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Characterization of chromatin mobility upon DNA damage in 
Arabidopsis thaliana

Abstract
Plant cells are subject to high levels of DNA damage from dependence on sunlight for energy 
and the associated exposure to biotic and abiotic stresses. Double-strand breaks (DSBs) are a 
particularly deleterious type of DNA damage, potentially leading to chromosome 
rearrangements or loss of entire chromosome arms. The presence of efficient and accurate repair 
mechanisms may be particularly important for sedentary organisms with late separation of the 
germline, such as plants. DSB repair is accomplished by two main pathways: nonhomologous 
end joining (NHEJ) and homologous recombination (HR). NHEJ is achieved by stabilization and 
re-ligation of broken DNA ends, often with a loss or mutation of bases. HR is a more complex 
and conservative mechanism in which intact homologous regions are used as a template for 
repair. The molecular mechanisms that control DSB signaling and repair have been characterized 
extensively. Nonetheless, little is known about how the homology search happens in the crowded 
space of the cell nucleus. This thesis reveals the methodology to capture chromatin motion to 
investigate nuclear dynamics in different developmental and cellular contexts. Using live 
imaging approaches, we measured chromosome mobility by tracking the motion of specific loci 
using the lacO/LacI and ParB/parS tagging systems in Arabidopsis thaliana.

Our results have shown that chromatin mobility is affected by cell differentiation level, cell cycle 
phase, or genomic position, and that chromatin mobility increases when DNA damage is 
induced. Moreover, we observed an increase in chromatin mobility upon the induction of DNA 
damage, specifically at the S/G2 phases of the cell cycle. Importantly, this increase in mobility 
in S/G2 was lost on sog1-1 mutant, a central transcription factor of the DNA damage response 
(DDR), indicating that repair mechanisms actively regulate chromatin mobility upon DNA 
damage. Studies have shown that HR is the predominant DSB repair pathway occurring during 
S/G2 phase. Therefore, we investigated the mobility of two GFP-tagged HR regulators, RAD51 
and RAD54, corresponding to early and late HR. DSB sites show remarkably high mobility 
levels at the early HR stage. Subsequently, a drastic decrease in DSB mobility is observed, which 
seems to be associated with the relocation of DSBs to the nucleus periphery.

Altogether, our study suggests chromatin mobility as a non-negligible factor for DNA repair in 
plants, which may facilitate physical searching in the nuclear space thereby helping to locate a 
homologous template during homology-directed DNA repair.

Keywords: Arabidopsis, chromatin mobility, DNA damage, SOG1, RAD51, homologous 
recombination, cell cycle, chromatin dynamic, mean square displacement, DNA damage 
response



Karakterisering av rörlighet vid DNA-skada i Arabidopsis thaliana

Abstrakt
Växtceller utsätts för höga nivåer av DNA-skador från energin i solljus samt från exponering av 
biotiska och abiotiska påfrestningar. Dubbelsträngsbrott (DSB) är en särskilt skadlig typ av 
DNA-skada, som potentiellt kan leda till kromosom-rearrangemang eller förlust av hela 
kromosomarmar. Närvaron av effektiva och exakta reparationsmekanismer är då viktig för 
organismer med sen separation av könscellsceller, såsom växter. DSB-reparation åstadkoms 
genom två huvudvägar: icke-homolog ändfogning (NHEJ) av DNA strängen och homolog 
rekombination (HR). NHEJ uppnås genom stabilisering och förening av trasiga DNA-ändar, ofta 
med förlust eller mutation av baser som resultat. HR är en mer komplex och konservativ 
mekanism där intakta homologa regioner används som mall för reparation av skadan. Studier av 
de molekylära mekanismer som styr DSB-signalering och reparation är omfattande. Icke desto 
mindre är lite känt om hur homologisökningen sker i det trånga utrymmet i cellkärnan. I denna 
avhandling studeras metodiken för att fånga kromatin-rörelser för att kunna följa nukleär 
dynamik i olika utvecklings- och cellulära sammanhang. Med hjälp av levande 
avbildningsmetoder mätte vi alla kromosomer genom att spåra rörelsen hos specifika lokus med 
hjälp av lacO/LacI och ParB/parS-taggningssystemet. 

Våra första resultat har visat att kromatin-rörligheten förändras beroende på differentieringsnivå, 
cellcykelfas eller genomisk position. Detta avslöjar vikten av att använda så kallade encells-
metoder för denna typ av cellulära studier. Ett annat resultat var en generell ökning av kromatin-
mobilitet vid induktion av DNA-skada. En ökning som var specifik under S/G2-faserna i 
cellcykeln. Denna ökning av rörlighet i S/G2 faserna förlorades när en sog1-1 mutant 
analyserades. Denna mutation ligger i en central transkriptionsfaktor för DNA-skaderesponsen 
(DDR). Resultaten indikerar att reparationsmekanismer aktivt reglerar kromatin-mobilitet vid 
DNA-skada. Studier har tidigare visat att HR är den dominerande DSB-reparationsvägen som 
inträffar under S/G2-fasen.  Därför undersökte vi rörligheten hos två GFP-märkta HR-
regulatorer, RAD51 och RAD54, motsvarande tidig och sen HR. Platser för DSB uppvisade 
anmärkningsvärt höga mobilitetsnivåer i det tidiga HR-stadiet. Därefter observeras en drastisk 
minskning av DSB-rörligheten, vilket verkar vara associerat med förflyttning av DSB:er till 
kärnans periferi.

Sammantaget indikerar vår studie att kromatin-mobilitet är en icke försumbar faktor för DNA-
reparation. Den skulle kunna fungera som en mekanism för att förbättra den fysiska sökningen i 
det nukleära utrymmet i cellkärnan för att lokalisera en homolog mall under homologiriktad 
DNA-reparation.

Keywords: Arabidopsis, chromatin mobility, DNA damage, SOG1, RAD51, homologous 
recombination, cell cycle, chromatin dynamic, mean square displacement, DNA damage 
response
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Chapter 10

Visualizing and Measuring Single Locus Dynamics
in Arabidopsis thaliana

Anis Meschichi and Stefanie Rosa

Abstract

In eukaryotes, DNA is packed into an incredibly complex structure called chromatin. Although chromatin
was often considered as a static entity, it is now clear that chromatin proteins and the chromatin fiber itself
are in fact very dynamic. For instance, the packaging of the DNA into the nucleus requires an extraordinary
degree of compaction but this should be achieved without compromising the accessibility to the transcrip-
tion machinery and other nuclear processes. Approaches such as gene tagging have been established for
living cells in order to detect, track, and analyze the mobility of single loci. In this chapter, we provide an
experimental protocol for performing locus tracking in Arabidopsis thaliana roots and for characterizing
locus mobility behavior via a Mean Square Displacement analysis.

