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and combine SNP effects across populations 
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Abstract 

Background: Meta-analysis describes a category of statistical methods that aim at combining the results of multiple 
studies to increase statistical power by exploiting summary statistics. Different industries that use genomic prediction 
do not share their raw data due to logistic or privacy restrictions, which can limit the size of their reference popula-
tions and creates a need for a practical meta-analysis method.

Results: We developed a meta-analysis, named MetaGS, that duplicates the results of multi-trait best linear unbiased 
prediction (mBLUP) analysis without accessing raw data. MetaGS exploits the correlations among different popula-
tions to produce more accurate population-specific single nucleotide polymorphism (SNP) effects. The method 
improves SNP effect estimations for a given population depending on its relations to other populations. MetaGS was 
tested on milk, fat and protein yield data of Australian Holstein and Jersey cattle and it generated very similar genomic 
estimated breeding values to those produced using the mBLUP method for all traits in both breeds. One of the major 
difficulties when combining SNP effects across populations is the use of different variants for the populations, which 
limits the applications of meta-analysis in practice. We solved this issue by developing a method to impute miss-
ing summary statistics without using raw data. Our results showed that imputing summary statistics can be done 
with high accuracy (r > 0.9) even when more than 70% of the SNPs were missing with a minimal effect on prediction 
accuracy.

Conclusions: We demonstrated that MetaGS can replace the mBLUP model when raw data cannot be shared, which 
can lead to more flexible collaborations compared to the single-trait BLUP model.
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Background
The simultaneous estimation of the genomic effect on 
quantitative traits using all available variants, named 
genomic prediction [1], has revolutionized the fields of 
plant breeding [2], animal breeding [3] and personal-
ized medicine [4]. This is because it considers the link-
age disequilibrium (LD) between variants when they are 
all fitted in a single model instead of attributing the same 

variation to multiple variants in high LD when running 
single variant association analyses [5]. Complex traits are 
usually controlled by a large number of genes with small 
effects, which requires a very large population to train 
the prediction equation with any reliability [6]. Such large 
reference sets with genotyped and phenotyped individu-
als may not be available for all populations and/or traits 
which requires combining different populations in a sin-
gle analysis. Ideally, a joint analysis using the raw pheno-
typic and genotypic data of different populations can be 
run to get more accurate predictions. However, restric-
tions on sharing raw data and privacy regulations limit 
such possibilities [7]. While sharing individual-level data 
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is generally constrained, it is widely acceptable to share 
summary statistics that are descriptive for the prediction 
outcome and cannot be used to infer the original data. 
Such summary statistics can be combined in a data anal-
ysis frame called meta-analysis [8].

A meta-analysis refers to the inference of more robust 
outcomes by combining the results of multiple studies in 
a single analysis, in other words, the analysis of analyses. 
The term “meta-analysis” was first proposed by Glass [9]. 
Multi-trait across country evaluation (MACE) is a tradi-
tional example of a meta-analysis in animal breeding [10], 
which uses as input the estimated breeding values (EBV) 
of bulls calculated within each country rather than the 
bull’s raw data. VanRaden and Sullivan [11] extended the 
MACE model to include genomic information (GMACE) 
which facilitated better prediction for young bulls with 
no daughter proofs [12]. GMACE has been successfully 
used for over a decade and it has a proven capability to 
increase the reliability of bull’s genomic EBV (GEBV). 
However, an alternative approach is required to analyze 
data from other organisms.

To estimate the substitution effect of single nucleotide 
polymorphisms (SNPs) when raw data are not available, 
different meta-based models were proposed regardless 
of whether the variants were fitted independently as in 
genome-wide association studies (GWAS) or jointly as 
in genomic prediction studies [13–16]. Although these 
models resulted in higher prediction accuracy compared 
to all participant individual data, most of them showed a 
lower accuracy when compared to the joint analysis that 
uses individual-level data, as they depend on approxima-
tion [14]. The model proposed by Vandenplas et al. [16] 
was designed to exploit both raw data as well as summary 
statistics in the same analysis by fitting multiple records 
per trait and it showed minimal approximation com-
pared to other models using simulated data. However, 
it assumes that the genetic correlation among all par-
ticipant populations is equal to 1 which may not be the 
case for many populations/traits. Another drawback with 
these models is that they all require participant popula-
tions to be genotyped with the same set of SNPs, which 
limit their practical application in real life.

