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Abstract 

Background: It is expected that functional, mainly missense and loss‑of‑function (LOF), and regulatory variants are 
responsible for most phenotypic differences between breeds and genetic lines of livestock species that have under‑
gone diverse selection histories. However, there is still limited knowledge about the existing missense and LOF vari‑
ation in commercial livestock populations, in particular regarding population‑specific variation and how it can affect 
applications such as across‑breed genomic prediction.

Methods: We re‑sequenced the whole genome of 7848 individuals from nine commercial pig lines (average 
sequencing coverage: 4.1×) and imputed whole‑genome genotypes for 440,610 pedigree‑related individuals. The 
called variants were categorized according to predicted functional annotation (from LOF to intergenic) and preva‑
lence level (number of lines in which the variant segregated; from private to widespread). Variants in each category 
were examined in terms of their distribution along the genome, alternative allele frequency, per‑site Wright’s fixation 
index  (FST), individual load, and association to production traits.

Results: Of the 46 million called variants, 28% were private (called in only one line) and 21% were widespread (called 
in all nine lines). Genomic regions with a low recombination rate were enriched with private variants. Low‑prevalence 
variants (called in one or a few lines only) were enriched for lower allele frequencies, lower  FST, and putatively func‑
tional and regulatory roles (including LOF and deleterious missense variants). On average, individuals carried fewer 
private deleterious missense alleles than expected compared to alleles with other predicted consequences. Only a 
small subset of the low‑prevalence variants had intermediate allele frequencies and explained small fractions of phe‑
notypic variance (up to 3.2%) of production traits. The significant low‑prevalence variants had higher per‑site  FST than 
the non‑significant ones. These associated low‑prevalence variants were tagged by other more widespread variants in 
high linkage disequilibrium, including intergenic variants.

Conclusions: Most low‑prevalence variants have low minor allele frequencies and only a small subset of low‑preva‑
lence variants contributed detectable fractions of phenotypic variance of production traits. Accounting for low‑prev‑
alence variants is therefore unlikely to noticeably benefit across‑breed analyses, such as the prediction of genomic 
breeding values in a population using reference populations of a different genetic background.
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Background
Genetic variation is the basis of selective breeding in 
livestock and crop species. From a molecular point of 
view, genetic variants that result in either altered pro-
tein structures or altered gene expressions are believed 
to be responsible for much of the existing genetic vari-
ation for complex traits [1–4]. Missense variants change 
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one amino acid of the encoded protein. Loss-of-function 
variants (LOF) are predicted to disrupt protein-coding 
transcripts such that they will not be translated into pro-
teins or that they will be translated into non-functional 
proteins. Loss-of-function variants may change one 
amino acid codon into a premature stop codon (nonsense 
variants), change the reading frame during translation 
(frameshift indels), or change mRNA splicing (splic-
ing variants). As such, potentially functional variants in 
protein-coding regions are assumed to be easier to detect 
(e.g., by association analyses) than variants that moderate 
gene expression [5–7]. Thus, missense and LOF variants 
are typically prioritised as putative causal variants for 
traits of interest (e.g., [8–11]).

Missense and LOF mutations can be pathogenic. For 
instance, missense and nonsense variants account for 
57% of the entries in the Human Gene Mutation Data-
base [12] (accessed on 30 April 2021), while small indels 
account for 22% and splicing variants account for another 
9%. Similarly, in livestock species, many missense and 
LOF variants have been described as causal of genetic 
diseases and post-natal defects ([13–16]; Online Men-
delian Inheritance in Animals [17], accessed on 30 April 
2021), embryonic lethality [18, 19], or product defects 
[20, 21]. Deleterious missense and LOF variants are sub-
ject to purifying selection and are more likely to be rare, 
because they are related to unfavourable phenotypes 
such as disease risk or reduced fertility.

However, some missense and LOF mutations can be 
beneficial [22]. Moreover, some alleles that would be det-
rimental in the wild may be preferred in artificial selec-
tion settings. The artificial selection that is performed 
in livestock and crop breeding programs is expected to 
increase the frequency of alleles that favourably affect the 
traits included in the selection objectives. Therefore, it is 
also expected that missense and LOF variants are respon-
sible for differences between breeds, genetic lines, and 
varieties of livestock and crop species that have under-
gone diverse selection histories. Identification of such 
functional variants can have direct applications in gene-
assisted and genomic selection [23–25]. Furthermore, 
strategies for genetic improvement using genome editing 
have been theorized to either promote favourable alleles 
[26] or remove deleterious alleles [27] in selection candi-
dates. Nevertheless, there is still limited knowledge about 
the presence of missense and LOF variants in commer-
cial livestock populations, in particular regarding popu-
lation-specific variants, often referred to as ‘private’, and 
how the presence of population-specific functional vari-
ants can affect applications such as across-breed genomic 
prediction.

Next-generation sequencing holds great potential for 
livestock breeding. One of its main benefits is the power 

to detect large numbers of variants, many of which will 
be specific to the population under study. A large num-
ber of individuals must, however, be sequenced in order 
to achieve high variant discovery rates, particularly for 
low-frequency variants [28, 29]. Several sequencing stud-
ies have profiled genomic variation in pigs [30–32], cat-
tle [33, 34], or chicken [35]. These studies involved the 
sequencing of a small number of individuals (up to a few 
hundreds) at intermediate or high sequencing coverage. 
Alternatively, low sequencing coverage allows afford-
able sequencing of a much larger number of individuals, 
which would enable the identification of a much larger 
number of variants.

The objective of this study was to characterize the 
genetic variants in nine intensely selected pig lines with 
diverse genetic backgrounds. Particular emphasis was 
given to quantifying rare and population-specific func-
tional variants, as well as the number of missense and 
LOF variants that an average individual carries. We also 
assessed the contribution of population-specific func-
tional variants to the phenotypic variance of production 
traits.