Key words Locus tagging, Fluorescence microscopy, Green fluorescent protein, Chromatin mobility,
Mean square displacement, Arabidopsis

1 Introduction

Chromatin is composed of DNA wrapped around a complex octa-
mer of proteins called histones, forming the nucleosome. This
structure is highly dynamic due to multiple nuclear processes,
such as transcription, replication, or repair systems, which require
a change in the accessibility of the underlying DNA sequences [1–
3]. Moreover, in recent years, advances on imaging techniques have
started to reveal the dynamic nature of the DNA inside the cell
nucleus [4–7]. Indeed, genes can change their physical location
inside the nucleus with consequences for transcriptional activity
or genome integrity [8–13].

Locus-tagging systems are one approach allowing analyzing the
mobility of a locus through time. There are currently several tech-
niques allowing single locus tagging, such as lacO and tetO system,
or CRISPR-based imaging [14, 15]. The lacO/LacI system is
based on the insertion of lacO arrays in the genome. The lacO
arrays typically consist of 100–256 copies of the lacO sequence
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[16]. Additionally, this method requires the expression of the
DNA-binding LacI repressor protein fused with a fluorescent pro-
tein, such as GFP or variants (CFP, YFP, RFP, etc.). The expression
of these proteins should be somewhat weak in order to avoid the
background fluorescence masking the specific signal at the tagged
sequence. The tagged sequence is detected through the binding of
the repressor protein (LacI-GFP) to the lacO repeats, allowing the
tracking of specific chromosomal sites by in vivo fluorescence
microscopy. The CRISPR imaging system is based on a catalytically
inactive Cas9, fused to a fluorescent protein, where guide RNAs are
designed for a specific sequence in the genome allowing the dCas9
to recognize and tag the locus of interest [17, 18]. These gene-
tagging techniques have been extensively used in organisms such as
yeast or mammalian cells, both to characterize chromatin mobility
during DNA damage and to study mobility of actively transcribed
loci [9, 13, 19–22]. In Arabidopsis thaliana, the lacO/LacI system
has been used in order to study chromosome organization [23],
changes in nuclear positioning of Polycomb targets [24], chroma-
tin dynamics in endoreplicated pavement cells [25], as well as
alterations of lacO positioning uponDNA damage [26]. One draw-
back of the lacO/LacI system is that the LacO repeats tend to form
heterochromatin, which silences the locus and sometimes the
neighboring genes [27]. To overcome this issue LacO repeats can
be interspaced with random short sequences (~10mers), which
were shown to reduce problems with repeat-induced silencing
[24, 28]. Unlike lacO/LacI, the CRISPR imaging system has the
advantage that it recognizes the endogenous sequence in the
genome and is less likely to perturb the underlying chromatin
structure. In plants, telomere mobility has been measured using
the CRISPR imaging system inNicotiana benthamiana [18]; how-
ever this method has not yet been successfully applied in Arabidop-
sis thaliana. Indeed, and despite the great progress made in the
CRISPR-based imaging, many challenges still remain to be settled
before this method is readily available for use in all systems, and in
particular, issues associated with imaging of non-repetitive
sequences and off-target binding need to yet be overcome [29].

In both systems, the tagged sequence is seen as a bright spot in
the nucleus, which can be followed by in vivo time-lapse imaging.
The mobility and trajectory of this bright dot can be analyzed to
obtain information regarding the mechanisms underlying its move-
ment. However, the simple tracking of the tagged loci will inform
only on changes in position as a function of time, which is not
enough to characterize loci mobility behavior. To this end, one
method typically used to extract information about a moving parti-
cle tracking data is mean square displacement (MSD) analysis [30].

In this chapter, we will describe the protocol we use to visualize
and quantify chromatin movement using the lacO/LacI gene-
tagging system, particularly focusing in Arabidopsis roots, but a
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similar approach may be taken for analysis in other tissues. Impor-
tantly, the methods described here are not specific to the lacO/LacI
system but could be readily adapted to other locus-tagging
approaches.

2 Materials

2.1 Plant Growth 1. Arabidopsis lines with a locus-tagging system (lacO/LacI sys-
tem see Note 1).

2. Murashige & Skoog basal medium with vitamins (later referred
as MS medium).

3. 5% Bleach (hypochlorite) in dH2O.

4. Plant growth chamber (see Note 2).

5. Square Petri dishes (see Note 3).

6. Adhesive tape.

7. Laminar flow cabinet.

8. Sterile razor blades.

9. Coverslips No 1.5.

10. Microscope slides with frosted ends.

11. Secure Seal Adhesive Sheets (0.12 mm thick) (see Note 4).

2.2 Microscopy 1. Laser scanning confocal microscope (see Note 5).

2. Objective 63�/1.2 water or another high numerical aperture
water immersion objective (see Note 6).

3. An argon 488 nm laser line is required for GFP.

2.3 Data Analysis 1. ImageJ or Fiji software (NIH, Bethesda, MD, http://rsb.info.
nih.gov/ij/) with the plugin SpotTracker 2D (obtained from
http://bigwww.epfl.ch/sage/soft/spottracker).

2. Software to perform data analysis (mean intensity values, data
plotting and curve fitting with best-fit equations): Microsoft
Excel, GraphPad Software (La Jolla California USA, www.gra
phpad.com), MATLAB, or alike.

3 Methods

3.1 Plant Growth

and Sample

Preparation

The objective of this part of the protocol is to grow seedlings with
easy access to root tissue, which will then be transferred to a
microscope slide for imaging.

1. Surface-sterilize seeds in 5% v/v sodium hypochlorite for 5 min
and rinse three times in sterile distilled water.
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2. Stratify the seeds by incubating for 2 days at 4 �C in darkness in
1.5 mL tubes.

3. Pour MS medium into a square petri dish.

4. When solidified, plate the seeds.

5. Seal the plate with adhesive tape.

6. Grow the seedlings in the growth chamber in vertically ori-
ented positions for 1 week (or more) (see Note 7).

7. To avoid squashing the roots when mounting between slide
and coverslip, cut small square frames of Secure Seal double
adhesive sticky tape with similar dimensions to the coverslip
and stick it to the slide as shown in Fig. 1. These will work as a
spacer avoiding squashing the root and at the same time avoid
drying of the sample during image acquisition (see Note 8).

