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A B S T R A C T

We present a broad class of semi-parametric models for time series of random sums of positive variables.
Our methodology allows the number of terms inside the sum to be time-varying and is therefore well suited
to many examples encountered in the natural sciences. We study the stability properties of the models
and provide a valid statistical inference procedure to estimate the model parameters. It is shown that the
proposed quasi-maximum likelihood estimator is consistent and asymptotically Gaussian distributed. This work
is complemented by simulation results and applied to time series representing growth rates of white spruce
(Picea glauca) trees from a few dozen sites in Québec (Canada). This time series spans 41 years, including
one major spruce budworm (Choristoneura fumiferana) outbreak between 1968 and 1991. We found significant
growth reductions related to budworm-induced defoliation up to two years post-outbreak. Our results also
revealed the positive effects of maximum summer temperature, precipitation, and the climate moisture index
on white spruce growth. We also identified the negative effects of the climate moisture index in the spring and
the maximum temperature of the previous summer. However, the model’s performance on this data set was
not improved when the interactions between climate and defoliation on growth were considered. This study
represents a major advance in our understanding of budworm–climate–tree interactions and provides a useful
tool to project the combined effects of climate and insect defoliation on tree growth in a context of greater
frequency and severity of outbreaks coupled with the anticipated increases in temperature.
1. Introduction

Many ecological studies require measuring the positive dependent
variables of random numbers of statistical individuals sampled over
time (Girona et al., 2019). This approach is often necessary, as (1) re-
searchers cannot observe the entire population, and (2) the individuals
observed by researchers depend on time-varying resources. Applica-
tions of this statistical approach include studies of species behaviour
and ecological services. In forestry, for example, we can be interested
in time series that represent the mass or size of a given tree species.
We then randomly sample individual trees each year and observe the
corresponding mass or volume, e.g., see Vourlitis et al. (2022). This
approach is also applied to evaluate the area occupied by a species
in relation to the available resources over time (Labrecque-Foy et al.,
2020). In fisheries, we can use this approach to track temporal changes
in the weight of fish caught, e.g., Chan et al. (2020).

In this paper, we evaluate the impact of climate change and insect
outbreak on tree growth as recorded by growth rings. Spruce budworm
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(Choristoneura fumiferana; SBW) is the most important defoliator of
conifer trees in the eastern North American boreal forest (Girona et al.,
2018). In the province of Québec (Canada), the forest area affected
by this species of Lepidoptera over the last century covers more twice
the size of the Ukraine (Navarro et al., 2018). At the epidemic stage,
massive populations of larvae cause widespread damage to tree fo-
liage (Lavoie et al., 2019). SBW affects the main conifer boreal species
in Canada, including balsam fir (Abies balsamea), white spruce (Picea
glauca), and black spruce (Picea mariana), resulting in a major impact
on boreal forest regeneration and dynamics (Martin et al., 2020).
Moreover, SBW outbreaks produce important economic consequences
through the loss of forest productivity.

Previous works have studied the changes of forest composition
following insect outbreaks, e.g., Morin et al. (2021), the response of
SBW outbreaks to climate change, e.g, Fleming and Volney (1995)
and Berguet et al. (2021), and demography, i.e., the rate of mortality
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of spruce during outbreaks (Gauthier et al., 2015). However, despite
the major implications of future climate change, we continue to have
a limited understanding of the combined effects of SBW outbreak and
climate change on tree growth. Given that temperature and its varia-
tions as well as the timing and amount of precipitation affect organisms’
survival, reproduction cycles, and spatial dispersion (Aber et al., 2001),
it is critical to understand the links between SBW outbreaks, climate,
and tree growth to improve our understanding of the impacts of future
climate change on forest productivity (Klapwijk et al., 2013). This
concern is amplified by the expected increase in SBW outbreak severity
and frequency under future climate scenarios (Navarro et al., 2018;
Seidl et al., 2017).

In this paper, we contribute to filling this gap by proposing a
broad class of semi-parametric models for positive-valued time series.
Time-series data are common in forestry and the standard statisti-
cal approaches include descriptive exploratory techniques and linear
mixed-effect models with time-varying variables on transformed data,
e.g., Girona et al. (2016) and Boulanger and Arseneault (2004), and cor-
related error terms (Girardin et al., 2016). However, these approaches
suffer from several drawbacks. Descriptive exploratory techniques do
not allow the drawing of inferences from the data, and linear mixed-
effect models, as shown in several papers, e.g., Chou et al. (2015), have
demonstrated that specifying a linear model on transformed data often
leads to a poor predictive performance. Applying a log transformation,
for instance, can make the positive-valued data more normal; nonethe-
less, the obtained predicted value underestimates the expected value
because of Jensen’s inequality. Furthermore, models having autocorre-
lated error terms do not account for the complex, dependent structure
of tree-ring growth. To provide a more robust and reliable approach, we
present a class of semi-parametric autoregressive models and use them
to investigate the relationships between climate, SBW outbreak, and the
growth of white spruce. We also discuss the advantages of applying a
repeated-measures design.

Many previous studies have focused on modelling non-Gaussian
time series, such as positive-valued processes. Gaussian processes can
be represented as linear models, whereas time series of count or binary
data are modelled by non-linear dynamics, e.g., Sim (1990), Weiß
(2018), and Davis et al. (2016) and references therein. For positive-
valued time series data, Engle and Russell (1998) proposed the range
volatility model as an alternative to GARCH models in finance, and
ts use has rapidly expanded because of its diverse applicability. We
efer the interested reader to the review by Chou et al. (2015). Re-
ently, Aknouche and Francq (2020) considered a positive-valued time
eries whose conditional distribution had a time-varying mean depen-
ent on exogenous variables. Our approach here differs slightly from
heirs, as the positive process under consideration is itself the sum of a
andom number of other positive variables.

Our approach is driven strongly by the available data at hand,
hich consist of multiple time series collected from several sites, where

he number of sampled individuals varies over time and between
ites. Hence, considering an aggregate value such as the sum or the
ean of growth rings can produce a loss of variability linked to the

ampling scheme. Moreover, in fields such as finance, some modelling
elies on considering empirical quantities such as realized volatility;
istorical returns of investment products within a defined period are
hen analysed, e.g., Allen et al. (2010). Unlike our framework, which
s typical for ecological studies, all transactions on investment products
re recorded, i.e., the entire statistical population is observed.

Our paper is organized as follows. In Section 2, we define the model
sed throughout this paper and discuss our modelling choice. The time-
eries properties of the models are also assessed in this section. We then
resent the maximum-likelihood based inference and its asymptotic
roperties in Section 3. Section 4 contains a small simulation study
nd an application to empirical data related to the growth of white
pruce. All auxiliary lemmas and mathematical proofs are presented
2

n Appendix.
2. Models and stability results

We present a generalized linear dynamic model for the time series
of random sums of positive variables. This model relies on an empirical
application where we analyse the annual growth of spruce trees subject
to climate variation and SBW oubreak. We measured growth using tree
cores collected at 1.30 m height from the trunks of individual trees in
a stand (Girona et al., 2017). Sample preparation, measurement, and
analysis conformed to standard dendroecological protocols (Krause and
Morin, 1995). Cores were air-dried, mounted on wood boards, and then
sanded. Tree-ring width was measured using WinDendro (Guay et al.,
1992) or a manual Henson micrometer having an accuracy of 0.01 mm.
The tree-ring series measurements covered the last 41 years and were
cross-dated using TSAP-Wi (Rinntech, Heidelberg, Germany).

