
Abstract  Land ecosystems contribute to climate change mitigation by taking up approximately 30% of 
anthropogenically emitted carbon. However, estimates of the amount and distribution of carbon uptake across 
the world's ecosystems or biomes display great uncertainty. The latter hinders a full understanding of the 
mechanisms and drivers of land carbon uptake, and predictions of the future fate of the land carbon sink. The 
latter is needed as evidence to inform climate mitigation strategies such as afforestation schemes. To advance 
land carbon cycle modeling, we have developed a matrix approach. Land carbon cycle models use carbon 
balance equations to represent carbon exchanges among pools. Our approach organizes this set of equations 
into a single matrix equation without altering any processes of the original model. The matrix equation enables 
the development of a theoretical framework for understanding the general, transient behavior of the land 
carbon cycle. While carbon input and residence time are used to quantify carbon storage capacity at steady 
state, a third quantity, carbon storage potential, integrates fluxes with time to define dynamic disequilibrium 
of the carbon cycle under global change. The matrix approach can help address critical contemporary issues in 
modeling, including pinpointing sources of model uncertainty and accelerating spin-up of land carbon cycle 
models by tens of times. The accelerated spin-up liberates models from the computational burden that hinders 
comprehensive parameter sensitivity analysis and assimilation of observational data to improve model accuracy. 
Such computational efficiency offered by the matrix approach enables substantial improvement of model 
predictions using ever-increasing data availability. Overall, the matrix approach offers a step change forward for 
understanding and modeling the land carbon cycle.

Plain Language Summary  Earth system models (ESMs) are the tools we have to predict future 
states of climate and ecosystems. However, land carbon cycle models, a critical component of ESMs, are 
highly diverse in both structures and predictions, hindering our ability to obtain consistent future projections. 
The latter is needed as part of the evidence base to inform climate change mitigation strategies. This paper 
describes a matrix approach that unifies land carbon cycle models in one matrix form. The matrix models 
offer consistency and simplicity in structure that make the models analytically tractable. In addition, the matrix 
approach provides a theoretical framework for understanding the general behavior of the land carbon cycle. 
More importantly, the matrix approach solves some key contemporary issues in land carbon cycle modeling, 
such as pinning down sources of model uncertainty and accelerating spin-up. The accelerated spin-up speeds 
up land carbon cycle simulations by tens of times, making it feasible to perform parameter sensitivity analysis 
and data assimilation to constrain models with big data. Overall, the matrix approach represents a step change 
forward for understanding and modeling the land carbon cycle.
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•	 �It helps address contemporary issues 
in land carbon cycle modeling, 
including pinning down model 
uncertainty and accelerating spin-up
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1.  Introduction
Modeling research in earth system science has blossomed in the past decades as models have become an essen-
tial tool to predict future states of the carbon cycle and climate. Hundreds of models have been developed to 
simulate the land carbon cycle from local to global scale (Manzoni & Porporato, 2009; Sierra, Ceballos-Núñez, 
et al., 2018). Individual models, such as the Community Land Model (CLM), also became increasingly sophis-
ticated over time as additional processes and internal system feedbacks are incorporated (Lawrence et al., 2019). 
However, despite growing mechanistic details, model predictive skills have not improved much (Prentice 
et al., 2015). On the contrary, both model structures and predictions have become less tractable with increasing 
model complexity. Model intercomparison projects (MIPs) strive to unpack differences among models, the sensi-
tivity of their predictions to drivers, and the processes responsible for such differences in model sensitivity and 
predictions. Results from nearly all MIPs suggest wide inter-model spread in responses of the terrestrial carbon 
cycle to climate change (Huntzinger et al., 2017). This large spread has motivated modelers to add more and more 
process details to address putative mechanistic “gaps” in the models. Paradoxically, the result has been even more 
divergent model structures, increased complexity, high computational costs, and low tractability (Huntzinger 
et al., 2017; Lawrence et al., 2018). Overall, modeling the land carbon cycle using current bottom-up modeling 
architectures faces several roadblocks, including (a) diverse and complex model structures that cannot be easily 
comprehended nor evaluated; (b) salient model uncertainty with its sources being difficult to identify, which 
impedes targeted model improvement; and (c) high computational cost that limits the use of rapidly accumulating 
big data to constrain model prediction. To overcome these roadblocks, it is imperative to develop new approaches 
to land carbon cycle modeling.

Over the past decades, we have developed a matrix approach in an effort to address the issues identified above 
via a complementary approach to bottom-up process modeling. The matrix approach helps gain simplicity in 
structure, clarity in diagnostics, and computational efficiency in spin-up. The latter is a common method to obtain 
steady states of carbon pools as the estimates of initial carbon pool sizes and is typically the most computationally 
intensive step in land carbon modeling. Reducing the computational load of spin-up opens the door for compre-
hensive evaluation and data assimilation to improve the predictive skill of the models. The matrix approach also 
offers a basis for theoretical analysis of general behavior of land carbon cycle under global change.

Matrix algebra was first used to study steady states and response times of the ocean's geochemical system, includ-
ing calcium carbonate formation and turnover (Southam & Hay, 1976). Lasaga (1980) used the matrix equations to 
represent geochemical cycles and explore the stability of carbon and oxygen cycles. Sundquist (1985) performed 
eigenvalue analysis of matrix equations to examine the interrelationships among carbon cycle processes over a 
wide range of time scales. We first started organizing a land carbon cycle model in a matrix form to gain analytic 
spin-up before the model was used to examine the time courses of various processes in response to the elevated 
CO2 treatment in an ecosystem experiment (Luo et  al.,  2001). From this exercise, we found that the matrix 
representation is simple to understand, convenient for mathematical analysis, and computationally efficient for 
data assimilation (Luo et al., 2003; White et al., 2005; Xu et al., 2006). Other carbon cycle models, such as InTEC, 
SiB-CASA, and SiB4, were also analytically spun up to steady states using matrix algebra (Chen et al., 2003; 
Haynes, Baker, Denning, Stockli, et al., 2019; Haynes, Baker, Denning, Wolf, et al., 2019; Schaefer et al., 2008).

