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We present a method that uses high-resolution topography data of rough terrain, and ground vehicle
simulation, to predict traversability. Traversability is expressed as three independent measures: the abil-
ity to traverse the terrain at a target speed, energy consumption, and acceleration. The measures are con-
tinuous and reflect different objectives for planning that go beyond binary classification. A deep neural
network is trained to predict the traversability measures from the local heightmap and target speed.
To produce training data, we use an articulated vehicle with wheeled bogie suspensions and procedurally
generated terrains. We evaluate the model on laser-scanned forest terrains, previously unseen by the
model. The model predicts traversability with an accuracy of 90%. Predictions rely on features from
the high-dimensional terrain data that surpass local roughness and slope relative to the heading.
Correlations show that the three traversability measures are complementary to each other. With an infer-
ence speed 3000 times faster than the ground truth simulation and trivially parallelizable, the model is
well suited for traversability analysis and optimal path planning over large areas.
� 2022 The Authors. Published by Elsevier Ltd on behalf of ISTVS. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction ture terrain features at scales that interact with the vehicle’s geom-
Terrain traversability depends on the geometrical and physical
properties of the terrain and the vehicle (Papadakis, 2013;
Guastella and Muscato, 2021). Predicting it in advance facilitates
planning and is a key component of remote and autonomous driv-
ing. Deficient or inaccurate information about traversability leads
to substandard paths that consume excess fuel and time, with
unnecessary risk of damaging the equipment and environment. It
is common to classify areas as being either traversable or non-
traversable. For vehicles designed to operate in rough terrain, bin-
ary classification, even with directional dependency, is of limited
use. On most natural terrain it yields an abundance of feasible
paths with no way to distinguish between their quality. In such
cases, a continuous measure is more beneficial but lacks to con-
sider additional aspects, such as energy consumption and mechan-
ical wear. A more practical approach is to treat traversability as a
multivalued measure that captures how vehicle dynamics are
affected by local topography.

We assume access to high-resolution terrain data through air-
borne laser scanning over large areas. In Sweden, the entire coun-
try is scanned at sub meter accuracy by the Swedish Land Survey
with a repeat cycle of approximately seven years. These data cap-
etry and dynamics in a way that prevalent traversability models,
developed for coarse terrain data, do not. The availability of high-
resolution surface data raises the need to develop precise models
that predict vehicle traversability in rough terrain.

With a 3D multibody dynamics simulation of a vehicle driving
on a virtual terrain, the interaction can be captured in detail. The
observed traversability is then automatically a function of the vehi-
cle geometry, dynamics, and of the terrain topography. The
traversability of a terrain could in principle be systematically
probed by running multiple simulations along different paths.
However, online prediction of traversability or optimal path plan-
ning on large areas typically require simulation speeds much faster
than is accessible today. This has been addressed in Chavez-Garcia
et al. (2018) by running simulations in advance of a vehicle travers-
ing different terrains while sampling the local heightmap. The
dataset was then used for training a deep neural network to make
predictions given the vehicle’s local heightmap and heading as
input. Evaluating the model was orders of magnitude faster than
the simulation. However, the study focused on binary classifica-
tion, with the classes traversable and non-traversable, and consid-
ered a four-wheeled skid-steer robot with no articulation and
limited capabilities of traversing rough terrain.

To improve traversability analysis and planning for vehicles in
rough terrain, we explore how to predict continuous measures of
traversability based on multibody simulations. In path planning,
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the flexibility to define a cost function according to preference is
limited to the traversability information available. We propose that
energy consumption and acceleration, alongside locomotion, i.e. the
ability to move at prescribed speed, are three complementary mea-
sures that, when combined, can yield quality paths that fit a wide
variety of demands. For learning the traversability measures, we
use a dataset from an articulated vehicle driving on generated ter-
rains with spatial resolution much finer than the size of the vehicle.
The model takes target velocity and local topography as input, pro-
cessed by a neural network for feature extraction. We suggest that
these features relate vehicle dynamics to terrain topography, and
has significant effect on traversability. To unravel how learning
from generated terrains transfers to predictions on scanned ter-
rains, we compare predictions with simulation ground truth. The
comparison, along individual paths and over large regions, reveals
the strengths and weaknesses of the model. We apply the model to
optimal path planning on a scanned forest terrain.
2. Related work

