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A B S T R A C T   

Digital soil mapping (DSM) of topsoil copper (Cu) concentrations and prediction intervals covering 90% of 
agricultural land in Sweden was performed, in order to identify areas at risk of Cu deficiency. A total of 12,527 
soil samples were used to calibrate the DSM model, using airborne gamma radiation data, climate data, topo-
graphical data and soil texture class data. Among the samples included, 11,093 had no laboratory-analysed Cu 
concentrations, so their Cu concentrations were predicted using portable X-ray fluorescence (PXRF) measure-
ments. Cross-validation of the PXRF model resulted in Nash-Sutcliffe model efficiency coefficient (E) of 0.66 and 
mean absolute error (MAE) of 3.3 mg kg− 1. Cross-validation of the DSM model showed somewhat lower per-
formance (E = 0.57, MAE = 4.1 mg kg− 1). Based on the lower bound of the prediction interval (5th percentile), 
48% of agricultural soils in Sweden are most likely not at risk of Cu deficiency (>7 mg kg− 1). The Cu map was 
also validated against concentrations in soil samples from five fields (25–47 ha in size; four samples per ha). The 
field means were predicted with a MAE of 1.0 mg kg− 1 and within-field variation was reproduced with a field- 
wise squared Pearson correlation coefficient (r2) of 0–0.36. The classification metric ‘recall’ showed that the map 
of soil Cu concentrations might not predict all possible areas at risk of being Cu deficient, as observational data 
indicates that about 22% of soils in the mapped area should have Cu concentrations below the risk limit. 
However, the metric ‘precision’ showed that when the soil map predicted a concentration at or below 7 mg kg− 1, 
it was generally correct. Increasing the limit resulted in the recall and precision increasing rapidly. The 
remaining 52% of agricultural soils at risk of being below the Cu concentration limit can be targeted by labo-
ratory analysis or monitoring.   

1. Introduction 

Copper (Cu) is an important micronutrient for agricultural crops. 
Low concentrations of plant-available Cu in agricultural soils can limit 
plant growth and lead to malformation of crop organs (Oorts, 2013). 
Conversely, high concentrations can be toxic and limit root length, shoot 
length, plant height and leaf area (Cook et al., 1997; Michaud et al., 
2008). Copper deficiency in plants can be related to low total back-
ground levels of Cu in the soil, which is often the case for sandy soils 
(Oorts, 2013). In Sweden, agricultural soils in which the total Cu con-
centration is <7 mg kg− 1 are regarded as being at risk of crop Cu defi-
ciency (Swedish Board of Agriculture, 2020). Knowledge of the Cu 
concentration in agricultural soils is therefore important for decisions on 
crop micronutrient management. 

Previous research has indicated that the lowest soil Cu 

concentrations in Europe are found in the Scandinavian countries, 
particularly Sweden, although some of these findings relates to various 
types of soil and not only agricultural soil (Albanese et al., 2015; Bal-
labio et al., 2018; Panagos et al., 2018). Eriksson et al. (2017) showed 
that 22% of Swedish agricultural soils have Cu concentrations below 7 
mg kg− 1. Hence, agricultural soil that is at risk of being Cu deficient is 
not uncommon in Sweden. 

Eriksson et al. (2017) created maps of soil Cu concentrations using 
data on soil samples collected in 2007 and earlier, but the maps pro-
duced had relatively coarse resolution of 10 km × 10 km. Maps with 
higher resolution exist, e.g. maps based on the LUCAS dataset encom-
passing Europe at a resolution of 500 m × 500 m, but the models were 
calibrated on topsoil samples from many land use types and not spe-
cifically agricultural soils (Ballabio et al., 2018). Such large-scale maps 
can provide insightful information, but they may not be optimal as 
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decision support for crop production at field or within-field level. Hence, 
there is a need for high-resolution maps of topsoil Cu concentrations that 
can be used at field level. Digital soil mapping (DSM), or predictive soil 
mapping, is a popular framework for predicting soil variables in space 
using covariates (McBratney et al., 2003; Scull et al., 2003). Mapping is 
often done using either classical geostatistical methods such as kriging 
or, more popular of late, machine learning methods such as random 
forest (McBratney et al., 2003; Lamicchane et al., 2019; Wadoux et al., 
2020), alone or in combination with a geostatistical method. Machine 
learning in DSM can be argued to be more data-driven than theory- 
driven modelling. Being more data-driven, it can provide an opportu-
nity for hypothesis generation (Wadoux et al., 2021), e.g. by using co-
variate importance to explore the relationships between the 
environmental covariates and the soil property of interest, but also their 
role in predicting the soil property in question (Arrouays et al., 2020). 

Representative calibration data of the study area, i.e. soil observa-
tions, are needed if DSM of trace elements is to be successful (McBratney 
et al., 2003). This commonly means using soil datasets with data from 
laboratory measurements, e.g. wet chemistry analysis of trace elements. 
However, conventional wet chemistry can be time-consuming and 
expensive for large-scale studies. Portable X-ray fluorescence (PXRF) 
measurements have been shown to be a successful alternative for rapid 
and accurate quantification of concentrations of trace elements such as 
Cu (Adler et al., 2020; Hu et al., 2014; Shresta et al., 2022), especially 
when used in an ex situ setting with soil sample preparation steps such as 
drying, sieving and homogenisation (Goff et al., 2020). 

Specific objectives of the present study were to:  

- use PXRF measurements to predict Cu concentrations for a set of soil 
samples lacking laboratory-measured Cu concentrations, in order to 
extend the total calibration dataset for the subsequent DSM model  

- create a digital map of topsoil Cu concentrations from various 
covariates using a national DSM model (50 m × 50 m grid) encom-
passing >90% of agricultural land in Sweden  

- determine the most important covariates in the DSM model for Cu 
using two different importance metrics  

- assess whether the DSM model can be used to depict within-field 
variation using an independent validation set from five agricultural 
fields.  

- assess whether the map produced can be employed to identify areas 
at risk of Cu deficiency by using classification metrics and prediction 
interval information. 

