribed while the maternal allele is silent. Uniparental 
allelic expression of IGF2 has been demonstrated in human (Giannoukakis et 
al 1993, Ohlsson et al 1993, Rainier al 1993), mouse (DeChiara 1991) and rat 
tissues (Pedone et al 1994), except human adult liver and human and murine 
CNS where both parental alleles are actively transcribed. In addition, promoter 
specific imprinting has been reported for human IGF2. During fetal life, 
promoters P2, P3 and P4 are expressed from the paternally derived allele in all 
IGF2 expressing tissues except the leptomeninges and choroid plexus where 
biallelic expression occurs. Promoter Pl is biallelically expressed both during 
fetal and adult life (Giannoukakis et al 1993, Ohlsson et al 1993, 1994, Vu 
and Hoffman 1994, Ekström et al 1995). Additionally, loss of IGF2 
imprinting has been found in a number of human tumours (Ogawa et al 1993, 
Rainier et al 1993, Zhan et al 1994).

Mechanisms of genomic imprinting
The molecular basis of parental imprinting is still largely unknown, but the 
possibility of DNA methylation being involved in the imprinting mechanism 
is supported by knockout mice deficient for DNA methyltransferase that show 
aberrant expression of both IGF2 and the oppositely imprinted H19 gene (Li 
et al 1993).
Parent-specific methylation patterns have been detected in all imprinted genes 
examined, including IGF2, IGF2ZMpr and H19 (Stöger et al. 1993, Brandeis et 
al 1993, Feil et al 1994, Bartolomei et al 1993, Tremblay et al 1995). In the 
mouse IGF2 gene, two differentially methylated and DNase I hypersensitive 
regions have been found, one located 5' of the first exon and one in the 3' 
region of the gene. Both regions are more methylated on the expressed 
paternal allele (Sasaki et al 1992, Feil et al 1994, 1995). Interestingly, the 
methylation of the 3' region is tissue-specific and appears to correlate with 
expression of the gene. Methylation of these regions, however, is not thought 
to constitute the primary imprinting signal but to play a part in maintaining 
the imprint (Razin and Cedar 1994).
Further support for DNA methylation governing genomic imprinting comes 
from studies using inhibitors of DNA methyltransferase, where an increased 
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expression (Eversole-Cire et al 1993, Hu et al 1996) or a switch from biallelic 
to monoallelic expression of IGF2 was observed upon demethylation (Barletta 
et al 1997).

Imprinting might also be regulated by more global mechanisms via a domain 
effect, addressing a cluster of imprinted genes. Mouse IGF2 is physically 
closely linked to the imprinted genes Mash2, Ins-2, Hl9 and p57KIP2 
(Guillemot et al 1995, Deltour et al 1995, Bartolomei et al 1991, Hatada and 
Mukai 1995). The Hl9 gene is imprinted in a manner opposite to that of 
IGF2, being expressed from the maternal allele and undergoing parental 
specific methylation (Bartolomei et al 1991, 1993, Ferguson-Smith et al 1993, 
Feil et al 1994, Tremblay et al 1995). Imprinting and expression of the H19 
and IGF2 genes might be mechanistically linked. An enhancer competition 
model has been proposed, where promoters of both genes interact with a 
single enhancer element located downstream of Hl9 (Li et al 1993, 
Bartolomei et al 1993, Leighton et al 1995).

Furthermore, repeat sequences and alterations in chromatin structure have 
been suggested as additional features in the imprinting mechanism (Neumann 
et al 1995, Banerjee and Smallwood 1995).

Role of genomic imprinting
The question why imprinting exists is obviously important and a number of 
hypotheses have been proposed. Parental imprinting has been suggested to be 
an adaptation to prevent parthenogenetic development (Solter 1988), an 
expression of genetic conflicts between maternal and paternal genomes (Haig 
and Westoby 1989), an outcome of dominance modification (Sapienza 1989), 
a way of restraining placental growth (Hall 1990), a mechanism of growth 
factor regulation (Cattanach 1991), a consequence of host defence 
mechanisms (Barlow 1993) and a device to protect females against developing 
malignant germ-cell tumours (Varmuza and Mann 1994). The reciprocal 
imprinting of IGF2 and IGF2/Mpr providessome support for the genetic- 
conflict hypothesis (Haig and Graham 1991) which proposes that the 
maternally produced IGF2/Mpr functions as a sink to internalise and degrade 
paternally produced IGF2 before the growth factor can bind to its receptor.
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Conserved chromosome regions

IGF2 linkage group
IGF2 is localised on human chromosome 1 lpl5.5 (Brissenden et al 1984) 
closely linked to the INS and TH genes, in one of the most densely mapped 
chromosomal regions in the human genome. This region harbours several 
disease loci as BWS, IDDM2, and LQT1 (Junien and van Heyningen 1991, 
Higgins et al 1994). Several types of childhood tumours, including Wilms 
tumour, adrenocortical carcinoma, and rhabdomyosarcoma display a specific 
loss of maternal 1 lpl5 alleles. This region also contains a cluster of imprinted 
genes, including p57KIK situated 500 kb centromeric to IGF2 and H19 about 
100 kb telomeric to IGF2 (Leibovitch et al 1991, Matsuoka et al 1996).
The mouse IGF2 gene maps to the distal region of chromosome 7, within a 
cluster of imprinted genes, including Mash2, p57KIP2, Ins-2 and H19 (see 
section Genomic imprinting). This chromosomal region is highly conserved 
as compared to human lip (fig. 3).