The objective of the present study was to develop a 
meta-analysis (named MetaGS) that mimics the multi-
ple-trait best linear unbiased prediction (mBLUP) model 
using raw data with limited approximation. Our model 
assumes that each population would benefit from its cor-
relation with other populations to gain more accurate 
population-specific SNP effects. Participant data hold-
ers are expected to share the LD matrices, the frequen-
cies, and the effects of their SNPs as well as the variance 
of the direct genomic value and error variance in their 
populations. The model is sufficiently flexible to allow for 

imputing missing variants and their effects in different 
populations using the previous summary statistics with-
out accessing the individual-based data. The model was 
tested on Australian Holstein and Jersey cattle popula-
tions for milk, fat and protein yields and it showed that 
it can duplicate the joint analysis that uses the raw data 
with no approximation.

Methods
Our multi-trait BLUP model assumes that the effects 
of a SNP in population i and j ( gi and gj ) are genetically 
correlated with the same correlation as the genetic cor-
relation between true breeding values in different popu-
lations. Such a correlation can be inferred from other 
tests such as the correlation between estimated breeding 
values or the MACE. Within population i ( i = 1,…,c), the 
SNP effects are gi , where gi is a vector of SNP effects in 
population i.

SNP effect estimation in a single population
The input to the meta-analysis are SNP effects esti-
mated within each population excluding foreign data. We 
assume that the input individual estimates of SNP effects 
for population i are estimated with a SNP BLUP model 
[17] that would be equivalent to:

where yi is a vector of phenotypes (in our data, average of 
daughter phenotypes) of the training or reference popu-
lation corrected for all effects except the additive genetic 
effects explained by the SNPs; µi is the general mean of 
population i ; 1 is a vector of 1s; Zi represents the design 
matrix for the genotypes of reference individuals. Geno-
typic values of reference individuals take three possible 
values: 2− 2pij , 1− 2pij and 0− 2pij for genotypes AA, 
AB or BB, respectively [18], pij is the allele frequency 
of SNP j ( j = 1, …, m ) of population i ; ei is a vector of 
residual effects for the reference population (e.g. in a sire 
genomic model) with a (co)variance matrix as follows:

where σ 2
ei

 is the error variance of population i , and nik 
is the effective number of daughters contributing to yik 
of the reference individual k in population i . We tested 
the use of population-specific allele frequencies (which 
vary from   one  population to another) or a unified fre-
quency (using pooled individuals from all populations) 
and we did not get any difference in the results (results 
not shown). Strandén and Christensen [19] showed that 
SNP-BLUP is invariant to the frequencies used for geno-
type centering if the model includes a mean which agrees 
with our results.

(1)yi = µi1+ Zigi + ei,

(2)[var(ei)]
−1 = R−1

i = diag
{

nikσ
−2
ei

}

,
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Under the SNP BLUP model [17], SNP effects are dis-
tributed as:

with σ 2
i  being the variance of the direct genomic values 

(DGV) of population i.
DGV represents the sum of all SNP effects:

where DGVik is the breeding value of individual k 
explained by SNPs; zik is a row in the design matrix Zi 
corresponding to individual k . For this model, the mixed 
model equations for population i are:

(Co)variance of SNP effects in different populations
For the multi-trait BLUP model, SNP effects from dif-
ferent populations have the following (co)variance 
matrix:

where σ1c is the DGV covariance between population 1 
and c.

Similar to the definition of matrix Bi for popula-
tion i , matrix Bi,c for the two populations relies on the 
assumption that the same set of SNPs is used in the two 
populations:

The (co)variance matrix of the population SNP effects, 
Eq. (7), becomes:

(3)var(gi) = Biσ
2
i ,

(4)where Bi =
1

∑

j 2pij
(

1− pij
) I = θiI,

(5)DGVik = zikgi,

(6)

[

1′R−1
i 1 1′R−1

i Zi

Zi
′R−1

i 1 Zi
′R−1

i Zi + σ−2
i B−1

i

][

µ̂i

ĝi

]

=
[

1′R−1
i yi

Zi
′R−1

i yi

]

.

