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Abstract 

Extreme weather events are per definition rare. These events are classified 

differently depending on sector and system of interest. Agrometeorological 

extremes consider the relation of potential and actual impact of weather events on 

crop development and yield. Climate change is changing todays’ extreme events 

in frequency, occurrence, and extent (intensity).  

This document reviews definitions of extreme weather linked to agricultural 

production in the Nordics. The objective is to identify relevant agrometeorological 

indices of normal and extreme weather for assessing potential impacts on crop 

production in the temperate-boreal zone. The review is limited to indices related to 

the meteorological variables of precipitation and temperature. 

The result show that definitions of agrometeorological extreme events used in 

literature are not standardized. The review found a substantial number of studies 

using typical meteorological definitions, especially linked to extreme precipitation 

and drought events (n =19 of 22, and n = 9 of 13 individual definitions respectively), 

even when the application was intended to assess potential agricultural (crop) 

impacts. In total, n = 33 publications for Nordic and global sources were reviewed 

with 44 % of definitions addressed temperature, 40 % addresses precipitation and 

14 % related to combination of two or more weather features  (such as aridity 

index).  

Unlike meteorological and hydrological indices, agrometeorological indices need to 

reflect intra-seasonal frequency and intensity of events, to inform crop and animal 

husbandry management. Relevant high-resolution agro-climatic assessments is 

necessary to inform agricultural adaptation strategies and investments in 

temperate-boreal zones, when todays’ extreme weather becomes the new normal. 
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1. Background 

Plant growth and -development is dependent on climatic conditions, synergetic effects of daily 
fluctuations in weather parameters, as well as synergetic effects of consecutive weather events. 
Farming systems require management to build resilience and ensure productivity for variability in 
weather events impacting crops - directly and indirectly - by effects on plant-soil-microbe interactions 
(e.g. Jia et al. 2019). Whether weather patterns and specified weather events can be classified as 
extreme is a matter of definition, and depends on the impact in focus, as well as synergetic effects and 
feedback loops between related climate variables (WMO 2010; Seneviratne et al. 2012; TT-DEWCE 
WMO 2016; Zscheischler et al. 2020). 

Since 1850, the last four decades have been consecutively warmer (Gulev et al. In press) and the last 
six-year period (2015-2020) have been the warmest since the mid-19th century  (World Meteorological 
Organization 2021b). Additionally, new projections suggests that there is a 40 - 60% change that 
global average temperatures rises above 1.5 °C1 during any individual year during the period 2021- 
2025 (2030) (World Meteorological Organization 2021a; Lee et al. In press) and very likely- to more 
likely than not that the 1.5 °C global average temperature increase occur during the period 2021-2040 
(Lee et al. In press). Global warming have potential to affect a range of large scale circulating systems 
(e.g. Lenton et al. 2019). Projected higher temperature imply shifts in precipitation and soil moisture 
of varying magnitude depending on region. It is expected that with every increase in temperature, 
events of hot temperature will increase in both magnitude and frequency, while heavy precipitation 
events and dryspell/drought events are projected to increase in magnitude per event (IPCC 2021b). 
Alterations in mean, variance and distribution of regional weather events (Seneviratne et al. 2012) are 
of great importance for crop production systems. New evidence show these new normal in weather 
will negatively affect yield potential and actual yields globally (Pörtner et al. In Press) and regionally 
(e.g. Bednar Friedl et al. In Press). 

Projected effects of climate change on crop production indicate that the Nordic countries will 
experience relatively less temperature increase and precipitation increase, compared to central and 
southern Europe (Pörtner et al. In Press). Elevated temperatures and thus longer theoretical growth 
period has been brought up as a partly positive aspect in the Nordic region (Olesen et al. 2012a; 
Peltonen-Sainio & Jauhiainen 2014; Juhola et al. 2017). However interactions between parameters as 
dry periods and elevated temperatures might reinforce each other, limiting the potential of longer 
growth period (Trnka et al. 2011; King et al. 2018). Yield reduction and synergetic effects of weather 
events might be possible to adapt for, by considering maturing of crop species and choice of crop 
variety. Yet there are multiple events to consider when adapting cropping systems to extreme weather 
impacts (Trnka et al. 2014). Thus, to plan actions of mitigation and adaption for crop production 
systems towards weather related disturbances, the extreme impact on the system must be defined. 

The term extreme can be related to either the event itself, the potential hazard, the final impact caused 
by an individual event, or temporally and/or spatially combined event(s) (Zscheischler et al. 2020). 
Agro-meteorological extremes comprise the relation of weather impact (direct- and indirect) on crop 
yield and related requirements on conditions for crop production (Wilhite & Glantz 1985; Van Loon et 
al. 2016). Additionally, extreme events can be determined by various methods (e.g. Bärring et al. 
2006; Fleig et al. 2011; Seneviratne et al. 2012; TT-DEWCE WMO 2016). Quantitatively, extreme 
weather events is defined by thresholds based on observed distributions, various indices, or its impact 
on important sectors or parameters (Seneviratne et al. 2012; TT-DEWCE WMO 2016). . The extreme 
thresholds are based on historical data, including statistically rare values or events resulting in 

1 1.5°C is the aimed upper limit of global average temperature increase set by the Paris Agreement, i.e. well 
below 2°C since prehistoric times) (United Nations Framework Convention on Climate Change 2016). 
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negative impact for one or multiple sectors (TT-DEWCE WMO 2016).  Extreme events can 
furthermore be defined by statistical frequencies (often < 10th and > 90th percentiles of a dataset or 
defined return periods, as well as even lower limits (> 70th percentile) (Bärring et al. 2006; Fleig et al. 
2011). The relevance of a definition varies depending on field and purpose (McPhillips et al. 2018). 
Some definitions might also be problematic with a transition of distributions in weather patterns 
(Harrington & Otto 2018): Depending on context, climate change and extreme weather indices can be 
set based on application or be set differently between locations (ETCCDI 2020). 

Due to the vast variation in ways of defining extreme events, this document is a synthesis to explore 
quantitative definitions of extreme weather linked to agro-meteorology and agricultural production in 
the temperate boreal zone of Nordic countries. The synthesis will serve as reference further research 
projects linked to agriculture, in choosing a suitable definition of extreme events relevant for their 
research questions and studied agricultural system. The objective is to answer how extreme weather 
related to precipitation and temperature variations is defined and quantified for impacts on crop 
production in the temperate-boreal zone. 

In this review, extreme events of temperature and precipitation is in focus as these have short and 
long-term implications for agricultural production. 
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2. Method 

This synthesis focuses within the temperate- and sub-arctic climate zones. These zones corresponds to 
Swedish agro-climatic zones with similar climatic conditions (Beck et al. 2018; King et al. 2018; 
Ceglar et al. 2019). Effects of different extreme weather events are thus expected to have similar 
impact on cropping systems between nations within these zones. 

Literature covering extreme temperature and precipitation events were achieved through a partially 
systematic approach in the search engine Web of Knowledge2 during the period January 2020 to 
November 2020. Terms used in the search queries are shown per focus area in Table 1. The terms 
were combined using the links “AND” and “OR”. The bulleted sections were separated by 
parentheses. The search was supplemented with secondary references achieved from reviewed 
publications in the primarily search. Additional grey literature was obtained by using the queries in 
Table 1 in webpages hosted by Swedish authorities. 

Table 1. Search queries for Extreme weather definitions. The queries were used in different combinations for the three 
categories with separation of “AND” or “OR” and parentheses separating the terms in the different paragraphs in the table 

Terms in search queries 
Agrometeorology; "extreme weather"; extreme weather; Extreme weather; extreme*; climate change 

Growing season 

Temperature; winter; cold; hibernation; rest; sleep; dormancy; frost; freezing; hardiness; LT50 

downpour; downfall; cloudburst; "heavy rainfall"; flood*; precipitation; extreme precipitation; high precipitation; flooding; rainfall; storm 

drought; dryspell OR dry‐spell; "dry spell"; "extreme precipitation"; heat wave; heatwave; heat‐wave; 

agriculture; agricult*; farm*; crop*; crop; cultiv*; arable*; crop prod 

Swed* OR Norw*; Finnish; Finl*; Finland; Finnish *; Denm*; Denmark; Danish*; Danish; Icel* 

soil saturation 

crop growth; crop development; aeration; * soil management*; water management 

water supply; water use; water requirement; crop water; drainage; water need*; transpiration; evapotranspiration; agrometeorolog*; 

hydrogeolog* OR hydrolog*; 

References were initially included based on title and if they had an initiation of including information 
on climate and extreme weather and agriculture. A second selection was done based on abstract 
content. A reference was included if it mentioned quantitative analysis of extreme weather and impact 
on agriculture, related to crop production. 

From the references analyzed in full, following information was collected:  

Type of meteorological definition; country, duration of definition for extreme event; event 
magnitude (minimum and maximum values if a range); area specification for the event if 
relevant; percentiles for when the event is considered extreme related to a reference period; 
Threshold related to actual evapotranspiration and potential evapotranspiration; the author’s 
own descriptive definition. 

Note that not all information was available for all reviewed studies. 

2 www.webofknowledge.com 
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3. Results 

3.1. Geographic specifications and overview of reviewed publications 

This review of extreme weather quantified thresholds of temperature and precipitation indices is based 

on n =33 references. A complete reference list is included in Appendix, Table 4. The reviewed 
studies are from Sweden (n = 14), Norway (n = 1), Denmark (n = 7) and Finland (n = 7). Additional 
four (n =4) references are from a European study regarding the continent’s different agro-ecological 
zones, WMO and The European Drought Observatory. Most literature is published after year 2000 
except from two (n = 2) studies that were published 1972 and 1997 respectively (Figure 1). 

Figure 1. Number of reviewed publication per publication year divided per nation/source 

The definitions used in the 33 references show an overall weight towards meteorological definitions 
related to precipitation. Temperature related definitions are more directly linked to potential impact on 
crop production and specifically yield levels. In total, 88 individual quantitative definitions were 
identified from the publications covering extreme precipitation (n = 22), drought (n = 13), heat (n = 
14), cold (n = 25) and aridity index (n = 14) (Table 2). 

Table 2. Number of classifications of extreme event indices/definitions from reviewed material identified as either 
meteorological or agrometeorological after definitions by Wilhite & Glantz (1985); Das et al. (2003); TT-DEWCE WMO 
(2016) and Van Loon et al. (2016) 

Meteorological definition Agrometeorological definition 
High precipitation 19 3 
Drought 9 4 
Heat 3 11 
Cold 10 15 
ETa/ETp - 14 
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3.2. Start‐ end and duration of crop season and sowing conditions 

Extreme weather definitions from a crop production perspective, should reflect impacts on 
germination, growth, development and survival of crops (Barlow et al. 2015), as well as conditions for 
crop management. Important weather impacts occur both during the growth period as well as during 
winter dormancy of autumn sown crops, i.e., pre- and post-crop growth period.  In temperate –boreal 
climatic zones, the start (onset) and end of cop seasons are typically defined by air and soil 
temperature, and at high latitudes also by day light conditions. This is unlike crop season onset and 
end typically defined in monsoonal tropical and sub-tropical agro climatic zones. Here, seasonal 
rainfall and soil moisture conditions typically define onset and length of crop seasons. 

Minimum germination temperatures from literature are ranging from 1°C (cereals, peas) up to 8 °C 
(potatoes) (Geisler 1983; Gunnarson 2012; Johnsson 2016). However, the temperature thresholds used 
for determining the actual temperature for sowing and temperature sum during the crop season can be 
classified differently. For example Olesen et al. (2012b) used fixed base temperatures of 5 to 8°C  for 
estimating temperature sum, while mean temperature was determined individually for wheat (7.1°C), 
oats (6.1°C) and maize (10.1°C) respectively. Sowing temperature was determined differently with 
higher temperature for wheat and oats at increasing latitude (Olesen et al. 2012b). 

The crop season can be classified as the period when temperature and soil moisture sustain crop 
growth (Carter 1998). From a crop production perspective, seed bed preparation and sowing might not 
occur at start of the climatological growing season. Rather the agricultural production is dependent on 
the farmers’ decisions and timings, as well as suitable soil conditions for seedbed preparation, in 
addition to a relevant temperature criterion. For example, dates for actual sowing in Sweden typically 
occurs as soon as the soil is thawed and dried (Håkansson et al. 2002), thereby being defined both by 
air and soil temperature, as well as soil moisture conditions.  This review found a consensus for 
definition of the start of crop season by various references. The Expert Team on Climate Change 
Detection and Indices (ETCCDI) classified the start as daily average temperature ≥ 5°C for six 
continuous days (ETCCDI 2009; Zwiers & Zhang 2009). This is similar to the  Swedish definitions 
e.g. a 24-hour average temperature > 5°C (Enghang et al. 2016) for at least 4-5 continuous days during 
spring (e.g. Carter, 1998; Johansson, 1973; Johnsson, 1972). Historically, this period has not been set 
earlier than 15 days after a cold-period (a term not defined in the publication) or if a significant snow 
cover occurs (Johansson 1973). 