We denote by 𝑌𝑘,𝑡, 𝑡 ∈ Z, 𝑘 = 1,… , 𝐾 the time series of the total basal
area increment related to the 𝑘−th observational site, i.e., the sum of
increases in the trunk cross-sectional area for the 𝑛𝑘,𝑡 trees sampled for
site 𝑘 in year 𝑡. We aim to model the dynamics of this process both in
terms of its own past and in the presence of 𝑚 additional covariates
𝑋𝑘,𝑡 ∈ R𝑚. In the empirical application presented in Section 4, the
covariate process encompasses climate variables, including tempera-
ture and precipitation, and the level of SBW-related defoliation of the
previous years.

Our model is given by

𝑌𝑘,𝑡 =
𝑛𝑘,𝑡
∑

𝑙=1
𝜁𝑙,𝑘,𝑡, (1)

where conditionally on 𝑛𝑘,𝑡, 𝑋𝑘,𝑡, 𝑛−𝑘,𝑡 = (𝑛𝑘,𝑡−𝑠, 𝑠 ≥ 1) and 𝑌 −
𝑘,𝑡 =

𝑌𝑘,𝑡−𝑠, 𝑠 ≥ 1), the variables 𝜁𝑙,𝑘,𝑡, 1 ≤ 𝑙 ≤ 𝑛𝑘,𝑡, which represent the basal
rea increments of individual sampled trees, are distributed identically
s a random variable 𝜁𝑘,𝑡 of mean 𝜆𝑘,𝑡. Moreover, (𝑛𝑘,𝑡)𝑡∈Z is a sequence
f i.i.d random variables where, conditionally on 𝑛−𝑘,𝑡, the variable 𝑛𝑘,𝑡
s independent from 𝑋𝑘,𝑡 and 𝑌 −

𝑘,𝑡. The mean process is given by

𝛿(𝜆𝑘,𝑡) =∶ 𝜂𝑘,𝑡 = 𝜔𝑘 +
𝑝
∑

𝑗=1
𝛼𝑗

𝑌𝑘,𝑡−𝑗
𝑛𝑘,𝑡−𝑗

+ 𝛽⊤𝑋𝑘,𝑡, 𝑘 = 1,… , 𝐾 and

𝑡 = 1,… , 𝑇 , (2)

such that 𝜔𝑘 ∈ R, 𝛼𝑗 ∈ R, 𝛽 = (𝛽1,… , 𝛽𝑚) ∈ R𝑚, and 𝜑𝛿 is a real-
valued function defined on R+ that can depend on a parameter 𝛿. It is
worth mentioning, without loss of generality, that the covariate process
considered at time 𝑡 is included in the specification of 𝜆𝑘,𝑡 because
multiple lags of a given set of variables can be included by simply
stacking them into a vector. An example is the case of defoliation levels,
as shown in our application, as growth can be affected by defoliation
occurring up to five years before the present (from 𝑡 − 5 to 𝑡 − 1).

The variables 𝜁𝑘,𝑡 will be referred to as the unity random variables.
We do not make any assumptions about the distribution of the variables
𝜁𝑘,𝑡. Any distribution on (0,+∞) can be chosen; examples include the
exponential distribution having the parameter 1∕𝜆𝑘,𝑡, the log-normal
distribution having parameters log 𝜆𝑘,𝑡 − 𝜎2∕2 and 𝜎, and a Gamma
distribution having the parameters 𝛼𝜆𝑘,𝑡 and 𝛼.

Regardless of the distribution of unity random variables, the con-
ditional expectation of 𝑌𝑘,𝑡 is 𝑛𝑘,𝑡𝜆𝑘,𝑡. However under the assumption
of the independence of 𝜁𝑙,𝑘,𝑡, 1 ≤ 𝑙 ≤ 𝑛𝑘,𝑡, if they are exponen-
tially distributed, the conditional variance is 𝑛𝑘,𝑡𝜆2𝑘,𝑡, i.e., a quadratic
function of 𝜆𝑘,𝑡. In our example of Gamma-distributed unity random
variables, conditional variance is 𝑛𝑘,𝑡𝜆𝑘,𝑡∕𝛼, i.e., a linear function of
𝜆𝑘,𝑡. In the case of a log-normal distribution, however, the condi-
tional variance is 𝑛𝑘,𝑡𝜆4𝑘,𝑡(exp 𝜎

2 − 1). With our semi-parametric frame-
work, we will only focus on the estimation of regression parameters
𝜃 = (𝛿, 𝜔1,… , 𝜔𝐾 , 𝛼1,… , 𝛼𝑝, 𝛽⊤)⊤ without the need to perform any

distributional goodness of fit tests.
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Note 1 (Copies of Unity Variables). In our general setup, the copies
𝜁𝑙,𝑘,𝑡, 1 ≤ 𝑙 ≤ 𝑛𝑘,𝑡 of the unity random variables 𝜁𝑘,𝑡 are not required
o be independent. In practical applications, where 𝜁𝑙,𝑘,𝑡 represents, for
xample, the measure of annual growth for a sampled tree, the general
ssumption of being identically distributed can be thought as a local
tationary condition inside site 𝑘 at time 𝑡.

ote 2 (Marginal Stationary Distributions). Note from Eqs. (1) and
2) that 𝑌𝑘,𝑡 = 𝑓𝜃𝑘 (𝑋𝑘,𝑡−𝑠, 𝑛𝑘,𝑡−𝑠, 𝜁𝓁,𝑘,𝑡−𝑠, 𝑠 ≥ 0,𝓁 ≥ 1) for 𝜃𝑘 =
(𝛿, 𝜔𝑘, 𝛼1,… , 𝛼𝑝, 𝛽⊤)⊤. Then for 1 ≤ 𝑘1 ≠ 𝑘2 ≤ 𝐾, the distributions of
(𝑌𝑘1 ,0, 𝑛𝑘1 ,0, 𝑋𝑘1 ,0) and (𝑌𝑘2 ,0, 𝑛𝑘1 ,0, 𝑋𝑘2 ,0) are not equal unless 𝜔𝑘1 = 𝜔𝑘2
and (𝑋𝑘1 ,0, 𝜁𝓁,𝑘1 ,0,𝓁 ≥ 1) is equal in distribution to (𝑋𝑘2 ,0, 𝜁𝓁,𝑘2 ,0,𝓁 ≥
1). In Section 4, we will investigate the consequences of the latter
conditions on the proposed estimation procedure.

Note 3 (Regression Function (2)). Note that 𝜂𝑘,𝑡 in (2) does not depend
linearly on 𝑌𝑘,𝑡−𝑖, 𝑖 = 1,… , 𝑝 but on 𝑌𝑘,𝑡−𝑖∕𝑛𝑘,𝑡−𝑖, 𝑖 = 1,… , 𝑝. Through (2),
we can link the underlying mean process and the empirical estimate of
the past mean process. Even for a constant-size process, i.e., 𝑛𝑘,𝑡 = 𝑛𝑘,∀𝑡
because the regression parameter 𝛼𝑖, 𝑖 = 1,… , 𝑝 is free of 𝑘, we still
cannot yet express 𝜂𝑘,𝑡 as a linear combination of 𝑌𝑘,𝑡−𝑖, 𝑖 = 1,… , 𝑝.
Moreover, one can expect 𝑌𝑘,𝑡−𝑖∕𝑛𝑘,𝑡−𝑖 − 𝜆𝑘,𝑡−𝑖, 𝑖 = 1,… , 𝑝 or more
generally ℎ(𝑌𝑘,𝑡−𝑖∕𝑛𝑘,𝑡−𝑖, 𝜆𝑘,𝑡−𝑖), 𝑖 = 1,… , 𝑝 for some mapping ℎ such
that Eℎ(𝑌𝑘,𝑡−𝑖∕𝑛𝑘,𝑡−𝑖, 𝜆𝑘,𝑡−𝑖) = 0 in (2) at the place of 𝑌𝑘,𝑡−𝑖∕𝑛𝑘,𝑡−𝑖, 𝑖 =
1,… , 𝑝. With the latter two mentioned specifications, the Model (1)–
(2) defines the GLARMA model (see Weiß, 2018 for more details). In its
present form, the Model (1)–(2) shares similarities with the well known
ARCH (Bollerslev, 1986) and INARCH (Weiß, 2018) models. We leave
the topic of GLARMA specification for a future work.