(7)
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(8)

Bi,c =
1

√

∑

j 2pij
(

1− pij
)

√

∑

j 2pcj
(

1− pcj
)

I =
√

θiθcI.

and its inverse matrix is:

Estimation of SNP effects in the meta‑analysis model 
(MetaGS)
The effects of the meta-analysis model are estimated 
using the following mixed model equations:

All the terms in Eq. (11) can be derived from the indi-
vidual population analyses. Data holders need to submit 
the components that allow to build Eq. (11) which are for 
population i : (1) SNP effect estimates gi or the right-hand 
side (RHS) Z′

iR
−1
i yi ; (2) Zi

′R−1
i Zi for a measure of predic-

tion error (co)variances of the SNP effect estimates; (3) 
marker allele frequencies of a reference SNP allele such 
as allele A in the population; and (4) the variance of direct 
genomic values. All the participating data holders must 
code the two SNP alleles A and B in the same way (i.e. 
using a specific reference genome, homozygosity for the 
reference allele can be coded as 0, homozygosity for the 
alternative allele can be coded as 2, and heterozygosity 
can be coded as 1), so they end with equivalent gi estima-
tions and Zi

′R−1
i Zi matrices across populations.

In the present paper, we assumed that there was no 
residual polygenic (RPG) effect. However, if an  RPG 
effect exists, it can be fitted during the estimation of SNP 
effects for each individual population following Liu et al. 
[17] without affecting the meta-analysis equations. This 
was validated using commercial Brown Swiss bulls’ data 
from six countries, but the (results not shown here).

It is not necessary for data holders to submit multi-
ple Zi

′R−1
i Zi matrices if they phenotyped different sets 

of individuals for different traits (assuming similar reli-
abilities across traits) as these matrices are supposed to 
be correlated. Instead, they are required to submit the 
number of reference individuals ( α ) used to generate 
Zi

′R−1
i Zi as well as the number of phenotyped reference 

(9)
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individuals (bulls in our case) for trait i ( ni ). The Zi
′R−1

i Zi 
matrix can be rescaled with the number of phenotypes to 
avoid overestimating the magnitude of populations with 
missing phenotypes using the following equation:

If reliabilities across traits were different, data holders 
should submit multiple Zi

′R−1
i Zi matrices.

Handling different sets of SNPs between populations
Here, we propose a method to account for different SNP 
datasets used by different populations. In this method, we 
expand the list of SNPs to include all SNPs used by any 
of the participating populations. Equation (6) shows how 
the right-hand sides (RHS) of the mixed model equations 
for each population can be obtained from the left-hand 
sides (LHS)  that the population provides i.e. the design 
matrix and the SNP solutions. However, these RHS are 
missing for SNPs that are not used by that population, so 
we impute the missing RHS as follows. We assume that, 
due to LD among the SNPs, the genotypes for the com-
plete set of SNPs ( Zc ) on the bulls used by population i 
are related to the genotypes for non-missing SNPs ( Zi ) by 
Zc = ZiT , where T is an i × c matrix with i the number 
of SNPs used by population i and c the total number of 
SNPs.

The previous assumption requires a set of animals with 
both the missing and non-missing SNPs recorded. This 
could be done within population i or by using a reference 
set of animals. T can be calculated on the reference popu-
lation by:

Then, the RHS for the missing SNPs can be calculated 
by:

and the LHS by:

This gives all the necessary inputs for Eq.  (11). There-
fore, the method does not directly impute the input SNPs 
but instead imputes the underlying matrices that are ade-
quate to estimate SNP effects using the MetaGS model 
based on the LD between existing and missing SNPs.

After the complete equations have been solved and 
yield prediction equations for each population based on 
the complete SNP set, the solutions for the original SNP 
set of population i can be obtained by:

(12)rescaled Zi
′R−1

i Zi = ni/α × Zi
′R−1

i Zi.

(13)T =
(

Z′
iZi

)−1
Z′
iZc.

(14)Z′
cR

−1
i y = T′Z′

iR
−1
i y,

(15)Z′
cR

−1
i Zc = T′Z′

iR
−1
i ZiT.

where gc are the SNP solutions for population i based 
on the complete SNP set and gi are the solutions for the 
original SNP set of population i . In the validation analy-
sis of this paper, we calculated multiple submatrices for T 
for every 200 adjacent SNPs on the same chromosome to 
make the matrix invertible. Therefore, the full T matrix 
became a block-diagonal matrix.