A more elaborated definition for seasonal onset to Swedish agricultural conditions is “…starts the first 
day of a seven-day period with the daily average temperature above 3°C, yet earliest when the length 
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Figure 2 . Shift in monthly normal 
temperature and monthly normal 
precipitation between the previous 
(1961-1990) and the new (1991-2020) 
reference periods for statistical weather 
parameters. The Graphs show the 
calculated difference per month 
between the new (1991-2020) and the 
previous (1961-1990) normal period for 
weather stations provided by SMHI. 
The values are calculated by 
subtracting normal values from the 
period 1961-1990 from normal values 
from the period 1991-2020. Median and 
average lines are calculated from the 
estimated differences in the full dataset 
(1356 stations for precipitation and 712 
stations for temperature). Data series of 
normal temperatures and normal 
precipitation are provided by SMHI. 
Datasources: SMHI (2021) 
Normalvärden för temperatur. 
Available: https://www.smhi.se/data/ 
[2021-03-15] and SMHI (2021) 
Normalvärden för nederbörd. 
Available: https://www.smhi.se/data/ 
[2021-03-15] 

of day is 9 hours and above. Spring lasts at least 2 weeks” (Mattson et al. 2018; p. 21). Day length > 9 
hours take place approximately from 2nd to last week of February (SMHI 2020a). Average 
temperatures > 3 °C in Sweden has in the previous climatological reference period (1961-1990) started 
in March in southern Sweden, to May in the most Northern parts (SMHI n.d.). However, the new 
reference period for referring to deviations in weather occurrences is set to 1991-2020 by the Swedish 
Meteorological Institute. The previous period was 1961-1990 (SMHI 2020c) (Figure 2). Thus, the 
criteria on day length might increase its relevance under climate change impact if climatic parameters 
will shift to be more influential on crop growth, while daylight will still be limiting for in crop 
development. In comparison to above criteria, meteorological spring is classified as increasing daily 
average temperature > 0°C and < 10 °C over a period of seven continuous days (SMHI, 2020 c).  

Five degrees (5 °C) is an overall threshold temperature for crop growth for several crop species as well 
as for ground frost to disappear (Carter 1998) see e.g. (Geisler 1983; Gunnarson 2012; Johnsson 
2016). Furthermore, 5 °C is often used as the base temperature when determining temperature sum 
during the cropping season (e.g. Himanen et al. 2013). Although this threshold varies depending on 
crop species, cultivar, and crop development stage due to different activation temperatures depending 
on which physiological process that is active. Examples of classification of the physiologically 
effective growing season based on spring cereals are 8.5-9.5 °C  based on historical average sowing 
dates of spring cereals (reference year 1971-2000) (Peltonen-Sainio et al. 2009). Additional 
temperatures for physiologically effective growing season includes base temperatures for  0 °C or +5 
°C for temperate crops (Peltonen-Sainio et al. 2009; Eckersten & Kornher 2012; Olesen et al. 2012b), 
and +6 °C (Eckersten et al. 2012; Eckersten & Kornher 2012; Nkurunziza et al. 2014), + 8 °C (Olesen 
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et al. 2012b) or  +10°C for maize (Peltonen-Sainio et al. 2009). Similarly, a threshold of 8 °C based on 
moving average temperature and earliest 1st of April was used by Rötter et al., (2011) (Figure 3).  
Additionally, Trnka et al. (2011) included criteria on minimum temperatures suitable for crop growth 
to > 0 °C, no snow cover and evapotranspiration ratio Eta/ETr > 0.4 (see additional information in 
section Dryspells and drought). 

Above thresholds indicate fixed temperatures for start of growing season. However, crops respond 
differently to temperature depending on their development stages and cultivar. Results by Salazar-
Gutierrez et al. (2013) from three American locations and four different winter wheat cultivars show a 
range in base temperature and defined phenological development stages. Base temperatures ranged 
between 3.1°C to 8.1°C (planting to heading) and 10.6 °C to 18.4°C (heading to harvest), compared to 
1.6°C to 8.4°C for the full growth period planting to harvest. See also TEXT BOX 1 for an additional 
Australian example. 

An Australian example of temperature response and base temperatures of wheat cultivar was 
presented by Slafer & Rawson (1995), which showed a relationship between phenological stage 
and base temperature, varying between -8.23 °C to 2.22 °C during growth to terminal spikelet 
initiation, 0.81°C to 1.83°C between terminal spikelet initiation to heading, and 7.28-8.96°C 
between heading to anthesis. 

TEXT BOX 1 

When using cultivar specific base temperatures, the cultivar variation in required thermal time from 
planting to harvest is reflected, by indicating the various cultivars individual thermal requirements for 
reaching maturity. The use of the common base temperature 0°C on the other hand indicate less 
variation between cultivars. Similarly, Bourgeois et al. (2000) studied effects of yield predictability of 
different pea cultivars by setting up models of growing degree days initiated by different base 
temperatures (in steps of 0.1°C between base temperature range from 0 - 10°C). Their results showed 
better predictability (lower coefficient of variation) with temperature threshold adapted to individual 
cultivar optimal threshold from 0 to 5 °C. As a cause of adaption to higher- or lower latitude and/or 
altitude, cultivars tolerance and growth response to cold temperatures varies. E.g. Olesen et al. 
(2012b), estimated the Huglin index3  adjusted for growth latitude. 

The meteorological end of the growing season is defined as the last day of four continuous days when 
daily average temperature is < 5 °C (SMHI no.date b) and comparable by first occurrence after 1st July 
(1st Jan. in SH) of at least 6 consecutive days with < 5 ° per day (ETCCDI 2009; Zwiers & Zhang 
2009). Comparably, autumn is defined as temperatures < 10°C during less than five consecutive days 
occurring after the 1st August (SMHI n.d:c). Other definitions are the first five consecutive days in 
autumn when average temperatures for the five-day period < 5 °C (Figure 3). This period is delayed if 
the 5-day period have had average temperatures > 0.0 °C, followed by two continuous five-day 
periods with Taverage≤ 5°C and that with the first five-day period have had a total average 
temperature   ≤ 5°C. (Johansson 1973) (Figure 3). 

Winter is defined for temperatures < 0°C or for day length <9 h and decreasing earliest 2 weeks after 
start of autumn (Mattson et al. 2018). The period of non-frozen ground ends in autumn when daily 

3 Huglin index=  temperature sum index for vine which uses 10 °C as base temperature 
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Figure 3. Visualization of definitions of start- and end of crop season, spring- and autumn. (3a) Show meteorological definitions of spring and 
growth season based on thresholds of minimum temperatures and duration above specified thresholds. Additionally, Figure 3a shows 
thresholds of base temperatures (minimum temperatures for crop growth) for specific crops relevant for Nordic conditions. (3b). Figure 3b 
present maximum temperature and duration thresholds for definitions of autumn, winter and end of growing season. Despite two definitions of 
end of growth season, they are classified as meteorological due to the absence of including clear definition of either harvest or winter 
dormancy. 

Spring Taverage >3 °C and day length ≥ 9 h, lasting ≥ 2 weeks (d) OR Increasing Taverage > 0°C and < 10 °C 
for 7 continuous days (meteorological spring). (e 

Start of growth Daily Taverage ≥ 5°C for 24 hours (b) OR Daily Taverage ≥ 5°C for 6 continuous days (a) 
season OR Taverage > 5 °C for 4-5 continuous days during spring (c) 

Physiologically Taverage during sowing 8.5-9.5 °C (based on historical average sowing dates 1971-2000) (f) OR 
effective growth Taverage ≥ 5 °C (temperate crops) (f, j, k) and ≥10°C (maize) (f) 
season OR Taverage  ≥ 8 °C and earliest 1st of April (g) 

Autumn Taverage ≤ 10 °C over 5 continuous days after 1st of August (d) 
End of growth Last day of 4 consecutive days with Taverage > 5 °C (h) OR Taverage < 5 °C for five continuous days 
season (i) 
End of non frozen Taverage < 0 °C for 5 consecutive days or when snow cover develops (i) 
ground 
Winter Taverage < 0 °C AND day length < 9 h AND starts earliest 2 weeks after start of autumn (d). 
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average temperatures reach < 0.0 °C for five consecutive days, or when a developed snow-cover 
occurs (Johnsson, 1973/1974). However, the period of vernalization for overwintering crops starts 
already at higher temperatures, e.g. 10°C for winter wheat (Fowler & Limin 2004; Fowler et al. 2014).  
Although, the temperature range for vernalization initiation can vary over a larger interval (15.7 to 
-1.3°C) (Porter & Gawith 1999; Fowler 2008). Threshold temperatures for initializing vernalization 
varies between crop species as well as between genotypes. For example, Fowler (2008) showed an 
upper vernalization threshold  from 17.2 to 9.3 °C for different winter wheat varieties and a threshold 
of up to 19.6 °C for winter rye. Waalen et al., (2014) on the other hand set a fixed vernalization 
temperature of 5°C for winter rapeseed. The full vernalization period can be determined by a 
temperature sum accumulated from max- and min temperature thresholds of for vernalization to start 
and proceed, .(e.g Bergjord et al. 2008). 

3.3. Extreme heat and heat waves 

From a general perspective, definitions of heat waves and cold waves have been recommended to 
thresholds of max-, min- or mean temperatures under a period of at least three consecutive days based 
on an average climate period (Belusic et al., 2019). From a crop perspective, heat stress affect plants 
either direct- or indirect and the threshold temperatures for heat stress depends on plant development 
stage (e.g. Porter and Gawith, 1999; Wheeler et al., 2000). Heat that have negative effects on crops has 
in literature from the Nordic countries and agricultural conditions been defined by threshold 
temperatures from 25 °C (summer days) (Hakala et al. 2012; Lalic et al. 2014; Peltonen-Sainio et al. 
2016) up to 35 °C (Mäkinen et al. 2018).  (Figure 5). These temperature thresholds indicate increased 
sensitivity for closing temperatures that have been defined for optimal photosynthesis. The latter 
occurs around 20-35 °C for C3-crops (Sage 2002; Porter & Semenov 2005; Sage & Kubien 2007, 
Machado & Paulsen 2001) and 30-40°C for C4-crops (Pittermann & Sage 2000; Sage 2002; Sage & 
Kubien 2007) due to light-saturation. Respiration on the other hand increases with temperature and net 
zero photosynthesis occurs at a threshold between 30 to 40°C (Pittermann & Sage 2000; Sage 2002; 
Porter & Semenov 2005; Sage & Kubien 2007). 

Harmful temperatures for growth and development temperatures varies with crop species and 
development stage. Some examples of hazardous temperature limits are presented in Prasad et al 
(2017, Figure 1) who synthesized publications on optimum and damaging temperatures during 
reproductive stages. Harmful temperatures for crops relevant for Nordic conditions ranged between 
30°C to 35 °C (cereals 30 °C (barley) to 35 °C (maize); oilseeds (mustard and rapeseed 35 °C); pulses 
(Faba bean 34°C to pea 35°C). Peas have previously reported to heat stress at 35°C (McDonald& 
Paulsen, 1997). Porter and Gawith (1999) presented lethal temperatures for wheat during sowing 
(32.7°C), vernalization (15.7°C), Terminal spikelets (>20°C), anthesis (31.0°C) and grain filling 
(35.4°C). 

Optimal temperature for growth increase with the growth temperature that plants are adapted to. Yet, 
while assimilation efficiency by photosynthesis indicate relative stable performance for C3 over 
various growth temperatures, performance of assimilation efficiency for C4 plants increases with 
increasing growth temperature (Yamori et al. 2014). C3 crops has an advantage over C4 during low 
temperatures due to higher abundance of the enzyme Rubisco, as the enzyme reaches saturation of 
carbon dioxide faster at lower temperatures. Yet the enzyme activity increases with increased 
temperatures up to an optimum (Pittermann & Sage 2000). Estimated from energy transfer from solar 
radiation to energy incorporated in crop biomass, the energy-binding efficiency of incoming solar 
radiation is higher in C4 plants. Mainly due to reduced photorespiration favored by higher CO2 levels 
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within the bundle-sheet cells. Yet this is mainly an advantage under higher temperature and lower 
atmospheric CO2 levels (Zhu et al. 2008; Sharwood et al. 2016) Only three definitions were found 
concerning heat waves, that additionally include a temporal criterion. Short heatwaves were classified 
as temperatures ≥ 25 °C lasting over a period of at least 5 days, while long heatwaves were considered 
if the period of temperature ≥ 25 °C was extended over more than 14 days (Peltonen-Sainio et al. 
2016). 