More recently, we further developed the matrix representation as a generalizable approach to land carbon cycle 
modeling. Xia et al. (2012, 2013) converted the Australian Community Atmosphere Biosphere Land Exchange 
(CABLE) model to one matrix equation, which was used to develop the semi-analytic spin-up (SASU) and 
traceability analysis. Huang, Lu, et al. (2018) recoded a vertically resolved soil carbon module, which is a part 
of CLM4.5, in the matrix form for attribution analysis. Huang, Zhu, et  al.  (2018) converted a version of the 
Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) model to the matrix form to facili-
tate a variance-based sensitivity analysis. Lu et al. (2020) fully implemented a matrix approach to represent the 
interconnected carbon and nitrogen cycle system of CLM5. Meanwhile, the matrix equation has been used for 
theoretical studies, for example, categorizing decomposition models (Sierra & Müller, 2015), and diagnosing the 
predictability and dynamic disequilibrium of the land carbon cycle (Luo et al., 2015, 2017).

This paper reviews our efforts in development and applications of the matrix approach. Specifically, we show 
how the matrix approach unifies land carbon cycle models and improves understanding of the general, tran-
sient behavior of the land carbon cycle. We illustrate how the matrix approach is effective in addressing some 
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contemporary issues in land carbon cycle modeling, such as pinning down sources of model uncertainty, acceler-
ating spin-up, and constraining models with big data via data assimilation. While microbial models with nonlin-
ear carbon transfers can also be represented in the matrix form (Sierra & Müller, 2015), this paper is focused on 
model schemes based on first-order kinetics, which is the most common approach in current land carbon cycle 
models. There are three reasons for this. First, first-order kinetics of carbon transfer have been supported in term 
of macroscopic patterns by almost all data sets we have synthesized from litter decomposition and soil incubation 
experiments (Cai et al., 2018; Luo, 2022; Schädel et al., 2014; Xu et al., 2016; Zhang et al., 2008), notwithstand-
ing strong research community interest in the possibility of nonlinear kinetics emerging as a result of microbial 
community dynamics. Second, most Earth system models (ESMs) still use the classic first-order kinetics and 
that modeling community is a target audience for this paper. Third, it has been shown that any nonlinear model 
for which a solution is known can be expressed with an equivalent linear model that has the exact same solution 
(Metzler et al., 2018).

2.  Unifying Land Carbon Cycle Models
Hundreds of models have been developed to simulate and predict carbon dynamics (Manzoni & Porporato, 2009). 
Individual models differ somewhat in their representations of carbon cycle processes, but all share fundamental 
features (Sierra & Müller, 2015). For example, all models consider carbon input through photosynthesis, parti-
tioning of photosynthetic carbon among plant pools, and carbon transfer from plant to litter and soil carbon pools. 
Carbon cycling through the network of pools is determined by mass balance and strongly influenced by external 
forcing variables like temperature, moisture, and soil texture (Luo et al., 2003; Sierra & Müller, 2015). Thus, 
the land carbon cycle can be mathematically generalized as a nonautonomous, multi-compartmental system 
(Rasmussen et al., 2016; Sierra, Ceballos-Núñez, et al., 2018; Yang et al., 2011). Mathematically, a nonauto-
nomous system is a dynamic system with parameters and inputs that vary with time. In contrast, an autono-
mous system is a system of ordinary differential equations with constant parameter values and inputs (i.e., a 
time-invariant system).

The system of the land carbon cycle can be represented by a set of ordinary differential equations in a matrix 
form. Equation B1 (Box 1) unifies land carbon cycle models by accommodating any number of pools (i.e., the 
number of elements in X(t) in Equation B1) and folding the carbon cycle processes that operate on those pools 
into five components of Equation B1: carbon input μ(t), plant carbon allocation B, carbon transfers A, environ-
mental modifier ξ(t), and turnover rates K (Table 1). Note that vertically resolved soil carbon models have a 
sixth component, vertical transfer. For example, CLM5 with a vertically resolved soil carbon module includes 18 
plant pools for each of the 17 vegetation types and 140 soil pools (i.e., 7 pools per layer over 20 layers) in X(t) 
(Lawrence et al., 2019). Thus, CLM5 assigns 158 elements (i.e., 18 for plant + 140 for soil) to X(t) for one grid 
cell if it is occupied by one vegetation type and 194 elements (i.e., 3 × 18 + 140) if the grid is occupied by three 
vegetation types (Lu et al., 2020). In contrast, the CABLE model has nine pools, therefore X(t) has nine elements 
(Wang et al., 2010).

Each of the five (or six) components of Equation B1 can be described either by fixed values, functions, or nested 
models. For example, carbon input μ(t) can be simulated by a “bottom-up” approach via scaling up leaf-level 
biochemical processes in a nested model (Collatz et al., 1992; Farquhar et al., 1980; Rogers et al., 2017). Alter-
natively, μ(t) can be simulated by a “top-down” approach based on the linear relationship between photosyn-
thesis and canopy absorbed radiation (light-use efficiency; Running et al., 2004), as in the CASA model (Potter 
et al., 1993). Plant carbon allocation B has been represented with diverse schemes, including fixed coefficients, 
functional relationships, resource limitation and optimization, for different models (Ceballos-Núñez et al., 2020; 
De Kauwe et al., 2014; Xia et al., 2017). The carbon transfer elements of matrix A are usually fixed as constants 
or vary with plant traits or soil texture as in the CENTURY model (Xia et al., 2013). The diagonal matrix K 
represents rate processes of mortality and litterfall for plant pools, or organic matter decomposition for litter and 
soil pools; these rate processes are often parameterized as constants (Huang, Lu, et al., 2018; Xia et al., 2012). 
Environmental modifiers ξ vary greatly among models with different shapes of response functions that character-
ize the effect of changes in the environment on rate processes (Lei et al., 2018; Sierra et al., 2015).