Validation data
The data involved Australian Holstein (4627 bulls) and 
Jersey (1178 bulls) populations genotyped with the  50k 
SNP chip. After filtering for minor allele frequency, the 
dataset included 40,850 SNPs. Three traits were con-
sidered, milk yield, milk fat and milk protein yields. The 
reference population included 1071 Jersey and 4105 
Holstein bulls born before 2010. The validation set con-
tained 107 Jersey and 522 Holstein bulls born after 2010. 
The raw data were analysed using MTG2 [20] for com-
parison with the new model (MetaGS) considering a uni-
variate model for each breed independently [single trait 
(ST)], as well as a bivariate, multi-breed model (mBLUP). 
The bivariate model assumes that the phenotypes of the 
two breeds for the same trait are two different correlated 
traits. The genetic correlation between Holstein and Jer-
sey bulls was estimated using MTG2 and fitted in the 
meta-analysis to ensure that the same G matrix was built 
with both models. Correlations were 0.54, 0.36 and 0.33 
for milk, fat and protein yields, respectively. The predic-
tion accuracy was inferred from correlations between 
DGV and the phenotypes of the validation population.

To test the accuracy of rescaling the Z′R−1
Z matrix, 

Eq.  (12) was applied after masking different propor-
tions (ranging from 0.01 to 0.95 with a 0.01 increment) 
of the Holstein and Jersey populations. The accuracy 
was inferred from the correlation between the rescaled 
Z′R−1

Z matrices and the original Z′R−1
Z matrix that 

was calculated using all the sires. This process was rep-
licated 100 times to calculate the confidence interval for 
the accuracy.

To test the accuracy of imputing the Z′R−1
Z matrix 

and the Z′R−1
y and g vectors, each of the Holstein or Jer-

sey populations were divided into three equal sets (Fig. 1). 
One third was randomly selected as a reference to build 
the T matrix (Eq.  (13)). Another third of the remaining 
bulls was used to validate the imputation accuracy. Mask-
ing different proportions (ranging from 0.01 to 0.95 with 
a 0.05 increment) of the SNPs was randomly applied to 
the validation bulls to be imputed. The accuracy was 
inferred from the correlation between the imputed SNPs 
in the three matrices or vectors ( Z′R−1

Z , Z′R−1
y and g ) 

and their values in the original three matrices or vectors 

(16)gi = Tgc.
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calculated using all the SNPs. This process was repli-
cated 100 times to calculate the confidence interval for 
the accuracy. The population used to validate the impu-
tation method was also used as a training population to 
run the MetaGS model using the imputed matrices (all 
masking proportions and replicates). The last third of 
the Holstein and Jersey populations was used to calculate 
and compare the phenotype prediction accuracies using 
SNP effects calculated for all SNP masking scenarios 
using two types of inputs: Z′R−1

Z plus g or Z′R−1
Z plus 

Z′R−1
y . Here, the accuracy was inferred from the corre-

lations between DGV and masked phenotypes.

Results
The meta-analysis developed here (MetaGS) was com-
pared to the single trait (ST) analysis as well as the joint 
analysis (mBLUP) that exploits raw data for both Aus-
tralian Holstein (HOL) and Jersey (JER) cattle breeds 
for three traits. Compared to the ST model, the average 
correlation across traits between SNP effects produced 
by MetaGS and ST was 0.97 for HOL and 0.76 for JER 
(data not shown). MetaGS performed almost the same as 
mBLUP and they produced highly correlated SNP effects 
with correlation coefficient values ranging from 0.98 to 
0.99. The correlation was even higher (r = 1) when com-
paring the GEBV for all traits in both HOL and JER pop-
ulations (Fig. 2).

Testing the three models on the validation sets showed 
comparable prediction accuracies for the three traits 
when predicting the GEBV of a breed using the SNP 
effects that were trained on the same reference breed. 
The average prediction accuracies for both breeds were 
0.487, 0.498 and 0.503 for the ST, mBLUP and MetaGS 
models, respectively (Table 1). However, when perform-
ing across-breed prediction (i.e. predicting HOL from 
JER SNP effects and via versa), the mBLUP and MetaGS 
models showed superiority compared to the ST model. 
Predicting the JER validation set using the HOL SNP 

effects of the ST model had an average prediction accu-
racy of only 0.043, while the value was equal to 0.397 and 
0.387 for the mBLUP and MetaGS models, respectively. 
Similarly, predicting the HOL validation set using the JER 
SNP effects had average prediction accuracies of 0.217, 
0.403 and 0.42 for the ST, mBLUP and MetaGS models, 
respectively (Table 1).