Agro-climatic extreme 

Tropical day 

Summer day 

Stressing day 

Short heatwave/Heatwave 

Long heatwave 

High temperature stress 

Temperature threshold for leaf 
senesence 

Maximum canopy temperatures 

Any day with Tmax 7 days before or 14 days after heading > 35°C OR any day 
with Tmax between heading and 10 days before maturity > 35°C; any day with 
Tmax 7 days before or 14 days after heading > 31°C (a) 

Any day with Tmax > 30°C (b) 

Any day Tmax > 25 °C (b) 

Number of days with Tmax ≥ 28°C 1 week before to 2 weeks after heading (c) 

Heat ≥ 25°C lasting 5 days (d) 

Heat lasting more than 14 days with less than 2 days with Tmax <25.1°C (d) 

≥ 25°C one week before heading to up till two weeks after heading (c) 

Temperature ≥ 28.93 °C (f) 

≥ 27°C reduces number of fertile grains per unit of ear dry mass for heat 
sensitive wheat varieties (f) 
≥ 30°C reduces potential grain weight for heat sensitive wheat varieties (f) 

Figure 4. Magnitude and temporal scale for extreme high temperature events in Nordic countries related to crop production. The different 
definition8s are categorized as meteorological (red diamond, dotted line) or agrometeorological (full circles) based on if they consider specified 
impact related to crop growth and not solely weather parameters. Full references are displayed in Table 4 in Appendix. 
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3.4. Frost, freezing and cold spells

 Frost is meteorologically defined as air temperatures ≤ 0 °C at 1.25-2.0 meters height measured inside 
a weather shelter (Snyder and de Melo-Abreu, 2005; SMHI, 2020f). Freezing temperatures are 
harmful to plant tissues due to potential formation of extracellular ice, which due to lower ice vapor, 
ice pressure extract water from within cells, causing them to dehydrate. The severity of dehydration as 
well as critical temperatures  for freezing depends on crop species, variety and their individual cell 
properties, hardiness, and phenological development stage (Snyder & de Melo-Abreu 2005; Waalen et 
al. 2014). Thresholds used in literature varies from individual days of temperatures below < 0 °C down 
to arctic days of -20 °C. Longer periods of cold waves have been defined as temperatures < -13.4°Cfor  
5 continuous days, based on the 5th percentile of 30-year weather period (1961-1990 in Uppsala) 
(Rydén 2015) (Figure 5). Air temperatures < -10°C are classified as damaging, and air temperatures <
-20°C as possible to cause loss of winter crops (Das et al. 2003). The harmful effect on plants by cold
temperatures depend on magnitude, crop species, variety, vernalization period and winter dormancy 
(e.g. Porter & Gawith 1999; Waalen et al. 2014; Bergjord Olsen et al. 2018). Additional harmful 
effects due to cold periods can occur during spring when plant growth has been initiated and due to 
effects of presence/absence of an insulating snow cover. The snow cover reduces impact of cold 
temperature, but might lead to increased impact from biotic stresses (Vico et al. 2014). 

3.5. Rainfall and precipitation 

High precipitation is mainly defined by meteorological measures and is defined differently in 
magnitude depending on duration (Figure 6). The extreme variable of both low- and high rainfall is 
usually reliant on the reference period of average normal precipitation used in meteorology (standard 
precipitation of a 30yrs period – see section 3.2 for Swedish normal periods). Despite aiming to use 
indices for interpretation of impact on agriculture. Thus, definitions of extreme precipitation do often 
not account for the agricultural or hydrological impact which are defined by lack of/excess soil 
moisture or high/low water flows or water levels. Duration of (high) precipitation events are 
important, both in meteorological as in agrometeorological classification. However, from an 
agricultural perspective, shorter periods within cropping seasons or over certain crop development 
stages are more important indication of potential hazardous impacts on crop yield, compared with 
longer time periods (monthly or annual) often used within meteorological classification. Although this 
differs from high-intensity events, characterized by high volume over a short time span (minutes or 
hours) which is equally important aspect to consider when designing/planning mitigation and 
adaptation measures.  

Definitions of high- and/or extreme precipitation starts from frequent rains and wet spells, of which 
the former term is defined as a period of 7 days when rainfall exceeds 0.5 mm within 2 weeks and < 2 
successive rainless days (< 0.5 mm). The accumulated precipitation for the 2 weeks should be higher 
than monthly mean precipitation (TT-DEWCE WMO, 2016). Similarly to above definition of frequent 
rain, wet spells are defined as >1mm precipitation per day over >5 consecutive days (TT-DEWCE 
WMO, 2016), i.e. a period of precipitation leading excess accumulation of higher water volumes. The 
same volumetric threshold yet without any threshold for duration of the event, is used by Breinl et al., 
(2020) and Zolina et al., (2013).(Figure 6). Another definition is 10 days with rain during 3 weeks, 
with the accumulated precipitation being 50 % higher than the monthly average precipitation 
(Peltonen-Sainio et al. 2016). 
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Threshold for overwintering 
Mild night frost interval 
Freeze day 
Frost day 
Threshold interval for mild night frost 
Highly fluctuating winter conditions 

Threshold for frost 
Moderate night frost interval 
Cold wave 
Frost threshold 
Arctic day 
Late frost 
Frost risk 
Base temperature for winterkill 

Sum of daily Tmean < 0 °C 
Tnight 4.9 °C to -2 °C 
Freeze day Tmax < 0.0 °C 
Frost day Tmin < 0.0 °C 
Tnight -2 to -5 °C 
Temperatures Tmax > 0°C followed by a period of ≥ 10 days with Tmean < -
5 °C 
Tmean ≤ -5 °C 
Tnight -5 °C to -8,9 °C 
Cold wave: -13.4°C for at least 5 consequtive days 
Any day with Tmin < -15 °C OR any day with Tmin < -20°C 
Arctic day Tmin < -20 °C 
Tmin canopy < 0 °C ± 3 days around anthesis 
Tmin < -2 °C 
I) Tbase < -4 °C before two phyllochrones after formation of flag leaf 
primordium in winter wheat 
II) Tbase < -6 °C after two phyllochrones after formation of flag leaf 
primordium in winter wheat 

Figure 5. Magnitude and temporal scale for extreme low temperature events in Nordic countries related to crop production. Full references are 
displayed in Table 4 in Appendix 
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Extreme precipitation per area 
Warning for large precipitation 
volumes: 
Downpour 
Extreme precipitation 
Very rare extreme event 
Unusually high single rainfall 
Extreme event similar to downpours 
Threshold of efficient rainfall for crop 
supply 
Rare extreme events 
Wet spell 
Frequent rains 

> 90mm d-1 1000m-2 (a) 
Class II: > 70 mm 24 h-1 (b) Class I: > 35mm 12h-1 (b) 

≥ 50 mm h-1 (b) OR ≥ 1 mm min-1 (b) OR ≥ 15 mm 15 min-1 (i) OR ≥ 15 mm 30 min-1 (i) 
≥ 15 mm d-1 (h) OR ≥ 25 mm d-1 (h) OR ≥ 50 mm d-1 (c) OR ≥ 40 mm d-1 (e) 
≥ 40 mm d-1 (d) 
≥ 40 mm 48 h-1 (c) 
≥ 40 mm 6 h-1 (b) 
15 mm d-1 (f) OR > 30 mm d-1 (f) 

≥ 25 mm d-1 (g) 
Five consecutive days with precipitation > 1mm d-1 (j) 
Seven days with rainfall ≥ 0.5 mm per day within 2 weeks, ≤ 2 successive rainless days 
<0.5 mm per day with accumulated precipitation ≥ monthly mean precipitation for the 
two-week period (k)
 OR ≥ 10 rainy days within a three week period, ≤ 2 successive rainless days and 
accumulated precipitation for 3 week period ≥ 150% of the monthly mean precipitation. 
(k) 

Figure 6. Magnitude and temporal scale for defining extreme precipitation events in Nordic countries related to crop production. The different 
definitions are categorized as meteorological (transparent diamond) or agrometeorological (blue circles,, dotted line) based on if they consider 
specified impact related to crop growth and not solely weather parameters Full references are displayed in Table 4 in Appendix 
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On the other end, extreme precipitation has been defined as 90 mm d-1 per 1000 m2 (SMHI 2017) or 
volumes up to 70 mm d-1 for warnings of large precipitation volumes under Swedish conditions 
(Olsson et al. 2017). Excessive rainfall directly related to agriculture has been defined as > 60 days 
with water saturation at field capacity of the soil  (Mäkinen et al. 2018).. An example of extreme 
indices based on percentage of deviation from normal precipitation was used by Nkurunziza et al. 
(2015). They impartially linked yield deviations to significant precipitation deviations (± 30 % from 
normal precipitation) in four long-term experiments in Sweden. They explicitly present years when 
deviations of precipitation sum during growth season (< 20mm over 40 days) and harvest season (> 
100mm during August) respectively coincided with yield losses of 30 %, 50 % and 70% respectively. 
Yet comparisons of years with reduced yield linked to solely climatic indices gave inconsistent results, 
indicating that additional site-specific factors requires consideration when evaluating climatic impact 
on crop yield(Nkurunziza et al. 2015). 

3.6. Soil saturation and flooding 

Water is in a global perspecitve a main parameter that limits yields in rainfed systems. Yet excess 
water is an equal inhibitor of yields as water limitation (FAO 2020 p. 105). Crops requirer timely 
water supply of accurate magnitude in order to maintain e.g. metabolic processes, including 
photosynthesis, solute transport, transpiration and ensure nutrient uptake from the soil. Soil saturation 
or water ponding in the unsaturated zone is a time limited agrological hazard due to high waterflow, 
snowmelt or high precipitation events. Too little water will limit these processes. Yet, too much water 
limits available oxygen for respiration processes to harmfully low levels. A critical lower limit for soil 
aeration for plants is defined to 0.05-0.10 m3 air m-3 soil volume (Håkansson et al. 2002, 2011; Lipiec 
& Hatano 2003; Wesström et al. 2016). Root growth can generally recover from soil saturation 
duration < 3 days. Yet impacts of soil saturation is also dependent on development stage, crop species 
and other weather parameters (Malik et al. 2002; Wesström et al. 2016). 

The placement of the seed at sowing is less important in soils with good water holding capacity and 
high volume of plant available water (Håkansson et al. 2011). The optimal threshold of 10 % air-filled 
porosity in soils depends on water content, soil texture and degree of compactness4 (D). A threshold of 
10 % air-filled porosity in a majority of soils occur under water content at a matric potential of 10 kPa 
and D < 87%, while higher D increase tension for root penetration and decrease soil-oxygen levels 
(Håkansson & Lipiec 2000). 

Furthermore, sufficient water levels affect the workability and buoyancy of arable lands for land 
preparation before- and during the crop season. Too dry land reduces the possibility to achieve a good 
sowing bed. Excess soil water can affect soil structure negatively by crumbling or dispersion. This 
affects pore size and pore size distribution (e.g. Wesström et al., 2016). Excess soil water furthermore 
reduce buoyancy of soils to machine operations, which affects seedbed preparation and optimal soil 
aeration and cause compaction (e.g. Obour et al., 2018). Optimal soil moisture for tillage (ΘOPT) can be 
set to the water content when soil textural pores are mainly water filled, while structural pores in 
between aggregates are drained (Obour et al. 2019a). The range of optimal soil moisture has been 
determined to 0.7-0.9 ΘPL where ΘPL is the plastic limit5 (Keller et al. 2007); 0.8 -0.9 ΘPL (Arvidsson & 
Bölenius 2006) and 0.9 ΘPL (Dexter & Bird 2001). The workable range for tillage is reduced with 

4 Degree of compactness is defined as “…the dry bulk density of a soil layer in percent of a reference dry bulk density of the 
same soil obtained by a standardized, long‐term uniaxial compression test at a stress of 200kPa ... similar to that of soil 
tillage” (p. 72). The maximum value of D is 100 for the specified pressure of 200kPa induced to the soil (Håkansson & Lipiec 
2000). 
5 The plastic limit is the lower soil water content when a soil is plastic, i.e., workable without resulting in cracking of the soil 
due to cohesion between soil particles in its semi‐solid state (Keaton 2018). 
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lower soil organic carbon content and higher clay content (Dexter & Bird 2001; Obour et al. 2019a). 
Soils with higher clay content has a higher water content at wet- and dry tillage while the range of 
water content for when the soil is workable decreases (Obour et al., 2019b). The range of water 
content when the soil is workable (at soil matric tensions between -65 to -1800 hPa and -3600 to -4100 
hPa) has been found to be positively related to volume of pores > 30 µm, i.e. air-filled pores (Obour et 
al., 2019b). Additionally, a lower clay content threshold of 10 % clay has been estimated by Keller 
and Dexter, (2012) in order for soils to be plastic. Yet, considering other literature, the plastic limit 
might be lower due to impact of soil organic matter content. 

Dexter and Bird, (2001) has defined the lower dry limit of water content for tillage as:  

“…the water content at which the strength of the soil is twice the strength at the optimum water 
content.” (p. 207, Dexter and Bird, 2001) 

An example of applied limitations to harvest and sowing is used by Trnka et al.( 2011). To determine 
suitable days of harvesting and sowing, the authors used a threshold of soil water content in top 0.1 m 
soil layer of > 10 % and < 70 %. water content Yet, they combined this threshold with an average 
daily temperature > 5 °C and daily precipitation ≤ 1mm during the same day followed by ≤ 5mm 
precipitation the preceding day (Trnka et al. 2011). 