These different levels of complexity lead to a hierarchy of models under one overarching theory (Sierra, 
Ceballos-Núñez, et al., 2018) (Figure 1). For example, the elements of the matrix K are usually constant in ESMs 
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with static plant functional types (PFTs; Oleson et al., 2010), but are variable if a model has dynamic vegetation 
(Moorcroft et al., 2001; Sitch et al., 2003; Smith et al., 2001). To simulate dynamic vegetation, demographic 
models such as ED2, LPJ-GUESS, or FATES simulate plant physiology, competition, ecosystem assembly, and 
vegetation distribution (Fisher et al., 2015; Koven et al., 2020). Those processes ultimately influence the carbon 
cycle by changing values of elements in the matrix K as well as allocation coefficients in vector B, carbon influx 
μ(t), and, potentially, transfer coefficients A. Recent modeling efforts linking plant traits to tree demography, or 
microbial traits to carbon processes, make K a function of traits (Thomas et al., 2019). When the decomposition 
rates of soil organic matter are represented by Michaelis-Menten equations, as formulated in some microbial 
models, it generates a nonlinearity (Sierra & Müller, 2015; Wieder et al., 2015). Along this hierarchy of model 
complexity, turnover rates in matrix K change from constants to progressively complex functions of more and 
more processes (Figure 1).

Matrix models can be developed by reorganizing carbon balance equations in existing models, through recon-
struction from model outputs, or from a flow diagram of element cycling. The CLM5 matrix model was devel-
oped by reorganizing hundreds of carbon and nitrogen equations from six modules into four matrix equations 
representing carbon and nitrogen cycles of vegetation and soil. This matrix version of CLM5 operates as a replica 
in parallel with the original version online or offline within the Community Earth System Model (CESM; Lu 
et al., 2020). Matrix models were reconstructed from numerical outputs of carbon stocks and fluxes among pools 
for LPJ-GUESS, ORCHIDEE, and ELM-ECA (Ahlström et al., 2015; Metzler et al., 2020; Wu et al., 2020). In 
addition, a new matrix model was developed directly from a phosphorus flow diagram (Hou et al., 2019). The 
time needed for developing a matrix representation varies greatly, depending on the complexity of the orig-
inal model. For example, a team of three (E. Hou, X. Lu, and Y. Luo) worked together for less than 1 day to 

Box 1. Matrix Representation of Land Carbon Cycle Models
The land carbon cycle is usually described by a set of differential equations, which can be re-organized 
in a matrix form (Luo & Weng, 2011; Luo et al., 2003, 2015, 2016) as:

𝑑𝑑𝑑𝑑(𝑡𝑡)∕𝑑𝑑𝑑𝑑 = 𝐵𝐵𝐵𝐵(𝑡𝑡) + 𝐴𝐴𝐴𝐴(𝑡𝑡)𝐾𝐾𝐾𝐾(𝑡𝑡)� (B1)

where X(t) is a vector of pool sizes, B is a vector of partitioning coefficients from carbon input to plant 
pools, μ(t) is carbon input (e.g., Net Primary Production, NPP), A is a matrix with −1 in the diagonal and 
transfer coefficients in the off-diagonal, K is a diagonal matrix of process rates (mortality for plant pools 
and decomposition for litter and soil pools), and ξ(t) is a diagonal matrix of environmental modifiers 
to represent responses of carbon cycle processes to changes in temperature, moisture, or other factors. 
Parameters B, K, and A are constants in some models but may vary with time. With time-varying μ(t), 
ξ(t), B, A, and K, Equation B1 represents a multi-compartmental, nonautonomous, dynamical system.

When B, A, K and u(t) are functions of state variable X, Equation B1 can become

𝑑𝑑𝑑𝑑(𝑡𝑡)∕𝑑𝑑𝑑𝑑 = 𝐵𝐵(𝑋𝑋𝑋 𝑋𝑋)𝜇𝜇(𝑋𝑋𝑋 𝑋𝑋) + 𝐴𝐴(𝑋𝑋𝑋 𝑋𝑋)𝜉𝜉(𝑡𝑡)𝐾𝐾(𝑋𝑋𝑋 𝑋𝑋)𝑋𝑋(𝑡𝑡)� (B2)

Equation B2 represents nonlinear kinetics and usually leads to complex patterns of carbon cycle dynam-
ics (Wang et al., 2014, 2016) that are different from those defined by Equation B1.

It is conceptually possible that B, A, and K are functions of state variable X, but not much empiri-
cal evidence has been revealed to support this notion (Cai et al., 2018; K. Zhu et al., 2018; Schädel 
et al., 2013; Yang et al., 2011; Zhang et al., 2008). On the other hand, carbon input μ(t) is a function 
of foliage biomass during fast canopy expansion (Cui et al., 2019). This nonlinear kinetics is nullified 
once the canopy is developed. Nonlinearity in land carbon cycling induced by other mechanisms, such 
as seasonal fluctuation, acclimatory changes in photosynthetic capacity, and nonlinear responses to 
temperature and moisture, can be accounted for by Equation B1 via environmental modifiers ξ(t) and 
parameter changes (Luo & Schuur, 2020). For simplicity, most analysis in this paper is based on Equa-
tion B1. Analysis of nonlinear carbon cycle models such as Equation B2 can be found in, for example, 
Metzler et al. (2018) and Sierra, Ceballos-Núñez, et al. (2018).
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develop a running phosphorus matrix model from a flow diagram. In comparison, the development of the matrix 
model for CLM5-CN by Lu et al. (2020) took more than 1 year of careful work to guarantee its compatibility 
with the overall framework of CESM2. To date, dozens of existing models have been converted into the matrix 
form, including CLM3.5, CLM4, CLM4.5, CLM5, ORCHIDEE, CABLE, LPJ-GUESS, and nonlinear micro-
bial models (Ahlström et al., 2015; Huang, Lu, et al., 2018; Huang, Zhu, et al., 2018; Lu et al., 2020; Sierra & 
Müller, 2015; Wu et al., 2020; Xia et al., 2012). Four coupled carbon-nitrogen cycle models, CABLE, CLM5, 
TECO, and GECO, were converted into the matrix form (Lu et al., 2020; Shi et al., 2016; Wang et al., 2022; Xia 
et al., 2012). A fully coupled carbon-nitrogen-phosphorus model, TECO-CNP, was developed in the matrix form 
to study effects of nutrient limitations on subtropical forests (Du et al., 2021). The only dynamic vegetation model 
yet to be converted to the matrix form is LPJ-GUESS, in which vegetation pools and fluxes were lumped together 
to estimate vegetation turnover (Ahlström et al., 2015). While this was sufficient for the purposes of the target 
study, it is feasible to represent PFTs and demographic dynamics comprehensively within the structure of the 
matrix equation. Indeed, demographic models are often expressed in a matrix form (Caswell, 2001; Tuljapurkar 
& Caswell, 1997).