2. Materials and methods 

2.1. Soil samples and study area 

2.1.1. National datasets 
Topsoil samples from two surveys were used in the present study. 

The first, denoted NV, derived from the Swedish national survey of 
agricultural topsoil (one sample per 1300 ha), funded by the Swedish 
Environmental Protection Agency (Eriksson, 2021). From this collec-
tion, 1434 soil samples generally evenly spaced across agricultural land 
were used in this study. The second set of topsoil samples, denoted JV, 
was collected within a project led by the Swedish Board of Agriculture 
that aimed to complement the NV soil sampling in terms of geographical 
coverage. A total of 11,093 soil samples from the project (one sample per 
100 ha) were used in this study (Fig. 1a) (Swedish board of Agriculture, 
2015). In both surveys, each soil sample was a composite sample con-
sisting of nine subsamples taken at 0–20 cm depth within a circle of 3 m 
radius from the coordinate point. Our study area encompassed >90% of 
agricultural land in Sweden and had the same geographical spread as the 
JV samples. Given the uneven distribution of agricultural land in Swe-
den, the study area covered the southern half of Sweden. The study area 
and soil samples refer to soils with <20% organic matter content. 

Laboratory-analysed pseudototal Cu concentrations are available for 
the NV soil samples, but not the JV samples. The Cu concentrations were 
determined for the NV samples using inductively coupled plasma mass 
spectrometry (ICP-MS), after extraction with 7 M HNO3 in an autoclave 
at 120 ◦C for 30 min, according to Swedish standard SS 28311 (Swedish 
Institute for Standards, 2017). 

2.1.2. Field dataset 
A set of soil samples from Bjertorp Farm, 130 km north-east of 

Gothenburg, collected in the year 2000 were used to evaluate how well 
the produced digital soil map reproduced field-average Cu concentra-
tions and spatial variations in Cu concentrations within fields. The 
samples were also used to assess the validity, i.e. coverage of observa-
tions, of the 90% prediction interval. The set comprised 617 topsoil 
samples from five different fields (25–47 ha), with roughly four samples 
per hectare in an approximate square grid (Fig. 1b). These fields are 
located in an intensively cultivated, relatively flat area with soil texture 
varying from sand and loamy sand to silty clay and clay. Each soil 
sample was a composite, consisting of nine subsamples taken at 0–20 cm 
depth within a circle of 3 m radius from the coordinate point. Pseudo-
total Cu concentrations in the soil samples were determined using 

Fig. 1. (a) Map of soil sample locations for the NV, JV and field datasets in southern Sweden and (b) aerial photo showing sampling sites in the five validation fields. 
Three geographical names are shown for spatial reference. Basemap in (b) courtesy of ESRI, Redlands, CA, USA. 
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inductively coupled plasma atomic emission spectroscopy (ICP-AES) 
after extraction with 2 M HCl in containers immersed in boiling water 
for two hours. 

2.2. Physical geography of the study area 

The Fennoscandian shield, a generally felsic bedrock segment, is the 
prominent bedrock feature in Sweden (Stephens et al., 1997). Common 
rocks are gneiss, granite and granodiorite, in most cases 1–2 billion years 
old. However, younger sedimentary bedrock, e.g. sandstone, limestone 
and alum shale, overlies this felsic bedrock in relatively small areas in 
southern Sweden and on the two large Swedish islands in the Baltic Sea 
(SGU, 2020). The soil sediments in Sweden are young and often rela-
tively thin, and are predominantly a product of the latest glaciation 
(Fredén, 1994). Hence, a large proportion of the soil parent material is 
glacial till. However, a large part of agricultural land in Sweden is on 
glacial or postglacial sorted sediments. In the east, agricultural soils are 
generally more clayey and heavy clays are frequent. In the west and the 
south, sandier soils are more frequent. In the very south of the mainland 
and on the two islands to the east, the textural class is often clay till. 
Pedologically, most Swedish agricultural soils are Cambisols and Reg-
osols (Soil Atlas of Europe, 2005). 

2.3. Software 

Modelling was carried out using the Scikit-learn package (version 
0.24.2) in the Python programming language (Pedregosa et al., 2011). 
Results were visualised using the package Datashader (version 0.12.1) 
and Matplotlib (version 3.1.3) (Hunter, 2007). The overview map was 
created using ArcGIS (version 10.6, ESRI, Redlands, CA, USA). 

2.4. PXRF methodology 

2.4.1. PXRF measurements 
We used data from the PXRF measurements of the NV samples from 

Adler et al. (2020). The JV samples were measured at the same time. All 
soil samples were analysed using a Niton XL3t GOLDD+ instrument with 
a geometrically optimised large area drift detector, with a Silver (Ag) 
anode operating at 50 kV and 200 μA (Thermo Scientific, Billerica, MA, 
USA). This instrument was used in a laboratory setting, where it was 
mounted on the static frame provided for the device and connected to a 
computer. Measurement time was set at 180 s in the “soil mode” of the 
instrument (Adler et al., 2020). Before the measurements, all soil sam-
ples were homogenised, dried and sieved (<2 mm) in accordance with 
recommendations (Weindorf and Chakraborty, 2020; United States 
Environmental Protection Agency, 2007). The limit of detection was set 
at three times the standard deviation of the measurement error. Soil 
samples were placed on the aperture in a 32 mm XRF sample cup with a 
transparent polypropylene XRF film with 4 μm thickness (Adler et al., 
2020). 

2.4.2. PXRF model 
The elements chosen to predict Cu concentration in this study were 

those frequently showing concentrations above the limit of detection for 
a majority of the soil samples in Adler et al. (2020). Those elements were 
lead (Pb), caesium (Cs), manganese (Mn), zinc (Zn), barium (B), vana-
dium (V), rubidium (Rb), titanium (Ti), potassium (K), iron (Fe), 
strontium (Sr), zirconium (Zr) and calcium (Ca). As reference and to 
check the stability of the instrument, Adler et al. (2020) analysed the 
certified reference soil sample 2709a from the National Institute of 
Standards and Technology (NIST) four times with the PXRF device 
during the measurement period. Recovery rates for the selected ele-
ments compared with the NIST 2709a reference sample are presented in 
more detail in Adler et al. (2020). Recovery rates were found to be stable 
over time and thus usable in modelling. 