In addition to effects on yield and workability, soil water levels are important for microbial activity, as 
the water content affects the share of air-filled pores. This determines the cycling of nutrients in the 
soil, indirectly affecting crop growth. A water content in the range of 0.3-0.6 m3 m-3  will lead to the 
highest microbial activity resulting in increasing nitrification rates up to 0.6 m3 m-3  (Wesström et al. 
2016). 

Heavy precipitation and flooding from an agrometeorological perspective is a cause of temporal 
interacting factors and can have several direct and indirect impacts related to agricultural production 
(Das et al., 2003, p. 83). In this review we limited focus to direct impact on crop yield. Flooding is 
defined as an event when an area that normally is above the level of watercourses, water bodies or sea 
level gets covered by water (European Parliament and the Council 2007). An evaluation of the 
efficiency of different water retention measures from United Kingdom classified floods as “small” if 
the flood event has a return period < 10 years. Medium flood events were classified as return period 
between 10-100 years. Large flood events were classified as events with a return period >100 year 
(Burgess-Gamble et al. 2017). The main issue of heavy precipitation concerning agriculture occurs 
when precipitation volume exceeds infiltration capacity of soils. The result is either flooded areas 
where water naturally congregates at the point at rainfall, or surface runoff which potentially collects 
ad downstream locations. 

Flooding is ,in contrast to soil saturation, a hazard from a landscape perspective with overflow of areas 
normally not situated under water (e.g. (UN n.d.). The flooding can occur due to high water levels 
from water bodies/water courses, due to high precipitation events, melting water or high groundwater 
level. Furthermore, the impact area can be defined as primary – the area directly flooded by the excess 
water, and secondary – and area which draining capacity gets limited by the flooded primary area. 
Thus, the secondary area becomes saturated (Enghang et al. 2016; Wallentin et al. 2016). A flooding 
event can additionally be short-term, classified as 

“An elevated water level resulting in fully saturated soil conditions during 1-3 days before 
the soil can be drained to drainage equilibrium”(Enghang et al., 2016 p.4), or long-term, 
classified as “An elevated water level resulting in fully saturated soil conditions during 1-2 
weeks before the soil can be drained to drainage equilibrium.” (Enghang et al., 2016, p.5). 
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An example from UK compared impact of flooded areas by comparing water columns over- and under 
the threshold of 0.3m (Harvey et al. 2019). In addition to duration, occurrence frequency of flood 
events and volume that exceeds draining capacity – the area covered by a flooding event is important. 
It is a direct measure of impact severity on the surrounding area. Flooding per se is as already stated as 
a hydrological rather than agricultural index. However, soil saturation can be a cause for extended 
flooding, as well as can flooding on agricultural land due to e.g. deflecting surface water from nearby 
streams be a cause to soil saturation on agricultural land. 

Important, but not directly linked to agrometeorological indices are the Swedish guidelines for 
evaluating flood risks that are based on return frequency of extreme flows, e.g. 100- or 200yr 
occurrence (Myndigheten för samhällsskydd och beredskap, 2014). Areas under major risks of 
flooding (betydande översvämningsrisk) is defined by societal factors linked to urban 
areas/infrastructure, health, economy and environment, and account for historical flood occurrence. 
Environmental risks includes protected nature areas and contaminated areas prone to leaching. 
(Myndigheten för samhällsskydd och beredskap 2018). The inclusion of areas for major risk of 
flooding does not include a definition for agriculture. Yet, this can be related to the definition of major 
impact on agricultural land (Edström & Karlsson 2019). This is defined from available farmland in 
excess to required area to sustain yearly added value of production to fulfill the national food strategy. 
The excess land for additional growth is expected to be available for development of increased water 
management in the arable landscape. As an example, this area was estimated to a reduction of 5000-
12000 ha over the period 2010-2015 and regarded as a permanent loss of arable land. Flooded ground 
will on the other hand be partially usable during the year. Yet for individual years with more severe 
flooding, this estimated loss of area linked to an annual threshold can possibly be used as a benchmark 
for Swedish conditions and flooding severity. Flooding events that affect more than the threshold of 
land required for the annual growth of agricultural production to live up to the national food strategy 
can be seen as a precaution. 

3.7. Dryspells and drought 

Meteorological dry periods have been defined as precipitation < 0.1mm (Breinl et al. 2020) and  < 0 
mm d-1 (Zolina et al. 2013) or as a period with less precipitation than normal (related to a reference 
period) (Salomon et al. 2019). The threshold for a dry period is often < 1 mm d-1 (Bärring et al. 2006; 
TT-DEWCE WMO 2016) or < 0.1 mm d-1 (Bärring et al. 2006; SMHI 2018; Stensen et al. 2019; 
Breinl et al. 2020). The latter is classed as the limit for measurable precipitation. As comparison, 
longer duration that can be classified as dryspells has been classified under the terms dry summers (< 
40 mm between May and June (Johnsson 1972), as < 20 mm over 3 months (de Toro et al. 2015), or as 
total precipitation < 10 mm with < 4 days of rainfall during 2 weeks (Peltonen-Sainio et al. 2016) 
(Figure 7). The definitions of dryspells above are aimed for use concerning impacts of 
absence/reduction of precipitation on agriculture. However, absence of precipitation is not a direct 
reflection of severity for crop production. What is important is that definitions of drought from a 
meteorological perspective that just include precipitation deficit, does not imply the full effect on crop 
production (e.g. Barron et al. 2003). 

Food and Agriculture Organization’s terminology specify agricultural dryspells as 
“Short period(s) of water stress during critical crop growth stages and which can occur 
with high frequency but with minor impacts compared with droughts”. 

(FAO 2010)
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Agricultural dryspells affect crop production on one hand by lack of precipitation, and on the other 
hand through water available for plant uptake. Thus water partitioning of same volume of seasonal 
precipitation can enable higher- or lower yield based on site specific climatic conditions, soil- and 
water management as well as when dryspells occurs within the crop season (Rockström & Falkenmark 
2000). The impact of dryspells on crop yield depends on crop species, the occurrence and magnitude 
of water deficit during the growth season and has more severe impact on yield during certain crop 
stages (Daryanto et al. 2017).  Thus indices for dryspells need to reflect the variation in severity of 
short term water deficit of precipitation volumes, as well as available soil moisture volumes during 
individual growth seasons and crop development stages.  

Dry summers 
Dry period 
Drought 

Area specific threshold 
Dryspell 
Dry period 

Threshold for measurable 
precipitation 

Between May-June P < 40 mm (a) 
Period of continuous absence of measurable precipitation, i.e. < 0.1mm (b) 
Total precipitation <10mm and no more than 4 days rainfall during a 14-days 
period (c) 
0.48 mm d-1 (d) 
At least 5 consecutive days with Pday < 1 mm (e) 
Period of continuous absence of measurable precipitation, i.e. < 0.1mm (f) 
OR ≤ 20mm over 30 days (g) 
Long and continuous period missing measurable precipitation, < 0.1mm (g) 

Figure 7. Magnitude and temporal scale for defining drought events in Nordic countries related to crop production. The different 
definitions are categorized as meteorological (transparent diamond) or agrometeorological (red circles,, dotted line) based on if they 
consider specified impact related to crop growth and not solely weather parameters Full references are displayed in Table 4 in Appendix 
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In relation to meteorological dryspell, additional site specific soil moisture and/or crop water demand 
and crop water use needs to be monitored or estimated to determine agricultural impact. Additionally, 
there is a possibility of precipitation during an agricultural dryspell, as the precipitation might not be 
sufficient to sufficiently fill soil water supply. Between these parameters there is a feedback response 
which is reflected in crop yield (reduction) due to stress factor/severity of the dryspells. The issue of 
monitoring agricultural dryspells which are varying in areal extent as well as temporarily during the 
growth season, there is a requirement in monitoring on high spatial and temporal scale. Using 
specified thresholds of dryspell-duration linked to prediction of occurrence of sensitive phenological 
crop stages by estimation of growing degree days (see Section 3.2 and discussion on crop- and 
cultivar specific base temperatures) (e.g. similar to method do determine phenological stages and 
effect on duration in forests under global warming, see Fu et al. (2015) might be a simple way to 
reduce requirement of otherwise high-frequent data for determining impact on crop yield by absence 
of precipitation and soil moisture.  

Drought is defined differently with shorter or longer 
1.2

periods without water, depending on the weather 
patterns in different climate zones and if the 1 
considered area is naturally humid or dry (WMO 
2010a). An important aspect of droughts is a 
requirement of a shorter or longer period of dry 
conditions (WMO 2010). Additionally, droughts 
can vary temporarily and over different area. 
Agricultural drought per definition is emanating 
from precipitation deficit, interlinked with 
meteorological circumstances but characterized by 
soil moisture deficit and not by the lack of 
precipitation (Das et al. 2003; 2010; IPCC 2021a). 
Thus, agricultural drought is linked to soil 
properties, -physical conditions and -biological 
factors (Wilhite & Glantz 1985; Destouni & Verrot 
2014). 

One way of defining agricultural drought is the 
threshold of relative evapotranspiration (RET) 
defined as the ratio between ETa and ETP. Drought 
has been defined as starting from RET < 1.0 with 
varying stages of water deficit, in between, to severe 
drought when RET < 0.15 (e.g. Johnsson 1972; 
Mogensen et al. 1996, 1997; Trnka et al. 2011; Rötter potential evapotranspiration (ETP). 

et al. 2013; Lalic et al. 2014; Mäkinen et al. 2018) 
(Figure 8). Meteorological drought is defined differently with shorter or longer periods without water, 
depending on the weather patterns in different climate zones and if the considered area is naturally 
humid or dry (WMO 2010). 

Two common measures for drought analyses are the indices SPI (Standardized Precipitation Index) 
and SPEI (Standardized Precipitation Evapotranspiration Index). The Standardized Precipitation Index 
(SPI) characterize drought and extreme precipitation in relation to the median value of long-term 
precipitation data (preferably 30 year). The observed data is fitted to a probability function that is 
converted to a normal distribution. The index is valued on a scale where negative SPI-values < -1.0 

Figure 8. Thresholds for agrometeorological dry conditions 
defined by the ratio of actual evapotranspiration (ETa) and 
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indicate the start of a drought. A change to positive SPI values indicate finalized drought. A SPI value 
≥ 1.0 indicate conditions wetter than normal. Extremely wet and extremely dry events are considered 
when SPI is > 2.0 or < -2.0 respectively. (TT-DEWCE & WMO, 2016.). SPI can be estimated for 
different temporal scales due to different response time of drought or wet event impact on different 
hydrological storages. Soil moisture is e.g. affected on short temporal scale, while river discharge, 
aquifers and larger water bodies on landscape scale are affected over a longer period (World 
Meteorological Organization, 2012). Only precipitation for determination of drought is considered 
within SPI. However, there is an important issue of including temperature as a parameter affecting 
drought conditions and water requirements for crop production. The Standard Precipitation 
Evapotranspiration Index (SPEI) is based on SPI and similarly a standardized probability measure. Yet 
SPEI additionally include temperature as a parameter by estimating the probability of water deficiency 
for potential evapotranspiration (Vicente-Serrano et al. 2010). There are several other measures 
available for drought of various complexity due to required input data. For further description of 
additional indices see e.g. Svoboda et al. (2016). 

An interesting example of definition due to standard-deviations, was done by Li et al., (2019). They 
estimated impact of extreme drought and -precipitation on maize yield in USA. They defined a 
standardized anomaly (γ) as:  

[1] γ = (γt – γ)/σ Li et al., (2019) 

The term γt is the departure of climate for year t,γ is annual mean state over a reference period and σ 
is the standard deviation. Extreme drought was defined as anomalies of precipitation < -2 σ and >+3.5 
σ; moderate drought and moderate excessive rainfall by anomalies >-2 σ and <+2.5 σ; extreme heat 
and cold as anomalies >+2.5σ and <-2σ respectively. Yet, the authors note that these definitions were 
still based on meteorological events and that synergetic effect from e.g. soil parameters, pests, nutrient 
cycling, and management strategies were not accounted for. 
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4. Discussion

Several definitions of extreme weather are used for Swedish agricultural purposes, both quantitative 
and qualitative (this study; Wiréhn 2021). To justify a full comparison between different thresholds for 
one defined extreme weather within crop- and climate modelling, the numbers must be interpreted 
based on the algorithm for which the number is inserted. 