human chromosome 11

15.5
15.3
15. 1

IDDM2 
HBB 
HRAS 
H19 
IGF2 
INS 
p57KiP 
TH 
LQT1 
RMS1

Fig. 3. Representation of the conserved autosomal region on human chromosome 11 and 
its homologous region on mouse chromosome 7.

mouse chromosome 7

■i -F4 
vJ-F5
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Comparative Genomics
Conserved clusters of genes can be used for the transfer of genetic data from 
the well developed human or mouse gene maps to lower density maps and 
facilitate rapid assignment of functional genes (Hudson et al 1995, Dib et al 
1996, Dietrich et al 1996). Gene maps are available for a number of animals 
including, cattle, sheep, pigs, and chickens. The equine gene map, however, is 
one of the most poorly developed with less than 200 established loci (Ellegren 
et al 1992, Bailey et al 1995, Breen et al 1997). A rapid expansion of the 
poorly developed equine gene map can be helped by comparative genome 
analysis and cross-species chromosome hybridisation utilising FISH has 
revealed conserved segments between most human and horse chromosomes 
(Raudsepp et al 1996).
Numerous equine genetic disorders are documented, but little is known about 
these conditions at DNA level (Bowling 1992). A developed physical and 
genetic linkage map of the horse genome will enable any future research on 
inherited disorders and their underlying genetics.

Previous research on equine IGFs

The issue of IGF1 and IGF2 levels in equine serum has only been adressed in 
a few studies. Both peptides are found in adult horse serum (Zangger et al 
1987). By radioimmunoassay the IGFl-level was found to be 115 pg/ ml on 
average. The mean IGF2 concentration was determined by a radio­
receptorassay and shown to be 149 pg/ ml. Thus, compared to humans and 
most other animals the horse is characterised by relatively low blood IGF 
concentrations. In a later study the mean plasma IGF! concentration was 
demonstrated to be higher in male than in female horses (Ozawa et al 1995). 
No clear-cut difference in plasma concentrations was found between breeds 
with different weight characteristics (Ozawa et al 1995). In addition, five IGF 
binding proteins are present in equine blood as determined by a radio-ligand 
assay (Christensen et al 1997).

One study describes the expression of IGF2 in equine conceptuses at different 
stages of development (Lennard et al 1995). In northern blot analysis, an 
ovine IGF2 oligonucleotide probe hybridized to a total of seven transcripts 
(6.2-1.3 kb) in horse fetal liver. In situ hybridization using the same ovine 
probe demonstrated IGF2 gene expression in the fetus at all stages examined, 
predominantly in tissues of mesodermal origin.
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Aims of the present study

The present thesis aimed at studying the basic properties of the IGF genes in 
the horse. In particular, the focus of the study was:

• to clone equine IGF1 and IGF2 cDNA, thus providing tools for further 
investigations.

• to elucidate the genomic sequence and structure of equine IGF2 and 
thereby make an extended interspecies sequence comparison possible.

• to study gene expression and promoter usage of equine IGF2.
• to physically localise IGF2 in the equine genome and reveal the 

homoeologous human chromosome.
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Comments on methodology

In this chapter, only materials and methods that are not included in any paper 
will be discussed in detail. All other methods used in this thesis are thoroughly 
described in each publication, and will therefore only be briefly discussed.

Gene Cloning
Cloning of a specific cDNA can be performed by RT-PCR, taking advantage 
of gene regions with high homology between species for primer design. RT- 
PCR has the advantage of being comparatively fast, but will restrict the 
resulting cDNA to areas of high conservation between species. Moreover in 
most cases it will not provide full-length cDNAs. In addition, sequence errors 
may be introduced by the Taq-DNA polymerase. RT-PCR will therefore be 
the method of choice if the cDNA is to be used as a probe to access further 
features of the gene, e.g. expression, genomic cloning or evolutionary studies. 
An alternative method to provide full-length transcripts is the screening of a 
cDNA library. However, no suitable fetal equine cDNA library is currently 
available.
In order to clone the entire equine IGF2 gene including intron and exon 
regions, the equine IGF2 cDNA was used as a probe to screen a equine 
genomic phage library. To reach maximal sensitivity during the screen, a 
homologous equine cDNA and radioactive labelling was used instead of non­
radioactive methods (e.g. Dig-labelling). An alternative method to clone large 
genomic DNA fragments would be the recently developed ”long range PCR” 
(Barnes 1994), where a modified PCR protocol in combination with a proof­
reading DNA polymerase enables the amplification of up to 15 kb DNA 
fragments. This procedure was tested prior to the library screening, but did 
not give satisfying results. There are several explanations for this, including 
the use of non-homologous PCR primers.