Two different machine learning models were calibrated on the NV 

soil samples and used to predict Cu concentrations in the JV soil sam-
ples. Adler et al. (2020) found that non-linear and tree-based models 
were most accurate for predicting Cu concentrations from PXRF mea-
surements. The two algorithms used in the present study were Extremely 
Randomized Tree Regression (ERT) and Gradient Boosting Regression 
(GBR), which are both non-linear and tree-based, but differ in other 
ways. The ERT algorithm is very similar to that of classical random forest 
regression except in two specific respects. The first is that the splitting 
thresholds for each node are drawn at random for each covariate 
candidate (i.e. element in this case), with the best performing being 
chosen as the threshold to reduce variance at the expense of bias, while 
the second is that there is no bootstrapping of samples (Geurts et al., 
2006). The GBR algorithm works by fitting shallow (weak/stump) de-
cision trees in sequence to minimise a loss function (Friedman, 2001). 
Initial testing revealed that both algorithms performed similarly, but 
with varying accuracy at low or high level of predicted Cu concentra-
tion. Furthermore, exhaustive hyperparameter optimisation of a single 
algorithm was considered too time-consuming and lacking in predictive 
performance gain. Instead, three GBR and three ERT models were cali-
brated with different values for a specific hyperparameter to obtain the 
mean predicted Cu concentration. This could be defined as model 
averaging but with added hyperparameter variation, such that the PXRF 
model is a product of a total of six sub-models (Hastie et al., 2009). The 
chosen hyperparameter was max_features, which determines the number 
of covariates to look for at each split of a node. This hyperparameter is 
available in both ERT and GBR. Of the most common adjustable 
hyperparameters (Scikit-learn, 2021), max_features had the greatest 
impact on accuracy in the present study. The values chosen for the 
fraction of covariates used were 0.3, 0.6 and 1.0. All other settings were 
set at default apart from n_estimators, which was set to 500. The 
hyperparameter n_estimator determines the number of trees created. This 
ensemble approach enables shorter run time, since no exhaustive 
hyperparameter search is needed. As a result, after predicting Cu on the 
JV soil samples, the total number of soil samples available for calibrating 
the DSM model was 12,527 (JV and NV sets combined). 

2.5. DSM methodology 

2.5.1. DSM model 
The GBR algorithm was used to create the DSM model, which was 

calibrated on the combined NV and JV datasets. The main reason for 
choosing the GBR algorithm was that it is possible to choose the kind of 
loss function that is minimised in model calibration. This makes it 
possible to estimate the prediction uncertainty, by creating a prediction 
interval using quantile loss (95th – 5th percentile). A prediction interval 
is an estimate where future observations will fall, given a probability. In 
this study, least squared loss was used for the model for predicting Cu 
concentration, while quantile loss was used to create models to predict 
the 90% prediction interval. The DSM model prediction was done using 
model averaging, as in the PXRF model. Hence, a total of three GBR 
models were calibrated using three different settings of a hyper-
parameter and these three GBR models made up the resulting DSM 
model. Since covariate importance was calculated, each covariate 
needed to be eligible for the construction of the regression trees. Hence, 
the hyperparameter max_feature was omitted and instead the hyper-
parameter subsample was chosen, with three different values for the 
fraction of samples used for bootstrapping (0.3, 0.6 and 1.0). This re-
duces the variance at the expense of bias and is often referred to as 
stochastic gradient boosting (Friedman, 2002). 

2.5.2. DSM covariates 
A total of four different types of covariates were prepared for this 

study, derived from (i) a digital elevation model (DEM), (ii) airborne 
gamma radiation measurements, (iii) climate data and (iv) soil texture 
class maps. The main dataset of covariates used in this study was the 50 
m × 50 m grid dataset created by Piikki and Söderström (2019), which 
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covers >90% of arable land in Sweden (year 2013). In that study the 
dataset was used to predict clay and sand content. This dataset contains 
airborne gamma ray measurements of thorium (232Th), uranium (238U) 
and potassium (40K). It also includes topographic position index (TPI) 
with three different neighbourhood areas (5, 50 and 500 ha) and 
elevation (m above sea level), as well as six binary soil texture classes 
created by transforming the classes in a Quaternary deposit map 
(Table 1) (Geological Survey of Sweden (SGU), Uppsala, Sweden). This 
SGU quaternary map product reflects general soil texture classes at a 
depth of 0.5 m. 

New covariates were added such as climate, soil moisture and new 
calculations of airborne gamma ray measurements (Table 1). Climate 
covariates were from the 4 km × 4 km grid dataset provided by the 
Swedish Meteorological and Hydrological Institute (SMHI, 2015). That 
dataset contains data on precipitation and air temperature at 2 m above 
ground, both annually and seasonally, for two reference periods 
(1961–1990 and 1991–2013). The seasons are divided into spring 
(MAM; March, April and May), summer (JJA; June, July and August), 
autumn (SON; September, October and November) and winter (DJF; 
December, January and February). All climate covariates were calcu-
lated as the mean of the two reference periods. 

Raster soil moisture data from the study by Ågren et al. (2021) were 
used. This raster indicates likelihood of soil moisture, with values 
ranging from 0 to 100, dry to wet. The raster was re-sampled from 
resolution of 2 m × 2 m to 50 m × 50 m. The original dataset was mainly 
calibrated and validated on forest soils, but also contains information for 
agricultural soils in Sweden. 

The airborne gamma ray measurements were used to calculate the 
gamma radiation dose rate (Duval et al., 2005) as: 

Dose rate = 13.2×K + 5.48×U + 2.72× Th (1)  

where K is measured 40K in %, U is measured 238U in mg kg− 1 and Th is 
measured 232Th in mg kg− 1, resulting in a dose rate in nGy hr− 1. The 
ratios of K/Th, K/U and Th/U were also calculated. 