Rescaling the Z′R−1
Z matrix using Eq.  (12) has a 

practical advantage to avoid sharing multiple Z′R−1
Z 

matrices if the meta-analysis study was planned for 
multiple traits measured on different overlapping sets 
of individuals within the same population. Figure  3a 
shows the accuracy and standard deviation of rescaling 
Z′R−1

Z for the HOL and JER populations when mask-
ing a proportion of all individuals (between 1 and 95%). 
The method preserved a high accuracy (> 0.9 for JER 
and > 0.95 for HOL) even when more than 50% of the 
population was masked. Moreover, the method did not 
magnify or shrink the rescaled Z′R−1

Z compared to the 
original one since the regression slope always had an 
average close to 1 with small 95% confidence intervals of 
0.01 for HOL and 0.02 for JER when masking 50% of the 
population (Fig. 3b).

Different data holders might use different sets of 
SNPs. Even when different populations were geno-
typed with the same genotyping platform or chip, they 
may have filtered them differently. Thus, we proposed 
a method to impute missing variants in the Z′R−1

Z 
matrix and the Z′R−1

y and g vectors without accessing 
the raw data using an independent reference popula-
tion. The accuracy of imputing the g vector was low 
even when only 1% of the SNPs were masked (0.81 for 
HOL and 0.63 for JER; Fig.  4). However, the method 
imputed the Z′R−1

Z matrix and the Z′R−1
y vector 

with high accuracy even at high SNP masking rates. 
The left-hand side matrix had an accuracy higher 
than 0.92 when up to 70% of the SNPs were masked 
while the right-hand side had an accuracy higher than 

Holstein or Jersey popula�on

A valida�on set to test the 
accuracy of impu�ng the 

, and matrices

A valida�on set to test the 
accuracy predic�ng phenotypes 

using imputed matrices

A reference set to build the T
matrix

1/3 1/3 1/3

Fig. 1 A diagram showing the populations used to test the accuracy of imputing the component matrices for the MetaGS analysis
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0.9 when up to 90% of the SNPs were masked in both 
HOL and JER breeds (Fig.  4). However, the low accu-
racy of predicting the g vector did not affect the final 
prediction accuracy results, regardless of whether we 
used the g vector or the Z′R−1

y vector in the MetaGS 

analysis (Fig.  5). Our results clearly demonstrated 
no changes in DGV prediction accuracy when using 
imputed vectors ( g or Z′R−1

y ) with a masking pro-
portion of up to 70% compared to the original sce-
nario that used the complete dataset, i.e. the masking 

Fig. 2 Pearson correlation between genomic estimated breeding values (GEBV) calculated using the MetaGS (y-axis) and mBLUP models using 
MTG2 (x-axis) for a milk yield for Holstein, b fat yield for Holstein, c protein yield for Holstein, d milk yield for Jersey, e fat yield for Jersey, and f protein 
yield for Jersey

Table 1 Prediction accuracy for milk, fat and protein yields of sires with phenotyped daughters, using single trait analysis (ST), multi-
trait analysis (mBLUP) and meta-analysis (MetaGS)

The values represent the prediction accuracy (as the correlation coefficient between DGV and the phenotypes of the validation population) for the validation 
population (rows) using SNP effects calculated on the reference population (columns)

Jer Jersey, Hol Holstein

Trait Val\Ref ST mBLUP MetaGS

JER HOL JER HOL JER HOL

Milk JER 0.52 0.32 0.50 0.49 0.53 0.50

HOL 0.05 0.51 0.46 0.52 0.46 0.52

Fat JER 0.34 0.18 0.37 0.36 0.37 0.36

HOL 0.00 0.52 0.31 0.53 0.30 0.53

Protein JER 0.55 0.15 0.54 0.39 0.54 0.40

HOL 0.08 0.48 0.39 0.53 0.40 0.53
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Z matrices calculated after masking different proportions of the 
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Fig. 4 Accuracy of imputing Z′R−1
Z matrix (red), and Z′R−1

y (blue) and g (green) vectors for both Jersey (solid lines) and Holstein (dashed lines) 
populations at different SNP masking proportions (x-axis). Colors represent the 95% confidence interval of the estimations
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proportion is equal to zero for all traits in both Hol-
stein and Jersey populations (Fig. 5).