Methods
Populations and sequencing strategy
We re-sequenced the whole genome of 7848 pigs from 
nine commercial lines (Genus PIC, Hendersonville, 
TN), with a total sequencing coverage of approximately 
32,114×. Breeds of origin of the nine lines were Large 
White, Landrace, Pietrain, Hampshire, Duroc, and syn-
thetic lines. The number of pigs that were available in the 
pedigree of each line and the number of sequenced pigs, 
by coverage, are summarized in Table 1.

Which pigs to sequence and their coverage were deter-
mined following a three-part sequencing strategy, with 
the objective of representing the haplotype diversity in 
each line. First (1), top sires and dams with the largest 
number of genotyped progeny were sequenced at 2× and 
1×, respectively. Sires were sequenced at higher cover-
age because they individually contributed more prog-
eny than dams. Then (2), individuals with the greatest 
genetic footprint on the population (i.e., those that carry 
more of the most common haplotypes) and their imme-
diate ancestors were sequenced at a target sequencing 
coverage between 1× and 30×, as assigned by an algo-
rithm that maximises the expected phasing accuracy of 
the common haplotypes from the accumulated family 
information (AlphaSeqOpt part 1; [36]). Finally (3), pigs 
that carried haplotypes with a low accumulated cover-
age (below 10×) were sequenced at 1× (AlphaSeqOpt 
part 2; [37]). Sets (2) and (3) were based on haplotypes 
inferred from marker array genotypes (GGP-Porcine HD 
BeadChip; GeneSeek, Lincoln, NE), which were phased 
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using AlphaPhase [38] and imputed using AlphaImpute 
[39]. As a result of this sequencing strategy, sequencing 
effort in each of the nine lines was proportional to their 
population size, at approximately 1.5% (0.9–2.1%) of the 
pigs in each line. Most pigs were sequenced at a low tar-
get coverage of 1 or 2×. The average individual coverage 
was 4.1×, but the median coverage was 1.5×. Population 
structure across the nine lines was assessed with a prin-
cipal component analysis using the sequenced pigs and is 
shown in Additional file 1: Fig. S1.

Most sequenced pigs, as well as pedigree relatives, were 
also genotyped with marker arrays either at low den-
sity (15k markers) using the GGP-Porcine LD BeadChip 
(GeneSeek) or at high density (50k or 80k markers) using 
different versions of the GGP-Porcine HD BeadChip 
(GeneSeek).

Sequencing and data processing
Tissue samples were collected from ear punches or tail 
clippings. Genomic DNA was extracted using Qiagen 
DNeasy 96 Blood & Tissue kits (Qiagen Ltd., Missis-
sauga, ON, Canada). Paired-end library preparation was 
conducted using the TruSeq DNA PCR-free protocol 
(Illumina, San Diego, CA). Libraries for resequencing 
at low coverage (1 to 5×) were produced with an aver-
age insert size of 350 bp and sequenced on a HiSeq 4000 
instrument (Illumina). Libraries for resequencing at high 
coverage (15 or 30×) were produced with an average 
insert size of 550 bp and sequenced on a HiSeq X instru-
ment (Illumina). All libraries were sequenced at Edin-
burgh Genomics (Edinburgh Genomics, University of 
Edinburgh, Edinburgh, UK).

DNA sequence reads were pre-processed using the 
Trimmomatic software [40] to remove adapter sequences 
and then aligned to the reference genome Sscrofa11.1 
(GenBank accession: GCA_000003025.6) using the 
BWA-MEM algorithm [41]. Duplicates were marked 

using the Picard software (http:// broad insti tute. github. 
io/ picard). Single nucleotide polymorphisms (SNPs) and 
short insertions and deletions (indels) were identified 
with GATK HaplotypeCaller (GATK 3.8.0) [42, 43] using 
default settings. Variant discovery was performed sepa-
rately for each individual and then a joint variant set for 
each population was obtained by extracting the variant 
positions from all sequenced individuals. Between 20 and 
30 million variants were discovered in each population.

Read counts supporting each allele were directly 
extracted from the aligned reads stored in the BAM files 
using a pile-up function in order to avoid biases towards 
the reference allele that are introduced by the GATK 
algorithm when applied on low-coverage whole-genome 
sequence data [44]. This pipeline uses pysam (version 
0.13.0; https:// github. com/ pysam- devel opers/ pysam), 
which is a wrapper around htslib and the samtools pack-
age [45]. We extracted the read counts for all biallelic 
variant positions, after filtering variants in potential 
repetitive regions with the VCFtools software [46]. Vari-
ants in potential repetitive regions were defined as those 
that had a mean depth value that was 3 times greater 
than the average realized coverage. In total, 46,344,624 
biallelic variants passed quality control criteria in at least 
one of the nine lines (see Additional file  2: Supplemen-
tary Methods).

Genotype imputation
Genotypes were jointly called, phased and imputed for 
a total of 537,257 pedigree-related individuals across 
lines, using the ‘hybrid peeling’ method implemented in 
AlphaPeel [47–49], which used all available SNP panels 
and whole-genome sequence data. Imputation was per-
formed separately for each line using its complete multi-
generational pedigree, which encompassed from 15,495 
to 122,753 individuals each (Table 1). We have previously 
published on the accuracy of imputation in the same 