8. Transfer one seedling to microscope slide prepared with
double-sticky tape, and mount in water (Fig. 1) (see Note 9).

3.2 Image

Acquisition

The objective is to produce a time-lapse series of nuclei expressing
the tagged locus. The expression of LacI-GFP normally leads to
background fluorescence in the nucleus due to unbound LacI-GFP
(Fig. 2a,b). This background fluorescence is useful for nucleus
alignment. If this background is not present, a nucleus marker
(such as nucleus periphery marker or a histone fused to a different
fluorescent protein) is needed to provide a reference for the
alignment.

1. Acquire the images by using the 63x water objective.

2. Select an area of interest at a defined position relative to the
root tip (meristematic/dividing, elongation, or differentiation
zone) and a defined tissue layer (for instance, epidermis, cortex,
etc.). Keep consistent throughout sampling (see Note 10).

3. Image settings: laser power should be around 10%, pinhole
61 μm, Image size 512 � 512 pixels; 3� zoom factor (pixel

Cover Slip
Secure Seal Adhesive
Microscope Slide

1 week old Arabidopsis thaliana

Fig. 1 A schematic representation of microscope slide preparation. Roots of 1-week-old Arabidopsis seedlings
are placed between the cover slip and the microscope slide
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size 0.088 μm). Z-stacks of overall 3 μm thickness (three Z-step
of 1 μm). One Z-stack is collected every 6 s for 5 min (Fig. 2c)
(see Note 11).

3.3 Image

Processing

Image processing is an essential step that must be carried out before
image analysis. These include correcting for sample movement and
drift that occur during image acquisition and obtaining simpler
images compatible with the algorithms used for image quantifica-
tion (Fig. 3a).

1. Open the files as hyperstacks using ImageJ (Fiji distribution).

2. Apply Z-stack maximum projection to the whole image, in
order to convert the 3D stack to 2D (ImageJ:
image ! stack ! z-project ! maximum intensity projection).

3. Change the bit depth to 8-bit by clicking on
Image ! Type ! 8bit.

4. Nuclear movement, cell elongation, and sample drift will hap-
pen during the acquisition, which can add a critical bias to the
locus mobility. Each nucleus must, therefore, be aligned before
any locus tracking data acquisition. We use StackReg plug-in
from ImageJ directly on lacO/LacI images since LacI-GFP
background signal is sufficient to visualize the limits of the
nucleus (ImageJ: PlugIn ! StackReg ! select: Rigid Body).

Crop the images so that there is only one nucleus in the
image.

5. Each individual nucleus must also be realigned using the option
AlignNucleus in SpotTracker2D PlugIn (ImageJ: Plu-
gIn ! SpotTracker2D ! AlignNucleus). To select the right
threshold, the whole nucleus must be red (Fig. 3b).

6. Select the cropped image and start the Spot Tracker plugin
(ImageJ: PlugIn ! SpotTracker2D ! SpotTracker2D).

3 Z-Step of 1µm
6s over 5min

Resolution 512x512
Objective 63x W

(a) (b) (c)

Fig. 2 Image acquisition settings for lacO/LacI lines. (a) Confocal image of an Arabidopsis root tip containing
the lacO/LacI construct. Nuclei expressing LacI-GFP (cyan) showing spots corresponding to the tagged locus
and background fluorescence due to unbound LacI-GFP. Propidium iodide (PI) staining (magenta). (b) Zoomed
in image of the Arabidopsis root tip depicted in (a). Scale bar, 25 μm. (c) Schematic representation of a
nucleus expressing the lacI/LacO construct and the corresponding image settings
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7. Select Maximum intensity projection (M.I.P.). This step
will improve the nucleus background and spot dection on
kymographs (along the x- or y-axis), which allow visualizing
the spot trajectory and the nucleus movement during the time
of acquisition. This step is critical as it allows checking the
nucleus alignment quality (Fig. 3c,d).

8. Select “Track.” Tracking settings will be asked by the plugin
such as:

– Cone Aperture: corresponds to the size of the tracking spot.

– Normalize factor: normalizes variations in the spot size
between frames (the default value of 80% was appropriate
for our samples).

– Movement of constraint: corresponds to the theoretical
maximum spot displacement between two consecutive
frames, avoiding that noisy signal is considered as a new
position of the spot (the default value of 25% was appropri-
ate for our samples).

– Center constraint: this parameter should be optimized when
using a nuclear periphery marker and sets how far from the

Fig. 3 Image processing workflow. (a) Different steps of the image processing. This processing is divided into
three principal parts: the image format modification, nucleus alignment, and the tracking of the spots. (b)
Screenshot of Align Nucleus option settings, where the threshold should be modified to isolate the nucleus
fluorescence background (red) allowing the alignment of the nucleus. (c, d) Spot tracking results, showing
an example of a nucleus without alignment (c) and an aligned nucleus (d)
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periphery is the spot expected to be (the default value of
20% was appropriate for our samples).

– Confidence decision: represents the level at which the plu-
gin defines the trajectory as trustworthy (default value:
10 was suitable for our samples).

9. Once settings have been set select “Track” (see Note 12).

10. When the trajectory is obtained and considered robust, export
the result (SpotTracker: Result! Show as Table! Summary).

11. A table with the spot coordinates (x,y) for each time point will
appear. Save the table by clicking on File/Save.

12. Label the data in a fully comprehensive manner and store them
in a text file (.csv)

3.4 Data Analysis To obtain quantitative information regarding the locus trajectory
(Fig. 4a), a Mean Square Displacement (MSD) analysis should be
used. The analysis of the trajectory with the MSD formula allows
obtaining information about the spot trajectory, the diffusion coef-
ficient, and the radius of constraint. This method consists in

Fig. 4 Mean square displacement (MSD) analysis. (a) Plot of the trajectory data extracted from the plugin
SpotTracking. The black line corresponds to the trajectory of a locus through time within the nucleus. (b) Mean
of the squared displacement between two consecutive positions at a given time against increasing time
intervals for one single tracked locus (black). Fitted curve (red) shows the plateau corresponding to the
maximum distance that the locus has reached. (c) Example of a MSD analysis on 20 tagged loci
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calculating the displacement of an object at increasing intervals of
time via the Eq. (1) [31]. On this equation, r(t) represents the
position of the spot at a time t, and τ represents the time interval. In
the case of a locus confined in a nuclear sub-compartment, the
MSD curve will reach a plateau (Fig. 4b), which corresponds to
the maximal displacement.