Classical and machine learning (ML) based methods for analys-
ing and predicting traversability are reviewed in Papadakis (2013)
and Guastella and Muscato (2021), respectively. In the literature,
traversability is generally understood as the ability of a ground
vehicle to move over a terrain region given some objective function
and criteria for admissible states. Non-admissible states typically
include collisions and unrecoverable states. The ability may be rep-
resented using discrete classes (classification) or with a continuous
score (regression).

Appearance-based methods approach traversability analysis as
an image-processing problem, e.g., distinguishing between differ-
ent types of soil and vegetation with distinct costs for traversal
(Brooks and Iagnemma, 2007) or wheel slip (Bouguelia et al.,
2017). In Quann et al. (2020), a Gaussian process regressor was
used for learning to predict the power consumption on different
terrains from satellite imagery in addition to heading and slope.

Geometry-based methods first transform LiDAR, or other depth
data, to a 3D representation of the terrain. Traversability is then
analyzed with respect to geometric features of the terrain - such
as height, roughness, slope, and curvature - and to the vehicle’s
geometry and mechanics. Classically, the extraction of terrain fea-
tures and the comparison with vehicle properties are two distinct
computational processes. This becomes challenging when high-
dimensional data is involved. With deep learning based methods
it is natural to integrate these processes in the convolutional ker-
nels, which was done in the aforementioned work (Chavez-
Garcia et al., 2018) and in Zhu et al. (2020) from 3D LiDAR data
terrains
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Fig. 1. Illustration of the procedure for learning rough terrain traversability from
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and driving trajectories from experts. In Arena et al. (2021), a shal-
low neural network was trained on simulated data to predict mul-
tiple robot-specific traversability maps, so that the best suited
robot can be selected along with a path.

Traversability is of major importance in forestry (Eriksson and
Lindroos, 2014) where heavy vehicles, weighing up to 40 tons
when fully loaded, traverse rough and sometimes weak terrain.
In Suvinen et al. (2009), digital soil maps were combined with dis-
crete elevation maps to predict the traversability, quantified as
driving resistance and divided into rolling, slope, and obstacle
resistance. It was concluded that a resolution finer than 25 m is
needed for predicting obstacle resistance. A method for optimiza-
tion of forestry extraction routes from discrete elevation maps
and depth to water maps is described and evaluated in Flisberg
et al. (2020). The weighted objective functions include the time,
fuel, soil disturbance, and additional costs for driving with differ-
ent headings in sloped terrain. The weight factors are determined
by inverse optimization using best practice solutions by experi-
enced forest professionals. The study is limited to a resolution of
2 m and features below this length scale are not considered. Large
obstacles lead to exclusion of no-go cells or route segments.
3. Method

An overview of the method, from simulation modelling, to gath-
ering data, and training the network is illustrated in Fig. 1.

3.1. Vehicle model

The vehicle model is that of a medium-sized, eight-wheeled,
bogie type forwarder, which are used in forestry for transporting
logs from the harvesting site to the road for transport on trucks.
The model is shown in Fig. 2. It has a front and rear frame con-
nected by a waist articulation joint that allows relative rolling.
Each frame has a pair of bogies with two wheels each. Ground
clearance, weight, boogie to waist distances, and tyre dimensions
are the same as for a Komatsu 845 forwarder, while being 0:6 m
wider. The length is 9.3 m and the total weight is 16,950 kg with-
out load. Each wheel is driven with a hinge motor that can deliver a
maximum torque of �40 kN/m to achieve a set target angular
speed x ¼ v=r, for the wheel radius r ¼ 0:675 m. Consequently,
the wheels will slip when the friction force is insufficient or if they
loose contact with the ground. In a steep slope, or another situation
with large external forces, the wheel motors may be too weak to
reach and hold the target speed. For simplicity, the tyres are given
a cylindrical collision shape, although rendered with a more
resolved geometry. In the simulations, the vehicle is assigned some
data model inference
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simulations, for some vehicle, and applying it to previously unseen terrains.