2.5.3. Validation metrics 
Two specific validation metrics were used: (i) Nash-Sutcliffe model 

efficiency coefficient (E) (Nash and Sutcliffe, 1970) and (ii) mean ab-
solute error (MAE), the latter as it is less sensitive to asymmetric 

distributions of error than root mean square error (RMSE) (Janssen and 
Heuberger, 1995). The prediction interval coverage probability (PCIP) 
was used to assess the validity of the prediction interval of the DSM 
model. This value should ideally be as close to the prediction interval 
percentage as possible (Shresta and Solomatine, 2006). 

2.5.4. Covariate importance 
Two different methods were used to determine the most important 

covariates in the DSM model: mean decrease in impurity (MDI) and 
permutation importance (PI). Mean decrease in impurity is a measure of 
how many times a covariate is used for a split in the nodes of the 
regression trees, and its hierarchy (Breiman, 2001). For instance, the 
earlier a covariate is used for a split, the more important it is considered 
by MDI. Permutation importance works by first establishing a baseline 
performance score, i.e. E or MAE, for the calibrated model against either 
the calibration data or independent validation data. Then each covariate 
is permuted (randomly shuffled) while keeping the others fixed, and the 
deviation in the performance score is noted (Breiman, 2001; Strobl et al., 
2008). This is done for a set number of times for each covariate, and the 
mean deviation is reported. Hence, an important covariate will have a 
higher deviation in the performance score, and thus a higher PI score. In 
this study, the number of times a covariate was permuted was set at 10, 
the performance score was E and PI was calculated on the calibration 
data. The PI and MDI scores reported for each covariate are the mean of 
the three GBR models that make up the DSM model. Note that covariate 
importance gives a metric and ranking for the most valuable covariates 
in the model, and not for the real-world system the model is trying to 
predict. 

2.6. Validation and risk assessment 

Both the PXRF model and the DSM model were validated using five- 
fold cross-validation. However, the cross-validation for the DSM model 
was constructed in such a way that validation was always done against 
the NV dataset, but calibration was done on the NV and JV dataset 
together. For example, a calibration fold in the DSM model cross- 
validation consisted of 80% of the NV dataset and the whole JV data-
set, and the validation fold was then the remaining 20% of the NV 
dataset. The PICP was computed during cross-validation of the DSM 
model. 

2.6.1. Evaluation at the field level 
The independent field soil sample dataset was used to, in one subarea 

for which we had data, test how well the map produced performed at 
field level and how often the prediction interval included the observed 
Cu concentration. The PICP was used to assess the prediction interval, i. 
e. map uncertainty, and mean absolute error and E were also used. The 
squared Pearson correlation coefficient (r2), i.e. field-wise linear 
regression between predicted and observed values, was used to assess 
how well the map explained the variation in Cu concentrations in each 
field. 

2.6.2. Cu deficiency assessment 
To quantify how well the DSM model correctly predicted soil samples 

at or below specific limits of Cu concentration in the soil, the recall and 
precision metrics were used. Positives in this study refer to soil samples 
having a concentration of Cu at or below the defined risk limit. Recall, 
sometimes called sensitivity or true positive rate (TPR), refers to the 
fraction of actual positives that were predicted as positives, where Tp is 
the number of true positives and Fn the number of false negatives: 

Recall =
Tp

(Tp + Fn)
(2) 

Precision, sometimes called positive predictive value (PPV), refers to 
the fraction of predicted positives that were actual positives, where Tp is 
the number of true positives and Fp is the number of false positives: 

Table 1 
Covariates used in the digital soil mapping (DSM) model, with type and source. 
Total number of covariates used was 28. Original data source: * Derived from a 
compilation by Piikki and Söderström (2019). TPI = topographic position index, 
Lantmäteriet = Swedish Land Survery.  

Covariate Type Source 

U (mg kg− 1) Gamma 
radiation 

SGU* 

Th (mg kg− 1) Gamma 
radiation 

SGU* 

K (%) Gamma 
radiation 

SGU* 

Dose rate (nGy hr− 1) Gamma 
radiation 

Computed from U, Th 
and K 

K/Th, K/U and Th/U Gamma 
radiation 

Computed from U, Th 
and K 

TPI 5, 50 and 500 DEM Computed from 
elevation* 

Soil moisture DEM Ågren et al. (2021) 
Elevation (m) DEM Lantmäteriet* 
Precipitation, annual (mm) Climate SMHI (2015) 
Precipitation, seasonal (MAM, JJA, SOM 

and DJF) (mm) 
Climate SMHI (2015) 

Temperature, annual (◦C) Climate SMHI (2015) 
Temperature, seasonal (MAM, JJA, SOM 

and DJF) (◦C) 
Climate SMHI (2015) 

Soil texture classes (Clay, Clay till, Till, 
Silt, Sand and Other) 

Soil texture SGU*  

K. Adler et al.                                                                                                                                                                                                                                   



Geoderma Regional 30 (2022) e00562

5

Precision =
Tp

(Tp + Fp)
(3) 

In the DSM context, a low recall score may indicate that the DSM 
model cannot accurately predict samples at or below a set limit. How-
ever, the precision score can simultaneously be high, indicating that 
when the DSM model predicts at or below the set limit, it is probably 
correct. 

Precision and recall were calculated for every integer step (1, 2, 3, …, 
60 mg kg− 1) of Cu concentrations to create a curve for each respective 
metric, using the cross-validation predictions of the DSM model. For 
example, the first integer step set all soil samples with laboratory- 
measured Cu concentration of 1 mg kg− 1 or less as positives, and all 
others as negatives. The same was done with predictions of the DSM 
model. Lastly, the recall and precision were calculated. This was done to 
see how well the DSM model performed at predicting at or below various 
limits, and not only the deficiency risk limit of 7 mg kg− 1. It should be 
mentioned that the risk limit 7 mg kg− 1 refers to Cu concentrations 
determined after extraction with 2 M HCl, while the Cu concentration 
from the NV data set used in the modelling were determined after 
extraction with 7 M HNO3. Presumably, 7 M HNO3 is a slightly stronger 
extractant than 2 M HCl, although few published data to confirm this are 
available. However, unpublished data from a comparison of different 
methods on 42 soils from Sweden and Scotland indicate that 7 M HNO3 
extracts nearly the total amount of Cu (HF digestion) and ca 10% >2 M 
HCl does. For simplicity, we still use 7 mg kg− 1 as limit value for high 
risk for deficiency of Cu in crops. 