Studies on gene expression
Northern blot hybridisation was used in this study to examine expression 
patterns of the IGF1 and IGF2 genes in the horse. This method can determine 
the size and amount of any specific RNA in a certain tissue.
RNase protection analysis is more sensitive than Northern blot hybridisation to 
analyse gene expression and can also be used to quantify the amount of 
transcripts. In addition, RNase protection is less sensitive to degradation of the 
sample RNA. In the present study this technique was preferentially used to 
determine promoter usage of IGF2 in hepatic and non-hepatic equine tissues. 
Promoter-specific probes were subcloned from the isolated lambda phage 
containing the equine IGF2 gene. However, quantification of transcripts was 
not possible because adequate internal controls are at present not available for 
the horse.
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Among hybridisation technologies, in situ hybridisation is unique in 
demonstrating of the presence of specific nucleic acids in their cellular 
environment. The method is based on hybridisation of a labelled probe 
directly to the tissue. To localise IGF2 transcripts at a cellular level, in situ 
hybridisation was performed on a variety of equine tissues.
In situ hybridisation was essentially performed according to Schaeren- 
Wiemers and Gerfin-Moser 1993. Briefly, tissues directly frozen in 
isopenthane cooled by liquid nitrogen, were sectioned in a cryostate and the 
sections attached to Vectabond treated glass slides. The sections were 
sequentially reacted with 4% paraformaldehyde in PBS for 10 min, washed in 
PBS for 3x 5 min and acetylated with acetic anhydride in triethanolamine. 
Prehybridisation was carried out at RT for 1 hour with a solution containing 
50 % formamide, 5x SSC, 5x Denhardt’s, 500 |lg/ml of sheared and 
denatured salmon sperm DNA and 250 pg/ml of yeast tRNA. Digoxigenin 
labelled sense and antisense single-stranded RNA probes, corresponding to 
equine IGF2 exon 2 (fig 4) and the coding cDNA sequence, were produced 
using the Dig RNA Labeling Kit (Sp6/T7) (Boehringer). The respective 
probes were diluted 1/200 in prehybridisation buffer and hybridised with the 
sections over night at 57 °C. The slides were washed with 5x SSC at 57 °C for 
5 min, treated with RNase A in NTE buffer at 37 °C for 30 min. Finally, they 
were washed in 0.2x SSC at 57 °C for 30 min followed by 0.2x SSC at RT for 
5 min. The sections were developed with anti-Dig alkaline phosphatase and 
NBT/BCIP as recommended by Boehringer-Mannheim.

DNA-protein interaction
DNA binding of proteins can be studied by gel mobility shift assays. The 
method is based on the different mobility of a DNA-protein complex 
compared with the free DNA in a polyacrylamide or agarose gel. The 
advantages of the method are that the composition of the protein complex can 
be visualized, e g to distinguish monomer and dimer formation, and many 
samples can be analysed in parallel. However, the method is not completely 
quantitative and the exact binding site of the protein can not be determined.

Gene mapping
A physical gene map is a classification where loci are arranged with respect to 
their relative position on a chromosome. This can be performed by FISH with 
a labelled DNA probe on whole chromosomes or by hybridisation of a 
labelled DNA probe to large restriction fragments of genomic DNA separated 
by PFGE (Zemel et al 1992). In the present study, IGF2 was physically 
mapped to ECA12ql3 by FISH using genomic subclones of the equine gene. 
A genetic linkage map arranges loci according to the frequency of 
recombination between polymorpic DNA markers. The repeat area in the 
equine IGF2 could be used to provide a linkage map of the gene. However, 
additional markers are required to accomplish this.
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Results and Discussion

Cloning of equine IGF1 and IGF2 genes

cDNA cloning (papers 1 and II)
Prior to the present study no sequence information on equine IGF1 and IGF2 
genes was available. In papers I and II, the cloning and subsequent sequencing 
of partial equine cDNAs for IGF1 and IGF2 using RT-PCR is described.

The reported equine IGF1 cDNA covers exons homologous to parts of human 
exon 1 (encoding parts of the signal peptide), exon 3 (encoding parts of the 
signal as well as mature peptide), and exon 4 (encoding parts of the mature 
and the E-peptide which is common to all human E-peptide variants).
The IGF1 nucleotide sequence and deduced amino acid sequence are both 
highly conserved among species. The coding region for the mature peptide 
shows 96% homology to human and pig sequences and 88% homology to 
rodent genes (Tab 1). The amino acid sequence is even more conserved. The 
mature equine IGF1 peptide consists of 70 amino acids and is 100% 
homologous to its human counterpart. The signal peptide is slightly less 
conserved with 97% homology to human and 91% to rodent peptides. 
Recently sequence information of the 3' exons of equine IGF1 became 
available (Genbank Accnr: U85272, U85271, Feb 1997), coding for the entire 
common E-peptide as well as Ea and Eb peptides. Translation into amino acid 
sequence and comparison to human IGF1 reveals only one substitution in 
both the common E peptide (threonine to alanine), and in the Ea peptide 
(alanine to threonine). The Eb peptide is shorter than its human counterpart, 
comprising only 17 amino acids of which four are substituted