Note 4 (Contrast with the Non-Linear Mixed Model). The Model (1)–(2)
has some similarities to well-known mixed models. Indeed, as for mixed
models, 𝜔𝑘 represents the site fixed effect, where the random effect is
embedded in the distribution of unity variables. The simple example of
𝜁𝑙,𝑘,𝑡 = 𝜆𝑘,𝑡𝜖𝑙,𝑘,𝑡, where (𝜖𝑙,𝑘,𝑡)𝑙≥1 is a sequence of identically distributed
random variables of mean 1, fit with the class of multiplicative random
effect models (Cameron and Trivedi, 2013). Nonetheless more complex
random effects can be handled. However, the Model (1)–(2) is more
general because it allows the individuals sampled over time to change.
Indeed, as we will see in Section 3, the individual measurements are no
longer needed when the sequence (𝑌𝑘,𝑡, 𝑛𝑘,𝑡) is available. Moreover, in
terms of the application to resource management, it is often of interest
to model and predict a population quantity such as the sum of basal
area growth in a forest.

Choice of the link function 𝝋

The logarithmic link function is often applied and coincides with
the well-known log-linear model, see for example Cameron and Trivedi
(2013) for models of count data. This link function assumes a linear
relationship between the logarithm of the mean process and the covari-
ates. However, other link functions can preserve the linear correlation
at least on the positive part of R. Consider, for example, the threshold
mapping 𝑥 ↦ max(𝑥, 0). This mapping is not smooth and, most of the
time, one makes some restrictions on model parameters to obtain the
positiveness of the mean directly. Here we will apply the inverse of
the softplus function as a link function. Indeed, the softplus function –
see Glorot et al. (2011) – is interesting for two reasons. First, in regard
to modelling, it preserves the linearity on the positive part of real line.
As shown by Weißet al. (2022) for count time-series modelling, the
models defined with the softplus link function are quite close to the
truly linear model. This is also relevant for our biological application,
as we expect a linear effect of covariates on growth above a certain
threshold representing the minimal favourable conditions for growth.
The minimum growth expected may not be exactly zero, which is why
3

Fig. 1. Comparison between softplus and max(x,0).

we will later consider a slightly different version of softplus, referred
to as sof tplus𝛿 for 𝛿 > 0, defined as sof tplus𝛿(𝑥) = log(1 + 𝛿 + exp(𝑥)).
econd, and also a technical advantage, is that the mapping sof tplus𝛿
s infinitely differentiable. Fig. 1 in the Appendix illustrates the differ-
nce between the sof tplus𝛿 link function and max(𝑥, 0), where sof tplus
epresents sof tplus0. One can note that sof tplus𝛿 is lower bounded by
og(1+ 𝛿). It is also worth noting that our generalization of the softplus
unction differs from that of Mei and Eisner (2017) and Weißet al.
2022) (Eq. 3.2). As noted by the latter, it is possible to mimic the
ehaviour of the Tobit model with the softplus generalization of Mei
nd Eisner (2017). In contrast, here we aim to lower bound the softplus
ink function by a non-zero constant because we require a minimum
asal area increment at any time.

ote 5 (Model Interpretation). Obviously with the softplus𝛿 link func-
ion, the mean process increases with the 𝑗−th covariate process if
𝛽𝑗 > 0 and decreases when 𝛽𝑗 < 0. Because softplus𝛿(𝑥) ∼∞ 𝑥, the mean
rocess can be approximated by identity mapping. Therefore all other
hings remaining equal, the regression function is similar to 𝛽𝑗𝑋𝑗,𝑡 for

large values of 𝑋𝑗,𝑡 and 𝛽𝑗 > 0 and then increases by 𝛽𝑗𝛼 for increasing
alues 𝛼 of 𝑋𝑗,𝑡. Let us denote by RG(𝑥, 𝑦) the relative rate of growth of
he mean process between 𝑥 and 𝑦, i.e., RG𝛿(𝑥, 𝑦) = 𝛾𝛿(𝑥)∕𝛾𝛿(𝑦), where
𝛿 is the derivative function of softplus𝛿 . For 𝛽 < 0, lim𝑥→∞RG𝛿(𝛽(𝑥 +
), 𝛽𝑥) = e𝛽𝛼 . Therefore, the rate towards log(1 + 𝛿) driven by 𝑋𝑗,𝑡 is
iven by e𝛽𝑗𝛼 when 𝛽𝑗 < 0. Moreover, when 𝛿 ∼ 0, by l’Hôpital’s
ule lim𝑥→∞RG0(𝑥, 𝑦) = lim𝑥→∞softplus0(𝛽(𝑥 + 𝛼))∕softplus0(𝛽𝑥) = e𝛽𝛼 .
herefore, all other things remaining equal, the mean process will be
ivided by e−𝛽𝛼 when 𝑋𝑗,𝑡 increases by 𝛼 for large values of 𝑋𝑗,𝑡 and
𝑗 < 0.

Theorem 1 provides some stability conditions of Model (1)–(2) with
he inverse of the softplus function as the link, whereas Lemma 1 in the
ppendix represents a general result for 𝜑.

heorem 1. Under the assumptions (ST.1) and (ST.2) in the Appendix
nd ∑𝑝

𝑗=1 |𝛼𝑗 | < 1, there exists a unique set of 𝐾 stationary, ergodic
equences (𝑌𝑘,𝑡, 𝑛𝑘,𝑡, 𝑋𝑘,𝑡), 𝑘 = 1,… , 𝐾 that are the solution of Eqs. (1) and
2) with E|𝜂𝑘,0| < ∞, 𝑘 = 1,… , 𝐾.

3. Estimation and asymptotic properties

This section is devoted to the estimation of the conditional mean
parameters by the quasi-maximum likelihood estimator (QMLE) based
on a member of the exponential family. We consider the exponential
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QMLE (EQMLE) because this estimator coincides with the maximum
likelihood estimator (MLE) when the unity random variables follow the
exponential 𝛤 (1, 𝜆−1𝑘,𝑡 ) distribution, and the copies 𝜁𝑙,𝑘,𝑡, 1 ≤ 𝑙 ≤ 𝑛𝑘,𝑡 are
independent.

For our application, the 𝐾 time series are observed between the time
points 1 and 𝑇 . We provide an asymptotic theory for the estimated
arameters and present the results of a small simulation study inves-
igating the finite-sample properties of the estimator. In the following
ection, we make 𝜆𝑘,𝑡 dependent on the parameter 𝜃(∈ 𝛩 a compact
et); that is

og(exp ◦𝜆𝑘,𝑡(𝜃) − 1 − 𝛿) = 𝜔𝑘 +
𝑝
∑

𝑗=1
𝛼𝑗

𝑌𝑘,𝑡−𝑗
𝑛𝑘,𝑡−𝑗

+ 𝛽⊤𝑋𝑘,𝑡 =∶ 𝜂𝑘,𝑡(𝜃),

𝑘 = 1,… , 𝐾 and 𝑡 = 1,… , 𝑇 ,

here 𝛿 ≥ 𝛿_ > 0. Let us denote the true, data-generating parameter
alue by 𝜃0.