3. Results 

3.1. PXRF modelling and cross-validation 

The cross-validation plots of the PXRF model revealed a relatively 
even spread around the 1:1 line (Fig. 2). The E and MAE value in cross- 
validation of the PXRF model was 0.66 and 3.3 mg kg− 1, respectively. 
However, there was a slight positive bias at lower concentrations (0–10 
mg kg− 1) and strong underestimation for five samples with concentra-
tions above 60 mg kg− 1 (Fig. 2). 

Descriptive statistics revealed a slight positive bias (≈1 mg kg− 1) in 
the median, mean, 25th percentile, 75th percentile and minimum of the 

predicted Cu concentrations in the JV soil samples compared with the 
measured Cu concentrations in the NV samples (Table 2). Since both sets 
of samples were probability samples from the same geographical area, 
similar frequency distributions of Cu concentration can be expected. The 
percentage of samples in the NV dataset with values below the risk limit 
of 7 mg kg− 1 was 21%, which is close to the 22% reported in Eriksson 
et al. (2017) and indicates that a risk of Cu deficiency is relatively 
common in Swedish agricultural soils. In both cases the percentages of 
values below the risk limit may be slightly higher than estimated since 
the estimates are based on Cu-HNO3 and the risk limit refers to Cu-HCl 
(see Cu deficiency assessment in Materials and Methods). 

3.2. Digital soil mapping and cross-validation 

Cross-validation of the DSM model showed more spread around the 
1:1 line compared with the PXRF model (Figs. 2 and 3). The E and MAE 
value for cross-validation of the DSM model was 0.57 and 4.1 mg kg− 1, 
respectively. As with the PXRF model, concentrations in soil samples 
with measured Cu concentrations above 40 mg kg− 1 were generally 
underestimated (Fig. 3). 

Cross-validation of the DSM model only calibrated on the NV dataset, 
i.e. not NV and JV combined, resulted in E of 0.4 and MAE of 4.6 mg 
kg− 1. Hence, including the JV dataset resulted in a more accurate DSM 
model. The positive bias seen at lower concentrations (0–15 mg kg− 1) in 
Fig. 3 was a result of inability of the DSM model to predict concentra-
tions lower than 5 mg kg− 1, similarly to the PXRF model. The only soil 
sample with a measured concentration of 130 mg kg− 1 was slightly more 

Fig. 2. Results from cross-validation, using five folds, of the PXRF model (a) including the full range of measured copper (Cu) concentrations and (b) zoomed in. The 
grey area represents the extent of the zoom-in and the red line is the 1:1 line (n = 1434; E is Nash-Sutcliffe model efficiency coefficient, MAE is mean absolute error). 

Table 2 
Descriptive statistics on copper (Cu) concentration in the NV soil samples (n =
1434) used as the calibration dataset for the PXRF Cu model and on Cu con-
centrations predicted on the JV soil samples (n = 11,093) by the PXRF Cu model.  

Statistic NV (mg kg− 1) JV (mg kg− 1) 

Maximum 129.9 87.0 
75th percentile 17.9 18.3 
Median 10.9 11.9 
Mean 13.9 14.4 
25th percentile 7.6 8.9 
Minimum 1.7 2.8 
Standard deviation 9.8 7.7  
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Fig. 3. Results from cross-validation, using five folds, of the DSM model (a) fully zoomed out and (b) zoomed in. The grey area represents extent of the zoom-in and 
red line is the 1:1 line (n = 1434; E is Nash-Sutcliffe model efficiency coefficient, MAE is mean absolute error). 

Fig. 4. (a) Map of predicted copper (Cu) concentrations in agricultural soil in southern Sweden and (b) width of the 90% prediction interval. The maximum 
concentration denoted in the colour bar for (a) and (b) (24.3 and 18.4 mg kg− 1, respectively) corresponds to the 90th percentile. 
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accurately predicted by the DSM model than the PXRF model. Hence, 
the DSM model might be more accurate at predicting very high Cu 
concentrations. The PICP from the cross-validation was 76%, indicating 
that the prediction interval produced was too narrow. The true con-
centration was below the lower bound 216 times and above the upper 
bound of the prediction interval 124 times. This indicates that it was 
more common that the lower bound was not low enough. 

Predicted concentrations of Cu were generally high in the north- 
eastern part of the study area, whereas lower concentrations were 
seen in the mid-southern part (Fig. 4a). However, in some areas con-
centrations varied from low to high within a short distance, e.g. in the 
mid-western and southern part of the study area and on Gotland, the 
eastern-most of the two islands (Fig. 4a). The mean and median pre-
dicted Cu concentration was 14.1 mg kg− 1 and 11.8 mg kg− 1, respec-
tively, indicating positive skewness in predicted concentrations like that 
of the calibration dataset (cf. Table 2 and Table 3). Furthermore, the 
maximum and minimum predicted Cu concentrations could be regarded 
as rare when compared to the 25th and 75th percentile (Table 3). A total 
of 3% of all agricultural land was predicted to have a Cu concentration at 
or below 7 mg kg− 1, indicating that the DSM model is not efficient for 
extremely low values. However, Eriksson et al. (2017) showed that 22% 
of Swedish agricultural land can be regarded as being below the defi-
ciency risk limit. Hence, there was large underestimation for agricultural 
soils predicted to be below the deficiency risk limit for Cu. 

The 90% prediction interval was generally wider in the north-eastern 
part of the study area and narrower in the mid-southern part (Fig. 4b). A 
wider prediction interval was more common in areas with predicted 
high concentrations of Cu, and narrower in areas with predicted lower 
concentrations (Fig. 4b). However, for the southern-most part, which 
had medium-high concentrations of predicted Cu, the prediction inter-
val was narrow (Fig. 4b). Hence, the relationship between wide pre-
diction intervals and high predicted Cu concentrations was not 
consistent. In addition, the median and mean were similar and the dis-
tribution of the prediction intervals was less skewed compared with the 
distribution of predicted Cu concentrations (Table 3). 