MSD τð Þ ¼ h r t þ τð Þ � r tð Þð Þ2i ¼ hΔr τð Þ2i ð1Þ

1. Export the raw data, corresponding to the coordinates for the
trajectory, to an Excel file.

2. The first step is to convert the pixel coordinates from the
tracking data into microns by multiplying all the values by the
pixel size.

3. To do the MSD analysis, first calculate the squared displace-
ment Δr(τ)2, which is obtained by subtracting the determined
position r(t + τ) to the initial position r(t) for each time point
and squaring the results. This operation is then repeated by
increasing time intervals (τ)—Eq. (2).

Δr τð Þ2 ¼ xt�τ � xtð Þ2 þ yt�τ � yt
� �2 ð2Þ

4. Then an average of all Δr(τ)2 for each time interval (τ) is
calculated.

5. Plot the MSD (τ) through time intervals on Excel or GraphPad
Prism (Fig. 4b).

6. For each experiment, the standard error of the mean can be
obtained from analyzing several nuclei (Fig. 4c).

A statistical analysis can be performed by comparing the radius
of constraint in each experiment. The radius of constraint corre-
sponds to the radius of a spherical volume, which is the confine-
ment volume of the particle defined by the plateau of the MSD
curve. In the case of 2D projected pictures the radius of constraint
(Rc) has to be determined by using the maximumMSD value of the
plateau ( p) Eq. (3) (see Note 13).

Rc ¼
ffiffiffiffiffiffiffiffiffiffiffi
4
5
� p

r

ð3Þ

4 Notes

1. In this protocol, we used lines containing 250 copies of lacO
repeats and where the LacI protein is under the control of
RPS5 promoter, which drives its expression in dividing cells
[23]. The use of different promoters expressing the LacI
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protein can be useful depending on which cell types are being
targeted for analysis. However, and as mentioned above, the
expression of the LacI-GFP should not be very strong as the
background fluorescence from unbound LacI-GFP may mask
the signal coming from the targeted locus.

2. Depending on the experimental setup, day-night periods, tem-
perature, and light intensity could be changed according to the
goal of the study, but these should be kept constant during
experimental replicates.

3. Growing plants vertically allows roots to grow straight along
the surface of the media, which facilitate the transfer of the
seedlings to the microscope slide and avoid damaging the
samples.

4. Mounting the roots only between a microscope slide and a
cover slip without tape is possible but it increases the possibility
to squash and damage the root. Adding a double-sticky tape
creates a spacer, therefore avoiding squashing the roots. Addi-
tionally, it seals the slide and avoids drying of the sample during
imaging. We advise this specific tape type (Grace Bio-Labs)
because of its size and efficiency in sealing, as other tapes
often go off in contact with water.

5. Laser scanning confocal microscopes can be limiting for 3D
imaging of very dynamic processes due to a slow scan speed. A
trade-off between resolution (i.e., image quality and the num-
ber of z-steps) and scanning speed is necessary to allow
dynamic observations. Spinning disc confocal microscopes pro-
vide faster-imaging systems and therefore are likely to be advan-
tageous for quantifying highly dynamic motions.

6. Using a high magnification, such as 63�, allows collecting
5–10 nuclei at the same time with good resolution, which is
important for a proper nucleus alignment and spot tracking.

7. After 1 week of germination, Arabidopsis seedlings are long
enough for imaging, but the time can be adjusted depending
on the experimental purpose.

8. In order to limit movement of the cell imaged along the x–y
axis, the seedling is immobilized by placing the upper part of
the root between the double-sticky tape and the coverslip while
the cotyledons are left outside the chamber (as shown in
Fig. 1). Nevertheless and even though the imaging time is
relatively short (approx. 5 min) the nuclei may still move along
the x–y axis due to cell expansion. It is therefore necessary to
limit this movement and to ensure, post-imaging, the correct
alignment of the nucleus between the different frames.
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9. When the root is placed on the slide there is a change of
orientation (from vertical growth to horizontal); as such the
root will adapt to the new gravity direction. To minimize root
movement during the acquisition, the sample can be mounted
and positioned horizontally for 5-10 min prior to imaging.

10. The number of nuclei per acquisition will differ in function of
the root and area of interest. To keep a robust analysis, acquisi-
tions should be taken in the same root area (i.e., using nuclei at
the same stage of development).

11. The laser intensity should be kept as low as possible to avoid
bleaching during the time of the acquisition. If the signal is
weak, the pinhole can be slightly opened to increase the signal.
The number of Z steps and time points can be modified
depending on the samples. For instance, bigger nuclei will
require larger Z-stacks. For our analysis, three Z-steps were
enough to track spots in the nucleus without increasing the
time interval.

12. If the trajectory proposed by the plugin does not correspond to
the actual trajectory of the spot, it is possible to correct the
trajectories manually. To this end, right-click on the image and
click on “Add a node at” or “Remove a node at,” to refine the
trajectory.

13. For more details about the calculation of the radius of con-
straint see supplementary materials in Neumann et al. [30].
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Together with local chromatin structure, gene accessibility, and the presence of

transcription factors, gene positioning is implicated in gene expression regulation.

Although the basic mechanisms are expected to be conserved in eukaryotes, less is

known about the role of gene positioning in plant cells, mainly due to the lack of a highly

resolutive approach. In this study, we adapted the use of the ANCHOR system to perform

real-time single locus detection in planta. ANCHOR is a DNA-labeling tool derived from

the chromosome partitioning system found in many bacterial species. We demonstrated

its suitability to monitor a single locus in planta and used this approach to track chromatin

mobility during cell differentiation in Arabidopsis thaliana root epidermal cells. Finally, we

discussed the potential of this approach to investigate the role of gene positioning during

transcription and DNA repair in plants.

Keywords: chromatin, nuclear organization, real-time imaging, microscopy, single-locus analysis, chromatin

mobility

INTRODUCTION

In eukaryotes, genetic information is encoded in the chromatin, a complex structure composed
of DNA packed around an octamer of histones in the nucleus. Chromosome territories form
large compartments in the nucleus, themselves containing chromatin domains harboring different
epigenetic signatures (Nguyen and Bosco, 2015; Pontvianne and Grob, 2020; Santos et al., 2020).
In these domains, the positioning and accessibility of genes are very dynamic in response to several
key biological processes that include gene transcription, genome replication, and DNA repair.
Fluorescence in situ hybridization (FISH) approaches, such as padlock-FISH, enable to detect a
single-copy locus using the fixed plant material (Feng et al., 2014). However, imaging techniques
using non-living organisms are insufficient to track spatial and temporal dynamics of loci. The
live-cell imaging approaches allow gene positioning visualization during these different processes,
providing key elements for their understanding (Dumur et al., 2019; Shaban and Seeber, 2020).