However , our study focusing on the temperate –boreal regions of NE Europe , note that often 
standards and thresholds use climatic indices, rather than relating to crop growth and –development  
For agro meteorological indices this study could not identify consistent standard based on precipitation 
and temperature .  A specific gap was identified related to soil moisture and evapotranspiration 
associated with critical temperatures, high precipitation, and water ponding. Few definitions include 
duration of temperature thresholds, which is also an important aspect of crop damage, as both short 
shock events and events of longer duration unexpectedly high (low) can have negative impact, directly 
and indirectly, through impact on water availability, crop development and nutrient uptake. As 
different tolerance towards both high- and low temperatures varies between crop, cultivars and 
phenological stage, these magnitude thresholds naturally vary in literature when referring to 
temperature. One index that was not brought up to full extent during this review is the temperature 
sum. Temperature sum is important when discussing the phenological development of crops. With 
warmer temperatures, the sowing period has already been monitored to occur earlier than historically 
(e.g. Peltonen-Sainio and Jauhiainen, 2014) . Increasing temperatures can possibly speed up growth 
and development of agricultural crops, shortening the overall period between sowing and harvest 
(Olesen et al. 2012a; Peltonen-Sainio & Jauhiainen 2014). However, the theoretical sowing date is not 
a guarantee for earlier sowing in practice, as suitability for sowing is also dependent on the practical 
possibility for sowing operations related to soil moisture and –structure (e.g. van Oort et al., 2012; 
Section 3.6). It has also been discussed that radiation and daylight may affect earlier crop season start, 
and potentially limit transfer of varieties suited to new temperature conditions may be limited due to 
radiation limits.  

Extreme precipitation linked to agriculture has mainly been defined by meteorological definitions, 
with emphasis on dryspells and droughts, and thereby missing the impact on soil saturation. Further 
these indices are lacking consistency. Extreme precipitation, especially as hail, can have direct 
negative impact by causing mechanical damage on crops. This factor was not found in the reviewed 
literature. However it is relevant especially in plant breeding for increased resistant towards 
mechanical impacts. In addition, dryspells- and drought definitions has mainly been linked to 
meteorological definitions of periods without precipitation. However, agrometeorological drought 
seems to be more clearly defined compared to soil saturation. By e.g. declining soil moisture, relative 
evapotranspiration or by globally adjusted drought indices that include soil moisture deficits and 
evapotranspiration effects (see e.g. (Mishra & Singh 2010; Destouni & Verrot 2014). or for a period of 
precipitation that does not fulfill crop water demands (e.g. de Toro et al., 2015). Compared to Nordic 
countries where temperature is limiting for crop growth, precipitation is more commonly used as 
measure for crop growth potential in other climate zones with distinct rain- and dry periods. If 
temperature enables earlier sowing however (compared to definitions in e.g. section 3.2 Start- end and 
duration of crop season and sowing conditions), it also put a requirement on the timeliness of 
fulfilling precipitation requirements. Sowing may be limited by precipitation conditions, either too 
much or too little for sowing operations and germination. Thus, to explore future possibilities and 
limitations of weather impact on increased potential for Nordic crop production, synergetic 
development of timed limitations of temperature and precipitation needs to be further assessed. 

There is a need for more harmonized agrometeorological definitions linked to heavy precipitation to 
account for soil saturation and flooding of arable land that links to preceding soil moisture levels and 
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soil properties. Including soil moisture and especially soil saturation alongside extreme weather 
definitions is however more complex than the meteorological definition of heavy precipitation. This is 
due to that water ponding also depend on evapotranspiration, inherent soil conditions incl.  Infiltration 
and drainage capacity. These parameters are consecutively dependent on temperature, soil, and crop 
properties. 

This review shows that a synthesis is missing with basis in essential climate thresholds for crop 
production. We found that especially intra-annual thresholds for magnitude and duration, depending 
on crop development stage for both high- and low temperatures and droughts/dryspells linked to 
development stage and soil moisture levels. The usefulness of extremes indices varies with context, 
which is also reflected in the lack of standardize indices for agro meteorological aspects. However, to 
compare results between studies a more standardized approach to e definition of extreme should be 
agreed on. 

Focusing on the agrometeorological perspective it is also essential to identify its hierarchical 
dependence on preceding meteorological or hydrological events. Severe effects in e.g., crop 
production does not necessarily require a meteorological or hydrological extreme to occur. Defining 
thresholds with negative implications for specific crops, depends on magnitude, distribution 
(frequency of occurrence) and absolute threshold. Meteorological events (both single and 
compounded) leading to events that surpass the agrometeorological thresholds can then be evaluated, 
mitigated or adapted for. However, this leads to the challenge to first define the acceptable level of 
impact in agriculture. A good start linked to soil moisture that can be adapted to site-specific 
properties is the definition of short- and long flooding events by Enghang et al., (2016). Yet possibly 
exchange flooding to soil moisture saturation – as the created water mirror due to excess ponding 
water is not the main issue for crops. Rather it possibly contributes to a temporal increase in duration 
of soil saturation as larger water volumes can take longer to infiltrate or evaporate.  

The reviewed literature did not include any agrometeorological threshold of extreme flooding that 
includes the area extent of the event linked to agricultural impact. The Swedish Civil Contingencies 
Agency (MSB) uses a continuous grading of the possible larger societal/economic impact due to 
larger flooding area. This can be adapted to agriculture as well, with a more extreme event with 
higher negative yield impact or even soil damage. However, a defined threshold level of “acceptable” 
crop damage (e.g. Edström and Karlsson, 2019) is needed to work from “tolerable impact” to what is 
considered as an extreme event. Yet impact and financial costs due to flooding depends on which 
stage during the growing season that the extreme event occur. Due to possibilities of re-sowing or 
previously costs for measures as fertilizing, seeds or pesticide applications (Enghag et al. 2016). 
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5. Conclusions 

 Farmers and the agricultural sector will need better high temporal and spatial resolution 
understanding on weather conditions and risks for extreme weather as climate change advance. 
Extreme events related to weather and climate do not have standardized definitions, but is dependent 
on the sector, region and the context where the definition should be used. This review, focused on the 
temperate boreal regions of the Scandinavian Peninsula, show high degree of inconsistency for 
assessing agro-climatic indices related to temperature and precipitation for crop production. There is a 
need to develop agreed standard approaches from an agrometeorological lens. This can be combined 
with meteorological definitions to account for crop yield impacts, as well as give statistical measures 
on severity and temporal probabilities of occurrence. One example is by e.g. combining agricultural 
thresholds for durations and frequencies with statistical return periods of meteorological- and 
hydrological events. A shift to more standardized and expanded use of agrometeorological indices 
need to be supported by intra-seasonal data collection to identify impact during both sensitive and 
critical crop stages. These should be used for design of decision support, so crop producers can make 
relevant management decisions during and post /pre-season. By better informed agro-meteorological 
risks and probabilities, one understand cost –benefit implications of those management practices in 
intra-seasonal impacts. Yet, most important start is for the scientific community to more clearly state 
their definitions and what it is based on, in their publications. This would enable easier comparisons 
between results from different research efforts and increase the unified picture of how weather-related 
events affect crop production. 

. 
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Appendix 

Table 3. Definitions of extreme weather events adapted from World Meteorological Organization (TT‐DEWCE WMO, 2016) and the Expert Team 
on Climate Change Detection and Indices (Zwiers and Zhang, 2009) 

Event Definition Reference 

 

 
 

 

 

                                     
                   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

   

                               

                                   

                                  

     

 

                       

                           

           

 

                             

       

                           

 

 

                                 

                         

     

   
                           

 

   

                             

                             

                   

   

                             

                             

                           

 

   
                 

       

   

   
                 

     

               

           

   

 
                       

             

             

                       

                         

                                           

                               

                               

         

 

“The occurrence of a value of a weather or climate variable above (or below) a threshold 

Extreme weather value near the upper (or lower) ends of the range of observed values of the variable. In many 

cases, a weather or climate event with high impact is also deemed as extreme event” (p.6 ) 

“A marked unusual period of abnormally dry weather characterized by prolonged deficiency 

Drought below a certain threshold of precipitation over a large area and persisting for timescale 

longer than a month”. (p. 25). 

“A period of unusually dry conditions (*) of at least five1 consecutive days with daily 

Dryspell 
precipitation less than 1mm. 

(*) i.e. to exclude usually dry periods, such as during dry seasons.” (p. 25) 

Extreme 

precipitation 

“A marked precipitation event occurring during a period of time of 1h, 3h, 6h, 12h, 24h or 

48hours with a total precipitation exceeding a certain threshold defined for a given 

location.” (p. 19). 

TT‐DEWCE WMO (2016) 

Wet spell 
“A period of at least five1 consecutive days with daily precipitation exceeding 1 millimeter” 

(p.19) 

Heat waves 

“A marked unusual hot weather (Max, Min and daily average) over a region persisting at 

least two consecutive days during the hot period of the year based on local climatological 

conditions, with thermal conditions recorded above given thresholds” (p. 10). 

“A marked and unusual cold weather characterized by a sharp and significant drop of air 

temperatures near the surface (Max, Min and daily average) over a large area and persisting 
Cold waves 

below certain thresholds for at least two consecutive days during the cold season.” (p.15). 

Heavy Number of days when Pday > 10 mm d‐1 
precipitation days 

very heavy Number of days when Pday > 20 mm d‐1 
precipitation days 

> 95th percentile of precipitation on wet days* 

very wet days 
*consecutive days with P > 1mm 

extremely wet Days with precipitation > 99th percentile based on the reference period 1961‐1990 
(Zwiers & Zhang 2009). 

days 

Frost days Daily minimum temperature < 0°C 

Icing days daily maximum temperature < 0°C 

cold nights Daily minimum temperature < 10th percentile of base period 1961‐1990 

Daily maximum temperatures < 10th percentile of the base period 1961‐1990 cold day‐times 

1. The range of five days is set to harmonize with a measure by the Expert Team on Climate Change Detection and 

indices (ETCCDI) and Indices for monthly maximum precipitation when a five‐day interval is used. However, the 

initial definition from WMO (World Meteorological Organization 1992) did not include a specific number of days, 

nor a certain water volume. 

I 
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Table 4. Reviewed references for defining thresholds of extreme precipitation, ‐temperatures and drought 

References for quantitative extreme weather measures 
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	1. Background 
	Plant growth and -development is dependent on climatic conditions, synergetic effects of daily fluctuations in weather parameters, as well as synergetic effects of consecutive weather events. Farming systems require management to build resilience and ensure productivity for variability in weather events impacting crops - directly and indirectly - by effects on plant-soil-microbe interactions 
	(e.g.
	(e.g.
	(e.g.
	(e.g.
	 Jia et al. 2019). Whether weather patterns and specified weather events can be classified as extreme is a matter of definition, and depends on the impact in focus, as well as synergetic effects and feedback loops between related climate variables (WMO 2010; Seneviratne et al. 2012; TT-DEWCE WMO 2016; Zscheischler et al. 2020). 

	Since 1850, the last four decades have been consecutively warmer (Gulev et al. In press) and the last six-year period (2015-2020) have been the warmest since the mid-19 century  (World Meteorological Organization 2021b). Additionally, new projections suggests that there is a 40 - 60% change that global average temperatures rises above 1.5 °C during any individual year during the period 2021- 2025 (2030) (World Meteorological Organization 2021a; Lee et al. In press) and very likely- to more likely than not t
	th
	1

	1.5°C is the aimed upper limit of global average temperature increase set by the Paris Agreement, i.e. well below 2°C since prehistoric times) (United Nations Framework Convention on Climate Change 2016). 
	1.5°C is the aimed upper limit of global average temperature increase set by the Paris Agreement, i.e. well below 2°C since prehistoric times) (United Nations Framework Convention on Climate Change 2016). 
	1 



	(e.g.
	(e.g.
	 Lenton et al. 2019). Projected higher temperature imply shifts in precipitation and soil moisture of varying magnitude depending on region. It is expected that with every increase in temperature, events of hot temperature will increase in both magnitude and frequency, while heavy precipitation events and dryspell/drought events are projected to increase in magnitude per event (IPCC 2021b). Alterations in mean, variance and distribution of regional weather events (Seneviratne et al. 2012) are of great impor

	(e.g.
	(e.g.
	 Bednar Friedl et al. In Press). 