Number 
of pools A, carbon transfer

ξ(t), environmental 
effects K, process rates

B, carbon 
allocation μ(t), carbon input

Model CLM5.0 ≥158 Fixed coefficients with 
vertical transfer of both 
litter and soil carbon via 
e-folding over 20 layers

Q10 for temperature, 
log-linear for 
water, exponential 
decrease for 
depth.

Plant mortality and fire 
release by nested 
models, fixed 
values for litter 
and soil carbon 
decomposition

Fixed coefficients 
for nonwoody 
PFT

Biochemical 
photosynthesis 
model with 
scaling by 
multi-layer 
canopy

Dynamic 
functions for 
woody PFT

CABLE 14 Fixed coefficients without 
loops of carbon from 
slow and passive pools 
to active soil pool 
without layers

Q10 for temperature 
and Power 
function for water 
scalar

Fixed values for litter 
and soil carbon 
decomposition. Leaf 
litterfall is a function 
of phenology

Optional fixed 
or dynamic 
by resource 
limitation

Biochemical 
photosynthesis 
model with 
scaling by 
two-leaf canopy

LPJ-GUESS 9 Fixed coefficients Q10 for temperature 
scalar and linear 
function for water 
scalar

Plant mortality and fire 
release by nested 
models, fixed 
values for litter 
and soil carbon 
decomposition

Dynamic by 
allometric 
constraints

Light use efficiency 
model with 
different 
vegetation types

MIMICS 7 Fixed coefficients. No 
vegetation pool

Q10 for temperature 
on decomposition 
rate

Soil carbon 
decomposition 
regulated by 
microbial enzymes

N/A Litter input

Process Trait-based 
modeling

Influenced by 
lignin:nitrogen ratio in 
leaf, leaf lignin fraction, 
wood lignin fraction, 
and microbial traits

Mortality influenced by 
hydraulic and other 
traits; decomposition 
by lignin fraction 
and microbial traits

Availability of 
light, nitrogen, 
water in root 
and wood

GPP; PFT-based 
carbon use 
efficiency

Vegetation 
dynamics

Influenced by vegetation 
via litter quality

Varying scalars 
for different 
vegetation

Varying mortality and 
litter decomposition 
with vegetation

Varying with 
vegetation

Altering capacity of 
photosynthesis

Soil microbial 
processes

Influenced by microbial 
taxa, functional 
attributes, and 
processes

Influenced of microbial 
taxa, functional 
attributes, and 
processes on 
decomposition

Microbial 
influence on 
plant carbon 
allocation

Nitrogen Influenced via altering 
litter quality

Altering rates of 
decomposition

Altering root to 
shoot ratio

Altering capacity of 
photosynthesis

Table 1 
Examples of Models or Processes With Different Representations of the Five Terms in the Matrix Equation
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Once developed, matrix models allow for new processes to be incorporated, as any process that influences carbon 
cycle must be related to one or more of the five (or six) components of the matrix equation (Table 1). For exam-
ple, vegetation dynamics, which usually result from competition among plants with different strategies, influence 
carbon input rate μ(t), plant allocation B, mortality and litter decomposition rates K, and carbon transfer A due to 
litter quality changes for different vegetation types (Fisher et al., 2015; Koven et al., 2020; Moorcroft et al., 2001; 
Smith et al., 2001). Nitrogen and phosphorus cycle processes primarily modify the rates of photosynthesis μ(t), 
allocation B, transfer A, and mortality and decomposition rates K (Q. Zhu et al., 2019; Wang et al., 2010), but 
do not directly affect the environmental modifier ξ(t). Trait-based modeling has the potential to link plant and 
microbial traits to photosynthesis, allocation, mortality, decomposition, transfer, rooting depth, and plant and 
microbial responses to environmental variables (Fry et al., 2019; Thomas et al., 2019). Thus, it may influence 
all five components (six if vertical mixing is resolved) of the matrix equation. The newly incorporated processes 
can be evaluated for their impacts on modeled carbon cycle dynamics using a traceability analysis as discussed 
in Section 4.1 (e.g., Liao et al., in prep.).

3.  Understanding General Behavior of Land Carbon Cycle Under Global Change
Despite extensive research using modeling, experimental, and observational approaches, key gaps in our theo-
retical understanding of the land carbon cycle have remained for the past six decades since Olson (1963) char-
acterized steady-state dynamics at which the carbon storage capacity equals the product of carbon input and 
residence time. However, it is unlikely that the global carbon cycle has ever been at steady state. In contrast, a 
constantly changing environment keeps the carbon cycle in a dynamic disequilibrium. Since pre-industrial times, 
the most important factor behind this disequilibrium is that human activities result in substantial release of CO2 
into the atmosphere from land cultivation and fossil fuel burning (Luo & Weng, 2011). As a nonautonomous, 
multi-compartmental system (Rasmussen et al., 2016; Sierra, Ceballos-Núñez, et al., 2018), how land ecosystem 
carbon balance varies under dynamic disequilibrium has not been theoretically well explored.