Fig. 2. The 3D model of a medium-sized forwarder with primary joint axes and
dimensions indicated. The sampling points of the local heightmap and placement of
the virtual accelerometer are also shown.
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target speed v, which is applied to all wheels. The model accounts
for frictional wheel slip, but slip from tyre and terrain deforma-
tions are not modelled explicitly, and neither is rolling resistance.
A video illustrating the vehicle kinematics is available as supple-
mentary material in Appendix A.

3.2. Terrains

The terrains are represented with a global heightmap h x; yð Þ
using a regular Cartesian grid. The heights are linearly interpolated
between the grid points to define a polygon surface for computing
contact points between the vehicle and the ground.

3.2.1. Procedurally generated terrains
To have control over the terrain difficulty we use procedurally

generated terrains for training. They are made of Perlin noise
(Perlin, 1985), Gaussian functions, step functions, and semi-
ellipsoids, to represent unevenness, bumps, pits, barriers, ditches,
and steps, see Fig. 3. We generate 40 terrains with a size of
50� 50 m2 and a grid resolution of 0:05 m, where 30 of them
are used for training and 10 for validation. We found that a dataset
with a relatively even distribution of good and poor traversability
aids the neural network’s capability to generalize to unseen ter-
rains and predict traversability scores in the full range.

3.2.2. Laser scanned terrains
For testing and demonstration we use terrain data from the SCA

Laxsjö Digital Testsite in Sweden. A 600 ha subset of the totally
50,000 ha test site was scanned with airborne laser scanning oper-
ated from a helicopter. The system Riegl LMS-Q680i used a pulse
repetition frequency of 400 kHz and the scanning frequency was
Fig. 3. Two procedurally generated terrains used for generating training data, wit
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135 Hz. The field of view was 60 degrees, the nominal flight speed
20 km/h, and the altitude 70 m above ground level. The nominal
swath width was 90 m and the nominal point density ranged from
490 points/m2 to 654 points/m2, with an average of 593 points/m2.

The point cloud was classified into ground and vegetation
points, using the algorithm (Axelsson, 1999) implemented in the
software TerraScan. The ground elevation was interpolated, using
a triangular irregular network, at the planar location x; yð Þ of all
laser returns. The height value of each return was then replaced
with the distance to the ground elevation. A digital elevation
map with 0:1 m resolution was created by interpolation of ground
elevation of the raster cell locations. In addition, a raster with the
same resolution was created by setting a cell value to the height
value of the lowest laser return located within the raster cell. This
raster was input to an active contour algorithm (Elmqvist et al.,
2001). The algorithm moves an elastic surface from below ground
level and upwards until the surface is attached to continuous
objects near the ground, e.g. stones. In the next step, surface
heights with stones were added to the raster cell values of the ele-
vation map to create a model with both ground and stones
included. Samples of the high-resolution scanned terrains are
found in Fig. 4.
3.3. Simulations and data collection