Table 1 Number of sequenced and analysed pigs

Line Individuals 
sequenced

Individuals sequenced by coverage Individuals used in analyses

1× 2× 5× 15–30× Pedigree Imputed GWAS

A 1856 1044 649 73 90 122,753 104,661 88,342

B 1491 628 728 54 81 84,420 66,608 56,173

C 1366 685 545 44 92 88,964 76,230 64,285

D 760 394 274 27 65 50,797 41,573 –

E 731 362 311 16 42 79,981 60,474 –

F 701 351 255 28 67 52,470 39,263 –

G 445 217 176 15 37 21,129 17,224 –

H 381 193 137 16 35 35,309 29,330 –

I 321 111 158 18 34 15,495 5247 –

http://broadinstitute.github.io/picard
http://broadinstitute.github.io/picard
https://github.com/pysam-developers/pysam
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populations using this method [48]. The estimated aver-
age allele dosage correlation (correlation between the real 
genotype and the imputed allele dosage) by individual 
was 0.94 (median 0.97) [48]. Individuals with a low pre-
dicted imputation accuracy were removed before further 
analyses. An individual was predicted to have a low impu-
tation accuracy if itself or all its grandparents were not 
genotyped with a marker array or if it had a low degree 
of connectedness to the rest of the population (defined 
as the sum of coefficients of relationship between the 
individual and the rest of individuals in the pedigree). 
These criteria were based on analysis of simulated and 
real data on imputation accuracy [48]. In total, 440,610 
individuals remained, from 5247 to 104,661 individuals 
for each line (Table 1). The expected average individual-
wise dosage correlation of the remaining individuals was 
0.97 (median 0.98) [48]. Although variants with a minor 
allele frequency lower than 0.023 had an estimated var-
iant-wise dosage correlation lower than 0.90 [48], in our 
analyses, we did not filter variants based on minor allele 
frequency to account for the whole frequency spectrum.

Variant predicted consequence types
The frequency of the alternative allele was calculated 
based on the imputed genotypes. The prevalence level 
of a variant was defined as the number of lines in which 
the variant segregated. To differentiate allele frequency 
and prevalence level, we used the terms ‘rare’ and ‘com-
mon’ to refer to variants in terms of allele frequency and 
‘private’ and ‘widespread’ in terms of prevalence level, 
where private variants were those called only in one line 
and widespread variants those called in all nine studied 
lines. We calculated Wright’s fixation statistic  (FST) [50] 
for each variant among the lines in which the variant seg-
regated as  FST =  (HT −  HS)/HT, where  HT is the expected 
heterozygosity across the lines under Hardy–Weinberg 
equilibrium and  HS is the average heterozygosity within 
lines under Hardy–Weinberg equilibrium.

Variants were annotated using Ensembl Variant Effect 
Predictor (Ensembl VEP; version 97, July 2019) [51] 
using both Ensembl and RefSeq transcript databases. 
For variants with multiple predicted consequence types 
(e.g., in the case of multiple transcripts), the variant was 
annotated with the most severe predicted consequence 
type. Stop-gain, start-loss, stop-loss, splice donor, and 
splice acceptor variants were classified as LOF variants. 
Although frameshift indels are typically included in the 
LOF category, we considered them as a separate category 
in order to quantify their impact separately. The SIFT 
scores [52] for missense variants were retrieved from 
the Ensembl transcript database. Missense variants for 
which SIFT scores were available were then classified 
as deleterious when their SIFT score was less than 0.05 

and as tolerated otherwise. We considered the predicted 
consequence types of LOF, frameshift and in-frame 
indels, and missense variants as putatively functional. To 
account for the regulatory role of promoters, we classi-
fied variants within 500  bp upstream of the annotated 
transcription start site in the same consequence type as 
the variants in the 5′ untranslated region (UTR) because 
both these regions likely contain regulatory elements that 
affect transcription and because the same variant can 
be in the promoter and in the 5′ UTR of different anno-
tated transcripts for the same gene. As a result, 6.6% of 
the variants that were initially classified by Ensembl VEP 
as ‘variants upstream of gene’, were reclassified as ‘vari-
ants in promoter regions’. For further analyses, variants in 
promoters and in the 5′ and 3′ UTR were jointly consid-
ered (Promoter + UTR). Because some variants, such as 
stop-gain (LOF) variants or frameshift indels, are more 
likely to be benign when located towards the end of the 
transcripts (e.g., [53]), we also analysed the relative posi-
tion of these variants within transcripts (i.e., position 
accounting for transcript length).

Load of putatively functional alleles
We used the imputed genotypes to estimate the average 
number of alleles of each predicted consequence type 
and prevalence level that an individual carried. For the 
most common predicted consequence types, this was 
estimated from 50,000 randomly sampled variants. For 
tolerated missense variants, we used the 50,000 variants 
with the highest SIFT scores. To account for the differ-
ent number of variants for each predicted consequence 
type and prevalence level category, we calculated the het-
erozygosity and homozygosity for the alternative allele 
for each individual as the percentage of variants of each 
category that the individual carried, respectively, in the 
heterozygous state and the homozygous state for the 
alternative allele.

Association to production traits
To further explore the association of variants in each pre-
dicted consequence type and prevalence level category 
with production traits, we performed genome-wide asso-
ciation studies (GWAS) for the three largest lines, using 
all the called variants that passed filtering. We chose 
average daily gain, backfat thickness, and loin depth 
because they are complex traits with moderate heritabil-
ity estimates (from 0.21 to 0.38). The number of pigs with 
records that were included in the GWAS are in Table 1. 
Most pigs with records were born during the 2008–2020 
period. Breeding values were estimated by line with a 
linear mixed model that included polygenic effects and 
the non-genetic effects of contemporary group, litter, 
and body weight, as relevant for each trait. Deregressed 
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estimated breeding values were obtained following the 
method of VanRaden et  al. [54]. Only individuals for 
which the trait was directly measured were retained 
for the GWAS, by fitting the following univariate linear 
mixed model using the FastLMM software [55, 56]:

where y is the vector of deregressed estimated breeding 
values, xi is the vector of genotypes for the i th variant, 
coded as 0 and 2 if homozygous for either allele or 1 if 
heterozygous, βi is the allele substitution effect of the i th 
variant on the trait, u ∼ N (0, σ2uK) is the vector of poly-
genic effects with the covariance matrix equal to the 
product of the polygenic additive genetic variance σ2u and 
the genomic relationship matrix K , and e is a vector of 
uncorrelated residuals. Due to computational limitations, 
the genomic relationship matrix K was calculated using 
imputed genotypes for the high-density marker array and 
its single-value decomposition was taken.