	Projected effects of climate change on crop production indicate that the Nordic countries will experience relatively less temperature increase and precipitation increase, compared to central and southern Europe (Ptner et al. In Press). Elevated temperatures and thus longer theoretical growth period has been brought up as a partly positive aspect in the Nordic region (Olesen et al. 2012a; Peltonen-Sainio & Jauhiainen 2014; Juhola et al. 2017). However interactions between parameters as dry periods and elevat
	The term extreme can be related to either the event itself, the potential hazard, the final impact caused by an individual event, or temporally and/or spatially combined event(s) (Zscheischler et al. 2020). Agro-meteorological extremes comprise the relation of weather impact (direct- and indirect) on crop yield and related requirements on conditions for crop production (Wilhite & Glantz 1985; Van Loon et al. 2016). Additionally, extreme events can be determined by various methods (e.g. Bärring et al. 2006; 
	negative impact for one or multiple sectors (TT-DEWCE WMO 2016).  Extreme events can furthermore be defined by statistical frequencies (often < 10th and > 90th percentiles of a dataset or defined return periods, as well as even lower limits (> 70th percentile) (Bärring et al. 2006; Fleig et al. 2011). The relevance of a definition varies depending on field and purpose (McPhillips et al. 2018). Some definitions might also be problematic with a transition of distributions in weather patterns (Harrington & Ott
	Due to the vast variation in ways of defining extreme events, this document is a synthesis to explore quantitative definitions of extreme weather linked to agro-meteorology and agricultural production in the temperate boreal zone of Nordic countries. The synthesis will serve as reference further research projects linked to agriculture, in choosing a suitable definition of extreme events relevant for their research questions and studied agricultural system. The objective is to answer how extreme weather rela
	In this review, extreme events of temperature and precipitation is in focus as these have short and long-term implications for agricultural production. 
	2. Method 
	This synthesis focuses within the temperate- and sub-arctic climate zones. These zones corresponds to Swedish agro-climatic zones with similar climatic conditions (Beck et al. 2018; King et al. 2018; Ceglar et al. 2019). Effects of different extreme weather events are thus expected to have similar impact on cropping systems between nations within these zones. 
	Literature covering extreme temperature and precipitation events were achieved through a partially systematic approach in the search engine Web of Knowledge during the period January 2020 to November 2020. Terms used in the search queries are shown per focus area in Table 1. The terms were combined using the links “AND” and “OR”. The bulleted sections were separated by parentheses. The search was supplemented with secondary references achieved from reviewed publications in the primarily search. Additional g
	2

	Table 1. Search queries for Extreme weather definitions. The queries were used in different combinations for the three categories with separation of “AND” or “OR” and parentheses separating the terms in the different paragraphs in the table 
	2 
	2 
	2 
	www.webofknowledge.com 


	Terms in search queries 
	Terms in search queries 
	Agrometeorology; "extreme weather"; extreme weather; Extreme weather; extreme*; climate change 
	Growing season 
	Temperature; winter; cold; hibernation; rest; sleep; dormancy; frost; freezing; hardiness; LT50 
	downpour; downfall; cloudburst; "heavy rainfall"; flood*; precipitation; extreme precipitation; high precipitation; flooding; rainfall; storm 
	drought; dryspell OR dry‐spell; "dry spell"; "extreme precipitation"; heat wave; heatwave; heat‐wave; 
	agriculture; agricult*; farm*; crop*; crop; cultiv*; arable*; crop prod 
	Swed* OR Norw*; Finnish; Finl*; Finland; Finnish *; Denm*; Denmark; Danish*; Danish; Icel* 
	soil saturation 
	crop growth; crop development; aeration; * soil management*; water management 
	water supply; water use; water requirement; crop water; drainage; water need*; transpiration; evapotranspiration; agrometeorolog*; 
	hydrogeolog* OR hydrolog*; 
	References were initially included based on title and if they had an initiation of including information on climate and extreme weather and agriculture. A second selection was done based on abstract content. A reference was included if it mentioned quantitative analysis of extreme weather and impact on agriculture, related to crop production. 
	From the references analyzed in full, following information was collected:  
	Type of meteorological definition; country, duration of definition for extreme event; event magnitude (minimum and maximum values if a range); area specification for the event if relevant; percentiles for when the event is considered extreme related to a reference period; Threshold related to actual evapotranspiration and potential evapotranspiration; the author’s own descriptive definition. 
	Note that not all information was available for all reviewed studies. 
	3. Results 


	3.1. Geographic specifications and overview of reviewed publications 
	3.1. Geographic specifications and overview of reviewed publications 
	This review of extreme weather quantified thresholds of temperature and precipitation indices is based on n =33 references. A complete reference list is included in Appendix, Table 4. The reviewed studies are from Sweden (n = 14), Norway (n = 1), Denmark (n = 7) and Finland (n = 7). Additional four (n =4) references are from a European study regarding the continent’s different agro-ecological zones, WMO and The European Drought Observatory. Most literature is published after year 2000 except from two (n = 2
	Figure
	Figure 1. Number of reviewed publication per publication year divided per nation/source 
	The definitions used in the 33 references show an overall weight towards meteorological definitions related to precipitation. Temperature related definitions are more directly linked to potential impact on crop production and specifically yield levels. In total, 88 individual quantitative definitions were identified from the publications covering extreme precipitation (n = 22), drought (n = 13), heat (n = 14), cold (n = 25) and aridity index (n = 14) (Table 2). 
	Table 2. Number of classifications of extreme event indices/definitions from reviewed material identified as either meteorological or agrometeorological after definitions by Wilhite & Glantz (1985); Das et al. (2003); TT-DEWCE WMO (2016) and Van Loon et al. (2016) 
	Meteorological definition 
	Meteorological definition 
	Meteorological definition 
	Agrometeorological definition 

	High precipitation 
	High precipitation 
	19 
	3 

	Drought
	Drought
	 9 
	4 

	Heat 
	Heat 
	3 
	11 

	Cold
	Cold
	 10 
	15 

	ETa/ETp
	ETa/ETp
	 -
	14 


	3.2. Start‐end and duration of crop season and sowing conditions 
	3.2. Start‐end and duration of crop season and sowing conditions 
	Extreme weather definitions from a crop production perspective, should reflect impacts on germination, growth, development and survival of crops (Barlow et al. 2015), as well as conditions for crop management. Important weather impacts occur both during the growth period as well as during winter dormancy of autumn sown crops, i.e., pre- and post-crop growth period.  In temperate –boreal climatic zones, the start (onset) and end of cop seasons are typically defined by air and soil temperature, and at high la
	Minimum germination temperatures from literature are ranging from 1°C (cereals, peas) up to 8 °C (potatoes) (Geisler 1983; Gunnarson 2012; Johnsson 2016). However, the temperature thresholds used for determining the actual temperature for sowing and temperature sum during the crop season can be classified differently. For example Olesen et al. (2012b) used fixed base temperatures of 5 to 8°C  for estimating temperature sum, while mean temperature was determined individually for wheat (7.1°C), oats (6.1°C) a
	The crop season can be classified as the period when temperature and soil moisture sustain crop growth (Carter 1998). From a crop production perspective, seed bed preparation and sowing might not occur at start of the climatological growing season. Rather the agricultural production is dependent on the farmers’ decisions and timings, as well as suitable soil conditions for seedbed preparation, in addition to a relevant temperature criterion. For example, dates for actual sowing in Sweden typically occurs as
	e.g. a 24-hour average temperature > 5°C (Enghang et al. 2016) for at least 4-5 continuous days during spring (e.g. Carter, 1998; Johansson, 1973; Johnsson, 1972). Historically, this period has not been set earlier than 15 days after a cold-period (a term not defined in the publication) or if a significant snow cover occurs (Johansson 1973). 
	A more elaborated definition for seasonal onset to Swedish agricultural conditions is “…starts the first day of a seven-day period with the daily average temperature above 3°C, yet earliest when the length 
	of day is 9 hours and above. Spring lasts at least 2 weeks” (Mattson et al. 2018; p. 21). Day length > 9 
	of day is 9 hours and above. Spring lasts at least 2 weeks” (Mattson et al. 2018; p. 21). Day length > 9 
	Figure 2 . Shift in monthly normal temperature and monthly normal precipitation between the previous (1961-1990) and the new (1991-2020) reference periods for statistical weather parameters. The Graphs show the calculated difference per month between the new (1991-2020) and the previous (1961-1990) normal period for weather stations provided by SMHI. The values are calculated by subtracting normal values from the period 1961-1990 from normal values from the period 1991-2020. Median and average lines are cal

	hours take place approximately from 2 to last week of February (SMHI 2020a). Average temperatures > 3 °C in Sweden has in the previous climatological reference period (1961-1990) started in March in southern Sweden, to May in the most Northern parts (SMHI n.d.). However, the new reference period for referring to deviations in weather occurrences is set to 1991-2020 by the Swedish Meteorological Institute. The previous period was 1961-1990 (SMHI 2020c) (Figure 2). Thus, the criteria on day length might incre
	nd

	Five degrees (5 °C) is an overall threshold temperature for crop growth for several crop species as well as for ground frost to disappear (Carter 1998) see e.g. (Geisler 1983; Gunnarson 2012; Johnsson 2016). Furthermore, 5 °C is often used as the base temperature when determining temperature sum during the cropping season (e.g. Himanen et al. 2013). Although this threshold varies depending on crop species, cultivar, and crop development stage due to different activation temperatures depending on which physi
	Five degrees (5 °C) is an overall threshold temperature for crop growth for several crop species as well as for ground frost to disappear (Carter 1998) see e.g. (Geisler 1983; Gunnarson 2012; Johnsson 2016). Furthermore, 5 °C is often used as the base temperature when determining temperature sum during the cropping season (e.g. Himanen et al. 2013). Although this threshold varies depending on crop species, cultivar, and crop development stage due to different activation temperatures depending on which physi
	et al. 2012b) or  +10°C for maize (Peltonen-Sainio et al. 2009). Similarly, a threshold of 8 °C based on moving average temperature and earliest 1 of April was used by Rtter et al., (2011) (Figure 3).  Additionally, Trnka et al. (2011) included criteria on minimum temperatures suitable for crop growth a/ETr > 0.4 (see additional information in section Dryspells and drought). 
	st
	to > 0 °C, no snow cover and evapotranspiration ratio Et


	Above thresholds indicate fixed temperatures for start of growing season. However, crops respond differently to temperature depending on their development stages and cultivar. Results by Salazar-Gutierrez et al. (2013) from three American locations and four different winter wheat cultivars show a range in base temperature and defined phenological development stages. Base temperatures ranged between 3.1°C to 8.1°C (planting to heading) and 10.6 °C to 18.4°C (heading to harvest), compared to 1.6°C to 8.4°C fo
	An Australian example of temperature response and base temperatures of wheat cultivar was presented by Slafer & Rawson (1995), which showed a relationship between phenological stage and base temperature, varying between -8.23 °C to 2.22 °C during growth to terminal spikelet initiation, 0.81°C to 1.83°C between terminal spikelet initiation to heading, and 7.28-8.96°C between heading to anthesis. TEXT BOX 1 
	When using cultivar specific base temperatures, the cultivar variation in required thermal time from planting to harvest is reflected, by indicating the various cultivars individual thermal requirements for reaching maturity. The use of the common base temperature 0°C on the other hand indicate less variation between cultivars. Similarly, Bourgeois et al. (2000) studied effects of yield predictability of different pea cultivars by setting up models of growing degree days initiated by different base temperat
	3

	The meteorological end of the growing season is defined as the last day of four continuous days when daily average temperature is < 5 °C (SMHI no.date b) and comparable by first occurrence after 1 July (1 Jan. in SH) of at least 6 consecutive days with < 5 ° per day (ETCCDI 2009; Zwiers & Zhang 2009). Comparably, autumn is defined as temperatures < 10°C during less than five consecutive days occurring after the 1 August (SMHI n.d:c). Other definitions are the first five consecutive days in autumn when avera
	st
	st
	st
	periods with T

	Winter is defined for temperatures < 0°C or for day length <9 h and decreasing earliest 2 weeks after start of autumn (Mattson et al. 2018). The period of non-frozen ground ends in autumn when daily 
	Figure
	Spring 
	Spring 
	Spring 
	Taverage >3 °C and day length ≥ 9 h, lasting ≥ 2 weeks (d) OR Increasing Taverage > 0°C and < 10 °C 

	TR
	for 7 continuous days (meteorological spring). (e 

	Start of growth 
	Start of growth 
	Daily Taverage ≥ 5°C for 24 hours (b) OR Daily Taverage ≥ 5°C for 6 continuous days (a) 

	season 
	season 
	OR Taverage > 5 °C for 4-5 continuous days during spring (c) 

	Physiologically 
	Physiologically 
	Taverage during sowing 8.5-9.5 °C (based on historical average sowing dates 1971-2000) (f) OR 

	effective growth 
	effective growth 
	Taverage ≥ 5 °C (temperate crops) (f, j, k) and ≥10°C (maize) (f) 

	season 
	season 
	OR Taverage  ≥ 8 °C and earliest 1st of April (g) 

	Autumn 
	Autumn 
	Taverage ≤ 10 °C over 5 continuous days after 1st of August (d) 

	End of growth 
	End of growth 
	Last day of 4 consecutive days with Taverage > 5 °C (h) OR Taverage < 5 °C for five continuous days 

	season 
	season 
	(i) 

	End of non frozen 
	End of non frozen 
	Taverage < 0 °C for 5 consecutive days or when snow cover develops (i) 

	ground 
	ground 

	Winter 
	Winter 
	Taverage < 0 °C AND day length < 9 h AND starts earliest 2 weeks after start of autumn (d). 