The loss function from the exponential quasi-maximum likelihood
s given by

𝑇 (𝜃) =
𝐾
∑

𝑘=1
𝑇 −1

𝑇
∑

𝑡=1

( 𝑌𝑘,𝑡
𝜆𝑘,𝑡(𝜃)

+ 𝑛𝑘,𝑡 log ◦𝜆𝑘,𝑡(𝜃)
)

=∶
𝐾
∑

𝑘=1
𝑇 −1

𝑇
∑

𝑡=1
𝓁𝑘,𝑡(𝜃)

=∶
𝐾
∑

𝑘=1
𝓁𝑘(𝜃) (3)

and

�̂�𝑇 = argmin
𝜃∈𝛩

𝑟𝑇 (𝜃). (4)

The derivative of 𝜆𝑘,𝑡(𝜃) with respect to 𝜃 is given by

𝜕𝜆𝑘,𝑡(𝜃)
𝜕𝜃

=∶ �̇�𝑘,𝑡(𝜃)

=
(

1
1 + 𝛿 + e𝜂𝑘,𝑡(𝜃)

, e𝜂𝑘,𝑡(𝜃)

1 + 𝛿 + e𝜂𝑘,𝑡(𝜃)

(

𝜄𝑘,
𝑌𝑘,𝑡−1
𝑛𝑘,𝑡−1

…
𝑌𝑘,𝑡−𝑝
𝑛𝑘,𝑡−𝑝

, 𝑋⊤
𝑘,𝑡

))⊤

here 𝜄𝑘 is a vector of size 𝐾 with 1 at the 𝑘−th position and 0
lsewhere. We will denote by �̇�𝑘,𝑡 (resp. 𝜆𝑘,𝑡), the vector �̇�𝑘,𝑡(𝜃) (resp.
𝑘,𝑡(𝜃)), evaluated at the point 𝜃 = 𝜃0.

We will study the asymptotic properties of the QMLE estimator (4).
o do so, we employ Taniguchi and Kakizawa (2002) (Thm 3.2.23),
hich was extended in Klimko and Nelson (1978). The lemmas in our
ppendix produce the general result for the asymptotic properties of
MLE (4). The following theorem represents the consistency and the
symptotic normality of (4) for the sof tplus𝛿 link function. Let us set

𝑘 = E

[

1
𝜆2𝑘,0

(

𝑛𝑘,0 −
𝑌𝑘,0
𝜆𝑘,0

)2
�̇�𝑘,0�̇�

⊤
𝑘,0

]

,𝑎𝑛𝑑𝐽𝑘 = E

[

𝑛𝑘,0
1

𝜆2𝑘,0
�̇�𝑘,0�̇�

⊤
𝑘,0

]

.

Theorem 2. Suppose that assumptions (C.1)–(C.4) in the Appendix are
met. Then, almost surely,

lim
𝑇→∞

�̂�𝑇 = 𝜃0.

If (AN.1)–(AN.3) hold true and 𝜃0 is located in the interior of 𝛩,

lim
𝑇→∞

√

𝑇 (�̂�𝑇 − 𝜃0) =  (0, 𝐽−1𝑉 𝐽−⊤),

here 𝐽 =
∑𝐾

𝑘=1 𝐽𝑘 and 𝑉 =
∑𝐾

𝑘=1 𝑉𝑘.

4. Application

4.1. Simulation

We examined the finite-sample performance of the QMLE presented
in the previous section through a small simulation study. We present
the results for QMLE under two different data-generating processes,
here referred to as Scenario 1 and Scenario 2, with 𝑚 = 10 co-
variates. First, 𝑋 does not depend on 𝑘 and is a sequence of i.i.d
4

𝑘,𝑡
random variables distributed as exponential random variables with
means 𝜆1,… , 𝜆𝑚. In the second, for a fixed 𝑘, 𝑋𝑘,𝑡 is sampled indepen-
dently from exponential distributions of mean 0.4𝑘𝜆1,… , 0.4𝑘𝜆𝑚. For
the two data-generating processes, for a fixed 𝑘, the process (𝑛𝑘,𝑡)𝑡≥1
is independently sampled from a Poisson distribution of mean 𝜏𝑘 as
follows: for a fixed 𝐾, 𝜏1,… , 𝜏𝐾 are independent and distributed as an
exponential random variable of mean 𝐾. Moreover, we take 𝑝 = 1 and
𝛿 = 0.5, 𝛽 = (0, 1,−1, 0.5,−0.5,−1.5, 1.5,−2, 2, 0), 𝛼1 = 0.6, and 𝜔1,… , 𝜔𝐾
independently and uniformly sampling in the range (−0.5𝐾, 0.5𝐾) for
a fixed 𝐾. We sequentially choose 𝐾 = 5, 10, 15, 20 and 𝑇 = 50, 100.
The samples are nested, i.e., the sample for the first scenario and 𝐾 =
5, 𝑇 = 50 is a subset of that of 𝐾 = 5, 𝑇 = 100. Indeed, our aim here is to
evaluate the consequences of increasing 𝐾 and 𝑇 on the performance of
our estimator. For each sample, we compute the estimator (4) and the
corresponding theoretical standard errors (TSE) given by the Gaussian
limit distribution. We replicate 𝐵 = 100 times the experiment. Table 1
presents our simulation results. The line EQML refers to the average
estimated value of the parameters, and TSE refers to the average value
of estimated theoretical standard errors:

EQML = 𝐵−1
𝐵
∑

𝑏=1
�̂�(𝑏)𝑇 , and TSE = 𝐵−1

𝐵
∑

𝑏=1
diag

{

𝐽−1(𝑏)𝑉 (𝑏)𝐽−⊤(𝑏)}1∕2 ,

where the superscript 𝑏 represents the index of replication, and diag𝑀
for a matrix 𝑀 is the diagonal elements of 𝑀 . It appears that the model
parameters are well estimated, except for 𝜔𝑘, 𝑘 = 1,… , 𝐾 when 𝐾 is
very small relative to 𝑇 , which coincides here with 𝐾 = 5, 𝑇 = 50, 100.
We leave deep simulation studies for a future study.

4.2. Application to white spruce growth series

Dendrochronology, i.e., the study of the time series of tree rings,
is a powerful tool for reconstructing past natural and anthropic distur-
bances (Girona et al., 2016; Boulanger and Arseneault, 2004; Labrecque-
Foy et al., 2020). Tree rings represent natural hard disks that record
environmental changes and thereby offer the potential to understand
the evolution of complex natural phenomena over time, such as distur-
bances. Dendrochronological data have provided a better understand-
ing of insect outbreak dynamics (Navarro et al., 2018; Camarero et al.,
2003; Speer and Kulakowski, 2017).

Here we used the dendroecological series from Jardon et al. (2003),
which includes annual tree-ring width measurements for 631 white
spruce (Picea glauca) trees distributed across 45 sites in southwestern
Quebec, Canada, with 1 to 23 trees per site. These time series comprise
between 63 and 247 rings. We converted the ring-width increments to
basal-area increments (BAI) using the full series; however, because of
covariate availability, we limited our analysis to the AD 1955–1995
period (41 years) to study only a single insect outbreak event (see Fig. 2
in the Appendix).