3.2.1. Covariate importance 
Airborne gamma radiation covariates emerged as most important 

when the rankings for the two covariate importance methods were 
weighted together (Fig. 5). Specifically, Th, U, K/Th and dose rate 
ranked high, while K was considered less important by both methods. 

Climate covariates, especially seasonal precipitation and tempera-
ture, were identified as important, with precipitation in March, April 
and May at the top of the climate covariates. Generally, the temperature 
covariates were more important than the precipitation covariates ac-
cording to the PI scores. Elevation was ranked high by both methods. 
DEM derivatives such as TPI and soil moisture, as well as texture classes, 
had lower rankings (Fig. 5). 

3.3. Performance at the field level – An example 

Field evaluation of the national Cu concentration map revealed a 
general pattern of low prediction error compared with measured Cu 
concentrations in the soil samples, apart from in Fields 4 and 5 (Fig. 6). 

However, the scatterplot (E = 0.56, MAE = 2 mg kg− 1) and the r2 

values for field-wise linear regressions between predicted and observed 
values revealed that the map of Cu concentration did not completely 
capture the variation within each field (Fig. 7, Table 4). Nevertheless, 
the field mean of measured Cu concentration was generally close to the 
predicted field mean, with a MAE between predicted and measured field 
means of 1.0 mg kg− 1, and with the largest deviation in Field 3 and 4 
(Fig. 6, Table 4). Evaluation of the prediction interval resulted in a PICP 
of 85% across all fields, indicating that the prediction interval should be 
slightly wider for this farm. Measured concentrations were found 
outside the lower and upper bound of the prediction interval. 

3.4. Risk assessment and classification accuracy 

The DSM model had a low recall score (0.1) when attempting to 
predict correctly whether a soil sample had a Cu concentration at or 
below 7 mg kg− 1 (Fig. 8). This means that if a soil sample had a Cu 
concentration at or below the deficiency risk limit, the DSM model had a 
10% probability of correctly predicting it as such. However, the preci-
sion score was much higher (0.76). This means that when the DSM 
model predicted the Cu concentration of a soil sample to be at or below 
7 mg kg− 1, it was correct with a 76% probability. 

With increasing Cu concentration, the recall and precision increased 
rapidly (Fig. 8). Thus, if the deficiency risk limit were to be reformulated 
to 10 mg kg− 1, the probability of the DSM model correctly predicting Cu 
concentrations at or below this concentration in soil samples increased 
to around 50% (Fig. 8). The graph in Fig. 8 begins where the first 
recorded score had a value above 0, e.g. at 1 mg Cu kg− 1 both the recall 
and precision score were zero. 

The low recall and precision scores indicate that only using the Cu 
concentration map to locate agricultural soils at risk of Cu deficiency is 
not sufficient. Ideally, the upper bound, i.e. 95th percentile, should be 
used to locate areas with high probability of Cu concentrations below 7 
mg kg− 1. However, no points had an upper bound at or below this value. 
An alternative can be to use the lower bound of the prediction interval, i. 
e. the 5th percentile, to locate areas with a low risk of soil Cu concen-
trations below the deficiency risk limit. As shown in Figs. 9, 48% of the 
agricultural soil had a lower prediction interval bound at or above 7 mg 
kg− 1, which implies that for 48% of the agricultural land in Sweden 
there is a high probability of soil Cu concentration being above the 
deficiency risk limit (i.e. whole prediction interval above the risk limit). 
Conversely, 52% of agricultural soils can have Cu concentrations below 
the deficiency risk limit, albeit with widely varying probabilities. 

4. Discussion 

4.1. DSM model performance and cu map applicability 

Cross-validation showed that Cu concentrations below 5 mg kg− 1 

and above 40 mg kg− 1 were difficult to predict (Fig. 3), while evaluation 
at field level gave similar indications (Fig. 7). The problem of predicting 
low concentrations was also apparent from the low recall score when 
predicting concentrations below 10 mg kg− 1. Furthermore, the variation 
in Cu concentration within each field could not be predicted accurately, 
but the mean Cu concentration in each field was predicted relatively 
well (Table 4). 

Only 3% of agricultural land in the study area was predicted to have 
soil Cu concentrations at or below 7 mg kg− 1, a strong contrast to the 
22% reported for 5170 sites in the Swedish national survey of agricul-
tural topsoil (Eriksson et al., 2017). Hence, the Cu concentration map 
underestimated the amount of agricultural land at or below the defi-
ciency risk limit, as evidenced by the low recall score. However, the 
precision score showed that predictions at or below 7 mg kg− 1 were 
correct with 76% probability. Nevertheless, only using the Cu concen-
tration map as decision support can be insufficient, as shown by the 
recall and precision scores. However, using the prediction interval map 

Table 3 
Descriptive statistics on predicted copper (Cu) concentration and 90% predic-
tion interval in agricultural soils in southern Sweden.  

Statistic Predicted Cu (mg kg− 1) Prediction interval (mg kg− 1) 

Maximum 129 109 
75th percentile 16.9 15.7 
Median 11.8 12.2 
Mean 14.1 12.9 
25th percentile 9.7 9.4 
Minimum 2.6 2.9 
Standard deviation 6.4 4.8  
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with its lower bound can improve the matter. For example, 48% of 
agricultural land had soils with a predicted lower bound above the 7 mg 
kg− 1 (Fig. 9), so the likelihood of Cu concentrations below the deficiency 
risk limit is very small in these areas. The focus should thus be re- 
directed to the remaining 52% of agricultural land which has a higher 
risk of Cu concentrations below the deficiency risk limit. End users, such 
as, advisors and farmers, need information presented in a format suit-
able for their decisions, e.g. decisions on whether or not to apply fer-
tilizer with Cu, in a specific field. Our evaluation show that Cu maps 
presented here are not certain enough to directly serve as decision 
support for this decision (Fig. 8), but by converting the derived infor-
mation (the lower bound prediction interval) to map showing areas 
where it is highly likely that the Cu level is above the tabulated value for 
Cu-deficiency risk, one can use the derived information (Fig. 9) to make 
decisions on whether or not to take a sample for Cu analyses in the lab 
(green: most likely above the risk limit – no need to take a sample, grey: 
uncertain whether the Cu concentration is above or below the risk limit, 
lab analysis is recommended to determine whether or not to fertilize). 