	Figure 3. Visualization of definitions of start- and end of crop season, spring- and autumn. (3a) Show meteorological definitions of spring and growth season based on thresholds of minimum temperatures and duration above specified thresholds. Additionally, Figure 3a shows thresholds of base temperatures (minimum temperatures for crop growth) for specific crops relevant for Nordic conditions. (3b). Figure 3b present maximum temperature and duration thresholds for definitions of autumn, winter and end of grow
	average temperatures reach < 0.0 °C for five consecutive days, or when a developed snow-cover occurs (Johnsson, 1973/1974). However, the period of vernalization for overwintering crops starts already at higher temperatures, e.g. 10°C for winter wheat (Fowler & Limin 2004; Fowler et al. 2014).  Although, the temperature range for vernalization initiation can vary over a larger interval (15.7 to -1.3°C) (Porter & Gawith 1999; Fowler 2008). Threshold temperatures for initializing vernalization varies between c
	Huglin index temperature sum index for vine which uses 10 °C as base temperature 
	Huglin index temperature sum index for vine which uses 10 °C as base temperature 
	3 
	=


	3.3. Extreme heat and heat waves 
	3.3. Extreme heat and heat waves 
	From a general perspective, definitions of heat waves and cold waves have been recommended to thresholds of max-, min- or mean temperatures under a period of at least three consecutive days based on an average climate period (Belusic et al., 2019). From a crop perspective, heat stress affect plants either direct- or indirect and the threshold temperatures for heat stress depends on plant development stage (e.g. Porter and Gawith, 1999; Wheeler et al., 2000). Heat that have negative effects on crops has in l
	Harmful temperatures for growth and development temperatures varies with crop species and development stage. Some examples of hazardous temperature limits are presented in Prasad et al (2017, Figure 1) who synthesized publications on optimum and damaging temperatures during reproductive stages. Harmful temperatures for crops relevant for Nordic conditions ranged between 30°C to 35 °C (cereals 30 °C (barley) to 35 °C (maize); oilseeds (mustard and rapeseed 35 °C); pulses (Faba bean 34°C to pea 35°C). Peas ha
	Optimal temperature for growth increase with the growth temperature that plants are adapted to. Yet, while assimilation efficiency by photosynthesis indicate relative stable performance for C3 over various growth temperatures, performance of assimilation efficiency for C4 plants increases with increasing growth temperature (Yamori et al. 2014). C3 crops has an advantage over C4 during low temperatures due to higher abundance of the enzyme Rubisco, as the enzyme reaches saturation of carbon dioxide faster at
	Optimal temperature for growth increase with the growth temperature that plants are adapted to. Yet, while assimilation efficiency by photosynthesis indicate relative stable performance for C3 over various growth temperatures, performance of assimilation efficiency for C4 plants increases with increasing growth temperature (Yamori et al. 2014). C3 crops has an advantage over C4 during low temperatures due to higher abundance of the enzyme Rubisco, as the enzyme reaches saturation of carbon dioxide faster at
	within the bundle-sheet cells. Yet this is mainly an advantage under higher temperature and lower atmospheric CO2 levels (Zhu et al. 2008; Sharwood et al. 2016) Only three definitions were found concerning heat waves, that additionally include a temporal criterion. Short heatwaves were classified as temperatures ≥ 25 °C lasting over a period of at least 5 days, while long heatwaves were considered if the period of temperature ≥ 25 °C was extended over more than 14 days (Peltonen-Sainio et al. 2016). 
	4


	Figure
	Agro-climatic extreme 
	Agro-climatic extreme 
	Tropical day Summer day Stressing day Short heatwave/Heatwave Long heatwave 

	High temperature stress 
	High temperature stress 
	Temperature threshold for leaf senesence 

	Maximum canopy temperatures 
	Maximum canopy temperatures 
	Any day with Tmax 7 days before or 14 days after heading > 35°C OR any day with Tmax between heading and 10 days before maturity > 35°C; any day with Tmax 7 days before or 14 days after heading > 31°C (a) 
	Any day with Tmax > 30°C (b) Any day Tmax > 25 °C (b) Number of days with Tmax ≥ 28°C 1 week before to 2 weeks after heading (c) Heat ≥ 25°C lasting 5 days (d) Heat lasting more than 14 days with less than 2 days with Tmax <25.1°C (d) 
	≥ 25°C one week before heading to up till two weeks after heading (c) 
	Temperature ≥ 28.93 °C (f) 
	≥ 27°C reduces number of fertile grains per unit of ear dry mass for heat sensitive wheat varieties (f) ≥ 30°C reduces potential grain weight for heat sensitive wheat varieties (f) 
	Figure 4. Magnitude and temporal scale for extreme high temperature events in Nordic countries related to crop production. The different definition8s are categorized as meteorological (red diamond, dotted line) or agrometeorological (full circles) based on if they consider specified impact related to crop growth and not solely weather parameters. Full references are displayed in Table 4 in Appendix. 
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	3.4. Frost, freezing and cold spells
	3.4. Frost, freezing and cold spells
	 Frost is meteorologically defined as air temperatures ≤ 0 °C at 1.25-2.0 meters height measured inside a weather shelter (Snyder and de Melo-Abreu, 2005; SMHI, 2020f). Freezing temperatures are harmful to plant tissues due to potential formation of extracellular ice, which due to lower ice vapor, ice pressure extract water from within cells, causing them to dehydrate. The severity of dehydration as well as critical temperatures  for freezing depends on crop species, variety and their individual cell proper
	th 

	(e.g. Porter & Gawith 1999; Waalen et al. 2014; Bergjord Olsen et al. 2018). Additional harmful effects due to cold periods can occur during spring when plant growth has been initiated and due to effects of presence/absence of an insulating snow cover. The snow cover reduces impact of cold temperature, but might lead to increased impact from biotic stresses (Vico et al. 2014). 
	3.5. Rainfall and precipitation 
	3.5. Rainfall and precipitation 
	High precipitation is mainly defined by meteorological measures and is defined differently in magnitude depending on duration (Figure 6). The extreme variable of both low- and high rainfall is usually reliant on the reference period of average normal precipitation used in meteorology (standard precipitation of a 30yrs period – see section 3.2 for Swedish normal periods). Despite aiming to use indices for interpretation of impact on agriculture. Thus, definitions of extreme precipitation do often not account
	Definitions of high- and/or extreme precipitation starts from frequent rains and wet spells, of which the former term is defined as a period of 7 days when rainfall exceeds 0.5 mm within 2 weeks and < 2 successive rainless days (< 0.5 mm). The accumulated precipitation for the 2 weeks should be higher than monthly mean precipitation (TT-DEWCE WMO, 2016). Similarly to above definition of frequent rain, wet spells are defined as >1mm precipitation per day over >5 consecutive days (TT-DEWCE WMO, 2016), i.e. a 
	Figure
	Threshold for overwintering Mild night frost interval Freeze day Frost day Threshold interval for mild night frost Highly fluctuating winter conditions 
	Threshold for frost Moderate night frost interval Cold wave Frost threshold Arctic day Late frost Frost risk Base temperature for winterkill 
	Sum of daily Tmean < 0 °C Tnight 4.9 °C to -2 °C Freeze day Tmax < 0.0 °C Frost day Tmin < 0.0 °C Tnight -2 to -5 °C Temperatures Tmax > 0°C followed by a period of ≥ 10 days with Tmean < 5 °C Tmean ≤ -5 °C Tnight -5 °C to -8,9 °C Cold wave: -13.4°C for at least 5 consequtive days Any day with Tmin < -15 °C OR any day with Tmin < -20°C Arctic day Tmin < -20 °C Tmin canopy < 0 °C ± 3 days around anthesis Tmin < -2 °C 
	-

	I) Tbase < -4 °C before two phyllochrones after formation of flag leaf primordium in winter wheat 
	II) Tbase < -6 °C after two phyllochrones after formation of flag leaf primordium in winter wheat 
	Figure 5. Magnitude and temporal scale for extreme low temperature events in Nordic countries related to crop production. Full references are displayed in Table 4 in Appendix 
	Figure
	Extreme precipitation per area Warning for large precipitation volumes: Downpour Extreme precipitation Very rare extreme event Unusually high single rainfall Extreme event similar to downpours Threshold of efficient rainfall for crop supply Rare extreme events Wet spell Frequent rains 
	> 90mm d 1000m(a) Class II: > 70 mm 24 h (b) Class I: > 35mm 12h(b) 
	-1
	-2 
	-1
	-1 

	≥ 50 mm h(b) OR ≥ 1 mm min(b) OR ≥ 15 mm 15 min(i) OR ≥ 15 mm 30 min(i) ≥ 15 mm d(h) OR ≥ 25 mm d(h) OR ≥ 50 mm d(c) OR ≥ 40 mm d(e) ≥ 40 mm d (d) ≥ 40 mm 48 h(c) ≥ 40 mm 6 h (b) 15 mm d(f) OR > 30 mm d(f) 
	-1 
	-1 
	-1 
	-1 
	-1 
	-1 
	-1 
	-1 
	-1
	-1 
	-1
	-1 
	-1 

	≥ 25 mm d(g) Five consecutive days with precipitation > 1mm d(j) Seven days with rainfall ≥ 0.5 mm per day within 2 weeks, ≤ 2 successive rainless days 
	-1 
	-1 

	<0.5 mm per day with accumulated precipitation ≥ monthly mean precipitation for the 
	two-week period (k) OR ≥ 10 rainy days within a three week period, ≤ 2 successive rainless days and accumulated precipitation for 3 week period ≥ 150% of the monthly mean precipitation. (k) 
	Figure 6. Magnitude and temporal scale for defining extreme precipitation events in Nordic countries related to crop production. The different definitions are categorized as meteorological (transparent diamond) or agrometeorological (blue circles,, dotted line) based on if they consider specified impact related to crop growth and not solely weather parameters Full references are displayed in Table 4 in Appendix 
	On the other end, extreme precipitation has been defined as 90 mm d per 1000 m (SMHI 2017) or volumes up to 70 mm dfor warnings of large precipitation volumes under Swedish conditions (Olsson et al. 2017). Excessive rainfall directly related to agriculture has been defined as > 60 days with water saturation at field capacity of the soil  (Mäkinen et al. 2018).. An example of extreme indices based on percentage of deviation from normal precipitation was used by Nkurunziza et al. (2015). They impartially link
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	3.6. Soil saturation and flooding 
	3.6. Soil saturation and flooding 
	Water is in a global perspecitve a main parameter that limits yields in rainfed systems. Yet excess water is an equal inhibitor of yields as water limitation (FAO 2020 p. 105). Crops requirer timely water supply of accurate magnitude in order to maintain e.g. metabolic processes, including photosynthesis, solute transport, transpiration and ensure nutrient uptake from the soil. Soil saturation or water ponding in the unsaturated zone is a time limited agrological hazard due to high waterflow, snowmelt or hi
	0.05-0.10 m
	3 
	-3

	The placement of the seed at sowing is less important in soils with good water holding capacity and high volume of plant available water (Håkansson et al. 2011). The optimal threshold of 10 % air-filled porosity in soils depends on water content, soil texture and degree of compactness (D). A threshold of 10 % air-filled porosity in a majority of soils occur under water content at a matric potential of 10 kPa and D < 87%, while higher D increase tension for root penetration and decrease soil-oxygen levels (H
	5

	Furthermore, sufficient water levels affect the workability and buoyancy of arable lands for land preparation before- and during the crop season. Too dry land reduces the possibility to achieve a good sowing bed. Excess soil water can affect soil structure negatively by crumbling or dispersion. This affects pore size and pore size distribution (e.g. Wesstr et al., 2016). Excess soil water furthermore reduce buoyancy of soils to machine operations, which affects seedbed preparation and optimal soil OPT) can 
	aeration and cause compaction (e.g. Obour et al., 2018). Optimal soil moisture for tillage (Θ
	determined to 0.7-0.9 Θ
	6
	Benius 2006) and 0.9 Θ

	lower soil organic carbon content and higher clay content (Dexter & Bird 2001; Obour et al. 2019a). Soils with higher clay content has a higher water content at wet- and dry tillage while the range of water content for when the soil is workable decreases (Obour et al., 2019b). The range of water content when the soil is workable (at soil matric tensions between -65 to -1800 hPa and -3600 to -4100 hPa) has been found to be positively related to volume of pores > 30 µm, i.e. air-filled pores (Obour et al., 20
	Dexter and Bird, (2001) has defined the lower dry limit of water content for tillage as:  
	“…the water content at which the strength of the soil is twice the strength at the optimum water content.” (p. 207, Dexter and Bird, 2001) 
	An example of applied limitations to harvest and sowing is used by Trnka et al.( 2011). To determine suitable days of harvesting and sowing, the authors used a threshold of soil water content in top 0.1 m soil layer of > 10 % and < 70 %. water content Yet, they combined this threshold with an average daily temperature > 5 °C and daily precipitation ≤ 1mm during the same day followed by ≤ 5mm precipitation the preceding day (Trnka et al. 2011). 
	In addition to effects on yield and workability, soil water levels are important for microbial activity, as the water content affects the share of air-filled pores. This determines the cycling of nutrients in the soil, indirectly affecting crop growth. A water content in the range of 0.3-0.6 m m will lead to the highest microbial activity resulting in increasing nitrification rates up to 0.6 m m (Wesstrm et al. 2016). 
	3
	-3 
	3
	-3 