We interpolated climate variables at the study sites for these 41 years
using BioSIM (Régnière et al., 2014), a software package that in-
terpolates daily climate station data on the basis of latitudinal and
elevational climate gradients and the spatial correlations estimated
from 30-year climate normals. We computed the following climate
summaries from daily data for the spring (April–June) and summer
(July–September) seasons separately: mean of daily maximum tempera-
tures, total precipitation, and the climate moisture index (CMI) equal to
the difference between precipitation and potential evapotranspiration
(PET). Daily PET values were estimated using the Penman–Monteith
equation as implemented in the SPEI package (Beguería and Vicente-
Serrano, 2017) in R, on the basis of BioSIM-interpolated values of
the minimum and maximum temperature, wind speed at 2 m, solar
radiation, dew point temperature, and atmospheric pressure, using the
‘‘tall’’ crop model in SPEI.

One major SBW outbreak occurred in Quebec during the study
period, spanning from 1967 to 1991. We obtained annual estimates
of the severity of the SBW outbreak at the location of each study
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Table 1
Estimation results for the quasi-maximum likelihood estimation.

K T Scenario 𝛼1 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽8 𝛽9 𝛽10
0.6 0 1 −1 0.5 −0.5 −1.5 1.5 −2 2 0

5 50 1 EQMLE 0.567 −0.018 0.985 −1.051 0.631 −0.247 −1.565 1.445 −2.165 1.673 0.011
TSE 0.060 0.086 0.185 0.286 0.178 0.309 0.332 0.219 0.298 0.211 0.104

2 EQMLE 0.517 0.019 0.862 −0.772 0.580 −0.493 −1.345 1.138 −1.709 1.908 −0.015
TSE 0.053 0.097 0.176 0.217 0.193 0.252 0.313 0.214 0.280 0.211 0.104

100 1 EQMLE 0.362 0.035 0.743 −0.632 0.457 −0.324 −1.219 1.099 −1.655 1.521 −0.080
TSE 0.065 0.101 0.169 0.303 0.218 0.379 0.401 0.219 0.333 0.232 0.093

2 EQMLE 0.361 −0.027 0.656 −0.678 0.294 −0.411 −0.956 1.148 −1.237 1.397 0.097
TSE 0.085 0.114 0.215 0.362 0.232 0.388 0.450 0.268 0.376 0.271 0.121

10 50 1 EQMLE 0.304 −0.048 0.600 −0.487 0.476 −0.460 −0.844 1.012 −1.048 1.311 0.023
TSE 0.043 0.063 0.122 0.177 0.134 0.199 0.229 0.148 0.146 0.147 0.069

2 EQMLE 0.311 0.098 0.550 −0.547 0.243 −0.486 −0.762 1.015 −1.233 1.061 0.061
TSE 0.046 0.084 0.153 0.220 0.175 0.258 0.256 0.183 0.235 0.174 0.079

100 1 EQMLE 0.328 0.001 0.686 −0.507 0.222 −0.293 −0.838 0.903 −1.091 1.173 0.050
TSE 0.035 0.056 0.112 0.153 0.107 0.184 0.164 0.108 0.133 0.119 0.059

2 EQMLE 0.285 0.033 0.676 −0.651 0.258 −0.072 −0.603 0.826 −1.199 1.101 0.042
TSE 0.039 0.063 0.142 0.175 0.119 0.249 0.205 0.158 0.160 0.160 0.076

15 50 1 EQMLE 0.546 −0.004 0.865 −0.734 0.462 −0.467 −1.418 1.280 −1.854 1.874 0.010
TSE 0.041 0.069 0.124 0.186 0.125 0.220 0.219 0.140 0.222 0.156 0.062

2 EQMLE 0.531 0.002 0.894 −0.985 0.405 −0.614 −1.342 1.228 −1.845 1.692 0.0163
TSE 0.039 0.060 0.119 0.165 0.120 0.190 0.195 0.138 0.180 0.144 0.057

100 1 EQMLE 0.384 −0.014 0.816 −0.549 0.160 −0.546 −1.226 0.987 −1.314 1.447 0.044
TSE 0.028 0.040 0.075 0.105 0.080 0.147 0.134 0.096 0.115 0.088 0.042

2 EQMLE 0.387 0.003 0.740 −0.675 0.471 −0.356 −0.751 1.104 −1.540 1.394 0.058
TSE 0.053 0.077 0.160 0.230 0.151 0.242 0.273 0.166 0.241 0.168 0.078

20 50 1 EQMLE 0.370 0.018 0.613 −0.612 0.316 −0.337 −0.787 0.915 −1.223 1.277 0.003
TSE 0.031 0.048 0.092 0.118 0.094 0.151 0.145 0.102 0.115 0.097 0.046

2 EQMLE 0.369 −0.004 0.616 −0.745 0.350 −0.265 −1.022 0.949 −1.266 1.282 −0.010
TSE 0.033 0.063 0.116 0.174 0.137 0.228 0.205 0.147 0.186 0.142 0.052

100 1 EQMLE 0.339 0.002 0.534 −0.491 0.282 −0.393 −0.802 0.862 −1.183 1.199 0.021
TSE 0.024 0.042 0.076 0.116 0.085 0.138 0.130 0.083 0.098 0.085 0.044

2 EQMLE 0.311 −0.017 0.636 −0.524 0.294 −0.173 −0.996 1.016 −1.144 1.192 0.039
TSE 0.025 0.052 0.104 0.128 0.109 0.190 0.151 0.131 0.130 0.122 0.055
Fig. 2. Location of study sites from Jardon et al. (2003) in Québec (Canada) and the vegetation subzones within the province.
site through defoliation maps produced by the Quebec Ministry of
Forests, Wildlife and Parks (MFFP, 2019). These maps are digitized
versions of hand-drawn outlines of defoliated areas produced by aerial
surveys of the affected regions. The defoliation level for each area is
5

classified on a scale of 1 to 3 corresponding to a low (approx. 1%–
35%), moderate (36%–70%) or high (71%–100%) fraction of the year’s
foliage defoliated by SBW. We note that these defoliation levels mainly
reflect the status of balsam fir (Abies balsamea), which is the main
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(

(

SBW host and is generally more severely affected than white spruce.
Therefore, these defoliation levels are a proxy for outbreak severity,
i.e., the potential herbivory pressure exerted by budworm on white
spruce at the site.

Because tree growth and its vulnerability to both climate and de-
foliation depend on tree age, we split the data set and fit our models
separately for the five age classes of ≤75, 75–100, 100–125, 125–150,
and ≥150 years. We included as covariates the mean daily maximum of
temperature, the total precipitation, and the mean CMI for the current
and previous spring and summer. Only one of either precipitation and
CMI appeared in a given model version because of the correlation
between these two variables. We also included as covariates the de-
foliation levels for the five preceding years, a delay that estimates the
time needed to fully regrow the lost foliage after an outbreak. Note
that we do not expect defoliation to have a marked effect on the same
year’s growth ring (Krause et al., 2003). Finally, we considered models
having interaction effects of the preceding year’s defoliation level and
climate variables, representing the possibility that climate conditions
can increase or decrease a tree’s sensitivity to SBW outbreaks.

Data processing and analyses were performed in R (R Core Team,
2021) with the package dplR (Bunn, 2008) used to process tree-ring
data. We minimized the criterion (3) with the R command nlm (Dennis
and Schnabel, 1983). All developed software is available under the
Creative Commons (CC) license (see data availability statements). We
used the QAIC criterion for selecting the model. The primary analysis
based on partial autocorrelation plots led us to select 𝑝 = 1.