We considered associations with a p-value equal or 
smaller than  10–6 as significant. We calculated an enrich-
ment score for each predicted consequence type and 
prevalence level category as:

where nSignCategory is the number of variants with a 
significant association with at least one trait in one of the 
three lines for a given predicted consequence type and 
prevalence level category, nNotSignCategory is the num-
ber of variants with no significant association in the same 
category, and nSignTotal and nNotSignTotal are the total 
numbers of variants with and without significant associa-
tion, respectively.

Linkage disequilibrium is pervasive between nearby 
significant variants due to the extremely high variant 
density of whole-genome sequence data. To account for 
this, we defined haplotype blocks and considered only 
one variant per haplotype block as the putative driver 
of an association that was detected in that region. We 
defined the haplotype blocks for each line separately 
using the—blocks function in Plink 1.9 [57, 58] by con-
sidering pairs of variants within 5 Mb of each other to be 
in strong linkage disequilibrium if the bottom of the 90% 
confidence interval of D’ was greater than 0.7 and the top 
of the confidence interval was at least 0.9. If the top of 
the confidence interval was smaller than 0.7, it was con-
sidered as strong evidence for historical recombination 
between the two variants. All other pairs of variants were 
considered uninformative. Regions for which at least 90% 
of the informative pairs of variants showed strong linkage 
disequilibrium were defined as a haplotype block. Within 

y = xiβi + u + e,

log

(
nSignCategory/nNotSignCategory

nSignTotal/nNotSignTotal

)
,

each haplotype block, we selected the variant with the 
most severe predicted consequence type as the candidate 
variant, as a simplification of common assumptions in 
the prioritisation of candidate variants. If there was more 
than one variant with the same predicted consequence 
type, the one with the lowest p-value was selected. This 
process was performed separately for each trait and line.

We calculated the additive genetic variance explained 
by each variant as 2pqβ̂2 , where p and q were the allele 
frequencies and β̂  is the estimated allele substitution 
effect of the variant. We expressed the variance explained 
by each variant as a percentage of the phenotypic vari-
ance of each trait. Finally, we calculated the median  FST 
of the candidate variants within each predicted conse-
quence type and prevalence level category and compared 
it to the median  FST of the same category as the logarithm 
of the ratio of the former to the latter.

Results
Prevalence of variants
A large percentage (21%) of the 46,344,624 biallelic vari-
ants that passed quality control criteria were widespread 
in all nine lines. Private variants represented a much 
smaller percentage (2 to 11%) of the variants called 
within each line. However, when counted across lines, 
private variants cumulatively predominated (28%) over 
the widespread ones. Most variants were neither pri-
vate nor widespread. The distribution of these variants 
by line is shown in Table  2. Most variants (38,642,777) 
were SNPs, of which 10,595,681 were called in a single 
line (27%; 366,486 to 2,743,965 within each line) and 
8,377,578 (22%) were called in all nine lines. The remain-
ing 7,701,847 variants were indels, of which 2,436,674 
were called in a single line (32%; 121,525 to 506,149 in 
each line) and 1,560,353 (20%) were called in all nine 
lines.

Distribution of variants and relationship 
with recombination rate
The number of variants by chromosome was strongly cor-
related with chromosome length (r = 0.98, P < 0.05) (see 
Additional file 3: Table S1). The variant density by chro-
mosome was negatively correlated with chromosome 
length (r = − 0.87, P < 0.05) and (see Additional file  3: 
Table S1). The variant density within 1-Mb non-overlap-
ping windows was positively correlated with recombina-
tion rate in that window (r = 0.65, P < 0.05; Fig. 1a) [59]. 
For example, in line A, there was on average one variant 
every 81 bp, but in the 5% 1-Mb windows with the low-
est and highest recombination rates there was on average 
one variant every 152 and 54  bp, respectively (2.8-fold 
more variants in windows with high recombination rate 
than in windows with low recombination rate). Across 
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all lines, there was one variant every 49  bp on average, 
but in the 5% 1-Mb windows with the lowest and high-
est recombination rates there was on average one variant 
every 79 and 34 bp, respectively (2.3-fold more variants 
in windows with high recombination rate).

The distribution of private and widespread variants 
along the genome also differed. The density of wide-
spread variants was more correlated with recombination 
rate than the density of private variants (Fig.  1b and c). 
As a consequence, private variants represented a larger 
proportion of the variation in regions with low recombi-
nation rate, which were depleted of widespread variants. 
Across all lines, in the 5% 1-Mb windows with the high-
est recombination rates there was on average one private 
variant every 167  bp and one widespread variant every 
148  bp (1.1-fold more private variants relative to wide-
spread). In the 5% 1-Mb windows with the lowest recom-
bination rates there was on average one private variant 
every 260  bp and one widespread variant every 531  bp 
(2.0-fold more private variants relative to widespread). 
There were no genomic regions that were enriched for 
private variants across the nine lines (see Additional 
file 4: Fig. S2).

Frequency and fixation index
The prevalence level and alternative allele frequency were 
related, in a way that less prevalent variants had a lower 
allele frequency (Fig. 2) and a lower  FST (Fig. 3). Private 
variants had an average alternative allele frequency of 
0.03 (SD = 0.09), as opposed to widespread variants, 
which had an average alternative allele frequency of 0.50 
(SD = 0.25). Because the less prevalent variants gener-
ally had low alternative allele frequencies, they showed a 
small degree of differentiation between the lines in which 

they segregated  (FST = 0.04, SD = 0.07). In contrast, wide-
spread variants had the largest degree of differentiation 
between lines  (FST = 0.21, SD = 0.11).

Prevalence and frequency of putatively functional variants
The predicted consequence types of the variants are 
listed in Table 3. Half (49.9%) of the variants were called 
in intergenic regions and another 47.0% of the variants 
were called in intronic regions. Only 2.2% of the variants 
were called in the promoter or 5′ and 3′ UTR. The coding 
variants comprised 0.9% of the total variants, of which 
more than half were missense (45.5%), frameshift indels 
(3.1%) or LOF (3.7%). The density of putatively functional 
variants was only weakly correlated with recombination 
rate in 1-Mb non-overlapping windows (Fig. 1d).