Figure 1.  Hierarchical representation of land carbon models with different levels of complexity. The extremely general 
representation of the carbon cycle that is physically possible using mass balance constraints (Sierra & Müller, 2015) (Level 
1). The inputs to the system are captured by the vector S(X, t) that adds external C to all pools as a function of time and state 
variable X. The releases are the product of a compartmental matrix C(X, t) that accounts for interactions with state variable 
similarly as in Equation B2 in Box 1. Any term in the level 1 equation can be expanded to accommodate more details. For 
example, C(X, t) can be expressed (depicted by blue arrows) as either nonlinear kinetics or linear kinetics as related to process 
rates (K), donor-controlled transfer rates (A), and environmental modifiers (ξ(t)) (Level 2). These terms, together with carbon 
allocation (B) and time-dependent photosynthetic rates (μ(t)), form a more specific representation of carbon cycle models as 
in Equation B1. Each of these terms can be developed further in a hierarchical way. For example, the process rates K can be 
globally fixed values or vary with plant functional types (Level 3). The latter can be either static or dynamic (Level 4). The 
dynamic vegetation can be linked to either fixed parameter values for each vegetation type or plant and microbial traits (Level 
5). This flexibility in the system representation allows any known land carbon cycle model architecture to be generalized 
under one theoretical framework without compromising detail in process representation.
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The matrix equation as a generic expression of carbon cycle model structure makes it possible to study the general 
behavior of the land carbon cycle. The matrix equation B1 in Box 1 can be rearranged to describe carbon storage 
capacity and carbon storage potential (Luo et al., 2017) as:

𝑋𝑋(𝑡𝑡) = (−𝐴𝐴𝐴𝐴(𝑡𝑡)𝐾𝐾)−1𝐵𝐵𝐵𝐵(𝑡𝑡) − (−𝐴𝐴𝐴𝐴(𝑡𝑡)𝐾𝐾)−1𝑋𝑋′(𝑡𝑡)� (1a)

= 𝜏𝜏𝐸𝐸(𝑡𝑡)𝜇𝜇(𝑡𝑡) − 𝜏𝜏ch𝑋𝑋
′(𝑡𝑡)� (1b)

= 𝑋𝑋𝑐𝑐(𝑡𝑡) −𝑋𝑋𝑝𝑝(𝑡𝑡),� (1c)

where X′(t) equals dX(t)/dt in Equation B1 and represents net pool change, τch is chasing time, and τE(t) is ecosys-
tem residence time. Chasing time τch measures how fast the net C pool change, X′(t), is redistributed through the 
network of multiple carbon pools (Luo et al., 2017). Ecosystem residence time τE(t) equals:

𝜏𝜏𝐸𝐸(𝑡𝑡) = (−𝐴𝐴𝐴𝐴(𝑡𝑡)𝐾𝐾)−1𝐵𝐵𝐵� (2)

Xc(t) is the land carbon storage capacity. It can be expressed as:

𝑋𝑋𝑐𝑐(𝑡𝑡) = (−𝐴𝐴𝐴𝐴(𝑡𝑡)𝐾𝐾)−1𝐵𝐵𝐵𝐵(𝑡𝑡) = 𝜏𝜏𝐸𝐸(𝑡𝑡)𝜇𝜇(𝑡𝑡).� (3)

Xp(t) is the land carbon storage potential. It can be described as:

𝑋𝑋𝑝𝑝(𝑡𝑡) = (−𝐴𝐴𝐴𝐴(𝑡𝑡)𝐾𝐾)−1𝑋𝑋′(𝑡𝑡) = 𝜏𝜏𝑐𝑐𝑐(𝑡𝑡)𝑋𝑋
′(𝑡𝑡).� (4)

The carbon storage capacity is the maximal amount of carbon that a land ecosystem can store. Traditionally, 
the storage capacity has been considered as a static concept that results from the balance between carbon input 
and decomposition when an ecosystem is approximately at steady state (Olson, 1963) (Figure 2a). For example, 
long-term averaged carbon stock in the soil is lower in tropical than boreal forests, due to faster decomposition 
rates (i.e., shorter residence time) in tropical soils, notwithstanding higher carbon input from litterfall and plant 
mortality (Crowther et al., 2019). When this definition is applied to an ecosystem with multiple carbon compart-
ments under non-steady state (i.e., a time-dependent, nonautonomous system), the carbon storage capacity is no 
longer a static constant; instead, it becomes time-dependent, as both carbon input and residence time vary with 
time. Regardless, it still sets the maximal amount of carbon that an ecosystem can store at time t. Thus, carbon 
storage capacity represents an instantaneously driving state that carbon storage X(t) chases, varying over seasons 
of a year (Figure 2b) and with climate change over decades (Figure 2c). When the capacity Xc(t) is larger than the 

Figure 2.  Transient carbon cycle dynamics as determined by carbon storage capacity and potential on different time scales. Panel (a) is for an autonomous system 
in which carbon storage capacity (Xc) is a constant while carbon storage potential (Xp(t)) and carbon storage itself (X(t)) vary with time. In the illustrated case, the 
capacity is assumed to abruptly increase by 40%, mainly due to instantaneous increase in carbon input as in a CO2 experiment (Luo & Reynolds, 1999). Consequently, 
the potential immediately increases and then gradually declines as X(t) increases toward equilibrium. Panel (b) illustrates time-dependent X(t), its capacity Xc(t) and 
potential Xp(t) in a nonautonomous system over days of year (DOY; Rasmussen et al., 2016). Seasonal change in the capacity is due to change in carbon input, which 
is low in winter and high in summer. Panel (c) illustrates time-dependent X(t), its capacity and potential in a nonautonomous system over years in response to climate 
change (Luo et al., 2017). Carbon input and residence time, which jointly determine the capacity, fluctuate over the year and change with climate change, resulting in 
strong fluctuation in the storage capacity while X(t) of multiple pools smoothly changes over time (Rasmussen et al., 2016). In panels (b and c), the capacity is a driving 
state that X(t) chases. The rate of chasing is proportional to the storage potential.
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carbon storage X(t) itself, carbon sequestration occurs and carbon stock increases; otherwise, the ecosystem loses 
carbon and carbon stock decreases.