Discussion
Accuracy of MetaGS
We demonstrated that the MetaGS model can duplicate 
the estimation of SNP effects and prediction results 
of the mBLUP model. The outcomes of both models 
were highly correlated in all tested scenarios. For the 
Holstein population, SNP effects of both models were 
highly correlated with the ST model (r = 0.97) unlike 
the Jersey population which had an average correlation 
coefficient of 0.76. This is mainly due to the large ref-
erence population for the Holstein breed (4105 bulls) 
compared to the Jersey breed (1071 bulls), which lim-
ited the effect of the Jersey’s input on the Holstein SNP 
effects. On the other hand, the smaller Jersey popula-
tion benefits more from its correlation with the larger 
Holstein population.

Applying SNP effects on the validation population showed 
that the mBLUP and MetaGS models had no accuracy 
gain over the ST model when predicting a breed’s perfor-
mance using the SNP effects of the same breed. This result 
might be specific to our data as previous studies reported 
higher accuracy of multi-trait models over single-trait mod-
els [16, 21]. Anyway, it is outside the scope of the current 

paper to demonstrate the advantage of mBLUP or MetaGS 
over the ST model since MetaGS was developed to repro-
duce mBLUP results without accessing raw data. However, 
mBLUP and MetaGS had on average nine times and two 
times higher accuracy for the Jersey and Holstein breeds, 
respectively, compared to the ST model when predicting the 
performance of one breed using the SNP effects of the other 
breed. This is expected given that mBLUP and MetaGS use 
the information of different breeds. Different breeds usually 
have different LD structures [22]. Consequently, 50k SNPs 
is not a sufficiently dense SNP panel so that the correlation 
between SNPs and causal variants is the same in Holstein 
and Jersey.

Unlike other models that produce a global effect 
value per SNP [14, 16], MetaGS calculates population-
specific SNP effects considering variation in LD struc-
tures and genetic correlation among populations. For 
this reason, the model can fit complex traits with high 
genotype × environment interactions without reducing 
their accuracies. Even in the most extreme scenario in 
which different populations were completely uncor-
related, i.e. the genetic correlation coefficients among 
populations were equal to zero, the resulting SNP 
effects after running MetaGS will be equal to the input 
population-specific effects obtained from the ST analy-
sis, assuming no imputation is required.

0.5

0.6

0.7

0.8

0.00 0.20 0.40 0.60 0.80 0.95
Masked SNPs%

r

Trait

T1_H

T2_H

T3_H

T1_J

T2_J

T3_J

Matrix

Effect

RHS

Fig. 5 Genomic prediction accuracy using imputed vectors (g, solid lines; Z′R−1
y , dashed lines) at different SNP masking proportions (x-axis), 

based on random cross-validations, for the three traits (T1: milk yield, T2: fat and T3 protein) in both the Holstein (H) and Jersey (J) populations
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Solving practical difficulties
The two major issues that limit the application of meta-
analyses to combine SNP effects of different genomic 
prediction studies are the differences in analyzed vari-
ants and the size of the required summary statistic files 
that need to be shared. The framework of the MetaGS 
method is flexible enough to solve these issues, which 
makes it more acceptable from a practical point of view.

Rescaling the   Z′R−1
Z   matrix

For different measured traits on the same population, 
usually the number of phenotyped individuals varies 
slightly, while other traits are measured on a small pro-
portion of the population. For this reason, each trait 
should have its own Z′R−1

Z matrix. The dimension of 
this matrix is m×m , where m is the number of SNPs, 
making it a huge matrix for sharing, especially if the 
meta-analysis was planned for multiple traits. Our results 
showed that there is no need to share multiple Z′R−1

Z 
matrices for the same population as these can be accu-
rately predicted from one to another using Eq. (12) even 
when more than half of the population had no phenotypic 
records. The Z′R−1

Z matrix represents the LD structure 
in the population, which makes it redundant for different 
traits except for a difference in scale that is inferred from 
the number of phenotyped individuals. For this reason, it 
is recommended that each data holder should calculate a 
single Z′R−1

Z matrix using all the genotyped individu-
als even if they do not have phenotypes and this can be 
rescaled for each trait depending on the number of indi-
viduals having phenotypic records. However, sharing 
Z′R−1

Z matrices may still be required for traits with very 
small reference populations or deviated R−1 patterns. 
As this matrix is symmetric, data holders need to share 
only the upper (or lower) triangle with the diagonal. This 
information can be saved in files with binary format to 
further reduce the size of the transferred materials.