The low-prevalence variants (i.e., the variants that were 
identified in one or a few lines) were enriched for mis-
sense and LOF variants, as well as for potentially regula-
tory variants such as those located in the promoter and 
5′ and 3′ UTR and other intronic variants. In contrast, 
the high-prevalence variants (i.e., the variants that were 
identified in many or all the lines) were enriched for 
frameshift indels and for synonymous (non-significant 
correlation) and intergenic variants. Although frameshift 
indels are typically included in the LOF category, our 
results show that the LOF category is very heterogene-
ous and the frameshift indels presented opposite patterns 
to other LOF variants. Therefore, we studied frameshift 
indels as a separate category.

Although the LOF variants had lower allele frequen-
cies than the intergenic variants when they had low 
prevalence, they had similar allele frequencies in high-
prevalence levels (Table 4). Thus, there was a set of LOF 
variants that were prevalent across lines and that also had 

Table 2 Number of variants by line

Line Biallelic variant 
sites (×  106)

SNPs Indels

All biallelic 
(×  106)

Private (×  106) Widespread 
(×  106)

All biallelic 
(×  106)

Private (×  106) Widespread 
(×  106)

A 28.83 24.38 1.56 8.38 4.44 0.39 1.56

B 28.57 24.32 2.74 8.38 4.24 0.51 1.56

C 28.88 24.60 2.51 8.38 4.28 0.44 1.56

D 21.44 17.94 1.23 8.38 3.50 0.32 1.56

E 19.06 15.71 0.51 8.38 3.35 0.22 1.56

F 20.21 16.86 0.42 8.38 3.35 0.16 1.56

G 23.38 19.64 0.50 8.38 3.74 0.16 1.56

H 22.32 18.78 0.37 8.38 3.55 0.12 1.56

I 24.59 20.82 0.76 8.38 3.77 0.13 1.56

Total 46.30 38.64 10.60 8.38 7.70 2.44 1.56
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particularly high frequencies within lines. Missense vari-
ants had lower allele frequencies than the intergenic vari-
ants for all prevalence levels, especially those classified as 
deleterious. The low-prevalence missense variants were 
enriched for a larger fraction of deleterious variants and 

lower SIFT scores than high-prevalence missense vari-
ants (Fig.  4). Unlike missense or synonymous variants, 
low-prevalence stop-gain (LOF) variants and frameshift 
indels were more likely located towards the start of the 
transcripts (Fig.  5). In contrast to LOF and missense 

Fig. 1 Relationship of variant density in line A (black and grey bars) with recombination rate (red line). The correlation (r) between variant density 
and recombination rate in 1‑Mb non‑overlapping windows is reported
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variants, frameshift and in-frame indels had intermedi-
ate allele frequencies, much higher than those of inter-
genic variants (Table 4), which indicated that the minor 
allele was the reference allele, in many cases. Within 
prevalence level, the LOF and deleterious missense vari-
ants had lower  FST than the intergenic variants (Table 5), 
probably because they were kept at low allele frequencies 
due to negative selection pressure. Frameshift and in-
frame indels also had lower  FST than intergenic variants, 
in spite of their intermediate allele frequencies.

Load of putatively functional alleles by prevalence level
Most missense deleterious and LOF variants that an indi-
vidual carried in the homozygous state for the alternative 

allele were high-prevalence variants. Only a small pro-
portion of these variants were private. An individual 
carried on average 1048 (SD = 57) LOF variants in the 
homozygous state for the alternative allele, of which 713 
(SD 36) were widespread across all nine lines and only 
20 (SD = 7) were private. An average individual carried 
1379 (SD = 165) deleterious missense variants in the 
homozygous state for the alternative allele, of which 1012 
(SD = 79) were widespread and only 4 (SD = 3) were pri-
vate. An average individual carried 1080 (SD = 89) LOF 
and 2632 (SD = 235) deleterious missense variants in the 
heterozygous state.

We found signals of negative selection against delete-
rious missense variants, in particular private ones. Indi-
viduals proportionally carried fewer deleterious missense 
variants in the homozygous state for the alternative allele 
than variants of other predicted consequence types, 
regardless of prevalence level (Fig.  6). Individuals also 
carried proportionally less private tolerated missense, 
synonymous and LOF variants in the homozygous state 
for the alternative allele than expected.

Associations of low‑prevalence variants with production 
traits
Significant variants were enriched for putatively func-
tional and regulatory variants of different prevalence lev-
els, and depleted of intergenic variants. In total, 108,109 
variants were significantly associated with at least one 
trait in one line. Figure 7a and b summarise the enrich-
ment scores for all significant variants. The predicted 
consequence types that reached the greatest enrichment 
scores were LOF, frameshift indels, and unclassified mis-
sense variants, with various prevalence levels. Variants 
with intermediate prevalence levels were among the most 
enriched. These trends were accentuated when only con-
sidering candidate variants from haplotype blocks. In 
each line, we defined from 1554 to 2118 haplotype blocks. 
In total, across all lines and traits, 6692 candidate vari-
ants remained after accounting for linkage disequilibrium 
within each haplotype block. Figure 7c and d summarise 
the enrichment scores for the candidate variants. Enrich-
ment scores based on the candidate variants revealed a 
stronger depletion of intergenic and intronic variants, 
and a much stronger enrichment for LOF, frameshift 
indels, and missense variants. For putatively functional 
variants, there were no clear trends of enrichment scores 
across prevalence levels. The trends of the enrichment 
scores between predicted consequence types and preva-
lence levels were similar for the three evaluated traits.