The land carbon storage potential or its variants (e.g., carbon sink or sequestration potential) is a term that has 
been used in various contexts (Hudiburg et al., 2009; Zhou et al., 2015), but it has not been rigorously defined 
before. The matrix equation yields a precise definition for and offers a biogeochemical interpretation of the 
carbon storage potential (Equation 4). It is the amount of carbon that an ecosystem can take up to reach the carbon 
storage capacity and is a measure of the magnitude of disequilibrium (Luo & Weng, 2011). Thus, carbon storage 
potential represents the internal capability of an ecosystem to equalize its current carbon storage with the carbon 
storage capacity. Biogeochemically, it describes the redistribution of net carbon pool change, X′(t), of individ-
ual pools at each time step through networked pools connected by carbon transfers from one pool to the others 
through all the pathways, each pool having its distinct turnover time (Luo et al., 2017). The time to fully equalize 
the current carbon storage with the capacity through the matrix of pools is measured by chasing time, which can 
be statistically approximated by the slope of regression between the carbon storage potential and net ecosystem 
production (NEP; Jiang et al., 2017; Luo et al., 2017).

Both the carbon storage capacity and potential are regulated by ecosystem-internal processes that govern carbon 
influx and residence time. Carbon influx represents the combined effect of all the processes at biochemical, 
leaf, and canopy scales that influence plant photosynthesis. Many other processes influence residence time. For 
example, an increase in plant mortality results in a decrease in residence time and consequently carbon storage. 
An increase in microbial carbon use efficiency, has the contrary effect of prolonging residence time and carbon 
sequestration. External forcing variables, such as cyclic changes in light and temperature, long-term directional 
changes in global climate, disturbance events, disturbance regime shifts, and state changes, influence the carbon 
storage capacity and potential through changes in carbon input, plant carbon allocation, rate processes and trans-
fers among plant and soil pools (Luo et al., 2015; Luo & Weng, 2011).

The carbon storage potential mathematically integrates fluxes X′(t) with time τch(t) (see Equation  4). It 
quantifies how net ecosystem exchange (NEE; X′(t)), an instantaneous measure of carbon fluxes at a given 
time, is transformed through a network of multiple pools. The time scale of NEE transformation within 
the multi-pool network is measured by chasing time τch(t) (Luo et  al., 2017). Carbon chasing time in the 
multi-pool network cannot be easily measured in the field, as the data required to estimate turnover time 
(equaling to an inverse of elements in matrix K) of individual carbon pools and transfer coefficients among 
them (element in matrix A) are usually not available. Nonetheless, the carbon storage potential can be esti-
mated from multiple datasets. For instance, radiocarbon  14C has been used to quantify mean carbon ages of 
various plant, litter, and soil pools (Gaudinski et al., 2000; Shi et al., 2020). Soil respiration and its isotopic 
signature can be used to estimate the age of the release flux out of an ecosystem, which is a measure of 
turnover time (K −1) (Sierra, Hoyt, et al., 2018; Sierra et al., 2012; Trumbore et al., 1996). Carbon contents 
in various pools—leaf, wood, root, litter, and soil—contain information on timescales of carbon cycling. 
Together, those datasets have been used to constrain multi-pool soil carbon models through data assimilation 
(Liang et al., 2018; Xu et al., 2006). Therefore, they could be used to estimate the carbon storage potential. 
Note that carbon sequestration between two time points is a result of changes in both the carbon storage 
capacity and potential (Jiang et al., 2021).

Overall, the matrix equation offers a new foundation for understanding the general behavior of the land carbon 
cycle and quantifying carbon uptake or loss by ecosystems at different timescales.

4.  Addressing Contemporary Issues
Once models are expressed in the matrix form, we can address a range of perennial issues in land carbon cycle 
modeling, such as sources of model uncertainty, computational efficiency of spin-up for complex models, and 
uses of big data to constrain model predictions.

4.1.  Pinning Down Sources of Model Uncertainty With Traceability Analysis

Despite extensive research and model development over the past 20 years, the model uncertainty (i.e., across-model 
spread) in ESM projections of the global land C sink has remained large from the Third Assessment Report of the 
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Intergovernmental Panel on Climate Change published in 2001 to the sixth report published in 2021 (Canadell 
et al., 2021; Ciais et al., 2014; Denman et al., 2007; Prentice et al., 2001). To address the model uncertainty issue 
effectively we must understand what causes it. The matrix approach offers a unique method to precisely pin down 
sources of model uncertainty.

Once models are expressed in the unified matrix form, the model-to-model variations can be easily traced to 
differences between models in the five (or six) terms in Equation B1. For example, the model-model differences 
can be shrunk to zero (i.e., identical predictions) among eight models if the terms in Equation B1 are standardized 
by adjusting response functions ξ(t) and changing values of parameters B, A, and K to yield the same outputs for 
each of the terms (Hou et al., submitted) (Figure 3). This manipulation demonstrates that the matrix approach 
makes model uncertainty a tractable issue: through simple mathematical adjustments in the matrix equation 
terms, we can analytically and precisely track the model uncertainty down to its sources. To do so, we developed 
a traceability analysis based on the mathematical properties of the matrix equation. The traceability analysis first 
decomposes simulated carbon pool sizes at a given time t0 X(t = t0) into carbon storage capacity Xc(t = t0) and 
carbon storage potential Xp(t = t0) according to Equation 1c. Xc can be further decomposed to carbon residence 
time τE(t = t0) and net primary production μ(t = t0) according to Equation 3. Meanwhile, Xp(t = t0) can be decom-
posed to chasing time τch(t = t0) and NEP X′(t = t0) according to Equation 1b. The components (Aξ(t = t0)K) −1 in 
τE(t = t0) or τch(t = t0) can be further decomposed to A −1, ξ(t = t0) −1, and K −1, which are related to parameters or 
environmental variables.