The amplified IGF2 cDNA covers parts of human exon 7 (encoding signal 
and parts of the mature peptide), exon 8 (encoding parts of the mature 
peptide), and the 5' part of exon 9 (encoding parts of the mature and E 
peptide).
Sequence comparison of IGF2 shows high degrees of homology on both 
nucleotide and amino acid levels with other species. The coding region for the 
mature peptide displays a homology of 94% to pig and 92 and 90% to human 
and rat sequences (Tab 1). By combining the sequence data generated from 
equine IGF2 genomic clones (paper III), the nucleotide sequence coding for 
the entire IGF2 precursor pre-pro-peptide becomes available. The putative 
precursor protein includes a 24 amino acid leader peptide, a 67 amino acid 
mature paptide, and a 90 amino acid E peptide. The mature peptide is most 
conserved with a homolgy of 97% to its human counterpart (Tab 1). The only 
amino acid substitutions in the mature protein compared to its human 
counterpart are placed in the C-domain (isoleucine 35 was substituted with a 
valine and asparagine 36 with a serine), which shows together with the D- 
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domain in general the highest clustering of differences. The signal peptide 
shows a homology of 83% to human and 75 and 66% to rodent and pig 
peptides, respectively. The E-peptide is slightly less conserved with 81 and 
71% homology to its human and rodent counterparts.

Tab. 1. Homology between horse and other species of nucleotide sequences coding for 
mature IGF peptides and deduced amino acid sequences. Values are given in percent.

organism IGF1 
nucleotide 
sequence

IGF1 
amino acid 
sequence

IGF2 
nucleotide 
sequence

1GF2 
amino acid 
sequence

Pig 96 100 94 99
human 96 100 92 97
sheep 92 99 91 97
cattle 92 100 90 99
rat 88 96 90 96
mouse 88 95 89 93
xenopus 80 84 — —

There are several possible explanations for the remarkable degree of 
conservation of IGF DNA and protein sequences during evolution. It almost 
certainly reflects the structure/function relationships within these small 
peptides with multiple interactive surfaces. Biological responses of IGFs are 
dependent upon their interaction with cellular receptors, and distinct regions 
in domains A and B in the IGF peptides have been demonstrated to be 
important for type 1 and type 2 receptor binding (Baynes et al 1988, Bayne et 
al 1990, Clemmons et al 1990, Hodgson et al 1996, Shooter et al 1996, 
Jansson et al 1997), which might favour high degree of sequence conservation 
in these domains during evolution. The interaction of the IGFs with their 
binding proteins in the A and B domains, structures that only partly overlap 
with those determining receptor binding (Luthi et al 1992, Bach et al 1993, 
Francis et al 1993), places additional structural constraints on the growth 
factors. Taken together, there are several arguments for a low mutation rate of 
IGFs during evolution.
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Genomic cloning of equine IGF2 (paper III)
The equine IGF2 cDNA (paper I) was used as a probe to screen a horse 
genomic phage library in order to clone the entire IGF2 gene (paper III). Two 
independent and overlapping clones were isolated, subcloned into bacterial 
vectors and sequenced. The equine IGF2 gene is the fourth gene (after 
human, mouse and rat) to be sequenced through intron and exon areas. 
Access to another IGF2 gene sequence provided an improved possibility of 
interspecies comparison to identify conserved elements.
The cloned region spans ca 20 kb of chromosomal DNA of which the equine 
IGF2 gene only represents around 10 kb in length. Sequence analysis and 
comparison with equine and human IGF2 transcripts revealed three leader 
exons in the 5' region of the gene (exons 1, 2 and 3) in addition to three 
coding exons (exons 4, 5 and 6) (Fig 4).
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Fig 4. Physical map and gene organisation of equine IGF2. A) Two overlapping X-clones 
and resulting subclones are indicated at the top, recognition sites for several enzymes 
below. B) Exon organisation, promoter location, polyadenylation site, (TCC) deletion, 
microsatellite and the inverted repeat are shown. Coding exons are represented by filled 
boxes and non-coding exons by open boxes. The sequenced regions is shown as a bold 
line, with an interruption in the 5Z region. The exon contribution to the deduced pre-pro- 
peptide is shown at the bottom, with the shaded area indicating the mature protein.
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Equine exon 3 is the shortest of the exons and consists of only 81 bp. The 
(TCC)io repeat present in human and ovine corresponding exons is partly 
deleted, such that only a (TCC)2 repeat remained. Whether this repeat region is 
functional remains to be determined. A putative polyadenylation site flanks 
the coding region in the last exon. Furthermore, a repeat area with a length of 
approximately 600 bp is located downstream of the polyadenylation site. 
Sequence data are not available beyond this point and it is possible that a 
more downstream polyadenylation site exists as seen in the human IGF2 gene. 
Therefore it cannot be excluded that the repeat area is present on mRNA level, 
which would facilitate studies on imprinting of the equine IGF2 gene.
No counterparts to human 5' exons 1 -3 could be identified by Southern blot 
analysis of the isolated clones using corresponding human oligonucleotide 
probes. Also different experimental approaches did not identify additional 
exons: a) the library was rescreened with the 5' genomic subclone 
eqIGFIIgSac03 (fig 4). However, Southern blot analysis of all additional 
clones revealed similarity to the previoulsly isolated phages; b) PCR was 
performed on equine genomic DNA with primers corresponding to 
human/ovine IGF2 exons 1, 2 or 3, and the closely linked insulin gene; c) RT- 
PCR was performed on RNA isolated from fetal and adult equine liver using 
primers corresponding to human/ovine IGF2 exons 1, 2 or 3 and equine exon 
4. '
Sequence comparison between the horse IGF2 gene and that of other species 
revealed a high degree of homology in the coding as well as non-coding 
exons. The intron regions generally bore no significant homology. There 
were some exceptions, however, including promoter regions for equine P2 and 
P3 and an inverted repeat upstream of exon 5.