Microscopic detection of genomic loci in plants is possible through the use of different strategies,
such as zinc-finger-based imaging, transcription activator-like effectors (TALEs), and CRISPR/Cas9
(Lindhout et al., 2007; Fujimoto et al., 2016; Khosravi et al., 2020). Unfortunately, these techniques
have been restricted to follow the dynamics of highly repeated regions (i.e., centromeric repeats,
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telomeric sequences, and ribosomal RNA genes). Monitoring a
single locus in living plants is possible due to the addition of
lacO motifs to which the transcription factor LacI, fused to a
fluorescent protein, can bind (Kato and Lam, 2003; Fang and
Spector, 2007). Live-cell imaging of Flowering Locus C (FLC)
alleles associated with lacO (FLC-LacO) could be performed
to demonstrate that FLC-LacO repression during vernalization
provokes their physical clustering (Rosa et al., 2013). In addition,
the Tet repressor protein fused to a fluorescent protein could
also be used to label a genomic region containing numerous
Tet operator sequences (Matzke et al., 2005). In both cases,
amplification of the signal is directly linked to the multiplicity
of the targeted sequences. However, these repetitions often affect
local chromatin organization and can trigger silencing of the
reporter gene (Watanabe et al., 2005). Thus, a standardized and
robust technique for tracking the dynamics of a single locus is still
not available.

The ANCHOR system is a DNA-labeling tool derived and
optimized from chromosome partitioning complex of bacteria.
A single-copy of parS−1-kb-long fragment—serves as a binding
platform for ParB proteins (Dubarry et al., 2006). Natural
parS sequence is composed of four canonical inverted repeat
sequences that are bound via the helix-turn-helix motif present
in ParB (Funnell, 2016). Upon binding, oligomerization of ParB
proteins then propagates over the parS sequence and adjacent
DNA (Figure 1A). Importantly, oligomerized ParB proteins are
loosely associated and can be displaced transiently and easily
upon transcription or DNA repair (Saad et al., 2014). This
phenomenon is also described as the caging step (Funnell,
2016). This system has been adapted successfully to monitor a
unique locus in living yeast and human cells using a fluorescent-
tagged ParB (Germier et al., 2017). This approach is also able
to visualize DNA viruses in human cells (Komatsu et al.,
2018; Mariamé et al., 2018; Blanco-Rodriguez et al., 2020;
Gallardo et al., 2020; Hinsberger et al., 2020). In this study,
we demonstrated that the ANCHOR system can also be used
to visualize a single locus in fixed and living plant tissues.
Using this approach, we also revealed that chromatin mobility is
distinct in differentiated cells compared with meristematic cells
of plants.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
Arabidopsis thaliana ecotype Col-0 was used in this study.
lacO/LacI line used was obtained from the study by Matzke
et al. (2005). To test the ANCHOR system, A. thaliana (Col-
0) plants were transformed by agroinfiltration using the floral
dip protocol (Clough and Bent, 1998), using Agrobacterium
tumefaciens GV3101 strain. Transformants were grown on soil
and sprayed with Basta herbicide for selection (10 mg/L). All
the plant materials used here was grown in control growth
chambers on soil at 21◦C with a daylight period of 16 h/day. The
transformant 2F (T2F) line was crossed to Col-0 wild-type plants
expressing the histone variant H2A.W fused to a red fluorescent
protein (RFP) (Yelagandula et al., 2014). The T2F line used in this

study is heterozygote for the ANCHOR transgene, except in the
data shown in Figure 2, where homozygous lines have been used.

For in vitro growth, seeds were surface sterilized in 5% v/v
sodium hypochlorite for 5min and rinsed three times in sterile
distilled water. Seeds were stratified at 4◦C for 48 h in the
darkness and plated on the Murashige and Skoog (MS) medium.
Seedlings were placed in a growth cabinet (16 h light, 22◦C) for 1
week in a vertically oriented Petri dish before imaging.

Plasmid Construction
A cassette allowing the expression of ParB has been synthetized
by GenScript (USA). The nature and sequences of the ANCHOR
system and the property of NeoVirTech SAS are confidential. The
cassette was cloned into the pEarleyGate302 vector (Earley et al.,
2006).

Nanopore Sequencing
Genomic DNA preparation was performed as previously
described by Picart-Picolo et al. (2020). Library preparation was
performed using the 1D genomic DNA with ligation kit SQK-
LSK109 (Oxford Nanopore Technologies, UK), following the
instructions of the manufacturer. The R9.5 ONT flow-cell FLO-
MIN106D (Oxford Nanopore Technologies, UK) was used. We
obtained 1.93 GB of sequences (11× coverage) with an average
read length of 3,675 kb for ANCHOR T2F line. ONT reads
mapping the transgene were mapped, filtered, and aligned using
Geneious R© software (Kearse et al., 2012).

Cytogenetic Analyses
For cytogenetic analyses, nuclei were isolated from 3- or 4-week-
old plants as previously described (Pontvianne et al., 2012). In
brief, fresh leaves were fixed in 4% formaldehyde in Tris buffer
(10mM Tris–HCl at pH 7.5, 10mM EDTA, and 100mM NaCl)
for 20min and then chopped with a razor blade in 0.5mL of
LB01 buffer (15mMTris–HCl at pH 7.5, 2mMNaEDTA, 0.5mM
spermine, 80mM KCl, 20mM NaCl, and 0.1% Triton X-100).
The lysate was filtered through a 30-µm cell strainer (BD Falcon,
USA), and 12 µL of sorting buffer (100mM Tris–HCl at pH 7.5,
50mMKCl, 2mMMgCl2, 0.05% Tween-20, and 5% sucrose) was
added per 3µL of cell/nuclei suspension (Pontvianne et al., 2012)
and spread on a polylysine slide. After air-drying, the samples
were postfixed in 2% formaldehyde in phosphate buffer (PBS) for
5min and then washed twice with water before being air-dried.
The slides were thenmounted in Vectashield at 1µg/mL of DAPI
and sealed them with nail polish.