In general, the lower allele frequency of low-prevalence 
variants hindered the detection of significant associations 
for these variants. Low-prevalence variants that were sig-
nificantly associated with the evaluated traits actually 

Fig. 2 Frequency of the alternative allele by prevalence level. Red 
dots indicate means. In blue, values greater than 1.5 times the 
interquartile range

Fig. 3 Wright’s fixation statistic  (FST) by prevalence level. Red dots 
indicate means. In blue, values greater than 1.5 times the interquartile 
range



Page 9 of 16Ros‑Freixedes et al. Genetics Selection Evolution           (2022) 54:39  

had intermediate allele frequencies that were greater 
than expected for their prevalence level. Low-preva-
lence variants in general explained low percentages of 
variance (Fig. 8), although some low-prevalence variants 
explained up to 3.2% of phenotypic variance. Significant 

variants had higher  FST than other variants of the same 
predicted consequence type and prevalence level (Fig. 9). 
The enrichment of significant variants for higher  FST was 
especially strong for low-prevalence variants, which in 
some instances reached  FST of ~ 0.15.

Table 3 Predicted consequence types of variants by prevalence level

The most severe consequence of each variant was used. The main Sequence Ontology (SO) terms are shown in order of severity (more severe to less severe) as 
estimated by Ensembl Variant Effect Predictor. The correlation (r) between the percentage of variants of each consequence type and prevalence is reported

In bold, categories that will be analysed in the next sections
a If frameshift indels were included in this category: r = −.06 (P > 0.05)
b Significant correlation (P < 0.05)

Consequence type Percentage of variants (%) by prevalence level r

1 2 3 4 5 6 7 8 9 Total

Loss‑of‑functiona 0.061 0.035 0.026 0.021 0.019 0.017 0.019 0.018 0.019 0.032 − .76b

 Splice acceptor/donor 0.038 0.023 0.014 0.010 0.009 0.007 0.008 0.008 0.008 0.018 − .79b

 Stop‑gain 0.014 0.009 0.008 0.008 0.007 0.007 0.007 0.006 0.006 0.009 − .82b

 Stop‑loss 0.005 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 − .36

 Start‑loss 0.004 0.002 0.002 0.002 0.001 0.001 0.002 0.002 0.002 0.002 − .47

Frameshift indel 0.014 0.017 0.019 0.021 0.020 0.021 0.024 0.032 0.055 0.027 + .81b

In‑frame indel 0.005 0.008 0.009 0.008 0.008 0.008 0.007 0.007 0.005 0.006 − .23
Missense 0.556 0.378 0.355 0.340 0.344 0.336 0.319 0.306 0.325 0.393 − .73b

 Deleterious 0.201 0.092 0.074 0.069 0.064 0.062 0.054 0.048 0.040 0.096 − .78b

 Tolerated 0.223 0.170 0.165 0.165 0.173 0.167 0.161 0.159 0.177 0.183 − .52
Splice region 0.105 0.098 0.088 0.081 0.083 0.081 0.080 0.081 0.085 0.090 − .76b

Synonymous 0.240 0.313 0.334 0.348 0.355 0.353 0.337 0.331 0.353 0.316  + .65
Untranslated regions 2.300 2.252 2.257 2.191 2.146 2.156 2.093 2.089 2.061 2.180 − .98b

 Promoter + 5’ UTR 0.879 0.825 0.812 0.812 0.787 0.813 0.759 0.766 0.759 0.810 − .90b

 3’ UTR 1.421 1.427 1.445 1.378 1.359 1.343 1.334 1.322 1.302 1.370 − .94b

Non‑coding transcript exon 0.104 0.113 0.107 0.113 0.128 0.118 0.105 0.109 0.117 0.111  + .25

Intronic 47.744 47.571 47.634 47.162 46.513 46.709 46.701 46.355 46.132 46.981 − .95b

Upstream of gene 3.062 3.066 3.075 3.041 3.083 3.056 2.929 2.943 2.936 3.015 − .81b

Downstream of gene 2.660 2.679 2.740 2.747 2.746 2.705 2.700 2.707 2.676 2.692 + .04

Intergenic 43.148 43.468 43.355 43.927 44.553 44.439 44.687 45.021 45.235 44.154 + .97b

Table 4 Frequency of the alternative allele by predicted consequence type and prevalence level

Values are medians

Consequence type Frequency of the alternative allele by prevalence level

1 2 3 4 5 6 7 8 9 Total

Loss‑of‑function 0.0010 0.017 0.048 0.062 0.089 0.114 0.151 0.223 0.489 0.020

Frameshift indel 0.4816 0.758 0.757 0.420 0.302 0.260 0.339 0.456 0.693 0.634

In‑frame indel 0.8893 0.903 0.910 0.898 0.812 0.785 0.702 0.595 0.572 0.735

Deleterious missense 0.0006 0.018 0.043 0.061 0.078 0.092 0.125 0.170 0.350 0.010

Tolerated missense 0.0011 0.027 0.047 0.066 0.083 0.106 0.143 0.202 0.443 0.074

Synonymous 0.0037 0.032 0.049 0.066 0.086 0.107 0.151 0.205 0.447 0.110

Promoter + UTR 0.0019 0.034 0.059 0.078 0.099 0.122 0.166 0.226 0.475 0.102

Intronic 0.0015 0.035 0.059 0.080 0.102 0.126 0.171 0.235 0.485 0.110

Intergenic 0.0015 0.033 0.058 0.080 0.105 0.129 0.173 0.237 0.483 0.116
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Discussion
Our results contextualize the importance of population-
specific and low-prevalence genetic variants. In the 

following, we will discuss: (1) the distribution and func-
tional annotation of low-prevalence variants, (2) the load 
of putatively functional alleles by prevalence level, and (3) 
the association of low-prevalence variants with produc-
tion traits.

Distribution and functional annotation of low‑prevalence 
variants
The main difficulty for the study of low-prevalence 
genetic variants is that the prevalence of a variant across 
lines is strongly related to its allele frequency in the line, 
such that the low-prevalence variants are also rare within 
the lines in which they occur. This is possibly because 
low-prevalence variants are relatively recent or con-
strained by negative selection.