Taken together, the overall intron/exon sturcture of the equine IGF2 gene is 
very conserved, although the intron regions seem to be generally shorter than 
in other species. The six identified exons are shared by all IGF2 genes 
analysed so far and there is no experimental evidence for the existance of 
additional 5' exons.
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Equine IGF gene expression

General analysis of equine IGF transcripts (papers I and II)
To examine expression of IGFs in a variety of equine tissues, the isolated 
IGF1 and IGF2 cDNAs were used in Northern blot experiments.
IGF1 transcripts were detected in adult equine tissues as liver, testis, 
myocardium, spleen, lung, kidney and liver as well as fetal liver. IGF1 mRNAs 
were present in two major forms of around 0.7 and 1.9 kb in length (Fig 5). 
IGF1 transcription in the horse appears to be similar to human and rodents 
where IGF1 mRNAs occur as multiple forms ranging from 0.8 to 7.5 kb in 
length (Lund et al 1986, Murphy et al 1987, Han et al 1988, Lund et al 1989). 
Here the differences in size mainly depend on the usage of multiple 
polyadenylation sites (Lund et al 1989). However, the larger IGF1 transcripts 
detected in these species were not detected in the horse. This might be due to 
an observed instability of the large IGF1 transcripts (Hepler et al 1990).

Examination of IGF2 expression identified two major transcripts in fetal liver 
along with some additional faint bands of a smaller size. In adult liver and 
testis one key transcript was found (Fig 5). These observations were generally 
confirmed by a later study of equine IGF2 transcription (Lennard et al 1995), 
where a total of 7 transcripts were identified in fetal liver and one major 
transcript along with a weaker signal in adult kidney. However, this study used 
a 45 bp oligonucleotide of ovine IGF2 sequence, bearing 4 bp mismatches.
The diversity of equine IGF2 transcripts might be due to a variety of 
regulatory processes. Human IGF2 transcripts are derived from multiple 
promoters during fetal life, are alternatively spliced and are modified by usage 
of a 3' cleavage site; during adult life a more 5' promoter is activated. Similar 
transcriptional mechanisms might be used in the horse to create transcripts of 
varying size and sequence. IGF2 plays an important role in embryonic and 
fetal development and a similar role might be suggested for the horse 
considering the abundance of transcripts present during equine development.

B
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1.89

3.91
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1 2 3 4 5

Fig 5. Equine IGF transcription assayed by Northern blot analysis. A) IGF1 transcripts in 
a) fetal horse liver, b) adult testis, c) adult myocardium, d) adult spleen, e) adult kidney, f) 
adult liver. B) IGF2 transcripts in a) adult liver, b) adult testis, c) fetal liver
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Promoter usage of equine IGF2 (paper III)
Sequence comparison between species revealed two putative promoter regions 
preceeding equine exons 2 (P2) and 3 (P3) (Fig 4). These two promoters are 
highly conserved in their sequences as compared to corresponding regions in 
human, rodent and ovine genes. An additional promoter might be located 
upstream of equine exon 1 (Pl), as determined in human and rodent genes, 
although as expected, no sequence conservation could be identified in this 
region.
To determine promoter usage during equine fetal and adult life, promoter­
specific probes were constructed (Fig 6) and used in RNase protection analysis 
on fetal and adult hepatic and non-hepatic tissues (paper III). In fetal liver and 
kidney, P2 and P3 are transcriptionally active (Fig 6, lanes 3, 4, 9, 10), whereas 
transcripts derived from Pl could not be detected by RNase protection 
analysis (data not shown). Apparently the most abundant transcript in fetal 
liver and kidney is derived from P3. Promoter usage in adult liver and kidney 
changes markedly. Only transcripts from P3 are present in the adult tissues 
(Fig 6, lanes 5, 6, 11, 12). Therefore it seems that P3 is the main promoter 
throughout development and that P2 is downregulated in adult life. Promoter 
Pl seems to be inactive in all tissues and developmental stages hitherto 
examined. These results are in agreement with our previous Northern blot 
experiments that showed two main fetal and one adult hepatic transcript 
(paper I).

E1 E2 E3 E4 E5 E6

probe 1 probe 2 probe 3
500 bp

probe 1

probe 2

P2

2 3 4 5 6

probe 3 -

probe 1 -

7 8 9101112

P3 - B B *

Fig 6. Promoter usage of IGF2 in fetal and adult equine tissues. A) The organisation of 
the equine IGF2 gene is indicated, showing the promoter-specific probes used. B) Usage of 
equine promoter P2 and P3 in fetal and adult tissues was assayed by RNase protection as 
shown below. Lane 1: probe 1, 2: probe 2, 3 -6: probe 2 with fetal liver, fetal kidney, 
adult liver, adult kidney, respectively. Lane 7: probe 3, 8: probe 1, 9-12: probe 3 with 
fetal liver, fetal kidney, adult liver, adult kidney, respectively.
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The alternate promoter usage in horse IGF2 is clearly different from that in 
mouse and man. In mouse all three promoters are used during embryonic and 
fetal life. After parturition all promoters are downregulated and do not 
become reactivated in normal tissue at any stage of adult life. In man, there 
are three established promoters accounting for transcription during fetal life. 
These promoters continue to be active albeit at a much reduced level in adult 
life. However, there is a promoter (Pl) located at the 5'end of the gene which 
is active in adult liver. The continued usage of a fetal promoter after birth in 
the horse suggests that an equine counterpart to human promoter Pl might 
not be present or inactive. This places the horse IGF2 gene in an intermediate 
functional position between human and mouse genes.