	Heavy precipitation and flooding from an agrometeorological perspective is a cause of temporal interacting factors and can have several direct and indirect impacts related to agricultural production (Das et al., 2003, p. 83). In this review we limited focus to direct impact on crop yield. Flooding is defined as an event when an area that normally is above the level of watercourses, water bodies or sea level gets covered by water (European Parliament and the Council 2007). An evaluation of the efficiency of 
	Flooding is ,in contrast to soil saturation, a hazard from a landscape perspective with overflow of areas normally not situated under water (e.g. (UN n.d.). The flooding can occur due to high water levels from water bodies/water courses, due to high precipitation events, melting water or high groundwater level. Furthermore, the impact area can be defined as primary – the area directly flooded by the excess water, and secondary – and area which draining capacity gets limited by the flooded primary area. Thus
	“An elevated water level resulting in fully saturated soil conditions during 1-3 days before the soil can be drained to drainage equilibrium”(Enghang et al., 2016 p.4), or long-term, classified as “An elevated water level resulting in fully saturated soil conditions during 1-2 weeks before the soil can be drained to drainage equilibrium.” (Enghang et al., 2016, p.5). 
	An example from UK compared impact of flooded areas by comparing water columns over- and under the threshold of 0.3m (Harvey et al. 2019). In addition to duration, occurrence frequency of flood events and volume that exceeds draining capacity – the area covered by a flooding event is important. It is a direct measure of impact severity on the surrounding area. Flooding per se is as already stated as a hydrological rather than agricultural index. However, soil saturation can be a cause for extended flooding,
	Important, but not directly linked to agrometeorological indices are the Swedish guidelines for evaluating flood risks that are based on return frequency of extreme flows, e.g. 100- or 200yr occurrence (Myndigheten f samhällsskydd och beredskap, 2014). Areas under major risks of flooding (betydande ersvämningsrisk) is defined by societal factors linked to urban areas/infrastructure, health, economy and environment, and account for historical flood occurrence. Environmental risks includes protected nature ar
	-

	Degree of compactness is defined as “…the dry bulk density of a soil layer in percent of a reference dry bulk density of the same soil obtained by a standardized, long‐term uniaxial compression test at a stress of 200kPa ... similar to that of soil tillage” (p. 72). The maximum value of D is 100 for the specified pressure of 200kPa induced to the soil (Håkansson & Lipiec 2000). The plastic limit is the lower soil water content when a soil is plastic, i.e., workable without resulting in cracking of the soil 
	Degree of compactness is defined as “…the dry bulk density of a soil layer in percent of a reference dry bulk density of the same soil obtained by a standardized, long‐term uniaxial compression test at a stress of 200kPa ... similar to that of soil tillage” (p. 72). The maximum value of D is 100 for the specified pressure of 200kPa induced to the soil (Håkansson & Lipiec 2000). The plastic limit is the lower soil water content when a soil is plastic, i.e., workable without resulting in cracking of the soil 
	Degree of compactness is defined as “…the dry bulk density of a soil layer in percent of a reference dry bulk density of the same soil obtained by a standardized, long‐term uniaxial compression test at a stress of 200kPa ... similar to that of soil tillage” (p. 72). The maximum value of D is 100 for the specified pressure of 200kPa induced to the soil (Håkansson & Lipiec 2000). The plastic limit is the lower soil water content when a soil is plastic, i.e., workable without resulting in cracking of the soil 
	5 
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	3.7. Dryspells and drought 
	3.7. Dryspells and drought 
	Meteorological dry periods have been defined as precipitation < 0.1mm (Breinl et al. 2020) and  < 0 mm d (Zolina et al. 2013) or as a period with less precipitation than normal (related to a reference period) (Salomon et al. 2019). The threshold for a dry period is often < 1 mm d(Bärring et al. 2006; TT-DEWCE WMO 2016) or < 0.1 mm d (Bärring et al. 2006; SMHI 2018; Stensen et al. 2019; Breinl et al. 2020). The latter is classed as the limit for measurable precipitation. As comparison, longer duration that c
	-1
	-1 
	-1

	Food and Agriculture Organization’s terminology specify agricultural dryspells as “Short period(s) of water stress during critical crop growth stages and which can occur with high frequency but with minor impacts compared with droughts”. 
	 (FAO 2010) 
	 (FAO 2010) 
	Agricultural dryspells affect crop production on one hand by lack of precipitation, and on the other hand through water available for plant uptake. Thus water partitioning of same volume of seasonal precipitation can enable higher- or lower yield based on site specific climatic conditions, soil- and water management as well as when dryspells occurs within the crop season (Rockstrm & Falkenmark 2000). The impact of dryspells on crop yield depends on crop species, the occurrence and magnitude of water deficit

	Figure
	Dry summers Dry period Drought 
	Area specific threshold Dryspell Dry period 
	Threshold for measurable precipitation 
	Between May-June P < 40 mm (a) Period of continuous absence of measurable precipitation, i.e. < 0.1mm (b) Total precipitation <10mm and no more than 4 days rainfall during a 14-days period (c) 
	0.48 mm d(d) At least 5 consecutive days with Pday < 1 mm (e) Period of continuous absence of measurable precipitation, i.e. < 0.1mm (f) OR ≤ 20mm over 30 days (g) Long and continuous period missing measurable precipitation, < 0.1mm (g) 
	-1 

	Figure 7. Magnitude and temporal scale for defining drought events in Nordic countries related to crop production. The different definitions are categorized as meteorological (transparent diamond) or agrometeorological (red circles,, dotted line) based on if they consider specified impact related to crop growth and not solely weather parameters Full references are displayed in Table 4 in Appendix 
	In relation to meteorological dryspell, additional site specific soil moisture and/or crop water demand and crop water use needs to be monitored or estimated to determine agricultural impact. Additionally, there is a possibility of precipitation during an agricultural dryspell, as the precipitation might not be sufficient to sufficiently fill soil water supply. Between these parameters there is a feedback response which is reflected in crop yield (reduction) due to stress factor/severity of the dryspells. T
	Drought is defined differently with shorter or longer periods without water, depending on the weather patterns in different climate zones and if the 
	1.2

	1 
	considered area is naturally humid or dry (WMO 
	Increasing drought conditions
	2010a). An important aspect of droughts is a 
	0.8 
	ET/ET
	a
	P 

	requirement of a shorter or longer period of dry 
	conditions (WMO 2010). Additionally, droughts can vary temporarily and over different area. Agricultural drought per definition is emanating from precipitation deficit, interlinked with 
	0.6 
	0.4 
	0.2
	meteorological circumstances but characterized by soil moisture deficit and not by the lack of precipitation (Das et al. 2003; 2010; IPCC 2021a). Thus, agricultural drought is linked to soil properties, -physical conditions and -biological factors (Wilhite & Glantz 1985; Destouni & Verrot 2014). 
	One way of defining agricultural drought is the ET) a and ETP. Drought ET < 1.0 with varying stages of water deficit, in between, to severe 
	threshold of relative evapotranspiration (R
	defined as the ratio between ET
	has been defined as starting from R

	0 
	Drougt ETa/ETr <1 Start of dry period Intensive dry days/Water deficit possible to result in drought 
	Extreme dry days Very extreme dry days Severe drought 
	Figure 8. Thresholds for agrometeorological dry conditions 
	ET < 0.15 (e.g. Johnsson 1972; 
	drought when R

	defined by the ratio of actual evapotranspiration (ETa) and 
	Mogensen et al. 1996, 1997; Trnka et al. 2011; Rter potential evapotranspiration (ETP). et al. 2013; Lalic et al. 2014; Mäkinen et al. 2018) (Figure 8). Meteorological drought is defined differently with shorter or longer periods without water, depending on the weather patterns in different climate zones and if the considered area is naturally humid or dry (WMO 2010). 
	Two common measures for drought analyses are the indices SPI (Standardized Precipitation Index) and SPEI (Standardized Precipitation Evapotranspiration Index). The Standardized Precipitation Index (SPI) characterize drought and extreme precipitation in relation to the median value of long-term precipitation data (preferably 30 year). The observed data is fitted to a probability function that is converted to a normal distribution. The index is valued on a scale where negative SPI-values < -1.0 
	indicate the start of a drought. A change to positive SPI values indicate finalized drought. A SPI value ≥ 1.0 indicate conditions wetter than normal. Extremely wet and extremely dry events are considered when SPI is > 2.0 or < -2.0 respectively. (TT-DEWCE & WMO, 2016.). SPI can be estimated for different temporal scales due to different response time of drought or wet event impact on different hydrological storages. Soil moisture is e.g. affected on short temporal scale, while river discharge, aquifers and
	An interesting example of definition due to standard-deviations, was done by Li et al., (2019). They estimated impact of extreme drought and -precipitation on maize yield in USA. They defined a standardized anomaly (γ) as:  
	[1]  t – γ)/σ Li et al., (2019) 
	γ = (γ

	t is the departure of climate for year t,γ is annual mean state over a reference period and σ is the standard deviation. Extreme drought was defined as anomalies of precipitation < -2 σ and >+3.5 σ; moderate drought and moderate excessive rainfall by anomalies >-2 σ and <+2.5 σ; extreme heat and cold as anomalies >+2.5σ and <-2σ respectively. Yet, the authors note that these definitions were still based on meteorological events and that synergetic effect from e.g. soil parameters, pests, nutrient cycling, 
	The term γ

	4. Discussion 
	Several definitions of extreme weather are used for Swedish agricultural purposes, both quantitative and qualitative (this study; Wiréhn 2021). To justify a full comparison between different thresholds for one defined extreme weather within crop- and climate modelling, the numbers must be interpreted based on the algorithm for which the number is inserted. 
	However , our study focusing on the temperate –boreal regions of NE Europe , note that often standards and thresholds use climatic indices, rather than relating to crop growth and –development  For agro meteorological indices this study could not identify consistent standard based on precipitation and temperature .  A specific gap was identified related to soil moisture and evapotranspiration associated with critical temperatures, high precipitation, and water ponding. Few definitions include duration of te
	(e.g. Peltonen-Sainio and Jauhiainen, 2014) . Increasing temperatures can possibly speed up growth and development of agricultural crops, shortening the overall period between sowing and harvest (Olesen et al. 2012a; Peltonen-Sainio & Jauhiainen 2014). However, the theoretical sowing date is not a guarantee for earlier sowing in practice, as suitability for sowing is also dependent on the practical possibility for sowing operations related to soil moisture and –structure (e.g. van Oort et al., 2012; Section
	Extreme precipitation linked to agriculture has mainly been defined by meteorological definitions, with emphasis on dryspells and droughts, and thereby missing the impact on soil saturation. Further these indices are lacking consistency. Extreme precipitation, especially as hail, can have direct negative impact by causing mechanical damage on crops. This factor was not found in the reviewed literature. However it is relevant especially in plant breeding for increased resistant towards mechanical impacts. In
	There is a need for more harmonized agrometeorological definitions linked to heavy precipitation to 
	account for soil saturation and flooding of arable land that links to preceding soil moisture levels and 
	account for soil saturation and flooding of arable land that links to preceding soil moisture levels and 
	soil properties. Including soil moisture and especially soil saturation alongside extreme weather definitions is however more complex than the meteorological definition of heavy precipitation. This is due to that water ponding also depend on evapotranspiration, inherent soil conditions incl.  Infiltration and drainage capacity. These parameters are consecutively dependent on temperature, soil, and crop properties. 

	This review shows that a synthesis is missing with basis in essential climate thresholds for crop production. We found that especially intra-annual thresholds for magnitude and duration, depending on crop development stage for both high- and low temperatures and droughts/dryspells linked to development stage and soil moisture levels. The usefulness of extremes indices varies with context, which is also reflected in the lack of standardize indices for agro meteorological aspects. However, to compare results 
	Focusing on the agrometeorological perspective it is also essential to identify its hierarchical dependence on preceding meteorological or hydrological events. Severe effects in e.g., crop production does not necessarily require a meteorological or hydrological extreme to occur. Defining thresholds with negative implications for specific crops, depends on magnitude, distribution (frequency of occurrence) and absolute threshold. Meteorological events (both single and compounded) leading to events that surpas
	The reviewed literature did not include any agrometeorological threshold of extreme flooding that includes the area extent of the event linked to agricultural impact. The Swedish Civil Contingencies Agency (MSB) uses a continuous grading of the possible larger societal/economic impact due to larger flooding area. This can be adapted to agriculture as well, with a more extreme event with higher negative yield impact or even soil damage. However, a defined threshold level of “acceptable” crop damage (e.g. Eds
	5. Conclusions 
	 Farmers and the agricultural sector will need better high temporal and spatial resolution understanding on weather conditions and risks for extreme weather as climate change advance. Extreme events related to weather and climate do not have standardized definitions, but is dependent on the sector, region and the context where the definition should be used. This review, focused on the temperate boreal regions of the Scandinavian Peninsula, show high degree of inconsistency for assessing agro-climatic indice
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