We simulate terrains, vehicles, and their interactions through
contacting rigid multibody dynamics at simulation frequency
60 Hz using the physics engine AGX Dynamics (Algoryx
Simulations, 2021). To collect data for training and validation we
import a procedurally generated terrain and initialize a vehicle at
random position and heading, letting it drop to the surface and
relax. After relaxation, data collection starts and the vehicle
attempts to accelerate to its target speed v 2 0:07;2:69½ � m/s. Data
is collected at 20 Hz by sampling the local heightmap around the
vehicle and recording observations. The local height map, centred
at the articulation joint, is represented by a 10� 5 m2 area with
64� 32 gridpoints, which follows the vehicle and its heading, see
Fig. 2. Observations over the past s ¼ 1 s are kept in a buffer, from
which measures of traversability are calculated. The vehicle is res-
pawned if it is unable to stabilize at the start, reaches the boundary
of the terrain, or gets stuck. A vehicle can get stuck by the chassis
hanging on the terrain, preventing one or several tyres reaching the
ground for sufficient traction, by wheel slip, or if the motors do not
provide sufficient torque for climbing a steep slope or obstacle. The
vehicle can also overturn. Example simulations are shown in a sup-
plementary video in Appendix A.

To speed up the data generation, multiple vehicles are simu-
lated simultaneously on the same terrain, with mutual collisions
disabled. For the training and validation data, a total of 20 vehicles
drive for 500 s on each of the 30 training and 10 validation terrains.
h examples of a vehicle stuck at different positions. The side length is 50 m.



Fig. 4. Rendered examples of high-resolution scanned terrains from SCA Laxsjön Digital Testsite. Larger rocks are clearly visible.
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For the generalization data, a total of 10 vehicles drive for 500 s
each on 11 laser scanned terrains.

3.3.1. Locomotion
We define locomotion, L 2 0;1½ �, in terms of how close the trav-

elled distance, ds, is to the nominal distance, d ¼ vs, for a time
window of size s and given target speed v. The measure is

L ¼ exp � 1
2r2

d� ds
d

� �2
" #

; ð1Þ
x(t)
a(t)

t(t) x(t) + v τ t
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Fig. 5. The locomotion measure compares the travelled distance ds over a time
window s with the expected one given a set target speed. Acceleration is measured
at a selected point in the rear frame.
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with Gaussian width r ¼ 1=3. The travelled distance is computed as
ds � x t þ sð Þ � x tð Þ½ � � t tð Þ using the vehicle’s heading,
t tð Þ ¼ v tð Þ= v tð Þj j, at the start of the observation window, as illus-
trated in Fig. 5. If ds < 0:2d for 5 consecutive observations, the vehi-
cle is defined as stuck and is respawned.

3.3.2. Energy consumption
The normalized energy consumption, per unit travelled length,

is computed from the work exerted by the wheel motors over the
time window s as

E ¼ 1
dsE0

Z tþs

t
c
X
i

Pi tð Þdt; ð2Þ

where Pi tð Þ ¼ xi tð ÞMi tð Þ is the power exerted by each motor i run-
ning with angular speed xi and torque Mi. The coefficient c is the
efficiency of the motors, which is simply set to c ¼ 1 in the present
paper. E0 ¼ 700 kJ/m is used for normalization, this being five times
larger than for driving up a 45� incline. The energy consumption is
clipped to the range 0;1½ �, and for negative travelled distances,
ds < 0, it is set to 1.

3.3.3. Acceleration
Acceleration is associated with mechanical stresses on the vehi-

cle construction, risk for hazardous load displacements, and is



Fig. 6. Illustration of the neural network architecture.

Table 1
Model performance on the training (3.7 million observation), validation data (1.4
million observations), and generalization to laser scanned terrains (0.9 million
observations).

loss L E A

Training error (%) 10:3 12:3 10:0 8:4
Validation error (%) 10:8 13:7 11:1 7:5
Generalization error (%) 7:7 9:8 5:4 7:8
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harmful and uncomfortable to any human riding with the vehicle.
Therefore, a virtual accelerometer is placed 1:5 m above and 0:5 m
behind the center of gravity of the rear frame, see Fig. 5. We use the
normalized peak acceleration during the time window

A ¼ max
�t2 t;tþs½ �

a �tð Þ½ �=A0 ð3Þ

as measure for acceleration, where A0 ¼ 100 m/s2, and the acceler-
ation is clipped to the range 0;1½ �.