Tissue expression
The distribution of IGF2 transcripts was investigated in equine fetuses at 45 
and 250 days of gestation (Otte et al, in preparation). Two probes were used, 
one corresponding to the protein-coding sequence (Fig 7A, C and E) and the 
other covering part of exon 2 (Fig 7B, D, and F). In the organs investigated 
both probes produced the same cellular distribution, although the coding 
sequence probe produced a more intense labelling reaction.
In liver at 45 days gestation only the hepatocytes display significant amounts 
of transcripts (Fig 7A and B). The transcripts are confined to the cords of 
hepatocytes, while the intervening blood-forming cells are negative. At this 
stage, the metanephric kidney is in its early stage of development. In situ 
hybridization reveals a similar distribution of IGF2 expressing cells using 
probes covering both exon 2 and the coding sequence (Fig 7C and D). 
Transcripts are mainly confined to the immature tubular sections, although the 
surrounding mesenchyme also show slight staining. In the kidney at 250 days 
of development IGF2 transcription is prominent in the immature glomeruli. 
At this stage the distribution suggest that IGF2 transcription is mainly 
confined to the glomerular endothelial cells (Fig 7E and F).

These results are in agreement with previous in situ hybridisation results on 
the distribution of IGF2 in equine fetuses (Lennard et al 1995). Also, the use 
of a non-radioactive technique offers better spatial resolution and allows 
single cell resolution allowing a more detailed analysis.
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Fig 7. Distribution of IGF2 transcripts in fetal equine tissues as revealed by non­
radioactive in situ hybridisation. A and B shows the distribution of the coding sequence 
and exon 2, in the liver at 45 days gestation, respectively. A liver vein is marked by v. In 
C and D the distribution in the metanephric kidney of the same fetus is shown. In E and F 
a kidney at 250 days gestation is shown. Both probes delinate the glomeruli. The 
distribution suggest an endothelial expression of IGF2. Original 62.5X.
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Structural features of the IGF2 gene

Inverted repeat (paper III)
A novel structural element was identified in the equine IGF2 gene. It is located 
upstream of equine exon 4 and consists of two half-sites of 26 bp, which are 
separated by a 16 bp spacer, forming an inverted repeat (Fig 8). This inverted 
repeat displays a highly atypical distribution of nucleotides, one half-site 
consisting of a large excess of pyrimidines and the other dominated by 
purines. This inverted repeat is present in all species from which sequence 
information is available (human, rat and mouse IGF2 genes) and its location 
and sequence is conserved. Gross differences are only present in the spacer 
region. Interestingly, the surronding intron area was shown to be differentially 
methylated in human and mouse IGF2 genes and suggested to be involved in 
the imprinting mechanism (Feil et al 1994, Sasaki et al 1992, Brandeis et al 
1993).

E4 E5

GGGGAGGACGGGAGGGGAGGAGGGCG 
GGGGAAGACGGGAGAAGAGAAGGGAG 
GGGGAAGACGGGAGGAAAGAAGGGAG

CTCACTCCTCTCCTCCCGTCTTCTTC 
CTCACTCCTCCCCTCCCGTCTTGTCC 
CTCACTCCTCTCCTCCCGTCTTCTCC

Horse GGGGGAGCG
Mouse GGGGGAGAG
Human GGGGGAGAG

TGGTTTTATGCAG--------------------CTC
TGGTTTTTGGGTG------------------------- C
TGGTTCCATCACGCCTCCTCAGCCTC

Fig 8. Location and sequence alignment of the inverted repeat element. It is located 
upstream of exon E5 and its sequence is conserved in corresponding introns of human, 
mouse and rat IGF2 genes. Conserved CpG dinucleotides are indicated in bold.