Nuclei with different levels of ploidy were isolated as described
by Pontvianne et al. (2016), except that propidium iodide
was used to stain the nuclei, together with RNase to a final
concentration of 10µg/mL. A S3 cell sorter (Biorad, USA)
with 488 nm and 561 nm 100 mW dual-lasers was used to sort
the nuclei. Immunolocalization experiments were performed as
described previously (Durut et al., 2014) using anti-H3K27me3
or anti-H3Ac antibodies (Abcam, USA) to a 1/1,000 dilution.
Zeiss LSM 700 confocal was used to generate images as shown
in Figure 1, while Zeiss LSM 800 with an Airyscan module was
used to generate images as shown in Figures 2–4A with a 63×
objective, N.A. 1.4 and pixel size of 0.028 × 0.028 × 0.160 µm3.
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FIGURE 1 | Description of the ANCHOR system in planta. (A) Schematic representation of the ANCHOR system. ParB proteins fused to GFP can directly bind to

parS sequence as a dimer. parS-ParB interactions provoke a conformational change in ParB proteins that induce their oligomerization along the flanking genomic

region. (B) Cassette used to transform Arabidopsis thaliana Col-0 plants to test the ANCHOR system in planta. A strong and ubiquitous promoter is used to express

the ParB protein fused to GFP and three FLAG tags. After a terminator sequence, a 1.5 kb-long spacer sequence has been added to separate the ParB:GFP open

reading frame and the 1 kb-long parS sequence. Detection of a parS-ParB:GFP focus (green) in an isolated leaf nucleus (C) and in fixed root tissues (D) of A. thaliana

plants containing the ANCHOR cassette described in (B). Nuclear DNA is labeled with DAPI (blue). Bar = 5µm. (E) Position of the transgene in the ANCHOR line T2F

in the Arabidopsis genome using nanopore sequencing. The transgene presented in (B) is inserted on chromosome 5, position 23.675.998 bp.

Live-cell imaging shown in Figure 4B were performed using a
spinning disk Zeiss Cell Observer equipped with a high-speed
Yokogawa CSUX1 spinning disk confocal, an ORCA-flash 4.0
digital camera Hamammatsu (Japan) and a 40× water objective
N.A. 1.2. Green fluorescent protein (GFP) was excited at 488 nm.

Live-Cell Imaging
In Figure 5, time-lapse imaging of A. thaliana roots has been
carried out using a Zeiss LSM 780 confocal microscope with
a 63× water immersion objective (1.20N.A.). For visualization
of root cell contours stained with propidium iodide, an
excitation line of 488 nm was used, and the signal was detected
at wavelengths of 580–700 nm. For the observation of GFP
expression, we used a 488-nm excitation line and a band-
pass filter of 505–550 nm. For all experiments, the images were
acquired every 6 s, taking a series of three optical sections with a
Z-step of 2µm for 5min. Each movie has a format of 512 × 512
pixels and a 3× zoom factor.

The 7-day-old seedlings were mounted in water, or propidium
iodide, between slide and cover slip and sealed with a 0.12-
mm-thick SecureSeal adhesive tape (Biorad, USA), to avoid root
movements and drying during imaging.

Mean Square Displacement Analysis
All the movies have been analyzed with Fiji software
(NIH, Bethesda, MD, USA, http://rsb.info.nih.gov/ij/)
and with the plugin SpotTracker 2D (obtained from
www.epfl.ch/sage/soft/spottracker). The mean square

displacement (MSD) analysis was performed as described
by Meschichi and Rosa (2021). All quantitative measurements
represent averages from at least nine cells. From the MSD
plot, we calculated the radius of constraint by the square root
of the plateau of the MSD curve multiplied by 5/4. Data sets
were tested for normality using the Shapiro–Wilk test. The
parametric analyses were done using the standard Student’s t-test
to determine the statistical significance of the results. For the
statistical analysis, we used the GraphPad Prism 8.3 software.

RESULTS

Development of the ANCHOR System
Our aim was to adapt and facilitate the use of the ANCHOR
system in plants. We, therefore, combined the two elements of
the ANCHOR system (ParB and its target sequence parS) into a
single transgene. A ParB gene, whose coding sequence has been
optimized for A. thaliana, was fused in a frame to a GFP and
triple FLAG-tag (ParB:GFP:3XFLAG) to allow detection in living
and fixed nuclei (Figure 1B). ParB:GFP:3XFLAG expression was
placed under the control of a promoter allowing ubiquitous

expression. At the 3
′
end of the ParB construct, we added

the 1-kb-long ParB target sequence parS separated by a 1.5-
kb-long spacer sequence to prevent the potential interference
of ParB gene transcriptional activity. Such design allows a
rapid selection of transgenic plants containing the two linked
ANCHOR elements. In addition, detection of parS-ParB:GFP
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FIGURE 2 | Detection of parS-ParB foci in cells with different ploidy levels and after immunolocalization experiments. (A) Detection of parS-ParB:GFP foci (green) in

fixed and sorted nuclei according to their ploidy levels by fluorescent-assisted cell sorting. Nuclear DNA is labeled with DAPI (gray). Enlarged view of the

parS-ParB:GFP foci is presented to facilitate signal visualization. Bar = 1µm. (B,C) Detection of parS-ParB:GFP foci (green) and posttranslationally modified histones

(red) in fixed and isolated nuclei from A. thaliana Col-0 plants T2F. The image corresponds to a confocal 2D stack. Nuclear DNA is labeled with DAPI (gray).

Trimethylated H3K27 signals are shown in (B), while acetylated H3 are shown in (C). Enlarged views of the parS-ParB:GFP foci are presented to facilitate signal

visualization. Bar = 2µm.

signals would suggest that ParB:GFP transcription is possible
even in the case of local caging of ParB:GFP proteins.

Wild-type Col-0 plants were transformed with the transgene
and selected using Basta herbicide by spraying. Fixed nuclei
isolated from eight different T1 transformants revealed the
presence of parS-ParB:GFP foci in five of them (Figure 1C). To
test the robustness of the detection approach, we then analyzed
the entire root-tip from one ANCHOR line comprising a single-
copy insertion at generation T2 (T2F; Figure 1D). One parS-
ParB:GFP signal was detectable in almost all nuclei analyzed.
Importantly, the signal-to-noise ratio is high, which allows easy
detection of the specific signal (Figure 1D).

To further characterize the ability of the ANCHOR system
to follow a single-locus in planta, it is important to know
the exact location of the transgene. We performed long-read
nanopore sequencing on an ANCHOR line with one single
insertion (T2F) and extracted all long reads corresponding to
the transgene to map its location in the genome. The sequence
analyses revealed that the transgene could be located on the
lower arm of chromosome 5, at position 23.675.998 bp, in
an intergenic region (Figure 1E). This position is flanked by
a region enriched in active chromatin marks and a region
enriched with histone 3 trimethylated lysine 27 (H3K27me3),
a repressive mark deposit by the polycomb repressive complex
2 (PRC2) (Supplementary Figure 1) (Sequeira-Mendes et al.,
2014).