3.4. Model training and architecture

A deep neural network is trained to predict the traversability
measures L; E;A½ � from a local heightmap and target speed v. To
simplify learning we normalize the velocity input and offset the
heights such that the array midpoint is at height 0.

The network consists of two input branches and three output
branches, which extends the architecture of Chavez-Garcia et al.
(2018) to output multiple traversability measures and include
the target velocity as input, see Fig. 6. To extract local terrain fea-
tures, the input heightmap is passed through three convolutional
layers. Each layer contains 10 filters of size 3� 3, followed by
max pooling with window size 2� 2 and the same stride. After
the convolutions, the output is flattened and passed to a fully con-
nected layer with 256 nodes. The heightmap features are then con-
catenated with the velocity input and split into three separate
branches. Each branch consist of two sets of 0.1 rate dropout and
fully connected layers with 256 nodes. All layer use ReLU activa-
tions, except for the final fully connected layer that has a single
output node and linear activation.

Hyperparameter tuning was performed by varying the number
of convolutional filters, the number of nodes in the fully connected
layers, the dropout rate, if to use batch normalization, as well as
the learning rate of the Adam optimizer, batch size and shuffle size.
We use mean absolute error as loss, where each of the three
traversability measures contributes equally, and pick the model
with the lowest validation loss.
4. Results

The trained model has a generalization loss of 7:7% that comes
from evaluating the model on data from a set of 11 scanned ter-
rains, unseen during training and testing, see Table 1. This is the
type of terrains where the model will actually be applied. Varia-
tions in loss and the relatively few terrains explains why the accel-
eration has a lower validation than training loss. Although the
generalization loss is a useful metric to quantify model perfor-
21
mance, it provides limited insight into the strengths and weak-
nesses of the model.

4.1. Traversability maps

To analyze predictions, the model is swept over terrain maps in
selected headings and target speeds, resulting in traversability
maps. Sample maps from one of the scanned terrains can be found
in Fig. 7, given a target velocity of 1:3 m/s. We observe that the
traversability measures are highly directionally dependent and
correlated with slope and local roughness. The road segment on
the right is fully traversable in all directions, but the ditch parallel
to the road can only be traversed at an angle and not head on.

To compare traversability maps with ground truth simulations,
we generate a dataset where we spawn the vehicle in a grid struc-
ture for given directions and velocities, i.e. similar to sweeping the
model but roughly 3000 times slower. To place the vehicle close to
the desired positions we attach it to an anchor, constrained to ver-
tical movement with fixed yaw angle. For each spawn position, the
vehicle is dropped and relaxed, after which it is run for one obser-
vation window. The locomotion and its error distribution for a rep-
resentative procedurally generated terrain and a selected driving
direction, are shown in Fig. 8. The average locomotion error over
all validation terrains is 13:0%, while the average energy and accel-
eration errors are 12:4% and 12:0%, respectively. Similarly, the
locomotion predicted by the model, and the simulation outcome
for the 11 scanned terrains, is shown in Fig. 9. A comparison
between predictions and simulation outcomes reveals a general
agreement, but with a systematic difference in steep downhill sec-
tions. This is most notably seen for terrain 11, with regions of low
locomotion for the model but not for the simulations. This can be
due to the model overestimating locomotion in steep downhill ter-
rain. However, a partial explanation is that the vehicle only has a 1
s time window to build momentum before respawning. The rela-
tively short observation window prevents a drop in locomotion
caused by overspeeding that could occur if given the time.

For application purposes it is interesting to know how fast the
model is to evaluate and how this compares to the original simu-
lations. The measured inference speed is 0.55 ms, taking 44 s to
sweep 100� 100 points on a grid in 8 directions on an Intel(R)
Core(TM) i7-8700 CPU @3.20 GHz. This is three orders in magni-
tude faster than running the simulation model to evaluate
traversability at 1 m spacing. As an example we note that
traversability maps with 1 m resolution over the 200,000 ha of
Swedish forest terrain that is harvested each year takes 2500
CPU hours to compute, and a fraction of that in wall clock time
on a powerful cluster.