The identified inverted repeat has all properties to form a stem-loop structure 
(Fig 9). The sequence contains three CpG dinucleotides at positions 6, 26 and 
68 (Fig 8 and Fig 9). Two of theses CpGs are in base-paired form in the 
predicted conformation and conserved between species. In order to determine 
stability of the postulated secondary structure, in vitro thermal melting studies 
were carried out on a corresponding oligonucleotide and its methylated 
counterpart. The observed high Tm (67.5 °C for native and 65.3°C for the 
methylated counterpart) and the monophasic character of the transition 
profiles suggest the formation of highly stable intramolecular duplexes at 
room temperature for both oligos. The unusual polypurine-polypyrimidine 
sequence of the inverted repeat suggests a triple helical conformation 
(Grabczyk et al 1995). However, subsequent CD analysis revealed a hybrid 
A/B conformation of DNA in the stem-area for both oligonucleotides.
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repeat in horse, 
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IGF2 genes.
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To investigate if the postulated stem-loop structure is recognized and bound 
by specific protein components, protein-DNA interactions were studied by gel 
mobility shift assays. The annealed native oligonucleotide was bound by a 
specific protein component in extracts from equine fetal liver and fetal kidney 
(Fig 10, lanes 2, 9) and competition experiments verified the specificity of the 
interaction (lanes 3, 4, 10). In adult liver, however, a reduced binding activity 
was observed (lane 13), which indicates that the protein factor might be under 
developmental control. In order to determine whether methylation of CpG 
residues influences protein binding, gel mobility shift assays were carried out 
with a methylated oligonucleotide (see above). Protein binding was reduced in 
all tissues examined (lanes 5, 11, 15). These results indicate, that the stem-loop 
is recognised and bound by a specific, methylation sensitive protein 
component. Since the overall structure of both oligonucleotides appears to be 
similar, the protein might be sensitive to local conformational changes caused 
by methylation or by direct steric hindrance due to the presence of methyl 
groups.
Based on the the high similarity of the stem-loop in sequence and secondary 
structure compared to mouse and human, the methylation sensitive factor 
might well be conserved between species.
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Fig 10. Protein binding to the stem-loop examined by gel mobility shift assays. 
Reactions contain protein extract from fetal liver (lanes 2-7), fetal kidney (lanes 9-12), and 
adult liver (lanes 13-16). Native oligonucleotide (native) was added in lanes 1-4, 9, 10, 13, 
and 14. The methylated counterpart (methyl) was added in lanes 5-7, 8, 11, 12, 15, and 
16. Competition analysis for binding was performed by addition of lOOx molar excess of 
unlabelled annealed inverted repeat (lanes 3, 6, 10, 12, 14, 16) or unrelated ds 
oligonucleotide (lanes 4, 7). Addition of competitor is indicated (+). Lanes 1 and 8 contain 
no protein extract (ne).

The formation of a stem-loop or cruciform structure of double stranded DNA, 
which is bound by a protein component has interesting implications. The 
inverted repeat is located in a GC rich area which has been established as a 
differentially methylated region in mouse and human IGF2 genes. The 
transcribed paternal allele is methylated while the silenced maternal allele is 
unmethylated on specific CpG residues (Brandeis et al 1993, Schneid et al 
1993, Feil et al 1994). Since methylation of the paternal allele is tissue­
specific and correlates directly with expression, the presence of a silencer 
element under epigenetic control has been suggested (Feil et al 1994). 
Inverted repeats and cruciform structures have previously been associated with 
regulation of gene expression (Horwitz et al 1988, McMurray et al 1991, 
Spiro et al 1993), as well as termination of transcription and attenuation 
(Rosenberg et al 1979). One possible role of the stem-loop structure presented 
in this study could therefore be to act as a structural silencer element which is 
recognised by specific protein factors depending on its methylation status. 
Proteins interacting with cruciforms have been reported, among those the 
HMG box proteins and CBP (Pearson et al 1996). All these proteins would be 
potential candidate peptides to recognise the presented stem-loop structure in 
human, rodent and horse IGF2 genes.
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Only one methylation sensitive protein factor that binds to a differentially 
methylated region in an imprinted gene has previously been reported 
(Huntriss et al 1997). A methylation-dependent factor was shown to bind to a 
GC rich sequence in the promoter region of the imprinted mouse Xist gene. 
This region was also shown to be required for transcription.

The differential methylated region in IGF2 the gene which harbours the stem­
loop is not thought to carry the primary imprinting signal (imprinting box), 
because allele specific methylation is established during development (Feil et 
al 1994). Any epigenetic tag imposed onto an imprinted gene must be 
established in the germline and propagated in the embryo. This has been 
shown for Hl9 and IGF2/Mpr genes, where a differentially methylated region 
is established in the germline which is resistant to preimplantation 
demethylation (Stöger et al 1993, Tremblay et al 1995). Lately new views 
regarding the nature of the imprinting signal have emerged. Sex-specific 
modifications of the chromatin conformation is proposed to be the primary 
event that establishes the imprint during gametogenesis. The allele-specific 
chromatin conformation might secondarily influence the accessibility of the 
imprinting box to the actitivity of the methylatransferase (Patterton and 
Wolffe 1996, rev Jaenisch 1997). In this context secondary structures as 
presented in this study might well be of importance.
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Physical mapping of equine IGF2

(paper IV)
The IGF2 locus has to date been physically mapped in five species: man 
(Henry et al 1985, Morton et al 1986), sheep (Ansari et al 1994), cattle 
(Schmutz et al 1996), kangaroo (Toder et al 1996), and mouse (Beechey et al 
1997). In the present study, three equine genomic clones have been used to 
physically map the IGF2 locus in horse and donkey (paper IV). This was 
achieved by FISH analysis through hybridisation of Dig-labelled IGF2 DNA 
to equine metaphase chromosomes. The IGF2 locus was mapped to 
chromosome 12ql3 (ECA12), the long arm of this chromosome. In donkey, 
IGF2 mapped terminally on the long arm of a small submetacentric 
chromosome, which showed almost identical DAPI-banding patterns with 
equine chromosome 12.