According to the QAIC, the best models were those lacking an
interaction between climate and defoliation. Our model results (Figs. 3
and 4) revealed that higher defoliation levels led to reduced tree-ring
growth, but this effect vanished after two years; however, note that
while the direct effect vanished, expected growth remained lower in the
successive years because of the large estimated first-order autocorrela-
tion coefficient (0.8–0.9, depending on age class). Moreover, there was
no significant effect of defoliation on the following year’s growth for
the youngest and oldest trees although it produced an effect two years
following the defoliation. The results differed markedly for middle-aged
trees, which were significantly affected one year after defoliation but
not in the second year.

For the climate variables, high maximum temperatures in the sum-
mer increased growth, with up to a 5.6 cm² increase in basal area
from a 10 ◦C increase in summer maximum temperature. However,
the previous summer’s temperature had a negative effect on growth.
Finally, the spring CMI was negatively correlated with tree-ring growth,
whereas the summer CMI had a positive effect. However, both the CMI
and precipitation in the previous spring increased the tree-ring growth
of the current year: 100 mm greater precipitation led to at least a
6.8 cm² increase in basal area growth.

It is worth mentioning that D’Orangeville et al. (2018) reported
a positive effect of temperature on tree-ring growth and highlighted
its transitory nature. D’Orangeville et al. (2018) found high tempera-
tures to be unfavourable for ring growth. Our findings therefore differ
slightly, as we observed a negative long-term effect of temperature
rather than a reduced ring growth because of extreme temperature
values. Moreover, Walker et al. (2015) reported a negative radial
growth response to temperature and a positive response to precipitation
and CMI. In constrast to these studies, our approach here permitted a
much closer inspection of the effects, and we found a more complex
relationship between climate and tree-ring growth.

5. Conclusions

Here we developed a new time-series model to handle data having
a time-varying number of sampled individuals. We provided a valid
statistical inference procedure and applied the model to assessing the
combined effect of climate and SBW outbreak on white spruce tree-ring
growth in several sites in eastern Canada. We assumed a fixed number
6

of ecological sites 𝐾. For future work, we plan to investigate the case
of diverging 𝐾 and the length 𝑛 of observed series. Because many other
ecological studies rely on binary variable or count data, it may be useful
to extend the framework of this paper to these data types.
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Appendix

A.1. Proofs for the main results

Throughout this section, we will denote by 𝜁∞𝑘,𝑡 = (𝜁𝑘,𝑡,𝑙)𝑙≥1, the
sequence of copies of the unity random variables 𝜁𝑘,𝑡. Moreover 𝜁𝑘,𝑡
can be decomposed into two components: its mean 𝜆𝑘,𝑡 function of
𝑋𝑘,𝑡 and a free random variable 𝜁𝑡. For example, 𝜁𝑘,𝑡 = 𝜆𝑘,𝑡𝜁𝑡 for a
positive random variable 𝜁𝑡 of mean 1. We will write 𝜁𝑘,𝑡 ∶= 𝜁𝑘,𝑡(𝜆𝑘,𝑡, 𝜁𝑡)
to denote the relationship between 𝜁𝑘,𝑡 and 𝜆𝑘,𝑡 and 𝜁𝑡. Accordingly,
𝜁𝑘,𝑡,𝑙 = 𝜆𝑘,𝑡𝜁𝑡,𝑙 with 𝜁𝑡,𝑙 , 𝑙 ≥ 1 i.i.d with a mean of 1 or in general
𝜁𝑘,𝑡,𝑙 ∶= 𝜁𝑘,𝑡,𝑙(𝜆𝑘,𝑡, 𝜁𝑡,𝑙) with E𝜁𝑘,𝑡,𝑙 = 𝜆𝑘,𝑡. Let 𝑘,𝑡 denote the 𝜎-algebra
generated by 𝜁𝑠, 𝑋𝑘,𝑠+1, 𝑠 ≤ 𝑡 and 𝑘,𝑡,𝑛 generated by 𝑛𝑘,𝑠, 𝜁𝑠, 𝑋𝑘,𝑠+1, 𝑠 ≤ 𝑡.
Finally, we will denote by 𝜙𝛿 the inverse of 𝜑𝛿 ∶ 𝜙𝛿(𝑥) = 𝜑−1

𝛿 (𝑥). For
stability, we will consider the following set of assumptions:

(A.1) The function 𝜙𝛿 is 𝜐−Lipschitz, and 𝜐
∑𝑝

𝑖=1 |𝛼𝑖| < 1.

ST.1) For 𝑘 = 1,… , 𝐾, (𝑛𝑘,𝑡−1, 𝜁∞𝑘,𝑡−1, 𝑋𝑘,𝑡)𝑡∈Z is stationary, ergodic,
(𝑛𝑘,𝑡, 𝜁∞𝑘,𝑡) is independent from 𝑘,𝑡−1,𝑛, and E|𝑋𝑘,0|1 < ∞.

ST.2) For 𝑘 = 1,… , 𝐾,

𝐸(|𝜁𝑘,𝑡(𝜆𝑘,𝑡, 𝜁𝑡) − 𝜁𝑘,𝑡(𝜆𝑘,𝑡, 𝜁𝑡)||𝑘,𝑡−1,𝑛) ≤ |𝜆𝑘,𝑡 − 𝜆𝑘,𝑡|.

It is worth noting that the example 𝜁𝑘,𝑡 = 𝜆𝑘,𝑡𝜁𝑡 for a positive random
variable 𝜁𝑘 of mean 1 verifies condition (ST.2).

Lemma 1. Under the assumptions (A.1)–(ST.2), there exists a unique set
of 𝐾 stationary, ergodic sequences (𝑌𝑘,𝑡, 𝑛𝑘,𝑡, 𝑋𝑘,𝑡), 𝑘 = 1,… , 𝐾 that are a

solution of Eqs. (1) and (2) with E|𝜂𝑘,0| < ∞, 𝑘 = 1,… , 𝐾.
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Fig. 3. Model with Temperature + CMI + Defoliation. Age classes: 1, ≤75; 2, 75–100; 3, 100–125; 4, 125–150, and 5, ≥150 years; (a) effects of maximum temperature in spring
and summer on current and preceding years; (b) effects of the CMI index in spring and summer on the current and preceding years; and (c) the delayed effect of defoliation level.
The dashed horizontal line corresponds to zero.
The proof of Lemma 1 uses the techniques of iterated random maps.
We refer interested readers to Debaly and Truquet (2021a) theorems 2
and 4, which investigated the problem of solving recursive stochastic
equations with covariates or Debaly and Truquet (2021b) in the case
where no covariates are included in the dynamic.

Proof of Lemma 1. From (2),

𝜂𝑘,𝑡 = 𝜔𝑘 +
𝑝
∑

𝛼𝑗
1

𝑛

𝑛𝑘,𝑡−𝑗
∑

𝜁𝑘,𝑡−𝑗,𝓁(𝜙𝛿(𝜂𝑘,𝑡−𝑗 ), 𝜁𝑡−𝑗,𝓁) + 𝛽⊤𝑋𝑘,𝑡.
7

𝑗=1 𝑘,𝑡−𝑗 𝓁=1
Then under condition (ST.1), the processes (𝜂𝑘,𝑡 = 𝜑𝛿(𝜆𝑘,𝑡)𝑡∈Z, 𝑘 =
1,… , 𝐾 obey some recursive stochastic equations,

𝜂𝑘,𝑡 = 𝑓 (𝜂𝑘,𝑡−1,… , 𝜂𝑘,𝑡−𝑝; 𝑛𝑘,𝑡−1,… , 𝑛𝑘,𝑡−𝑝, 𝜁
∞
𝑘,𝑡−1,… , 𝜁∞𝑘,𝑡−𝑝, 𝑋𝑘,𝑡).