On the one hand, the density of private variants was 
less correlated with recombination rate than the density 
of widespread variants and, therefore, regions with a low 
recombination rate were enriched for private variants. 
Although the interplay between recurring sweeps, back-
ground selection, and other phenomena at play is not 
fully understood, it is generally accepted that selection 
on linked variants leads to loss of variation in regions 
with low recombination rates [60]. Our observation that 
regions with a low recombination rate were enriched for 
private variants suggests that private variants may have 
been less affected by selective sweeps than widespread 
variants. This is consistent with previous observations 
of the younger age of rare and low-prevalence variants 
[61] and suggests that private variants tend to have arisen 
more recently than widespread variants, likely after line 
differentiation, and accumulated in low-recombining 
regions due to the reduced efficacy of purifying selection 
in those regions [62, 63].

On the other hand, low-prevalence variants were 
enriched for putatively functional variants with signs of 
a greater severity (stop-gain and frameshift indels that 
occur earlier in the transcript, and missense variants that 
were predicted to be deleterious). Variants that affect 
performance traits or that cause a detrimental condition 
are under directional selection and are therefore driven 
towards loss or fixation [64, 65]. The low  FST estimates 
for the low-prevalence variants indicated that selection 
pressure keeps these variants at low minor allele frequen-
cies even when they occur in several lines, especially if 
they are putatively functional [66]. This could be caused 
by natural selection or by similar selection objectives 
across livestock populations. These observations are also 
consistent with previous reports that some putatively 
functional variant categories (such as stop-gain and del-
eterious missense) are enriched for variants that are pri-
vate to single cattle breeds [33], that putatively functional 
variants are less likely to have a high frequency of the 

Fig. 4 Classification of the missense variants and median SIFT score 
by prevalence level

Fig. 5 Relative position within transcript of stop‑gain, frameshift 
indels, missense, and synonymous variants, by prevalence level
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alternative allele across multiple chicken lines [35], and 
that population-specific variants in non-African humans 
are enriched for putatively functional variants [67].

The relationship of variant prevalence across lines 
with allele frequency highlights the suitability of using 
a low-coverage sequencing approach to study this 

fraction of genetic variation. Nonetheless, bioinformat-
ics pipelines for calling, genotyping, and even imputing 
such variants should account for the increased uncer-
tainty because of their low allele frequency. We decided 
to use a very relaxed variant calling strategy with little 
filtering in order to account for as many rare variants 

Table 5 Wright’s fixation statistic  (FST) by predicted consequence type and prevalence level

Values are medians

Consequence type FST by prevalence level

2 3 4 5 6 7 8 9 Total

Loss‑of‑function 0.003 0.022 0.047 0.066 0.094 0.114 0.145 0.171 0.071

Frameshift indel 0.010 0.042 0.065 0.081 0.088 0.120 0.146 0.148 0.114

In‑frame indel 0.011 0.035 0.051 0.070 0.087 0.105 0.115 0.130 0.077

Deleterious missense 0.005 0.029 0.055 0.073 0.087 0.110 0.131 0.160 0.068

Tolerated missense 0.009 0.036 0.061 0.084 0.107 0.127 0.158 0.184 0.108

Synonymous 0.013 0.040 0.062 0.090 0.110 0.130 0.158 0.194 0.117

Promoter + UTR 0.009 0.036 0.060 0.086 0.108 0.131 0.158 0.190 0.110

Intronic 0.009 0.037 0.063 0.089 0.111 0.136 0.164 0.195 0.118

Intergenic 0.009 0.036 0.066 0.091 0.112 0.139 0.167 0.193 0.121

Fig. 6 Average percentage of variants in the homozygous state for the alternative allele or in the heterozygous state across individuals by 
predicted consequence type and prevalence level. LOF: loss‑of‑function; UTR: untranslated regions
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as possible, but a sizeable fraction of these rare vari-
ants were discarded after imputation because they were 
fixed for the imputed individuals that passed quality 
control. Low-coverage sequencing is also not suitable 
for other types of genetic variants, such as structural 
variations (copy number variants, tandem duplica-
tions, and inversions), which could also be putatively 
functional and population-specific [68]. Of course, 
the number of called variants and the proportion that 
were private or widespread depend on the number of 

sequenced lines [32, 35] as well as on the sequencing 
effort in each line.

Our results also suggest that what is typically grouped 
as LOF is actually a heterogeneous category. In particu-
lar, frameshift indels showed patterns that did not con-
form to the other predicted consequence types.

Load of putatively functional alleles by prevalence level
We found that an average individual carried a larger 
number of LOF and missense deleterious variants than 

Fig. 7 Enrichment score for the number of significant variants in the genome‑wide association study by variant prevalence level and predicted 
consequence type. Either all significant variants (a, b) or only the most severe significant variants within haplotype blocks (c, d) were used. 
Prevalence level was considered across all nine lines (a, c) or only across the three lines included in the genome‑wide association study (b, d)

Fig. 8 Maximum percentage of phenotypic variance explained by individual candidate variants within each prevalence level and predicted 
consequence type. Only the candidate variants after accounting for linkage disequilibrium were used. Prevalence level was considered across all 
nine lines (a) or only across the three lines included in the genome‑wide association study (b)
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previously reported in other livestock species or in 
humans. However, to date there is no clear consensus on 
the number of LOF and deleterious missense alleles that 
are present in the genome of an average individual. In 
humans, it has been estimated that an average individual 
carries 100 to 150 LOF alleles [64, 69–71] and around 
800 weakly deleterious mutations [72], most of which are 
rare. The average number of LOF and deleterious alleles 
carried by an individual has been reported to be larger in 
domestic livestock populations than in wild populations 
[73], including estimates of 100 to 300 deleterious vari-
ants in domestic pigs [74], over 400 deleterious variants 
in domestic chicken [74], and 1200 to 1500 deleterious 
variants in domestic yak [75]. Similar magnitudes have 
been reported in dogs [76], rice [77], and sunflower [63].