4.2. Model performance along example paths

To see in detail how the model predictions compare to the sim-
ulation ground truth, we simulate the vehicle driving on three
specific synthetic terrains. The synthetic terrains are designed to
be sensitive in terms of success or failure with respect to vehicle
dynamics. They allow us to study isolated behaviours with intu-
itive outcomes, which cannot be untangled in more complex situ-



Fig. 7. Traversability maps from evaluating the model on a specific scanned terrain. The size is 50� 50 m2 and the driving direction is indicated with an arrow. A
supplementary video is available in Appendix A.
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ations. The results on a Gaussian hill (2.5 m high and 12 m wide at
half maximum), a circular ditch (1 m deep, 2.3 m wide at half max-
imum, 5 m radius), and a step (1 m tall, 0.5 m cubic smoothing) are
shown Fig. 10. The general agreement is good, although we note
that acceleration is generally underestimated. The definition of
acceleration with a max function introduces discontinuities, which
are difficult for the model to mimic. The model successfully cap-
Fig. 8. Model predicted locomotion map in a 3D view (a) compared to a locomotion
scatter plot (b), constructed by spawning the vehicle at 100� 100 locations on a
validation terrain. The difference between these measures and the model predic-
tions (c), with an average error of 13:5%. The size of all maps is 36� 36 m2 and the
driving direction is to the right.

22
tures that the ditch and step are not traversable head-on, but with
considerable struggle, at an offset or angle.

Next, we test the model in a scenario where the vehicle is turn-
ing despite only being trained on data gathered from driving
straight. We manually drive the vehicle on a scanned terrain along
a curved path using articulated steering and a target velocity of
0.675 m/s while logging L, E, and A. The same path is then swept
by the model, see Fig. 11. The route starts slightly uphill on a
bumpy area, well reflected by the initial energy consumption.
The descent requires minimal energy until the vehicle reaches a
forest road. At the end of the route, the vehicle leaves the forest
road and encounters a non-traversable section, which results in
vanishing locomotion and maximum energy consumption. Overall,
the model predicted locomotion and energy consumption agrees
well with the simulation ground truth, even when the vehicle is
taking moderately sharp turns.
4.3. Dependency on spatial resolution

The use of traversability maps in applications requires knowing
the sensitivity to the spatial resolution, as the resolution depends
on how field data is collected. To investigate the sensitivity we first
resample the 11 scanned terrains to new resolutions, ranging from
the original 0:1 m up to 50 m. We then compare the result of
sweeping the model on 100� 100 points and 8 directions between
the original and the resampled terrains. The error is taken as the
average of the pointwise difference of each traversability measure,
normalized using the values from the coarsest resolution. This res-
olution corresponds to removing all spatial information and evalu-
ating the model on a flat grid and serves as the worst case
prediction.

The results show that locomotion and acceleration require
higher resolution than the energy, see Fig. 12. It is reasonable that



Fig. 9. Model predicted locomotion map on 11 scanned terrains shown in a 3D view (first and third rows), compared to locomotion scatter plots, constructed by spawning the
vehicle at 100� 100 location. The locomotion error is stated for each terrain. The average locomotion error over all 11 validation terrains is 9:1%, with the average energy and
acceleration errors being 3:1% and 8:4% respectively. The size of all maps is 50� 50 m2 and the driving direction is to the right.