And with (A.1), for 𝑘 = 1,… , 𝐾, (𝑥, 𝑦) ∈ R2𝑝,

𝐸(|𝑓 (𝑥; 𝑛𝑘,𝑡−1,… , 𝑛𝑘,𝑡−𝑝, 𝜁
∞
𝑘,𝑡−1,… , 𝜁∞𝑘,𝑡−𝑝, 𝑋𝑘,𝑡)

− 𝑓 (𝑦; 𝑛𝑘,𝑡−1,… , 𝑛𝑘,𝑡−𝑝, 𝜁
∞
𝑘,𝑡−1,… , 𝜁∞𝑘,𝑡−𝑝, 𝑋𝑘,𝑡)||𝑘,𝑡−1,𝑛) ≤ 𝜐𝛼⊤|𝑥 − 𝑦|
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Fig. 4. Model with Temperature + Precipitation + Defoliation. Age classes: 1, ≤75; 2, 75–100; 3, 100–125; 4, 125–150, and 5, ≥150 years; (a) effects of maximum temperature
in spring and summer on current and preceding years; (b) effects of the precipitation index in spring and summer on the current and preceding years; and (c) delayed effect of
defoliation level. The dashed horizontal line corresponds to zero.
with 𝛼 = (𝛼1,… , 𝛼𝑝). Moreover,
𝐸|𝑓 (𝑥; 𝑛𝑘,−1,… , 𝑛𝑘,−𝑝, 𝜁∞𝑘,−1,… , 𝜁∞𝑘,−𝑝, 𝑋𝑘,0)| < ∞. Then, from Debaly and
Truquet (2021a) Theorem 4, we obtain the stationary and ergodic
solution with E|𝜂𝑘,0| < ∞, 𝑘 = 1,… , 𝐾.□

Theorem 1 is a straight consequence of Lemma 1 and follows the
Lipschitz property of 𝑥 ↦ log(exp(𝑥) + 1 + 𝛿) for any 𝛿 > 0. For the
asymptotic results for �̂�𝑇 , the following assumptions are necessary:
8

(A.2) The conditions (A.1) and (ST.1) are met, and 𝜃0 verifies:
𝜐
∑𝑝

𝑖=1 |𝛼𝑖,0| < 1.
(A.3) For 𝑘 = 1,… , 𝐾,E𝑛𝑘,0 < ∞ and

E sup
𝜃

(𝜙𝛿(𝜂𝑘,0(𝜃0))
𝜙𝛿(𝜂𝑘,0(𝜃))

+ | log ◦𝜙𝛿(𝜂𝑘,0(𝜃))|
)

< ∞.

(A.4) For (𝛿, 𝛿) ∈ [𝛿−,∞)2, (𝜂, 𝜂) ∈ R2,

𝜙 (𝜂) = 𝜙 (𝜂) ⇒ (𝛿 = 𝛿, 𝜂 = 𝜂).
𝛿 𝛿
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(C.1) The conditions (ST.1) and (ST.2) are met, and 𝜃0 verifies:
∑𝑝

𝑖=1 |𝛼𝑖,0| < 1.
(C.2) For 𝑘 = 1,… , 𝐾,E𝑛𝑘,0 < ∞.
(C.3) For 𝑘 = 1,… , 𝐾, conditionally on 𝑋𝑘,0, the distribution of

(

𝑌𝑘,−1
𝑛𝑘−1

,… ,
𝑌𝑘,−𝑝
𝑛𝑘−𝑝

)

is not supported by an hyperplan of R𝑝.

(C.4) For 𝑘 = 1,… , 𝐾, the distribution of 𝑋𝑘,0 is not degenerate.

emma 2. Let us suppose that the assumptions (A.2)–(A.4) and (C.3)–
C.4) are met. Then, almost surely,

lim
→∞

�̂�𝑇 = 𝜃0.

We do not prove Lemma 2. Similar results for time-series models
an be found in Diop and Kengne (2021), Aknouche and Francq (2020),
nd Debaly and Truquet (2022) among others.

roof of consistency part of Theorem 2. We will check (A.2) to (A.4).

• (A.2) comes from (C.1).
• One can note that here 𝜙𝛿(𝑥) = log(1 + 𝛿 + exp(𝑥)), and 𝜙𝛿(𝑥) ≥
log(1 + 𝛿), 𝜙𝛿(𝑥) ≤ 𝜅1(𝜃)(1 + |𝑥|), and | log ◦𝜙𝛿(𝑥)| ≤ 𝜅2(𝜃)(1 + |𝑥|) +
𝜅3(𝜃), where 𝜅𝑖, 𝑖 = 1, 2, 3 are continuous functions of 𝜃. Then (A.3)
holds because E sup𝜃 |𝜂𝑘,0(𝜃)| < ∞. Indeed E𝑌𝑘,0∕𝑛𝑘,0 = 𝜙𝛿(𝜂𝑘,0) <
∞ because E|𝜂𝑘,0| < ∞.

• For (A.4), we note that

𝜙𝛿(𝜂) = 𝜙𝛿(𝜂) ⇒ 𝛿 − 𝛿 = exp 𝜂 − exp 𝜂,

and 0 = lim𝜂→−∞,𝜂→−∞ exp 𝜂−exp 𝜂 = 𝛿−𝛿. Then 𝛿 = 𝛿, and 𝜂 = 𝜂.□

Let us set 𝜎2𝑘,0 = Var
( 𝑌𝑘,0
𝜆𝑘,0

|𝑘,−1,𝑛 ∨ 𝑛𝑘,0
)

, 𝜕𝛿𝜙𝛿 the derivative of 𝜙𝛿
ith respect to 𝛿, and 𝜃−𝛿 the vector of parameters without 𝛿. We will

onsider the following assumptions for the asymptotic distribution of
̂𝑇 .

(A.1) The function 𝜙𝛿 is twice continuously differentiable and for 𝑘 =
1,… , 𝐾,

E
𝜎2𝑘,0

𝜙2
𝛿(𝜂𝑘,0)

[

𝜕𝛿𝜙𝛿(𝜂𝑘,0(𝜃0))
2 + 𝜙′

𝛿(𝜂𝑘,0(𝜃0))
2
‖∇𝜃−𝛿 𝜂𝑘,0(𝜃0)‖

2
2

]

< ∞, and

E 1
𝜙2
𝛿(𝜂𝑘,0)

[

𝜕𝛿𝜙𝛿(𝜂𝑘,0(𝜃0))
2 + 𝜙′

𝛿(𝜂𝑘,0(𝜃0))
2
‖∇𝜃−𝛿 𝜂𝑘,0(𝜃0)‖

2
2

]

< ∞.

(A.2) For 𝑘 = 1,… , 𝐾, the distribution of (𝜕𝛿𝜙𝛿(𝜂𝑘,0(𝜃0)), 𝜙′
𝛿(𝜂𝑘,0(𝜃0))

∇𝜃−𝛿 𝜂𝑘,0(𝜃0)) is not degenarate.
(A.3) For 𝑘 = 1,… , 𝐾,E sup𝜃 |𝑊

𝑖,𝑗
𝑘,0(𝜃)| < ∞, where 𝑊 𝑖,𝑗

𝑘,0(𝜃) is one of the
following quantities for all pairs 𝑖, 𝑗.