The traceability analysis can place any modeling outputs in a 3-dimension space ordinated by carbon input, 
residence time, and carbon storage potential to understand how modeled land carbon storage differs across 
an ensemble of models, regardless of differences in model structure and external forcing variables (Jiang 
et al., 2017; Luo et al., 2017; S. Zhou et al., 2018; Wu et al., 2020). Once model-model differences are iden-
tified, sources of uncertainty in model predictions can be tracked down hierarchically to model structures, 
parameters, forcing variables as well as influences of different initial values in simulations after spin-up (Jiang 
et al., 2017; Luo et al., 2017; Xia et al., 2013). For example, driven with similar forcing data, CLM3.5 predicted 
∼31% larger carbon storage capacity than CABLE (Figure 4). Rafique et  al.  (2016) used the matrix-based 
traceability analysis to show that this difference is due to 37% higher NPP and 11 years shorter ecosystem 
residence time in CLM3.5 than these in CABLE (Figure 4). The latter results from shorter baseline carbon 
residence time for the woody biomass pool in CLM3.5 than CABLE (14 years in CLM3.5 vs. 23 years in 
CABLE), and a lower proportion of NPP allocated to woody biomass in CABLE (16%) than CLM3.5 (23%). 
The traceability analysis has also been successfully applied to understand the spread in carbon storage capacity 
among different biomes in CABLE (Xia et al., 2013) and the different responses of Harvard and Duke Forests 
to climate change (Jiang et al., 2017).

Once the main sources of model uncertainty are identified, we can target model improvement efforts toward the 
parameters, processes or feedbacks responsible for that uncertainty, using empirical data to inform more realistic 
model structure (Luo et al., 2012) and parameterization (Luo & Schuur, 2020). More accurate model parameter-
ization can also be achieved by data assimilation, which is described in Section 4.3.

Figure 3.  Spreading and shrinking model uncertainty. We developed a matrix-based model intercomparison project by expressing eight land carbon cycle models 
(i.e., TEM, CENTURY, DALEC2, TECO, FDBC, CASA, CLM4.5, and Organizing Carbon and Hydrology in Dynamic Ecosystems [ORCHIDEE]) in a unified matrix 
form. The eight models differ greatly in complexity, with the number of carbon pools ranging from 2 in TEM to 101 in ORCHIDEE. All eight models were driven by 
the same gross primary production (GPP) and environmental variables (temperature, T and precipitation, P) from a peatland in northern Minnesota, USA. Despite the 
same forcing data, the variations among the models are large for cumulative net ecosystem production (NEP). The model uncertainty shrinks to almost zero with nearly 
identical predictions by the eight models when we standardize these parameters in the matrix equations related to plant carbon partitioning coefficients B, transfer 
coefficients A, environmental scalar ξ(t), vertical mixing coefficients, and decomposition coefficients K (Hou et al., submitted).
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4.2.  Accelerating Spin-Up With Semi-Analytic Spin-Up

Spin-up in biogeochemical models is a common procedure to estimate initial values of carbon pool sizes. Spin-
ning up a complex biogeochemical model is computationally very expensive. For example, it takes more than 
35 days on Supercomputer Cheyenne to run CLM5 to steady state using the native dynamic method, or about 
1 week using the accelerated decomposition (AD) method (Lawrence et al., 2019). The computationally expen-
sive spin-up procedure takes resources away from some critical analyses, such as parameter sensitivity analysis, 
that could inform improvements in CLM5 or similar models. An efficient spin-up method can greatly liberate 
models from this computational burden.

Once a model is expressed in a matrix form, the steady-state pool sizes at a given time t = t0 can be analytically 
obtained by letting Equation B1 equal to zero:

𝑑𝑑𝑑𝑑 (𝑡𝑡 = 𝑡𝑡0)

𝑑𝑑𝑑𝑑
= 𝐵𝐵𝐵𝐵 (𝑡𝑡 = 𝑡𝑡0) + 𝐴𝐴𝐴𝐴 (𝑡𝑡 = 𝑡𝑡0)𝐾𝐾𝐾𝐾 (𝑡𝑡 = 𝑡𝑡0) = 0.� (5)

Equation 5 can then be solved to obtain steady-state pool sizes as:

𝑋𝑋𝑠𝑠𝑠𝑠 = (𝐴𝐴𝐴𝐴(𝑡𝑡 = 𝑡𝑡0)𝐾𝐾)−1𝐵𝐵𝐵𝐵(𝑡𝑡 = 𝑡𝑡0).� (6)

In practice, we usually use multi-year forcing data to run a model repeatedly until slow pools reach quasi-equilibrium. 
When values of forcing variables change, μ(t) and ξ(t) in Equation 6 take the new values, leading to different Xss. 
Thus, we need to solve Equation 5 many times to obtain Xss at quasi-equilibrium of slow pools when multi-year 
forcing data are used to run a model repeatedly (Xia et al., 2012). This is the general procedure of SASU.

SASU has been applied to the carbon-only and coupled carbon-nitrogen versions of CABLE and saved about 
92.4% (i.e., 12.2 times faster) and 86.6% (i.e., 7.5 times faster) of the computational time, respectively, in compar-

Figure 4.  Clarity in diagnostics enabled by the matrix equation. A traceability analysis shows CLM3.5 has a higher carbon storage capacity at steady state (Xss), due to 
higher NPP than CABLE. However, carbon residence time (τE) is higher in Community Atmosphere Biosphere Land Exchange (CABLE) than Community Land Model 
3.5 (CLM 3.5) mainly due to difference in the baseline carbon residence time (𝐴𝐴 𝐴𝐴 ′

𝐸𝐸
 ). The environmental scalar ξ, including its temperature (ξT) and water components 

(ξw), is similar between the two models. CABLE has higher τE than CLM 3.5 mainly because CABLE allocates more carbon to wood growth than CLM 3.5 (Rafique 
et al., 2016). Model differences in NPP can also be traced to processes as shown in other studies (Cui et al., 2019; Xia et al., 2015). Overall, the matrix approach offers 
clarity in diagnostics to track model differences to model structure and/or parameter values. Note that symbols in inserted figures represent different vegetation types.
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ison with the default spin-up method (Xia et al., 2012). When the SASU method is implemented into CLM5, it is 
49.6 times faster than the native dynamic method and 8.0 times faster than the AD method (Liao et al., in prep.). 
The AD method is the default spin-up method in CLM5 (Lawrence et al., 2019). It uses a set of acceleration factors 
to reach steady-state pool sizes (Thornton & Rosenbloom, 2005). Note that forward modeling with matrix equa-
tions can be computationally very slow. However, this issue can be overcome by using a sparse matrix algorithm 
(Lu et al., 2020). Nevertheless, the greatly enhanced computational efficiency of SASU compared to traditional 
spin-up enables computational resources to be redeployed toward parameter sensitivity analyses (Huang, Zhu, 
et al., 2018) and data assimilation with complex carbon cycle models (Hararuk et al., 2014, 2015; Shi et al., 2018).