Ideally, the upper bound of the prediction interval should be used to 
locate areas likely at risk of Cu deficiency. However, this did not work in 

the present case due to the width of the prediction interval, as no points 
had an upper bound below 7 mg kg− 1. Hence, the 95th percentile was 
not usable for locating areas with a high probability of being below the 
deficiency risk limit. The PICP of 76% from cross-validation of the DSM 
model was lower compared to that off the independent field evaluation. 
The prediction interval produced was too narrow and should be wider. 
The PICP of 85% from the field evaluation showed a more positive view 
of the validity of the produced map uncertainty. However, the PICP from 
the field evaluation showed that the prediction interval was also too 
narrow. Thus, future efforts are needed to optimize the prediction in-
terval to be wider than it is, to encompass more soil samples, as the PICP 
should ideally be the same as the prediction interval (90%) (Shresta and 
Solomatine, 2006; Poggio et al., 2021). 

Another option could be to use the Cu concentration map and pre-
diction interval map in combination to locate areas with a low Cu 
concentration and narrow prediction interval. However, using the maps 
in such a way can be difficult, e.g. it is uncertain how low the predicted 
concentration of Cu should be and how narrow the prediction interval 
should be. Robust classification is needed in order to make this option 
useful as decision support. This needs to be done in cooperation by 

Fig. 5. Covariate importance. Score of (a) mean decrease in impurity (MDI) and (b) permutation importance (PI). Each covariate is coloured according to its co-
variate type (green: airborne gamma radiation data; blue: climate data; magenta: digital elevation model; yellow: Quaternary deposit texture classes). Prec and Temp 
refers to precipitation and temperature, respectively. Seasonal suffixes: MAM (March, April, May), JJA (June, July, August), SON (September, October, November), 
DJF (December, January, February). 

Fig. 6. Maps of (a-e) soil copper (Cu) concentrations and (f-j) prediction error at Bjertorp (zoomed in from map in Fig. 4a), with numbering and size (ha).  
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“modellers” and farmers or advisors, due to uncertainty being prob-
lematic in terms of communication and understanding (Richer-de- 
Forges et al., 2019; Arrouays et al., 2020). 

As mentioned, using the Cu concentration map alone is not sufficient 
to locate areas with a risk of Cu deficiency, so information from the 
prediction interval must be used. Using the 5th and 95th percentile for 
this purpose may not be enough, since a point is either within or outside 
these two percentiles. More nuance is needed, so future work should try 
to predict all feasible percentiles (1, 2, 3 …., 99th) and not only the 5th 
and 95th. This would make it possible to query every point and deter-
mine the percentile at which the deficiency risk limit is exceeded. For 
example, a point in the map could have a predicted 20th percentile of 
6.9 mg Cu kg− 1, roughly indicating a 20% probability of being at or 
below the deficiency risk limit. However, this option would be compu-
tationally demanding, as 297 DSM models (3 GBR × 99) would need to 
be calibrated and applied to create all 99 percentiles, at least for the 
model averaging method used in this study. The 0th and 100th 
percentile should not be predicted, in order to avoid stating determin-
istic claims as they represent the minimum and maximum. Furthermore, 
it is unclear how all these predicted percentiles should be evaluated. A 
computationally feasible option could be to calculate PICP in ascending 
(1st to 2nd, 1st to 3rd …., 1st to 99th) and descending (1st to 99th, 2nd 
to 99th …. 98th to 99th) order, to obtain descriptive statistics on the 
PICP. 

4.2. Covariate importance and map interpretation 

The geographic distribution of areas with high and low concentra-
tions of Cu is similar to that in the map in Ballabio et al. (2018). More 
specifically, the Cu concentrations in the map produced here followed 

the spatial variation in soil texture, with high predicted Cu concentra-
tions generally in areas with high clay content and lower concentrations 
in areas with coarser-textured soils. This is in agreement with previous 
findings by Eriksson et al. (2017) and Piikki and Söderström (2019). The 
results for covariate importance reinforced this, as airborne gamma ra-
diation covariates were generally regarded as most important (Fig. 5). 
Measured airborne gamma radiation values are often highly correlated 
to soil texture (International Atomic Energy Agency, 2003). This is a 
likely reason why the soil texture classes were somewhat redundant in 
the DSM model, as the airborne gamma radiation data already contained 
the necessary information for soil texture. 

Climate covariates were also found to be important in the DSM 
model, especially seasonal climate covariates (Fig. 5), but the reason for 
this is not clear. Similarly, Hengl et al. (2017) found high importance of 
climate covariates when mapping Cu (Mehlich-3 extractable) in African 
soils. The concentration of Cu in a soil is a product of many factors that 
in turn rely on temperature and moisture at longer timescales (Oorts, 
2013). In the present study, it is more likely that the climate data acted 
as a spatial partitioning covariate (spatial co-occurrence), where the 
actual spatial pattern was more important than the value itself. Precip-
itation in Sweden is generally higher in the west, where sandier soils are 
more common. These sandier soils often have a lower soil Cu concen-
tration. Further investigation is needed to properly assess if it is the 
spatial partitioning or the actual climate values that are important. 
Seasonal climate covariates were identified as more important than 
annual climate covariates, perhaps because there is more spatial varia-
tion in the seasonal covariates. Soil moisture ranked low in importance, 
perhaps due to the precipitation and elevation covariates already con-
taining similar information. It should also be mentioned that the quality 

Fig. 7. Scatterplot of predicted concentrations of copper (Cu) according to the 
Cu map versus measured concentration of Cu in each soil sample (n = 617; E is 
Nash-Sutcliffe model efficiency coefficient, MAE is mean absolute error). 