Fig. 10. Comparison between simulated and model predicted traversability measures for three selected trajectories in green, orange, and blue, over a Gaussian hill (a), a
circular ditch (b), and a step (c).
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these depend more on fine features, while the energy relies more
on coarser features such as the slope. We note that an error below
10% requires at least 0:25 m resolution.
4.4. Velocity dependency

To see if the model captures the system dynamics related to the
input target velocity we look at its correlation with the traversabil-
ity measures. Velocity has a notable effect on the acceleration, with
higher acceleration for increasing velocities, see Fig. 13. For loco-
motion and energy the dependency is not as clear, but tends to
23
lower locomotion and higher energy for increasing velocities. Part
of this is attributed to the data generation. A fixed amount of data
is saved when the vehicle is stuck, a state more prevalent for a
vehicle moving with higher speed than a slower one.
4.5. Feature sensitivity

We test how sensitive the trained model is to features in the
local heightmap that cannot be captured by local roughness and
slope relative to the heading. Because the vehicle is left–right sym-
metric there are two headings, t and t0with equivalent slope in the



Fig. 11. Left shows a manually driven route on a scanned terrain (cf. Fig. 7) with size 70�70 m2. Right shows a comparison between simulated and model predicted
locomotion, energy consumption, and acceleration along the route.
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driving direction, on an inclined plane. Depending on local terrain
irregularities, the locomotion in t and t0 could be significantly dif-
ferent. However, a model that depends only on slope and local
roughness would yield identical results, as local roughness is inde-
pendent of direction.

To test if the model captures directional dependency not
explained by roughness and slope we evaluate the difference in
locomotion enL ¼ L xn; tnð Þ � L xn; t0nð Þ on a random selection of
points xn on the entire set of laser scanned terrains. The directions
t0n are found using normals from a height field that we smooth
with a Gaussian filter with standard deviation r ¼ 3 m, based on
the vehicle wheelbase. The purpose of the smoothing is that the
original normal at a single point can be a poor representation of
the local slope. For each point, local roughness is evaluated sur-
rounding a radius of 3 m as the ratio between the actual surface
Fig. 13. The dependency of velocity on locomotion (a), energy consumption (b), and ac
column wise to compensate for the number of samples within each target velocity rang24
area and the flat surface tilted by the mean slope. A model that
is sensitive to features in the local height map beyond roughness
should systematically produce nonzero enL , except when the local
heightmap is a plane. For such a model, we expect enL to increase
with roughness, as it reflects the amount of surface irregularities
surrounding the vehicle.

The resulting root mean squared deviations (RMSD) have a gen-
eral trend, that as roughness increases so does the difference in
locomotion, see Fig. 14. This trend together with the generalization
MAE for locomotion (0.10) shows that the model not only success-
fully predicts locomotion, but also connects driving direction to
celeration (c) on the validation dataset. The 2D histograms have been normalized
e. Marginal distributions are shown on top and to the right.



Fig. 15. 2D histograms showing the interdependency of locomotion, energy consumption, and acceleration on the validation dataset, with marginal distributions on top.
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features in the terrain topography. As a sanity check, we see that
the deviation goes to zero as roughness approaches 1, at which
point the terrain is basically flat with incline. On the other end,
the plateau in RMSD for roughness greater than 1.15 is attributed
to a larger portion of locomotion predictions being in the lower
range. We suggest that the distinct increase at roughness around
1.01 occurs as the model begins to take surface irregularities into
consideration for predictions.

4.6. Complementarity of the traversability measures

To check the complementarity of the traversability measures
we evaluate their correlations based on the data from the valida-
tion terrains, see Fig. 15. We calculate the Spearman’s rank corre-
lation coefficient qcorr, which tests for a monotonic, possibly
nonlinear, relation. As can be expected, locomotion and energy
consumption are negatively correlated (qcorr ¼ �0:77). Points with
high energy consumption are strongly correlated with low locomo-
tion and can be explained by situations when the vehicle gets stuck
with spinning wheels, or at a slope too steep to traverse. The oppo-
site correlation, with high locomotion and low energy consump-
tion, is weaker. This is natural, considering that a smooth
moderate incline can be traversed at target speed but at sizeable
energy requirement. Also, driving downhill requires no work, but
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Fig. 16. Maps of weighted traversability cost in eight different headings (blue
arrowheads) for a scanned terrain. Four optimal paths are demonstrated.
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the locomotion will drop in sufficiently steep slopes because of
frictional slip. In the intermediate regime, L; E 2 0:1;0:9½ �, the loco-
motion and energy consumption show only a weak negative corre-
lation. There are no obvious correlations between acceleration and
locomotion (qcorr ¼ �0:07) or acceleration and energy
(qcorr ¼ �0:01). Altogether this confirms the assumption that the
three traversability measures are mutually complementary.