4.3.  Constraining Complex Models With Big Data by Matrix-Enabled Data Assimilation

The matrix approach makes it computationally feasible to assimilate multiple data sets to constrain the predic-
tions of land carbon sequestration. Presently, land carbon dynamics simulated by ESMs deviate substantially 
from observation-based estimates. For example, global soil carbon storage simulated by 11 models participating 
in the Coupled Model Intercomparison Project phase 5 (CMIP5) fit poorly with the soil organic carbon stocks 
reported in the Harmonized World Soil Database (HWSD; Luo et al., 2015). Observational and experimental 
research produces ever-larger quantities of high-resolution, multi-dimensional data, offering great resources to 
constrain model prediction via data assimilation (Luo et al., 2011; Reichstein et al., 2019; Xia et al., 2020). In the 
past, flux-based data have been used to improve model predictive skills (Fox et al., 2018; MacBean et al., 2018; 
Rayner et al., 2005). While pool-based data are essential to constrain rate processes (Xu et al., 2006), their assim-
ilation into ESMs is inhibited by unattainable computational expense.

The SASU method derived from the matrix approach makes it computationally feasible to assimilate both flux- and 
pool-based data to constrain predictions of land carbon sequestration from full dynamic models such as ESMs (Hararuk 
et al., 2014, 2015; Liang et al., 2018; Shi et al., 2018; Tao et al., 2020). When the matrix version of CLM3.5 was 
used in data assimilation to constrain its parameters, the model-data fit was improved to the extent that modeled soil 
carbon density accounted for 41% of variation in the HWSD database, in comparison to 27% without data assimilation 
(Hararuk et al., 2014). We have recently used the matrix version of the CLM5 soil carbon module in PROcess-guided 
deep learning and DAta-driven modeling (PRODA) to further improve predictions of soil carbon variability at regional 
and global scales. With PRODA, CLM5 can explain 62% of variation in soil organic carbon content in the conter-
minous USA (Tao & Luo, 2022; Tao et al., 2020) (Figure 5). Data assimilation can help not only improve model 
performance but also evaluate the relative contributions of model structure and parameterization, versus data, to model 
uncertainty (Shi et al., 2018). Such data assimilation work at regional or global scales has become possible thanks to 
the computational savings enabled by the accelerated spin-up facilitated by the matrix approach.

Figure 5.  The agreement between observed and modeled SOC content for the conterminous USA with different approaches. CLM5 simulations of SOC with default 
parameters explain 32% of variation in 25,444 observed vertical profiles of SOC content at different depths over the conterminous USA (a). When CLM5 matrix 
model was used in data assimilation to constrain model parameters, 43% of variation in observations was explained (b). When CLM5 matrix model was trained by the 
PROcess-guided deep learning and DAta-driven modeling (PRODA) approach to constrain and predict spatially varying model parameters, explained variation rose to 
62% (c) (Tao & Luo, 2022).
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5.  Concluding Remarks
We have shown that the matrix approach can unify land carbon cycle models. The unified matrix equation repre-
sents the dynamic disequilibrium of the land carbon cycle in terms of three overarching variables: carbon input, 
residence time, and carbon storage potential. Carbon input and residence time together quantify the carbon stor-
age capacity at equilibrium, whereas the storage potential measures the magnitude of disequilibrium. The matrix 
equation folds internal processes and external variables into one framework to yield a system-level representation 
that facilitates understanding and analysis of the carbon cycle in all its complexity.

We have demonstrated the feasibility of converting different kinds of land carbon, nitrogen, and phosphorus cycle 
models to matrix equations. The result is simplicity in structure, high modularity in code, clarity in diagnostics, 
and computational efficiency in spin-up. Once expressed in the matrix form, all models regardless of complexity 
are organized in a standardized yet concise form that allows us to understand differences in structures and param-
eters among models, and to trace how these affect their outputs.

The matrix approach makes it possible to pinpoint sources of uncertainty in model predictions via traceabil-
ity analysis. Pinpointing sources of model uncertainty across ensemble members of MIPs helps direct targeted 
efforts on model improvement. The fast spin-up enabled by the matrix approach makes it possible to capitalize on 
ever-increasing availability of empirical data by assimilating multiple datasets into complex models to improve 
prediction. The integration of big data with multiple models likely presents the best hope to accurately character-
ize the current state of the land carbon cycle and predict the future trajectory of terrestrial carbon sequestration.

Benefits of converting a traditional carbon cycle model to the matrix form might be limited if the original model is 
relatively simple and easily understood, spin-up is fast enough, and/or there is no need to calculate the new analyt-
ics offered by the matrix approach for understanding simulation outputs. Converting existing models, especially 
complex schemes used in current generation ESMs, to matrix models could be time-consuming and, thus, requires a 
considerable initial investment before benefits are gained. Although nonlinear microbial models can be expressed in 
the matrix form, it is not clear which advantages of the matrix approach would be gained. It is yet to be fully explored 
how best the matrix approach is applied to dynamic vegetation models. While the matrix approach empowers 
researchers to study the land carbon cycle, there are still many processes that are insufficiently understood or quan-
tified, theoretically and empirically, and to be accurately represented in models. Ultimately, concerted collaboration 
among experimental, observational, and modeling research communities is a precondition for substantive progress. 
The matrix approach offers a toolbox of novel analytical and technical solutions that can accelerate this collaborative 
work towards an improved understanding of the land carbon cycle, its drivers, and its role within climate dynamics.

Data Availability Statement
No original data or code was used in this manuscript.
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