Imputing summary statistics for missing variants
MetaGS provided a comprehensive mathematical frame 
to synchronize variants in different datasets by imputing 
them from a reference population without accessing the 
raw data using the T matrix. We showed that our imputa-
tion method had a minimal effect on prediction accuracy 
even at the high SNP masking rate of 70%. Calculating 
the T matrix requires inverting the Z′

iZi matrix and in 
order to make it invertible, the number of variants must 
be smaller than the number of individuals in the refer-
ence population. While it is impossible to get such a large 
reference population for most organisms, we recommend 
applying Eq.  (13) within each LD block, separately, and 
setting all off-diagonal or inter LD block elements to zero. 

In our analysis, we calculated the T matrix for each 200 
adjacent SNPs, but the accuracy was not affected when 
using different numbers of SNPs per LD block (data not 
shown).

In genomic prediction, the effect of a causal variant can 
be distributed over multiple variants in high LD with it 
since they are all fitted together in one model [23], unlike 
in GWAS in which overlapping sources of variation can 
be attributed to multiple variants fitted independently 
[5]. For this reason, unsynchronized variants can be eas-
ily filtered out in GWAS as they were fitted indepen-
dently but this cannot be done in genomic prediction. 
This can explain why the accuracy of imputing the g vec-
tor was relatively low compared to that of the Z′R−1

Z 
matrix and Z′R−1

y vector even at very low SNP masking 
rates such as 1% (Fig. 4). Different variants in high LD can 
have variable effect values but they would end with com-
parable values on the right-hand side (or the Z′R−1

y vec-
tor) when they are multiplied with the allelic dosage for 
each individual or the Z′R−1

Z matrix. This can explain 
why the prediction accuracy did not change when using 
the Z′R−1

y vector compared to the analysis that used 
the g vector as input (Fig. 5). It is worth noting that the 
accuracies in Fig. 5 are much larger than those in Table 1 
given that in the former, one random third of the popu-
lation was used for validation, while in the latter, young 
bulls that were born after 2010 were used for validation. 
Therefore, the reference and validation populations in the 
former were more related.

While our results demonstrated that missing vari-
ants can be imputed with high accuracy even at high 
variant masking rates, it is worth noting that the impu-
tation accuracy depends on the relatedness between the 
tested population and the reference populations, like any 
other imputation method [24]. The reference population 
assumed here is expected to be genotyped with all the 
variants used across studies. One option to collect such 
a population, if it is not available, is to select a subset of 
representative individuals within each population to be 
genotyped with the full list of variants that are planned 
to be used in the meta-analysis. These individuals can be 
used within each population to impute other individuals 
with any imputation algorithm such as FImpute [24] or 
Minimac [25]. Another option is to have an agreement 
among all data holders to share the genotyping of a few 
random individuals (e.g. 100 or 200 individuals) without 
sharing their ID or phenotypes. Participants can share 
a single random phased haplotype per individual so the 
actual genotype cannot be revealed, which allows them 
to share large numbers of haplotypes without any risk. 
Any imputation algorithm can then be applied after gath-
ering all the individuals to fill the missing variants across 
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populations. The imputed data can then be returned to 
the data holders to be used to impute the rest of the pop-
ulation. Sharing such information cannot be used for any 
purpose except for building the T matrix in Eq. (13).

Conclusions
We developed a meta-genomic prediction method 
(MetaGS) that accurately duplicated the results of the 
standard multi-trait best linear unbiased prediction 
(mBLUP) method without directly analyzing the raw data. 
Highly correlated SNP effects (r > 0.98) and almost the 
exact genomic estimated breeding values (r > 0.997) were 
obtained when applying both MetaGS and mBLUP on fat, 
protein and milk yields of Australian Holstein and Jersey 
data. The method was extended to synchronize the vari-
ants among different populations using a shared reference 
population. This was achieved by imputing missing vari-
ants from the shared summary statistics without the need 
to apply imputation on the individual-level data. We also 
developed a method to facilitate the sharing of summary 
statistics to avoid sharing multiple large files for different 
traits. MetaGS is not restricted to bull’s data and can be 
applied to any organism and can consider the variation in 
genetic correlation between participant populations. For 
example, in plant breeding, e.g., wheat, different breeding 
companies targeting distant environments belonging to 
the same mega environment could benefit from sharing 
their results within the analytical framework of MetaGS 
[26]. However, for the evaluation of bulls, the current 
meta-analyses MACE and GMACE must continue to pro-
vide the essential service of comparing foreign to domestic 
bulls. Otherwise, genetic progress may be much slower if 
breeders use only local animals instead of using the better 
foreign animals.
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