In all seven species viz. cattle, sheep, human, kangaroo, mouse, horse and 
donkey, where IGF2 has been physically mapped, the gene is located on the 
terminal part of the chromosome arm. The terminal position of IGF2 in 
distantly related species might suggest that the localisation of this gene has 
been preserved during mammalian chromosome evolution. A similar situation 
is known of the gene encoding immunoglobulin gamma heavy chain, which 
tends to keep its relative position on the terminal part of chromosome arms in 
six distant mammalian species (Gu et al 1994) (Fig 11).
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Fig 11. Physical localisation of the IGF2 gene. The gene occupies a terminal location on 
the chromosome in all species hitherto studied, including kangaroo, man, horse, donkey, 
sheep, cattle, and mouse.
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In order to determine if even larger parts of the chromosomal region 
surrounding the IGF2 locus are preserved during mammalian evolution, 
microdissected probes of HSA11, containing the IGF2 gene, were used in 
FISH analysis on equine metaphase chromosomes. This cross species 
chromosome hybridisation revealed homoeology of HSA11 with both arms of 
ECA7 and both arms of ECA12. A previous FISH experiment demonstrated 
conserved segments for most of the human and horse chromosomes but failed 
in revealing homoeology of HSA11 (Raudsepp et al 1996). The present 
comparative chromosome painting results fill this gap and are in accordance 
with the mapping of IGF2 to ECA12. This shows that chromosomes of 
distantly related species sharing segmental homoeology also contain the same 
genes.

Mapping IGF2 in the horse and revealing segmental homoeology between 
HSA11 and ECA12 provides new possibilities for the human-horse 
comparative map which can be utilised for a rapid and organised assignment 
of functional gene to the horse gene map. Human IGF2 is situated on 
HSAllpl5.5 in one of the most densely mapped regions in the human 
genome, harbouring several disease loci and a cluster of imprinted genes (see 
introduction). In this context the physical localisation of equine IGF2 and 
revealed homoeology between HSA11 and ECA12 could be of significance in 
studying the same phenomena in equids.
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Future perspectives

The present study has focussed on the cloning and initial characterisation of 
equine IGFs. Special emphasis was given to the equine IGF2 gene and its 
structural organisation and transcriptional regulation. Much of its basic 
characteristics, including intron/exon organisation, promoter usage, tissue 
expression and localisation in the horse genome, have been described in this 
thesis. However, there are some features left to be investigated in order to 
proceed with the characterisation of this equine gene:

• IGF2 transcription was investigated by a variety of methods. Northern blot 
analysis revealed the number and length of transcripts, RNase protection 
showed the substantially different promoter usage compared to that in 
other species, and in situ hybridisation showed the tissue distribution of 
transcripts. However, the complete sequences of all transcripts and their 
different 5' leader- and 3' trailer regions are still not known. This is mainly 
due to the lack of suitable equine cDNA libraries. Construction and 
screening of adult as well as fetal equine cDNA libraries would provide 
useful tools for the characterisation of equine IGF2 transcripts.

• Human, ovine and baboon IGF2 genes harbour an additional promoter, 
which is located in the 5' region of the IGF2 gene and is active in adult 
tissues. The present study was unable to identify a counterpart in the 
equine gene. Moreover, the continuous usage of a fetal promoter argues 
against the existance of an additional, adult specific promoter. However, 
this question will be conclusiveley resolved by screening an adult liver 
cDNA library and sequencing all leader regions in the present transcripts.

• One of the main question to be answered is whether or not the equine IGF2 
gene is imprinted. The identified repeat region in the 3' region of the gene 
could be used to investigate the imprinting status.

• The equine IGF2 gene was mapped to a chromosome that shows 
homoeology with HSA11. Since this human chromosome harbours IGF2, 
it would be of interest to investigate if the human IGF2 linkage group on 
HSAllpl5.5 is conserved in the horse and if the same genes are present on 
ECA12.

This study revealed a novel, previously not described, structural feature which 
is present in the equine, mouse, human and rat IGF2 genes. This motif consists 
of an inverted repeat, which has been shown to form a highly stable secondary 
structure with a mixed A/B- DNA conformation in the stem area. Furthermore, 
this element has been shown to be bound by a specific, methylation sensitive 
protein in a developmental fashion. There are a number of interesting 
implications and questions emerging from these findings:
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• Does the stem-loop structure have a biological relevance? Is it involved in 
the regulation of processes as transcription and/or imprinting? Is 
methylation in the inverted repeat or surrounding areas involved in a 
regulatory mechanism, and if so, in which way? These questions can be 
answered by genetic experiments, as e g mutagenesis in the repeat area and 
in vitro methylation studies of constructs containing the inverted repeat. 
Since the inverted repeat is conserved between species, it might be of 
advantage to perform these experiments in human or mouse systems. A 
wealth of information about regulation, imprinting and methylation status 
of the IGF2 gene is available for both the human and mouse genes. In 
addition, rodents can easily be used for transgenic experiments.

• Does the protein recognize a specific nucleotide sequence in the stem­
loop? Is the loop region necessary for protein binding? Are the conserved 
CpG nucleotides important for binding? DNA footprinting or in vitro 
mutagenesis of the inverted repeat and subsequent gel mobility shift 
analysis might be used to identify nucleotides important for protein 
binding.

• Which protein component binds to the stem-loop? How does it recognize 
methylation of cytosine residues? These questions clearly implicate protein 
purification, sequencing and determination of its structure. Also for these 
experiments it might be advisable to use human or mouse systems, since a 
variety of cell lines are readily available to provide starting material for 
purification.
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