Detection of parS-ParB Foci in Fixed Cells
As shown in Figure 1D, one unique focus was usually detected
in root tip cells, sometimes appearing as a doublet. Since the
ANCHOR system is based on protein aggregation, we checked
whether analyzing ANCHOR signals in endoreplicated cells
would lead to an increased number of detected foci. We isolated
2C, 4C, and 16C cells by fluorescent-assisted cell sorting after
propidium iodide labeling and RNase treatment. We stained
sorted nuclei with DAPI and observed parS-ParB:GFP signals in
sorted nuclei. We could see a higher amount of parS-ParB:GFP
signals in sorted nuclei presenting a higher endoreplication rate
(Figure 2A and Supplementary Figure 2A). Although these data
suggest that the ANCHOR system is suitable to detect multiple
loci simultaneously, additional experiments are required to fully
demonstrate that this reporting system does not lead to aberrant
locus aggregation.

In the T2F line, the transgene is located on an arm of the
chromosome 5, in a region enriched in H3K27me3 deposited
by the PRC2 but flanked by a genomic region enriched with
active chromatin marks (Supplementary Figure 1). Although T-
DNA transgene insertion may affect this peculiar chromatin
environment locally (Rajeevkumar et al., 2015), we tested
the possibility to combine both immunostaining and parS-
ParB:GFP signal detection. Immunostaining experiments were
performed on isolated leaf nuclei from 3-week-old plants using
either an antibody against histone 3 acetylated (H3Ac) active
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FIGURE 3 | ANCHOR system is suitable to monitor a single-copy locus in live cell and different tissues. Schematic representation of an A. thaliana plant illustrating the

different tissues in which parS-ParB:GFP signals have been detected by live-cell imaging. ParB:GFP signals are shown in green and H2A.W:RFP is shown in red.

Scale bars = 5µm.

mark or H3K27me3 repressive mark. As expected, the tested
histone marks and parS-ParB:GFP signals are excluded from
heterochromatic foci stained by DAPI, corresponding to the
centromeric, pericentromeric, and nucleolus organizer regions
(Figures 2B,C). Although no clear overlap could be detected
between parS-ParB:GFP signals and H3K27me3 marks, at least
partial overlap can be seen between parS-ParB:GFP signals
and H3Ac marks (Figures 2B,C and Supplementary Figure 4).
This result is expected since active transcription is necessary
to produce ParB:GFP proteins. Although we cannot conclude
about the specific chromatin state surrounding the transgene
insertion site in T2F, this experiment demonstrates our
ability to detect parS-ParB:GFP signals and immunodetection
approach simultaneously.

Detection of parS-ParB Foci in Live-Cell
Imaging
Previous studies demonstrate that global genome organization
can be cell specific and vary during plant development
(Pontvianne and Liu, 2019). Therefore, we tested our ability to
detect parS-ParB:GFP signals in different cell-types, directly in
planta. To allow simultaneous visualization of heterochromatin
and parS-ParB:GFP signals directly in living cells, we crossed
the T2F line with another A. thaliana Col-0 line expressing the
histone 2A variant H2A.W, fused to the RFP (Yelagandula et al.,
2014). Plants were grown on MS media directly in Petri dish
compatible with confocal imaging. We analyzed several tissues,
includingmeristematic and differentiated root cells, leaf cells, and
trichome cells, and also pollen grains from plants grown on soil.
We were able to detect parS-ParB:GFP signals in all cell types

tested (Figure 3 and Supplementary Figure 3). As expected,
parS-ParB:GFP signals are excluded from the heterochromatin
area, labeled by H2A.W:RFP signals. It is noted that in certain
cell types, the nuclear area can be seen due to non-associated ParB
proteins that diffuse in the nucleoplasm.

The ANCHOR system does not require high DNA
accessibility to allow the visualization of parS-ParB:GFP
signals. In a highly condensed chromatin context, such as during
mitosis, we could still detect parS-ParB:GFP signals in condensed
chromosomes, even though the signal is usually less bright than
in the neighboring cells (Figure 4A).

Finally, we tested our ability to perform live-cell imaging of the
parS-ParB:GFP signals in planta. We analyzed parS-ParB:GFP
dynamics in living roots using a Zeiss Cell Observer spinning disk
microscope (Figure 3B). Although bleaching can alter the signal
detection over time, we were able to detect the ParB:GFP signals
at multiple time points and track its relative nuclear position,
as reported earlier in human and yeast cells (Saad et al., 2014;
Germier et al., 2017). Movies showing the detection of parS-
ParB:GFP signals in live meristematic or elongated cells can be
found in Supplementary Material (Supplementary Movies 1, 2).
Altogether, our data demonstrated that the ANCHOR system is
suitable for live-cell imaging in planta.

Studying Chromosome Mobility Using the
ANCHOR System
It is now clear that higher-order organization of the chromatin
exerts an important influence on genomic function during
cell differentiation (Arai et al., 2017). For instance, in A.
thaliana, histone exchange dynamics were shown to decrease
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FIGURE 4 | Monitoring parS-ParB:GFP in live cell during mitosis or during a time-course. (A) Detection of parS-ParB:GFP foci (green) and H2A.W:RFP (red) in mitotic

cells. Scale bars = 5µm. (B) ANCHOR system enables time-lapse tracking of a single locus in live roots by confocal imaging. Time-lapse acquisition of

parS-ParB:GFP signals (gray) in an endoreplicated root cell over 5min.

gradually as cells progressively differentiate (Rosa et al., 2013).
However, how chromosomes and the chromatin fiber move
during cell differentiation is not well-studied in plants. We took
advantage of our ANCHOR DNA labeling system to monitor
chromatin mobility changes upon cell differentiation in the
T2F line. In particular, we measured the mobility of parS-
ParB:GFP foci in meristematic and differentiated cells from
the root epidermis (Figure 5A) through live-cell imaging using
confocal microscopy and quantified the mobility using the
MSD analysis (Meschichi and Rosa, 2021). Interestingly, the
chromatin mobility on meristematic cells was higher than in
differentiated cells (Figure 5B and Supplementary Movies 1, 2).
These differences were statistically significant as shown by a
much higher radius of constraint (Figure 5C). These results may
support the idea that the chromatin in undifferentiated cells
holds a more dynamic conformation (Meshorer et al., 2006; Rosa
et al., 2013; Arai et al., 2017). However, additional experiments
would be required to further validate the biological relevance of
this result.