1
𝜙2
𝛿(𝜂𝑘,0(𝜃))

(𝜙𝛿(𝜂𝑘,0(𝜃0))
𝜙𝛿(𝜂𝑘,0(𝜃))

+ 1
) 𝜕𝜙𝛿(𝜂𝑘,0(𝜃))

𝜕𝜃𝑖

𝜕𝜙𝛿(𝜂𝑘,0(𝜃))
𝜕𝜃𝑗

,

1
𝜙2
𝛿(𝜂𝑘,0(𝜃))

𝜙𝛿(𝜂𝑘,0(𝜃0))
𝜙𝛿(𝜂𝑘,0(𝜃))

𝜕𝜙𝛿(𝜂𝑘,0(𝜃))
𝜕𝜃𝑖

𝜕𝜙𝛿(𝜂𝑘,0(𝜃))
𝜕𝜃𝑗

,

1
𝜙𝛿(𝜂𝑘,0(𝜃))

(𝜙𝛿(𝜂𝑘,0(𝜃0))
𝜙𝛿(𝜂𝑘,0(𝜃))

+ 1
) 𝜕2𝜙𝛿(𝜂𝑘,0(𝜃))

𝜕𝜃𝑖𝜕𝜃𝑗
.

N.1) The 𝐾 stationary sequences solution of (1)–(2) are independent
of each other.

N.2) For 𝑘 = 1,… , 𝐾, E𝑛2𝑘,0 < ∞,

E𝜎4𝑘,0 < ∞.

N.3) For 𝑘 = 1,… , 𝐾,

E|𝑋𝑘,0|
4
1 < ∞, andE𝑌 4

𝑘,0 < ∞.

emma 3. Under the assumptions of Lemma 1, and if (A.1)–(A.3) and
AN.1) hold, then

lim
√

𝑇 (�̂� − 𝜃 ) =  (0, 𝐽−1𝑉 𝐽−⊤),
9

→∞ 𝑇 0
where 𝐽 =
∑𝐾

𝑘=1 𝐽𝑘 and 𝑉 =
∑𝐾

𝑘=1 𝑉𝑘,

𝑉𝑘 = E

[

1
𝜆2𝑘,0

(

𝑛𝑘,0 −
𝑌𝑘,0
𝜆𝑘,0

)2
�̇�𝑘,0�̇�

⊤
𝑘,0

]

, 𝐽𝑘 = E

[

𝑛𝑘,0
1

𝜆2𝑘,0
�̇�𝑘,0�̇�

⊤
𝑘,0

]

, 𝑎𝑛𝑑

�̇�𝑘,0 = (𝜕𝛿𝜙𝛿(𝜂𝑘,0(𝜃0)), 𝜙′
𝛿(𝜂𝑘,0(𝜃0))∇𝜃−𝛿 𝜂𝑘,0(𝜃0))

⊤.

As for Lemma 2, we do not prove Lemma 3. We refer the interested
reader to Diop and Kengne (2021), Aknouche and Francq (2020),
and Debaly and Truquet (2022), among others.

Proof of asymptotic normality part of Theorem 2. For the proof of asymp-
totic normality part of Theorem 2, one can note that in the single
framework (𝑘 = 1), assumptions (AN.2) yield the asymptotic normality
of

√

𝑇∇𝓁𝑘(𝜃0) using the central limit theorem for martingale difference.
ext,

𝜕2𝓁𝑘,𝑡(𝜃)
𝜕𝜃𝑖𝜕𝜃𝑗

= 1
𝜆2𝑘,𝑡(𝜃)

( 𝑌𝑘,𝑡
𝜆𝑘,𝑡(𝜃)

− 𝑛𝑘,𝑡

) 𝜕𝜆𝑘,𝑡(𝜃)
𝜕𝜃𝑖

𝜕𝜆𝑘,𝑡(𝜃)
𝜕𝜃𝑗

+ 1
𝜆2𝑘,𝑡(𝜃)

𝑌𝑘,𝑡
𝜆𝑘,𝑡(𝜃)

𝜕𝜆𝑘,𝑡(𝜃)
𝜕𝜃𝑖

𝜕𝜆𝑘,𝑡(𝜃)
𝜕𝜃𝑗

− 1
𝜆𝑘,𝑡(𝜃)

( 𝑌𝑘,𝑡
𝜆𝑘,𝑡(𝜃)

− 𝑛𝑘,𝑡

) 𝜕2𝜆𝑘,𝑡(𝜃)
𝜕𝜃𝑖𝜕𝜃𝑗

=∶ 𝐼𝑘,𝑡(𝜃) + 𝐼𝐼𝑘,𝑡(𝜃) + 𝐼𝐼𝐼𝑘,𝑡(𝜃).

or the first term,

up
𝜃

|𝐼𝑘,𝑡(𝜃)| ≤ 𝑛𝑖,𝑡

( 𝜆𝑖,𝑡
log(1 + 𝛿_) + 1

)

sup
𝜃

1
𝜆2𝑘,𝑡(𝜃)

𝜕𝜆𝑘,𝑡(𝜃)
𝜕𝜃𝑖

𝜕𝜆𝑘,𝑡(𝜃)
𝜕𝜃𝑗

,

and

1
𝜆𝑘,𝑡(𝜃)

�̇�𝑘,𝑡(𝜃) ≼ 𝜅𝛿_

(

1, 𝜄𝑘,
𝑌𝑘,𝑡−1
𝑛𝑘,𝑡−1

…
𝑌𝑘,𝑡−𝑝
𝑛𝑘,𝑡−𝑝

, 𝑋⊤
𝑘,𝑡

)⊤

,

here for 𝑥 = (𝑥1,… , 𝑥𝑑 ), 𝑦 = (𝑦1,… , 𝑦𝑑 ), 𝑥 ≼ 𝑦 means 𝑥𝑖 ≤ 𝑦𝑖, 𝑖 =
1,… , 𝑑, and 𝜅𝛿_ is a function of 𝛿_. Then, E sup𝜃 |𝐼𝑘,𝑡(𝜃)| < ∞ under as-
sumption (AN.3). It can be shown similarly that E sup𝜃 |𝐼𝐼𝑘,𝑡(𝜃)| < ∞
and E sup𝜃 |𝐼𝐼𝐼𝑘,𝑡(𝜃)| < ∞. By the Taylor expansion of 𝑟𝑇 (⋅) between �̂�𝑇
and 𝜃,

0 =
√

𝑇∇𝑟𝑇 (�̂�𝑇 ) =
𝐾
∑

𝑘=1

√

𝑇∇𝓁𝑘(�̂�𝑇 )

=

( 𝐾
∑

𝑘=1

√

𝑇∇𝓁𝑘(𝜃0)

)

+

( 𝐾
∑

𝑘=1
∇2𝓁𝑘(𝜃0)

)

√

𝑇 (�̂�𝑇 − 𝜃0) + 𝑜P(1).

The independence condition for path (AN.1), assumption (AN.2),
nd the central limit theorem for martingale difference allows us to
onclude ∑𝐾

𝑘=1

√

𝑇∇𝓁𝑘(𝜃0) converges in distribution to a central Gaus-
ian vector of variance 𝑉 as 𝑇 tends to infinity. The assumption
AN.3) and ergodic theorem entail that ∑𝐾

𝑘=1 ∇
2𝓁𝑘(𝜃0) converges to 𝐽 .

oreover, conditions (AN.1), (C.3), and (C.4) ensure that the matrix 𝐽
s invertible.□
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