It has been debated why healthy individuals carry a 
larger number of LOF variants in the homozygous state 
than expected [78, 79]. One possible reason is that not 
all predicted LOF variants are detrimental and their 
functional impact should be validated before being con-
sidered as such. Many predicted LOF variants are in 
fact neutral, advantageous (either in the wild or in con-
trolled production environments), or may be the result 
of sequencing and annotation errors [78]. The claim that 
not all predicted LOF variants are detrimental is sup-
ported by the large proportion of LOF observed in the 
homozygous state for the alternative allele compared to 
the other consequence types, which casts doubt on the 
real impact of those variants. In contrast, individuals car-
ried a lower proportion of alleles predicted to be delete-
rious missense in the homozygous state, which supports 
that such variants may have a real impact on genetic 
variation of production traits and, therefore, be subject to 
selection pressure.

These observations have implications for the identifica-
tion of variants to be used for genomic prediction or for 
genomic edition strategies, such as promotion of alleles 
by genome editing (PAGE) [26] or removal of alleles 

by genome editing (RAGE) [27]. Efforts to promote or 
remove alleles should target variants that make a sub-
stantial contribution to traits of interest, i.e. functional 
variants. However, it is hard to computationally predict 
and statistically estimate the effects of such variants, 
especially if they have a low allele frequency. The number 
of LOF variants in the homozygous state for the alterna-
tive allele suggests that predicted loss of function is not 
a good indicator that a variant is strongly deleterious in 
the context of livestock breeding. Similarly, bioinformatic 
predictors of missense variant effects appear to be not 
very accurate [80, 81]. High-throughput fine-mapping 
and variant screening would be needed to ascertain 
variant causality and disentangle causality from linkage 
disequilibrium.

Associations of low‑prevalence variants with production 
traits
Genome-wide association studies for three polygenic 
traits of economic importance in the three largest lines 
revealed that the variants with significant associa-
tions were enriched for putatively functional roles, such 
as LOF, frameshift indels, and missense variants, and 
depleted of intergenic variants. This pattern of enrich-
ment was similar to previous reports from human data-
sets [82]. However, only a few of the population-specific 
and low-prevalence variants were significantly associated 
with the traits, even after accounting for linkage disequi-
librium. Most of the significant variants showed interme-
diate or high prevalence levels, which is consistent with 
previous meta-analyses in cattle that showed that signifi-
cant variants are often common variants [83]. This could 
be because quantitative trait nucleotides have interme-
diate or high allele frequencies or because most studies 
are underpowered to map rare causal variants. The latter 
may be more likely given that the significant private and 
low-prevalence variants had intermediate allele frequen-
cies. Although it cannot be ruled out that the significant 
low-prevalence variants reached intermediate allele fre-
quencies by drift or by hitchhiking with linked variants 
under selection [84], it is plausible that these variants 
have biological functions that contribute to trait pheno-
typic variance. However, these variants amounted to a 
small number of variants that generally explained small 
fractions of variance.

Determining which of the variants that are in linkage 
disequilibrium is the most likely to be causal remains 
one of the greatest challenges in genomics. Here we pri-
oritised the most severe variants within each haplotype 
block, which were more likely to have a low prevalence, 
as candidate variants. However, other more widespread 
variants, including intergenic variants, that were in high 

Fig. 9 Enrichment score for the  FST median of the candidate variants 
within each prevalence level and predicted consequence type. Only 
the candidate variants after accounting for linkage disequilibrium 
were used. Prevalence level was considered across all nine lines
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linkage disequilibrium with the significant low-preva-
lence variants successfully acted as tag variants and cap-
tured much larger fractions of trait variance. This makes 
the widespread variants more suitable for applications in 
animal breeding and justifies their inclusion in tools such 
as marker arrays. A similar result was found in cattle, 
where splice site and synonymous variants explained the 
largest proportions of trait variance, while missense vari-
ants explained almost no variance [85]. It is worth point-
ing out that even a variant with a large allele substitution 
effect will explain a small percentage of variance if the 
minor allele is rare.

It is conceivable that some of the low-prevalence vari-
ants with a low allele frequency have non-negligible 
effects for traits of interest. In spite of the large number 
of individuals included in this study, the large number 
of variants investigated and the pervasiveness of linkage 
disequilibrium among them still make disentangling their 
contribution to trait variance very challenging. While 
genome-wide association studies that involve more than 
one breed typically find multiple breed-specific associa-
tions (e.g., [86]), based on our results it seems unlikely 
that breed-specific associations arise from the low-
prevalence variants. Instead, breed-specific associations 
depend on the effect of the differences in allele frequen-
cies, linkage disequilibrium structure, and other genetic 
background features on the power to detect the effect of 
prevalent variants across populations. Significant vari-
ants had higher  FST estimates than non-significant vari-
ants, which is also consistent with previous reports [83]. 
Although the enrichment for higher  FST was greater for 
low-prevalence variants, it remains unclear to which 
degree the significant low-prevalence variant with high 
 FST explain differences among lines for the studied traits 
or their allele frequency reflect selection history.

Conclusions
Low-prevalence variants are enriched for putatively 
functional variants, including LOF and deleterious mis-
sense variants. However, most low-prevalence variants 
are kept at very low allele frequencies by negative selec-
tion or because they have arisen more recently than 
other higher-prevalence variants. Only a small subset of 
low-prevalence variants had intermediate allele frequen-
cies and large estimated effects on production traits. 
Low-prevalence variants that were significantly associ-
ated with complex traits had greater degrees of differen-
tiation between lines (per-site  FST) than non-significant 
variants in the same category. However, more widespread 
variants, including intergenic variants, captured larger 
proportions of trait variance. Therefore, overall, account-
ing for population-specific and other low-prevalence 
variants is unlikely to noticeably benefit across-breed 

analyses, such as the prediction of genomic breeding val-
ues in a population using reference populations of a dif-
ferent genetic background.
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