4.7. Planning with a multiobjective traversability model

To test the use of the learned traversability model for optimal
path planning with multiple objectives, we combine the three
measures into a scalar traversability cost ci and use the Dijkstra
algorithm to compute the path xif gN1 that minimizes the accumu-
lated cost

C ¼ min
XN
i¼1

eEi=eLi þ Ai

� �
ui: ð4Þ

Here eEi and eLi are energy and locomotion clipped to the range
0:1;1½ �;Ai is the acceleration, and ui 2 f1;

ffiffiffi
2

p
g is a heading depen-

dent factor. It ensures that, out of the eight possible directions to
move, the four longer diagonal directions have higher cost. The clip-
ping introduces a minimum cost per step of 0:1 as well as avoiding
division by zero, with the particular choice giving a range
ci 2 0:1;11½ � over two orders of magnitude. The base of the cost is
the energy, and the reciprocal of the locomotion introduces a non-
linear penalty to regions of low locomotion. The result for four dif-
ferent paths are presented in Fig. 16. Headings and regions with
high costs are effectively avoided, as seen by the maximum cost
and minimum locomotion in Table 2. In general, the paths are nav-
igable, with one notable exception. In the bottom right corner, path
4 surpasses a region of high costs to the south-west, by repeatedly
taking small steps in the north-west and south direction. This time
inefficient part of the path is obviously not realizable due to the
turning radius of the vehicle.

We compare the result of the multivalued cost ci, to a cost that

only depends on locomotion, cloci ¼ ð1=L
�
iÞui, see Fig. 17. Using the ci
Table 2
Properties of planned paths.

Path #: 1 2 3 4

Max. cost 0:25 0:61 0:89 0:90
Min. locomotion 0:98 0:79 0:70 0:70
Energy c.f. cloci

100% 95% 99% 95%

Time c.f. cloci
100% 103% 101% 119%
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Fig. 17. Comparison of paths using the ci (semi-transparent) and cloci (opaque) costs,
with superimposed vector fields showing the cloci cost in 8 directions.
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objective results in paths with up to 5% lower energy consumption,
but requires more time to reach the final destination, as seen in
Table 2. This is natural since using cloci is closely related to optimiz-
ing for time. With the available traversability measures, the cost
can be shaped to generate paths efficient in e.g. time or energy,
according to preference. For equipment sensitive to mechanical
wear, the cost would be weighted towards acceleration. This sim-
ple method demonstrates the use of traversability maps for path
planning, but it is clear that a more sophisticated approach is
needed for practical applications.

5. Conclusion

We conclude that continuous measures of traversability are
useful for terrain analysis and planning. For a given vehicle, simu-
lations with multibody dynamics and generated terrains can be
used to train a model that predicts traversability with 90% accuracy
on terrains scanned with at least 0.25 m resolution. A deep neural
network provides the flexibility to couple high-dimensional terrain
features with vehicle dynamics. The trained model depends on the
vehicle heading, target velocity, and on detailed features in the
topography that a model based only on local slope and roughness
cannot capture. When topography information is available,
traversability and cost maps can be generated over large regions
at a feasible computational cost. The maps can be used to produce
optimal paths with desired compromise between time, energy, and
mechanical wear. To handle different vehicle configurations, sizes,
and loads is straightforward. Interesting extension are more
sophisticated methods for path planning, and to incorporate mod-
els of finite soil strength when these become available at high
resolution.
26
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