Table 4 
Measured and predicted field means of soil copper (Cu) concentration and squared Pearson correlation coefficient (r2). Each field is referred to by the number and 
colour given in Fig. 7.  

Field Measured field mean Cu (mg kg− 1) Predicted field mean Cu (mg kg− 1) r2 

1 (Blue) 12.9 13.2 0.12 
2 (Yellow) 5.5 7.0 0.17 
3 (Green) 8.6 7.8 0.04 
4 (Cyan) 13.0 11.3 0.36 
5 (Magenta) 14.3 13.3 < 0.01  

Fig. 8. Recall and precision scores for correct prediction of copper (Cu) con-
centration in soil samples at or below a certain limit based on cross-validation 
of the digital soil mapping model. The Swedish Cu deficiency risk limit is at 7 
mg kg− 1. 
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of the soil moisture map was not evaluated or calibrated for agricultural 
soils, but for forest soils. Nevertheless, the soil moisture covariate is 
mainly a product of elevation information and should still provide in-
formation better or equal to conventional soil moisture covariates, e.g. 
TWI (topographic wetness index). Elevation (m above sea level) ranked 
high in both methods, hinting at potential information redundancy of 
the DEM derivatives, which ranked lower. Nevertheless, elevation seems 
to be important in the DSM model. For instance, Chen et al. (2012) found 
that topographic information determined the spatial distribution of Cu 
in floodplain soil in China. 

Two different methods for assessing covariate importance were used, 
with the aim of minimising potentially misleading results generated by 
only using one method. However, mean decrease in impurity impor-
tance can lead to misleading results as continuous covariates with many 
unique values often rank higher than covariates with few values (Strobl 
et al., 2007), e.g. the difference between unique values in the dose rate 
covariate versus the binary classes of soil texture covariates, as the tree- 
based model can find more splitting points in the dose rate covariate. 
Furthermore, permutation importance can also be computed on inde-
pendent validation data to assess how covariates behave on unseen data, 
rather than the training data. More drawbacks exist with each method, 
and future focus should be directed towards the multitude of other co-
variate importance methods, e.g. those listed in Wei et al. (2015). 
Nevertheless, both methods resulted in similar rankings and both 

revealed the importance of airborne gamma radiation covariates, 
climate covariates and elevation (m above sea level) in the DSM model. 
Inclusion of more covariates in future versions of the DSM model could 
probably improve the performance. One such covariate could be infor-
mation on agricultural management, as it can affect Cu concentrations in 
agricultural soil (Vavoulidou et al., 2011; Oorts, 2013). However, it is 
unclear how that information can be used as a covariate. An option 
could be to use reflectance data from remote sensing, such as in Ballabio 
et al. (2018), or crop type information. 

The problems with predicting within-field variation could arise 
because of the underlying spatial resolution of the important covariates 
from airborne gamma radiation and climate data. For example, the 
original airborne gamma radiation measurements had a sampling radius 
on the ground of about four times the flight height (flight height was 30 
m and 60 m) (IAEA, 2003). Hence, capturing within-field variation in 
measured U, Th and K can be problematic. Lastly, it needs to be 
emphasised that covariate importance gives indications of what is 
important to the model and perhaps also the natural system the model is 
trying to replicate, but by no means indicates any causal connections. 
However, it can strengthen pre-established causal connections and facts, 
such as Cu concentrations being linked to soil texture. 

4.3. PXRF model performance 

The PXRF model was used with the aim of expanding the calibration 
dataset for the DSM model. If the PXRF model had predicted inaccurate 
Cu concentrations, the subsequent DSM model would probably have 
been lacking in performance. Inclusion of predicted PXRF samples made 
the DSM more accurate, but the PXRF model had problems predicting 
concentrations below 5 mg kg− 1, which was probably accentuated in the 
DSM model. Hence, the applicability of the PXRF model in expanding 
the calibration dataset for the DSM model needs to be investigated 
further. An option could be to calibrate a PXRF model specifically with 
the intention of predicting lower concentrations of Cu. The high MAE 
(3.3 mg kg− 1) at low concentrations means that the PXRF model might 
not be suitable for the task of complementary soil analysis when 
confirmation is needed on whether the Cu concentration in a soil is 
below the deficiency risk limit or not. Nevertheless, the flexibility of 
machine learning and the speed of using PXRF measurements make this 
method an interesting alternative to conventional laboratory analysis. 

5. Conclusions 

A map of topsoil Cu concentrations encompassing >90% of Swedish 
agricultural area was produced, with the aid of 28 spatially extensive 
covariate datasets and a combination of laboratory-analysed and PXRF- 
predicted Cu concentrations for point locations. Recall and precision 
scores of the DSM model showed that the resulting Cu map is only useful 
to a limited extent for determining whether a specific location is at or 
below the Cu deficiency risk limit (7 mg kg− 1). However, the modelled 
uncertainty can be used as decision support in crop micronutrient 
management. The lower bound of the 90% prediction interval can be 
used to locate areas where Cu concentrations are unlikely to be below 
the deficiency risk limit, i.e. areas that can be considered safe in terms of 
Cu deficiency. Areas not in this category need to be assessed further, 
ideally by complementary soil analysis. In its present state, the Cu 
concentration map should be used as an explorative tool. At field level, 
the map could not fully capture the variation in concentration within 
each field, but the predicted field-average Cu concentration was rela-
tively accurate. Covariate importance assessments showed that airborne 
gamma radiation covariates were most important for the DSM model, 
followed by climate covariates and elevation. Using the lower prediction 
interval bound for ruling out areas where Cu deficiency is unlikely can 
be a generally applicable approach to derive decision support for 
micronutrient management. 

Fig. 9. Map of agricultural areas in Sweden where the soil concentration of 
copper (Cu) is highly likely) to be above the Cu deficiency risk limit of 7 mg 
kg− 1 and areas with a higher risk of concentration below that limit. Based on 
the lower bound of the prediction interval (5th percentile). The map pixels are 
aggregated for better visibility at this scale. 
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