Since single-locus dynamics in plants was mostly possible
through the use of the lacO/LacI system (Figure 5D), we
thought to compare chromatin mobility in meristematic cells
using the ANCHOR and the lacO/LacI systems. Interestingly,
both methods revealed a very similar MSD curve. In fact, a
MSD curve, where the maximum values asymptotically reach
a plateau, indicates that chromatin moves in a subdiffusive
manner, which is typical for chromosomal loci tracked in
interphase nuclei (Seeber et al., 2018). Additionally, the curves
resulted in comparable measurements of the radius of constraint
(Figures 5E,F), showing that the chromatin environment for

these two insertion lines may be similar. While the comparison
of additional lines with different chromosomal locations would
be interesting, the results presented here illustrate that the
ANCHOR system can be used to monitor single-locus and
is suitable to study chromosome organization and dynamics
in plants.

DISCUSSION AND PERSPECTIVES

In this study, we described a novel method to monitor a single-
copy locus in planta. In comparison with existing strategies,
the advantage of the ANCHOR system is the absence of
repeated elements in the target sequence. This aspect is especially
important in plants due to the existence of plant-specific
silencing systems (Watanabe et al., 2005; Matzke et al., 2015;
Grob and Grossniklaus, 2019). In fact, the parS sequence is
only 1-kb-long and could potentially be shortened to 200 bp
(NeoVirtech, personal communication). In addition, several
reports in yeast and animal cells have already demonstrated
the innocuity of the ANCHOR system to endogenous processes
such as transcription and replication (Germier et al., 2018).
This particularity makes the ANCHOR system very suitable to
monitor single-copy genes in its native genomic environment. In
this study, ANCHOR lines were generated by T-DNA insertion.
Five out of eight independent lines showed strong ANCHOR
signals. This could indicate that ANCHOR insertion site is
important to be functional. However, we cannot conclude
whether the ANCHOR system is suitable to monitor a genomic
locus located in a heterochromatic environment. The absence of
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FIGURE 5 | Analyzing chromatin mobility using the ANCHOR system. (A) Representative images of ParB-parS line in meristematic (upper panel) and differentiation

zone (bottom panel)showing nuclear signal with spots (cyan). Propidium iodide (PI) staining is shown in magenta. Bars = 10µm. (B) The MSD analysis for lacO/LacI

and ParB-parS lines based on time lapse experiment of nuclei in the meristematic zone. The values represent means ± SEM from 48 and 39 cells, respectively. (C)

Calculated radius of constraint for MSD curves depicted in (B). The values represent means ± SEM. Student’s t-test, ***P < 0.001. (D) Representative image of

lacO/LacI line in meristematic region showing nuclear signal with spots (cyan). PI staining is shown in magenta. Scale bar = 10µm. (E) The MSD analysis for

ParB-parS lines based on time-lapse experiments of nuclei in the meristematic and differentiated zone. 3D stacks were taken at 6 s intervals for 5min. The values

represent mean ± SEM from 39 and 9 cells, respectively. (F) Calculated radius of constraint for MSD curves depicted in (E). The values represent means ± SEM.

parS-ParB:GFP foci could in fact be a consequence of a lack of
ParB:GFP expression, which does notmean that parS accessibility
is compromised. Having a separate transgene for ParB:GFP
expression and parS detection would be necessary to address
this point. In addition, T-DNA transgenes and Agrobacterium-
directed transformation can be a source of genomic and
epigenomic instability, both in cis and in trans (Rajeevkumar
et al., 2015). Moreover, they can also modify the nuclear
architecture of their insertion site (Grob and Grossniklaus, 2019).
To specifically monitor the dynamics of selected single loci, the
parS sequence would need to be inserted at a precise position
within the desired locus. A recent approach that combine
CRISPR-Cas9 technology and a homologous recombination-
donor cassette can generate knock-in A. thaliana plants (Miki
et al., 2018; Wolter et al., 2018; Merker et al., 2020). The
implementation of the parS knock-in strategy will really improve
the innocuity of this approach on the local chromatin state and
should strongly reduce any bias on its nuclear positioning.

Another advantage of the ANCHOR approach is the
possibility to use simultaneously different combinations of parS-
ParB. In fact, ParB binding on parS sequence is species-specific,
and several combinations have successfully been used separately
or simultaneously so far. In this study, we used a specific parS-
ParB, but an additional specific combination could be used. In

theory, up to three combinations could be used simultaneously
(Saad et al., 2014, NeoVirTech peronnal communication),
although an important preliminary work would be required
for plant material preparation. For instance, two alleles from
the same gene could be differently labeled to monitor their
potential associations while being expressed or silenced. This
is an important question since previous observations suggest
that allele aggregation could participate in gene transcriptional
regulation (Rosa et al., 2013). These color combinations could
also be used to follow the distance of two proximal regions during
DNA repair, for example, as already shown in yeast (Saad et al.,
2014) or to label borders of a genomic regions that can undergo
different chromatin states during stress or development. This
system will provide a useful tool to study the spatial organization
and the dynamic behavior of chromatin at the single locus level.
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Supplementary Figure 1 | Chromatin states flanking the insertion site in T2F

ANCHOR line. (A) Snapshot of the chromatin states enriched in the region flanking

the transgene insertion site in the line T2F (https://jbrowse.arabidopsis.org/). (B)

Histogram representing the relative enrichment of each chromatin state in the 5 kb

upstream and downstream region of the transgene insertion site in the line T2F.

Supplementary Figure 2 | Detection of parS-ParB foci in cells with different

ploidy levels. Detection of parS-ParB:GFP foci (green) in fixed and sorted nuclei

according to their ploidy levels by fluorescent-assisted cell sorting. Nuclear DNA is

labeled with DAPI (gray).

Supplementary Figure 3 | Pollen grain and trichome cell. Confocal images of the

parS-ParB:GFP signal in a trichome cell (top panels) or in pollen grains (bottom

panels). Images on the right are saturated to show the trichome contour or the

pollen grains.

Supplementary Figure 4 | Co-localization of parS-ParB foci with H3Ac and

H3K27me3 marks. Detection of parS-ParB:GFP foci (green) and

posttranslationally modified histones (red) in fixed and isolated nuclei from A.

thaliana Col-0 plants T2F. Nuclear DNA is labeled with DAPI (gray). Trimethylated

H3K27 signals are shown in the (A), while acetylated H3 are shown in (B). (C,D)

show the relative intensity of each signal.
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